1 Overvaluation and multiple equilibria

• We build on the model developed in Notes 2
• Suppose the central bank is committed to a fixed exchange rate
 \[E_t = \overline{E} \]

• We want to study how this commitment can come under attack, if inflation expectations are out of line
• Consider a version of the model with two groups of firms
 • A mass \(\alpha \) cannot change price, price is pre-set at \(\bar{P} \)
 • A mass \(1 - \alpha \) (flex price firms) can change price at date 0

Game at date 0:
 – Flex price firms set price \(\hat{P}_{h0} \) forming expectations about \(C_0 \) and \(N_0 \)
 – Central bank sets \(i_0 \) and \(E_0 \) and quantities are determined

• When setting \(\hat{P}_{h0} \) firms are also forming expectations about other firms’ prices

1.1 Equilibrium

• Backward induction, given \(\hat{P}_{h0} \) solve the central bank problem
• Price of home good is
 \[P_{h0} = \left(\alpha \bar{P}_h^{1-\varepsilon} + (1 - \alpha) \hat{P}_{h0}^{1-\varepsilon} \right)^{\frac{1}{1-\varepsilon}} \]

• Given total demand \(Y_0 \) for home goods the demand for the goods produced by fix and flex firms are
 \[\left(\frac{\bar{P}}{P_{h0}} \right)^{-\varepsilon} Y_0 \text{ and } \left(\frac{\hat{P}_{h0}}{P_{h0}} \right)^{-\varepsilon} Y_0 \]
• So aggregating and using linearity of the technology we have that total labor demand is

\[N_0 = J_0 Y_0 \]

where

\[J_0 \equiv \alpha \left(\frac{\hat{P}_h}{P_{h0}} \right)^{-\varepsilon} + (1 - \alpha) \left(\frac{\hat{P}_{h0}}{P_{h0}} \right)^{-\varepsilon} \]

• By choosing the nominal interest the central bank can choose any triple \(C_0, p_0 \) and \(Y_0 \) that satisfies

\[C_0 = p_0^{-\omega} \]
\[Y_0 = p_0^{-1} \]

exactly as in Notes 2

• Moreover the value of \(B_1 \) and the continuation welfare are independent of central bank policy so we can focus on welfare at date 0

\[U_0 = \log C_0 - \frac{\psi}{1 + \phi} N_0^{1+\phi} \]

• Expressing it in terms of \(Y_0 \) we have

\[\omega \log Y_0 - \frac{\psi}{1 + \phi} (J_0 Y_0)^{1+\phi} \]

• If the central bank decides to float, its optimality condition is

\[\frac{\omega}{Y_0} = \psi J_0^{1+\phi} Y_0^{-\phi} \]

• That is, the central bank best response is

\[Y_0 = (\omega/\psi)^{1+\phi} J_0^{-1} \]

• If central bank sticks to peg then

\[p_0 = \frac{P_{h0}}{\bar{E}} \]

• Gain from floating

\[\Delta W(\hat{P}_h) = \max_Y \left\{ \omega \log Y - \frac{\psi}{1 + \phi} \left(J(\hat{P}_h)Y \right)^{1+\phi} \right\} - \left[\omega \log \hat{Y}(\hat{P}_h) - \frac{\psi}{1 + \phi} \left(J(\hat{P}_h)\hat{Y}(\hat{P}_h) \right)^{1+\phi} \right] \]
• Go backward to price setters optimality
• Price setters choose prices in anticipation of C_0, N_0, E_0
• Optimality of price setters, together with equilibrium wages
\[\hat{P}_{h0} = P_0 C_0 N_0^\phi \]
where
\[P_0 = P_{h0}^\omega e_0^{1-\omega} \]
• Assume
\[\omega = \psi \]
so if $\hat{P}_{h0} = \hat{P}_h = P_{h0}$ it is optimal for the central bank to implement the flexible price allocation
\[Y_0 = C_0 = p_0 = 1 \]
• Assume
\[\bar{P}_h/\bar{E} > 1 \]
so currency is initially overvalued

1.2 Multiple equilibria
• Conjecture: equilibrium with
\[\hat{P}_{h0} = \hat{P}_h = P_{h0} \]
• Then $J_0 = 1$ and gain from floating is
\[\Delta W_{float} = \omega \log 1 - \frac{\psi}{1 + \phi} - \left[\omega \log \frac{\bar{E}}{\bar{P}_h} - \frac{\psi}{1 + \phi} \left(\frac{\bar{E}}{\bar{P}_h} \right)^{1+\phi} \right] \]
• Price setters optimality holds because they expect $C_0 = N_0 = 1$ and $E_0 = P_{h0} = \hat{P}_h$
\[\hat{P}_{h0} = P_0 C_0 N_0^\phi \]
where
\[P_0 = P_{h0}^\omega e_0^{1-\omega} = \hat{P}_h \]
• Suppose cost of floating is κ and satisfies
\[\kappa < \Delta W_{float} \]
then we have an equilibrium
• Can we have also an equilibrium with fixed exchange rates?
• Now price setters anticipate

\[C_0 = \left(\frac{\hat{\xi}}{\hat{P}_{h0}} \right)^{\omega} \]

\[Y_0 = \frac{\hat{\xi}}{\hat{P}_{h0}} \]

and

\[J_0 = \left[\alpha \hat{P}_{h0}^{-\epsilon} + (1 - \alpha) \hat{P}_{h0}^{-\epsilon} \right] P_{h0}^{\epsilon} \]

and

\[P_0 = P_{h0}^{\omega} \hat{\xi}^{1-\omega} \]

• So we have

\[\hat{P}_{h0} = P_0 C_0 N_0^\phi = P_{h0}^{\omega} \hat{\xi}^{1-\omega} \left(\frac{\hat{\xi}}{\hat{P}_{h0}} \right)^{\omega} \left(\left[\alpha \hat{P}_{h0}^{-\epsilon} + (1 - \alpha) \hat{P}_{h0}^{-\epsilon} \right] P_{h0}^{\epsilon} \frac{\hat{\xi}}{\hat{P}_{h0}} \right)^{\phi} = \]

\[= \hat{\xi}^{1+\phi} \left(\frac{\alpha \hat{P}_{h0}^{-\epsilon} + (1 - \alpha) \hat{P}_{h0}^{-\epsilon}}{\alpha \hat{P}_{h0}^{1-\epsilon} + (1 - \alpha) \hat{P}_{h0}^{1-\epsilon}} \right)^{\phi} \]

• Graphically we can see this has unique fixed point and

\[\hat{P}_{h0} < \hat{\xi} < \hat{P}_h \]

which implies

\[\frac{P_{h0}}{\hat{\xi}} < \frac{\hat{P}_{h0}}{\hat{\xi}} \]

• So output if fixed expected and fixed is realized is higher than output if float is expected and fixed is realized

• If fixed is expected there is some internal devaluation that helps

• This suggests that \(\Delta W_{fix} \) will be lower than \(\Delta W_{float} \)

• There are added complications in proving this inequality, due to the presence of \(J \)

• But numerically I always got \(\Delta W_{fix} < \Delta W_{float} \)

• Moreover the distance between the two depends on the initial degree of overvaluation, if \(\frac{\hat{P}_{h0}}{\hat{\xi}} = 1 \) then \(\Delta W_{fix} = \Delta W_{float} = 0 \)

• So it’s possible to find a \(\kappa \) such that

\[\Delta W_{fix} < \kappa < \Delta W_{float} \]

so we have two equilibria