Two-Period Version of Gertler-Karadi, Gertler-Kiyotaki Financial Friction Model

Lawrence J. Christiano
Motivation

• Beginning in 2007 and then accelerating in 2008:
 – Asset values (particularly for banks) collapsed.
 – Intermediation slowed and investment/output fell.
 – Interest rates spreads over what the US Treasury and highly safe private firms had to pay, jumped.
 – US central bank initiated unconventional measures (loans to financial and non-financial firms, very low interest rates for banks, etc.)

• In 2009 – the worst parts of 2007-2008 began to turn around.
Collapse in Asset Values and Investment

Log, real Stock Market Index, real Housing Prices and real Investment

- March, 2006
- October, 2007
- June, 2009
- September, 2008
- March, 2009
Spreads for ‘Risky’ Firms Shot Up in Late 2008

Interest Rate Spread on Corporate Bonds of Various Ratings Over Rate on AAA Corporate Bonds

- BB
- B
- CCC and worse

Mean:
- Junk rated bonds = 5.75
- B rated bonds = 2.71
- BB rated bonds = 1.75

2008Q3
Must Go Back to Great Depression to See Spreads as Large as the Recent Ones

Spread, BAA versus AAA bonds

- October, 2007
- August, 2008
- March, 2009
Economic Activity Shows (anemic!) Signs of Recovery June, 2009

Unemployment rate

Log, Industrial Production Index

September, 2008
Banks’ Cost of Funds Low

Federal Funds Rate

Annual, Percent Rate

Month

September, 2008
Characterization of Crisis to be Explored Here

• Bank Asset Values Fell.
• Banking System Became ‘Dysfunctional’
 – Interest rate spreads rose.
 – Intermediation and economy slowed.
• Monetary authority:
 – Transferred funds on various terms to private companies and to banks.
 – Sharply reduced cost of funds to banks.
• Economy in (tentative) recovery.
• Seek to construct models that links these observations together.
Objective

• Keep analysis simple and on point by:
 – Two periods
 – Minimize complications from agent heterogeneity.
 – Leave out endogeneity of employment.
 – Leave out nominal variables: just look ‘behind the veil of monetary economics’

• Models:
 – Gertler-Kiyotaki/Gertler-Karadi
 – In two-period setting easy to study an interesting nonlinearity that is possible:
 • Participation constraint may be binding in a crisis and not binding in normal times.
Two-period Version of GK Model

• Many identical households, each with a unit measure of members:
 – Some members are ‘bankers’
 – Some members are ‘workers’
 – Perfect insurance inside households...everyone consumes same amount.

• Period 1
 – Workers endowed with y goods, household makes deposits, d, in a bank
 – Bankers endowed with N goods, take deposits and purchase securities, d, from a firm.
 – Firm issues securities, s, to produce sR^k in period 2.

• Period 2
 – Household consumes earnings from deposits plus profits, π, from banker.
 – Goods consumed are produced by the firm.
Problem of the Household

<table>
<thead>
<tr>
<th></th>
<th>period 1</th>
<th>period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>budget constraint</td>
<td>$c + d \leq y$</td>
<td>$C \leq R^d d + \pi$</td>
</tr>
<tr>
<td>problem</td>
<td>$\max_{c,C,d} [u(c) + \beta u(C)]$</td>
<td></td>
</tr>
</tbody>
</table>

Solution to Household Problem

\[
\frac{u'(c)}{\beta u'(C)} = R^d \\
\frac{c + \frac{C}{R^d}}{R^d} = y + \frac{\pi}{R^d}
\]
Solution to Household Problem

<table>
<thead>
<tr>
<th>$\frac{u'(c)}{\beta u'(C)} = R^d$</th>
<th>$c + \frac{C}{R^d} = y + \frac{\pi}{R^d}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$</td>
<td>$c = \frac{y + \frac{\pi}{R^d}}{1 + \left(\beta R^d\right)^{\frac{1}{\gamma}}}$</td>
</tr>
</tbody>
</table>

Household budget constraint when gov’t buys private assets using tax receipts, T, and gov’t gets the same rate of return, R^d, as households:

$$c + \frac{C}{R^d} = y - T + \frac{\pi + TR^d}{R^d}$$
Solution to Household Problem

<table>
<thead>
<tr>
<th>$\frac{u'(c)}{\beta u'(C)} = R^d$</th>
<th>$c + \frac{C}{R^d} = y + \frac{\pi}{R^d}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$</td>
<td>$c = \frac{\frac{y+\frac{\pi}{R^d}}{R^d}}{1 + \frac{\beta R^d}{R^d}}$</td>
</tr>
</tbody>
</table>

Household budget constraint when gov’t buys private assets using tax receipts, T, and gov’t gets the same rate of return, R^d, as households:

$$c + \frac{C}{R^d} = y - T + \frac{\pi + TR^d}{R^d} = y + \frac{\pi}{R^d}$$

No change! (Ricardian-Wallace Irrelevance)
Problem of the Household

<table>
<thead>
<tr>
<th></th>
<th>period 1</th>
<th>period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>budget constraint</td>
<td>$c + d \leq y$</td>
<td>$C \leq R^d d + \pi$</td>
</tr>
<tr>
<td>problem</td>
<td>$\max_{c,C,d}[u(c) + \beta u(C)]$</td>
<td></td>
</tr>
</tbody>
</table>

Solution to Household Problem

\[
\frac{u'(c)}{\beta u'(C)} = R^d \\
\frac{c + C}{R^d} = y + \frac{\pi}{R^d} \\

u(c) = \frac{c^{1-\gamma}}{1-\gamma} \\
c = \frac{y + \frac{\pi}{R^d}}{1 + \left(\frac{\beta R^d}{R^d}\right)^{\frac{1}{\gamma}}}
\]
Household Supply of Deposits

- For given π, d rises or falls with R^d, depending on parameter values.
- But, in equilibrium $\pi=R^k(N+d)-R^d d$.
- Substituting into the expression for c and solving for d:

$$d = \frac{(\beta R^d)^{\frac{1}{\gamma}} - \frac{N}{y} R^k}{(\beta R^d)^{\frac{1}{\gamma}} + R^k} y$$

Upward-sloping deposit supply
Household Supply of Deposits

• For given π, d rises or falls with R^d, depending on parameter values.
• But, in equilibrium $\pi = R^k(N+d)-R^d d$.
• Substituting into the expression for c and solving for d:

\[
d = \frac{(\beta R^d)^{\frac{1}{\gamma}} - \frac{N}{y} R^k}{(\beta R^d)^{\frac{1}{\gamma}} + R^k} y
\]
Properties of Equilibrium Household Supply of Deposits

• Deposits increasing in R^d.

• Shifts right with decrease in N because of wealth effect operating via bank profits, π.
 — rise in deposit supply smaller than decrease in N.

\[
\frac{\partial d}{\partial N} = -\left[\frac{R^k}{(\beta R^d)^{\frac{1}{\gamma}} + R^k}\right]_{>0, <1}
\]
Efficient Benchmark

Problem of the Bank

<table>
<thead>
<tr>
<th>period 1</th>
<th>period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>take deposits, d</td>
<td>pay dR^d to households</td>
</tr>
<tr>
<td>buy securities, $s = N + d$</td>
<td>receive sR^k from firms</td>
</tr>
</tbody>
</table>

problem: $\max_d[sR^k - R^d d]$
Bank demand for d

Demand for d by banks

Supply of d by households

Equilibrium d
Equilibrium in Absence of Frictions

Interior Equilibrium: \(R^d, \pi, d, c, C \)

(i) \(c, d, C > 0 \)

(ii) household problem is solved

(iii) bank problem is solved

(iv) goods and financial markets clear

• Properties:
 – Household faces true social rate of return on saving:

 \[
 R^k = R^d
 \]

 – Equilibrium is ‘first best’, i.e., solves

 \[
 \max_{c, C, k} u(c) + \beta u(C)
 \]

 \[
 c + k \leq y + N, \quad C \leq kR^k
 \]
Friction

- bank combines deposits, \(d \), with net worth, \(N \), to purchase \(N+d \) securities from firms.

- bank has two options:
 - (‘no-default’) wait until next period when \((N + d)R^k\)
 arrives and pay off depositors, \(R^d d \), for profit:
 \[
 (N + d)R^k - R^d d
 \]
 - (‘default’) take \(\theta(N + d) \) securities, refuse to pay
 depositors and wait until next period when securities
 pay off:
 \[
 \theta(N + d)R^k
 \]
 - Bank must announce what value of \(d \) it will
 choose at the beginning of a period.
Incentive Constraint

• Recall, banks maximize profits

• Choose ‘no default’ iff

\[
\begin{align*}
\text{no default} & \quad (N + d)R^k - R^d d \\
\text{default} & \quad \theta(N + d)R^k
\end{align*}
\]

• Next: derive banking system’s demand for deposits in presence of financial frictions.
Result for a no-default equilibrium:

- Consider an individual bank that contemplates defaulting.
- It sets a d that implies default,
 \[R^k(N + d) - R^d d < \theta R^k(d + N), \] or

\[
\frac{(1 - \theta)R^k(d + N)}{d} > R^d
\]

- A deviating bank will in fact receive no deposits.
- **An optimizing bank would never default**
 - Can verify this is so if $R^d > R^k$, $R^d = R^k$, $R^d < R^k$.
 - Assume that in the case of indifference, they do not default.
Problem of the bank in no-default, interior equilibrium

• Maximize, by choice of d,

$$R^k(N + d) - R^d d$$

subject to:

$$R^k(N + d) - R^d d - R^k \theta(N + d) \geq 0,$$

or,

$$(1 - \theta)R^k N - [R^d - (1 - \theta)R^k]d \geq 0.$$

• Note that $0 < d < \infty$ requires

\[
\frac{(1 - \theta)R^k}{R^d} \quad \leq \quad R^k.
\]

If interest rate is REALLY low, then bank has no incentive to default because it makes lots of profits not defaulting.
Problem of the bank in no-default, interior equilibrium, cnt’d

• For $R^d = R^k$
 – a bank makes no profits on d so – absent default considerations - it is indifferent over all values of $0 \leq d$
 – Taking into account default, a bank is indifferent over $0 \leq d \leq N(1-\theta)/\theta$

• For $(1-\theta)R^k < R^d < R^k$
 – Bank wants d as large as possible, subject to incentive constraint.
 – So, $d = R^kN(1-\theta)/(R^d-(1-\theta)R^k)$
Bank demand for d

\[
\frac{(1 - \theta)R^k}{R^d - (1 - \theta)R^k N}
\]
In this equilibrium, $R^d = R^k$ and first-best allocations occur. Banking system is highly effective in allocating resources efficiently.
Collapse in Bank Net Worth

• Suppose that the economy is represented by a sequence of repeated versions of the above model.

• In the periods before the 2007-2008 crisis, net worth was high and the equilibrium was like it is on the previous slide: efficient, with zero interest rate spreads.
 – In practice, spreads are always positive, but that reflects various banking costs that are left out of this model.

• With the crisis, N dropped a lot, shifting demand to the right and supply to the left.
Effect of Substantial Drop in Bank Net Worth

Equilibrium after N drops is inefficient because $R^d < R^k$.

Diagram:
- R^d: Bank demand
- R^k: Household supply
- Initial, efficient equilibrium
Government Intervention

• Equity injection.
 – Government raises T in period 1, provides proceeds to banks and demands R^kT in return at start of period 2.
 – Rebates earnings to households in 2.

• Has no impact on demand for deposits by banks (no impact on default incentive or profits).

• Reduces supply of deposits by households.
 – $d+T$ rises when T rises (even though d falls) because R^d rises.

• Direct, tax-financed government loans to firms work in the same way.

• An interest rate subsidy to banks will shift their demand for deposits to the right....it will also shift supply to the left.
Equity Injection and Drop in N

Tax-financed injection of equity into banks or direct loans to non-financial firms shift household supply left.
Recap

• Basic idea:
 – Bankers can run away with a fraction of bank assets.
 – If banker net worth is high relative to deposits, friction not a factor and banking system efficient.
 – If banker net worth falls below a certain cutoff, then banker must restrict the deposits.
 • Bankers fear (correctly) that otherwise depositors would lose confidence and take their business to another bank.
 – Reduction in banker demand for deposits:
 • makes deposit interest rates fall and so spreads rise.
 • Reduced intermediation means investment drops, output drops.
Conclusion

• Have described a model of moral hazard, that can rationalizes the view:
 – Bank net worth fell, causing interest rate spreads to jump and intermediation to slow down. The banking system is dysfunctional.

• Net worth transfers and interest rate subsidies can revive a dysfunctional banking system in both models.