Two-Period Version of Gertler-Karadi, Gertler-Kiyotaki Financial Friction Model

Lawrence J. Christiano

Motivation

• Beginning in 2007 and then accelerating in 2008:
 – Asset values (particularly for banks) collapsed.
 – Intermediation slowed and investment/output fell.
 – Interest rates spreads over what the US Treasury and highly safe private firms had to pay, jumped.
 – US central bank initiated unconventional measures (loans to financial and non-financial firms, very low interest rates for banks, etc.)

• In 2009 – the worst parts of 2007-2008 began to turn around.
Collapse in Asset Values and Investment

Log, real Stock Market Index, real Housing Prices and real Investment

- S&P/Case-Shiller 10-city Home Price Index
- S&P 500 Index
- Gross Private Domestic Investment

Key dates:
- March, 2006
- October, 2007
- June, 2009
- September, 2008
- March, 2009
Spreads for ‘Risky’ Firms Shot Up in Late 2008

Interest Rate Spread on Corporate Bonds of Various Ratings Over Rate on AAA Corporate Bonds

- BB
- B
- CCC and worse

- mean, junk rated bonds = 5.75
- mean, B rated bonds = 2.71
- mean, BB rated bonds = 1.75

2008Q3
Must Go Back to Great Depression to See Spreads as Large as the Recent Ones

Spread, BAA versus AAA bonds

- October, 2007
- August, 2008
- March, 2009
Economic Activity Shows (anemic!) Signs of Recovery June, 2009

Unemployment rate

Log, Industrial Production Index

September, 2008
Banks’ Cost of Funds Low

Federal Funds Rate

Annual, Percent Rate

Month

2008

September, 2008
Characterization of Crisis to be Explored Here

• Bank Asset Values Fell.
• Banking System Became ‘Dysfunctional’
 – Interest rate spreads rose.
 – Intermediation and economy slowed.
• Monetary authority:
 – Transferred funds on various terms to private companies and to banks.
 – Sharply reduced cost of funds to banks.
• Economy in (tentative) recovery.
• Seek to construct models that links these observations together.
Objective

• Keep analysis simple and on point by:
 – Two periods
 – Minimize complications from agent heterogeneity.
 – Leave out endogeneity of employment.
 – Leave out nominal variables: just look ‘behind the veil of monetary economics’

• Models:
 – Gertler-Kiyotaki/Gertler-Karadi
 – In two-period setting easy to study an interesting nonlinearity that is possible:
 • Participation constraint may be binding in a crisis and not binding in normal times.
Two-period Version of GK Model

- Many identical households, each with a unit measure of members:
 - Some members are ‘bankers’
 - Some members are ‘workers’
 - Perfect insurance inside households...everyone consumes same amount.

- Period 1
 - Workers endowed with y goods, household makes deposits, d, in a bank
 - Bankers endowed with N goods, take deposits and purchase securities, d, from a firm.
 - Firm issues securities, s, to produce sR^k in period 2.

- Period 2
 - Household consumes earnings from deposits plus profits, π, from banker.
 - Goods consumed are produced by the firm.
Problem of the Household

<table>
<thead>
<tr>
<th>period</th>
<th>period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>budget constraint</td>
<td>$c + d \leq y$</td>
</tr>
<tr>
<td>problem</td>
<td>$\max_{c,C,d}[u(c) + \beta u(C)]$</td>
</tr>
</tbody>
</table>

Solution to Household Problem

$$\frac{u'(c)}{\beta u'(C)} = R^d$$

$$c + \frac{C}{R^d} = y + \frac{\pi}{R^d}$$
Household budget constraint when gov’t buys private assets using tax receipts, T, and gov’t gets the same rate of return, R^d, as households:

$$c + \frac{C}{R^d} = y - T + \frac{\pi + TR^d}{R^d} = y + \frac{\pi'}{R^d}$$

No change! (Ricardian-Wallace Irrelevance)
Problem of the Household

<table>
<thead>
<tr>
<th></th>
<th>period 1</th>
<th>period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>budget constraint</td>
<td>$c + d \leq y$</td>
<td>$C \leq R^d d + \pi$</td>
</tr>
<tr>
<td>problem</td>
<td>$\max_{c,C,d}[u(c) + \beta u(C)]$</td>
<td></td>
</tr>
</tbody>
</table>

Solution to Household Problem

\[
\frac{u'(c)}{\beta u'(C)} = R^d \\
\frac{c}{R^d} = y + \frac{\pi}{R^d}
\]

\[
u(c) = \frac{c^{1-\gamma}}{1-\gamma}
\]

\[
c = \frac{y + \frac{\pi}{R^d}}{1 + \frac{(\beta R^d)^{1/\gamma}}{R^d}}
\]
Household Supply of Deposits

- For given π, d rises or falls with R^d, depending on parameter values.
- But, in equilibrium $\pi = R^k(N+d) - R^d d$.
- Substituting into the expression for c and solving for d:

$$d = \frac{(\beta R^d)^{\frac{1}{\gamma}} - \frac{N}{y} R^k}{(\beta R^d)^{\frac{1}{\gamma}} + R^k}$$

Upward-sloping deposit supply
Household Supply of Deposits

• For given π, d rises or falls with R^d, depending on parameter values.
• But, in equilibrium $\pi = R^k(N+d)-R^d d$.
• Substituting into the expression for c and solving for d:

$$d = \frac{(\beta R^d)^{\frac{1}{\gamma}} - \frac{N}{y} R^k}{(\beta R^d)^{\frac{1}{\gamma}} + R^k}$$
Properties of Equilibrium Household Supply of Deposits

- Deposits increasing in R^d.

- Shifts right with decrease in N because of wealth effect operating via bank profits, π.
 - rise in deposit supply smaller than decrease in N.

$$\frac{\partial d}{\partial N} = - \left[\frac{R^k}{(\beta R^d)^{\frac{1}{\gamma}}} + R^k \right]$$
Efficient Benchmark

<table>
<thead>
<tr>
<th>Problem of the Bank</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>period 1</td>
<td>period 2</td>
</tr>
<tr>
<td>take deposits, d</td>
<td>pay dR^d to households</td>
</tr>
<tr>
<td>buy securities, $s = N + d$</td>
<td>receive sR^k from firms</td>
</tr>
</tbody>
</table>

problem: $\max_d [sR^k - R^d d]$
Bank demand for d

R^d

Demand for d by banks

R^k

Supply of d by households

Equilibrium d
Equilibrium in Absence of Frictions

Interior Equilibrium: R^d, π, d, c, C

(i) $c, d, C > 0$
(ii) household problem is solved
(iii) bank problem is solved
(iv) goods and financial markets clear

• Properties:
 - Household faces true social rate of return on saving:
 \[R^k = R^d \]
 - Equilibrium is ‘first best’, i.e., solves
 \[
 \max_{c, C, k} u(c) + \beta u(C) \\
 c + k \leq y + N, \ C \leq kR^k
 \]
Friction

• bank combines deposits, d, with net worth, N, to purchase $N+d$ securities from firms.

• bank has two options:
 - (‘no-default’) wait until next period when $(N + d)R^k$ arrives and pay off depositors, $R^d d$, for profit:
 $$(N + d)R^k - R^d d$$
 - (‘default’) take $\theta(N + d)$ securities, refuse to pay depositors and wait until next period when securities pay off:
 $$\theta(N + d)R^k$$
 - Bank must announce what value of d it will choose at the beginning of a period.
Incentive Constraint

• Recall, banks maximize profits

• Choose ‘no default’ iff

\[
\begin{align*}
\text{no default:} & \quad (N + d)R^k - R^d d \\
\text{default:} & \quad \theta(N + d)R^k
\end{align*}
\]

• Next: derive banking system’s demand for deposits in presence of financial frictions.
Result for a no-default equilibrium:

• Consider an individual bank that contemplates defaulting.
• It sets a d that implies default,
 \[R^k(N + d) - R^d d < \theta R^k(d + N) \], or

\[
\begin{align*}
\hat{R}^d &= \frac{(1 - \theta)R^k(d + N)}{d} \\
&> \quad \text{what the household gets in the defaulting bank} \\
&\quad \text{what the household gets in the other banks}
\end{align*}
\]

• A deviating bank will in fact receive no deposits.
• An optimizing bank would never default
Problem of the bank in no-default, interior equilibrium

• Maximize, by choice of d,

\[R^k(N + d) - R^d d \]

subject to:

\[R^k(N + d) - R^d d - R^k \theta(N + d) \geq 0, \]

or,

\[(1 - \theta)R^k N - [R^d - (1 - \theta)R^k]d \geq 0. \]

• Note that $0 < d < \infty$ requires

\[
\begin{aligned}
(1 - \theta)R^k &< R^d \\
\end{aligned}
\]

if not, then $d=\infty$

\[
\begin{aligned}
R^d &\leq R^k
\end{aligned}
\]

if not, then $d=0$

If interest rate is REALLY low, then bank has no incentive to default because it makes lots of profits not defaulting.
Problem of the bank in no-default, interior equilibrium, cnt’d

• For $R^d = R^k$
 – a bank makes no profits on d so – absent default considerations - it is indifferent over all values of $0 \leq d$
 – Taking into account default, a bank is indifferent over $0 \leq d \leq N(1-\theta)/\theta$

• For $(1-\theta)R^k < R^d < R^k$
 – Bank wants d as large as possible, subject to incentive constraint.
 – So, $d = R^kN(1-\theta)/(R^d-(1-\theta)R^k)$
Bank demand for d

\[
R^d = \frac{(1 - \theta)R^k}{R^d - (1 - \theta)R^k N}
\]

Where R^k is the supply of funds at the central bank and N is the total demand for loans. The diagram illustrates the relationship between bank demand for d and the fraction of funds supplied by the central bank. The equation shows how the demand for funds by banks is inversely proportional to the difference between the total demand for loans and the fraction of funds supplied by the central bank.
Interior, no default equilibrium

In this equilibrium, $R^d = R^k$ and first-best allocations occur. Banking system is highly effective in allocating resources efficiently.
Collapse in Bank Net Worth

• Suppose that the economy is represented by a sequence of repeated versions of the above model.

• In the periods before the 2007-2008 crisis, net worth was high and the equilibrium was like it is on the previous slide: efficient, with zero interest rate spreads.
 – In practice, spreads are always positive, but that reflects various banking costs that are left out of this model.

• With the crisis, N dropped a lot, shifting demand to the right and supply to the left.
Effect of Substantial Drop in Bank Net Worth

Initial, efficient equilibrium

Equilibrium after N drops is inefficient because $R^d < R^k$.

R^d
R^k

Household supply

Bank demand
Government Intervention

• Equity injection.
 – Government raises T in period 1, provides proceeds to banks and demands R_k^T in return at start of period 2.
 – Rebates earnings to households in 2.

• Has no impact on demand for deposits by banks (no impact on default incentive or profits).

• Reduces supply of deposits by households.
 – $d+T$ rises when T rises (even though d falls) because R_d^d rises.

• Direct, tax-financed government loans to firms work in the same way.

• An interest rate subsidy to banks will shift their demand for deposits to the right....no impact on supply curve when subsidy financed by period 2 lump sum tax on households.
Equity Injection and Drop in N

Tax-financed injection of equity into banks or direct loans to non-financial firms shift household supply left.
Recap

• Basic idea:
 – Bankers can run away with a fraction of bank assets.
 – If banker net worth is high relative to deposits, friction not a factor and banking system efficient.
 – If banker net worth falls below a certain cutoff, then banker must restrict the deposits.
 • Bankers fear (correctly) that otherwise depositors would lose confidence and take their business to another bank.
 – Reduction in banker demand for deposits:
 • makes deposit interest rates fall and so spreads rise.
 • Reduced intermediation means investment drops, output drops.
 – Equity injections by the government can revive the banking system.
Is the Model Narrative Consistent with the Evidence?

• Model says that reduced intermediation of funds through the financial system reflected reduced demand for credit by financial institutions.

• Prediction: interest rate to financial institutions fall.
1-Month AA Financial Commercial Paper Rate

Source: Board of Governors of the Federal Reserve System (US)
Shaded areas indicate US recessions - 2014 research.stlouisfed.org
• Model prediction for decline in cost of funds to financial institutions seems verified.

• But, other ‘risk free’ interest rates fell even more.
 – Interest rates on US government debt fell more than interest rate on financial firm commercial paper.
1-Month AA Financial Commercial Paper Rate-3-Month Treasury Bill: Secondary Market Rate

Shaded areas indicate US recessions - 2014 research.stlouisfed.org
Assessment

• Fact that interest rates on US government debt went down more than cost of funds to financial institutions suggests that a complete picture of financial crisis may require two additional features:

 – Risky Banks:
 • Banks in the model are risk free. Default only occurs out of equilibrium.
 • Increased actual riskiness of banks is perhaps also an important part of the picture.

 – Liquidity:
 • Low interest rates on US government debt consistent with idea that high demand for liquidity played an important role in the crisis.
Macro Prudential Policy

• In recent years there has been increased concern that banks may have a tendency to take on too much debt.

• Has accelerated thinking about debt restrictions on banks.

• There are several models of financial frictions in banks, but they do not necessarily provide a foundation for thinking about debt restrictions on banks.
 – A CSV model of banks implies they issue too little debt. (See Christiano-Ikeda).
 – The ‘running away’ model of banks does not rationalize debt restrictions. (See next).
Optimal Debt Restriction in Two-Period Running Away Banking Model

• Debt restriction on banks:

\[d \leq \bar{d} \]

• What is the socially optimal level of \(\bar{d} \) ?

• To answer this, must take into account structure of private economy
 – The way households choose debt in competitive markets
 – The fact that banks will not choose a debt level that violates incentive constraints.
Social Welfare Function

\[u(c) + \beta u(C) \]

\[= u\left(\frac{y-d}{c}\right) + \beta u\left(\begin{array}{c} \text{earnings on deposits} \\ \text{bank profits} \end{array}\right) \]

\[= u(y-d) + \beta u(R^k(N+d)). \]
Household Saving

- Optimization:

\[u'(y - d) = R^d u'(C) \]

plus budget constraint and definition of profits (see above) implies:

\[
d = \frac{(\beta R^d)^{\frac{1}{\gamma}} - R^k n}{y} y \\
\]

or

\[
R^d = \frac{1}{\beta} \left(\frac{d+n}{y-d} R^k \right)^{\gamma} \equiv f(d)
\]
Implementability Constraint

• Let d^* denote the value of deposits that a benevolent planner wishes the banks would choose.

• Planner must take into account:
 – banks will not choose a level of d which implies a violation of the incentive constraint.
 – market arrangement in which households make their deposit supply decision.
 – these considerations restrict d as follows:

\[(1 - \theta)(N + d)R^k - f(d)d \geq 0\]
Planning Problem

• d^* is solution to the following problem:

$$\max_d u(y - d) + \beta u(R^k(N + d)) + \mu[(1 - \theta)(N + d)R^k - f(d)d]$$

• Fonc

$$=u'(y-d)/R^d \text{ by households}$$

$$- u'(y - d) + \beta u'(C) \times R^k + \mu[(1 - \theta)R^k - f'(d)d - f(d)] = 0$$

$$\mu \geq 0, [(1 - \theta)(N + d)R^k - f(d)d] \geq 0, \mu[(1 - \theta)(N + d)R^k - f(d)d] = 0$$
Planning Problem

• d^* is solution to the following problem:

$$\max_{d} u(y - d) + \beta u(R^k(N + d)) + \mu[(1 - \theta)(N + d)R^k - f(d)d]$$

• Fonc

$$u'(y - d) \left[\frac{R^k}{f(d)} - 1 \right] + \mu[(1 - \theta)R^k - f'(d)d - f(d)] = 0$$

Complementary Slackness

$$\mu \geq 0, [(1 - \theta)(N + d)R^k - f(d)d] \geq 0, \mu[(1 - \theta)(N + d)R^k - f(d)d] = 0$$
Planning Problem

• First order conditions:

\[u'(y - d) \left[\frac{R^k}{f(d)} - 1 \right] + \mu[(1 - \theta)R^k - f'(d)d - f(d)] = 0 \]

Complementary Slackness

\[\mu \geq 0, [(1 - \theta)(N + d)R^k - f(d)d] \geq 0, \mu[(1 - \theta)(N + d)R^k - f(d)d] = 0 \]

• Solving the problem:

– Try \(\mu = 0 \) and solve (‘saving supply crosses horizontal line at \(R^k \)’)

\[R^k = f(d) \]

– Check incentive constraint. If satisfied, \(R^k = f(d^*) \)

– Otherwise, conclude \(\mu > 0 \) and

\[(1 - \theta)(N + d^*)R^k - f(d^*)d^* = 0 \]

– (‘Savings supply crosses incentive constraint’).
No Borrowing Restrictions Desired

• Deposits selected by government coincide with equilibrium deposits when there is no borrowing restriction.

• So, according to the model, restriction on bank borrowing not necessary.

• Model is not a good laboratory for thinking about leverage restrictions on banks, if you’re firmly convinced that leverage restrictions are required.