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What we do
Study sequential experimentation with endogenous set of alternatives

Alternatives come from deliberate decision to search for more options

Tradeoff:

Exploring alternatives already in “consideration set” (CS)

Expanding CS by searching for more options

Examples
Consumer sequentially explores products + searches for more options

Firm evaluates candidates + expands candidate pool by searching for more

R&D: pursuing alternative technologies + searching for new ones to explore

Researcher alternates between ongoing projects + searches for new ideas
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Sequential experimentation with endogenous CS

CS constructed gradually over time in response to information the DM collects

Each period, DM either explores an alternative in CS or expands it

Exploring alternative generates signal about its value (independent of other
alternatives) and yields payoff

Decision to expand CS (= search): costly and yields (stochastic) set of new
alternatives as a function of state of the “search technology”

Search technology may evolve over time based on past outcomes

e.g., state of search technology may be stationary (iid sets of new options)

or may evolve reflecting DM’s beliefs about alternatives outside of CS



Results

Characterization of optimal exploration and expansion policy

Key properties of exploration/search dynamics: dependence on “search technology”

Comparative statics

Applications

1 Clinical trials

2 Experimentation toward regulatory approval

3 Online consumer search (“Pandora’s boxes” w. endogenous set of boxes)
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Model - decisions

Discrete time: t = 0, ...,∞

Available alternatives in period t: Ct = {1, ..., nt} (C0 exogenous)

At each t, DM either

1 Explores alternative in Ct

2 Expands considerations set

3 Opts-out: alternative i = 0 (fixed payoff equal to outside option)



Categories + learning

Each alternative belongs to an observable category ξ ∈ Ξ

Characterizes alternative’s experimentation technology and payoff process

Alternatives within same category are ex-ante identical

Exploring alternative → learning about fixed unknown µ ∈ R, drawn from distr Γξ

Observe a signal realization and update beliefs about µ

θ generic sequence of signal realizations



Exploration: states and payoffs

“State” of an alternative: ωP = (ξ, θ) ∈ ΩP

HωP ∈ ∆(ΩP): distribution over ΩP , given ωP

Payoff: u(ωP)

Key assumptions:

Alternatives’ state “frozen” unless DM explores them

Processes are independent of calendar time

Evolution of states independent across alternatives, conditional on category



Expansion: search technology

Expansion of CS: costly + adds stochastic set of new alternatives

State of search technology: ωS = ((c0,E0), (c1,E1), ..., (cm,Em)) ∈ ΩS

m: number of past searches

ck : cost of k’th search

Ek = (nk(ξ) : ξ ∈ Ξ): result of k-th search

nk(ξ): number of alternatives of category ξ discovered

HωS ∈ ∆(ΩS): joint distribution over next (c,E), given ωS

Key assumptions:

Independence of calendar time

Search technology independent of θ (correlation though ξ)

Stochasticity in search technology can capture

Learning about set of alternatives outside CS

Evolution of DM’s ability to find new alternatives



State of decision problem + policies

Period-t (overall) state: S ≡ (ωS ,SP)

ωS : state of search technology

SP : ΩP → N state of CS

SP(ωP): number of alternatives in CS in state ωP ∈ ΩP

A policy χ prescribes feasible decisions at all histories

Policy χ is optimal if maximizes Eχ
[∑∞

t=0 δ
tUt |S0

]



Example: Clinical trials

Exploring various medical treatments with unknown efficacy/safety

DM sequentially chooses between treatments to administer

Tradeoff - well-being of current patient vs value of learning about treatments

Enrich this classic problem by endogenizing the DM’s CS



Example: Clinical trials

Each period (t = 0, 1, ...), physician chooses

which treatment to administer

or whether to search for additional treatments (to be added to the pool)

Two categories of treatments: ξ ∈ Ξ ≡ {α, β}

Ex-ante, treatment from same category are identical

Category-ξ treatments’ efficacy µξ ∈ {0, 1} unknown ex-ante, independent

pξ(∅) = Pr(µξ = 1) prior that a ξ-treatment is effective



Example: Clinical trials

Outcome of treatment s ∈ {G ,B}

Using an effective ξ-treatment: s = G w.p. qξ ≡ Pr(s = G |µξ = 1) ∈ (0, 1]

Using an ineffective ξ-treatment:: s = B with certainty

Given history θ = (s1, s2, ...), pξ(θ) posterior prob that the treatment is effective

Payoff u from successful ξ-treatment: vξ > 0 if outcome is good, 0 otherwise

Search for new treatment → identify ξ-treatment w.p. ρξ, where ρα + ρβ = 1

Cost of search: c ≥ 0
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Index of an alternative in CS (standard Gittins index):

I(ωP) ≡ sup
τ>0

E
[∑τ−1

s=0 δ
sus |ωP

]
E
[∑τ−1

s=0 δ
s |ωP

]
τ : stopping time (realization dependent)

Interpretation: maximal expected discounted payoff, per unit of expected
discounted time

Index for expansion of CS

IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs |ωS

]
Eπ
[∑τ−1

s=0 δ
s |ωS

]
τ : stopping time

π: choice among alternatives discovered after search launched and future searches
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Definition - Index policy χ∗

Expand CS at period t iff

ISt (ωS) ≥ I∗t (SP)︸ ︷︷ ︸
maximal index among
available alternatives

Otherwise, explore any alternative with index I∗t (SP)



Theorem 1 (optimal policy)

1 Optimal policy: index policy χ∗ is optimal

2 Recursive structure: index of search can be written as

IS(ωS) =
Eχ
∗
[∑τ∗−1

s=0 δsUs |ωS
]

Eχ∗
[∑τ∗−1

s=0 δs |ωS
] ,

1 τ∗ is first time s ≥ 1 at which IS and all indices of alternatives brought in by
search fall weakly below IS(ωS)

2 expectations are wrt process induced by optimal policy χ∗

3 Value function: DM’s expected (per-period) payoff under χ∗ is∫ ∞
0

(
1− Eχ

∗ [
δκ(v)|S0

])
dv

κ(v) = minimal time, starting from initial state S0, till all indices ≤ v



Methodology

New proof of optimality of “index policies” for class of MAB problems where “arms”
added as result of deliberate decision to search

Related to “branching” lit: Weiss ’88, Weber ’92, Keller Oldale ’03

Key: proof yields recursive representation of index for expansion

+ new representation of DM’s payoff under optimal policy

Central for deriving properties of dynamics, comparative statics, applications



Proof of Theorem 1: Road Map

1 Characterization of DM’s payoff under index policy

2 Payoff function under index policy solves dynamic programming equation



Proof: Step 1

κ(v) ∈ N ∪ {∞}: minimal time until all indices drop weakly below v ∈ R+

Lemma 1

V(S0)︸ ︷︷ ︸
payoff under

index policy, starting
from state S0

=

∫ ∞
0

[1− Eχ
∗ [
δκ(v)|S0

]
︸ ︷︷ ︸

expected discounted
time till all indexes

drop weakly below v

]dv



Proof: Step 2

V(S0) solves dynamic programming equation:

V(S0) = max{ V S(ωS |S0)︸ ︷︷ ︸
value from searching

and reverting
to index

policy thereafter

, max
ωP∈{ω̂P∈ΩP :SP

0
(ω̂P )>0}

V P(ωP |S0)︸ ︷︷ ︸
value from exploring

alternative and
reverting to index
policy thereafter

}

Proof uses

representation of payoff under index policy from Lemma 1

decomposition of overall problem into collection of binary problems where
choice is between single alternative (possibly search) and auxiliary fictitious
alternative with fixed payoff



Implication for dynamics - I

1. Invariance of expansion to CS composition: at any period, expansion decision
invariant in composition of CS, conditional on

1 state ωS of search technology

2 value of highest index in current CS

2. IIA: at any period t, the choice between any pair of alternatives i , j ∈ Ct is
invariant in ωS



Implication for dynamics - II

Definition:

A search technology is stationary if (−ck ,Ek) drawn from fixed distribution,
deteriorating if (−ck ,Ek) is (FOSD) decreasing in k, and improving if (−ck ,Ek) is
(FOSD) increasing in k.

3. If search technology is stationary, for any two states S, S
′

at which DM expands
CS, expected continuation payoff is the same

4. If search technology is stationary or improving and search is carried out at period
t, DM never returns to any alternative in period-t CS

5. If search technology is stationary or deteriorating, decision to expand CS is the
same as in a fictitious environment in which DM expects to have only one further
opportunity to expand
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Clinical trials

Optimal exploration/expansion policy

Each treatment in CS assigned an index

IP(ξ, θ) =
(
1− δ + δqξ

)
pξ(θ)qξvξ

1− δ + δpξ(θ)qξ

Expansion of treatment pool assigned index

IS =
(1− δ)

(∑
ξ∈{α,β} ρ

ξE
[∑τξ∗−1

s=0 δsus |ξ
]
− c
)

1−
∑
ξ∈{α,β} ρ

ξE
[
δτξ∗ |ξ

]
(τ ξ∗ = first time that index of new ξ-treatment brought in by search ≤ IS)

Highest index determines decision at each period



Detrimental effect of improvement in a category
Consider an improvement in category α of treatments:

pα(∅)↗ , and/or vα ↗ , and/or qα ↗

Improvement can lead to ex-ante reduction in expected discounted number of times
α-treatments are administered.

Improvement in α increases index IP(α, θ) of α-treatments, but also IS

Increase in IP(α, θ) differs across histories of outcomes θ

IS averages over histories at which a new α-category is administered

For some θ (e.g., after bad outcomes), increase in IP(α, θ) may be smaller

than increase in IS

Search then shifts balance in CS in favor of β treatments (e.g., if ρβ > ρα)

Can lead to an overall reduction in the usage of α-treatments
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Experimentation toward regulatory approval

Firm needs regulatory approval to sell its products

Products differ in profitability to firm (known), and in their safety (unknown)

Each product belongs to a category ξ ∈ Ξ = {α, β}

ξ-product is safe (µξ = 1) or not (µξ = 0)– ex-ante unknown to firm and regulator

Prior pξ(∅) = Pr(µξ = 1)

Firm gets flow payoff (1− δ)vξ from selling approved ξ-product

No value to firm in selling more than one product per period (e.g., substitutes)

Each period, firm chooses between

experimenting with a product in its CS (at cost λξ(θ))

expanding CS by searching for new products (at cost c)

selling an approved product



Experimentation/Expansion and approval

Each experiment on ξ-product generates outcome s ∈ {G ,B}

Safe ξ-product: good outcome w.p. qξ1 = Pr(s = G |µξ = 1) ∈ (0, 1]

Unsafe ξ-product: bad outcome w.p qξ0 = Pr(s = B|µξ = 0), w. qξ1 ≥ 1− qξ0

Experimentation outcomes θ are public (Henry Ottaviani ’19)

pξ(θ) = posterior probability that a ξ-product is safe, given θ

Expansion of CS yields single product, ρξ prob that new product is of category ξ

For each category ξ, product is approved iff pξ(θ) ≥ Ψξ ∈ (0, 1]



Approval and firm’s optimal policy

Firm’s goal: maximize expected discounted payoff from selling (approved) product,
net of experimentation + search costs

Firm’s optimal policy: special case of the model, based on indices for
experimentation and expansion

Because experimenting with approved product is dominated by selling it, index of
approved ξ-product is constant at (1− δ)vξ

Hence, approval of one of the firm’s products ends its experimentation process

What if regulator adopts policy relaxing approval standard for a category?



Changes in regulator’s approval standard

Unintended effects of reducing a category’s approval standard
Relaxation of category-α approval threshold can reduce the ex-ante prob that an
α-product is approved

Result hinges on endogeneity of the CS

Relaxation of standard increases indices of α-products, but also index of search

Index for search may increase more than the index of α-products that have yielded
negative results

Search then re-balances CS in favor of β-products, crowding out further
evaluations of such α-products

Can lead to reduction in ex-ante probability that α-products are approved



Model

Characterization, dynamics of exploration and expansion

Applications

1 Clinical trials

2 Experimentation toward regulatory approval

3 Online consumer search (+extension of Weitzman’s ’79 problem)



Weitzman ’79 with endogenous set of boxes

Category-ξ alternative characterized by (F ξ, λξ)

λξ cost of opening box

F ξ distr of box’s value, v

DM initially aware of only subset of alternatives - C0

Each period, DM either

expands CS
inspects an alternative to learn its value, or
stops and recalls prize v from inspected box, or takes outside option

Expansion brings new box: ρξ prob that search brings category-ξ box

c(m) = search cost, positive and increasing in # of past searches m

Weitzman’s “Pandora’s boxes” problem: exogenous, fixed CS C0 (ρξ ≡ 0, ∀ξ)



Reservation price of a category-ξ box – defined as in Weitzman

IP(ωP) =

−λξ + δ
∫∞
IP (ωP )

1−δ
vdF ξ(v)

1 + δ
1−δ

(
1− F ξ

(
IP (ωP )

1−δ

))

Reservation price of search/expansion

Define Ξ(l) ≡
{
ξ ∈ Ξ : IP(ξ, ∅) > l

}
(set of box categories w. reservation price > l).

IS(m) =

−c(m) + δ
∑
ξ∈Ξ(IS (m)) ρ

ξ

(
−λξ + δ

∫∞
IS (m)

1−δ
vdF ξ(u)

)
1 +

∑
ξ∈Ξ(IS (m)) ρ

ξ
(
δ + δ2

1−δ

(
1− F ξ

(
IS (m)
1−δ

)))

Optimal policy is based on comparison of independent reservation-prices (indices)

Generalizes Weitzman’s solution
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Online consumer search

Firms’ ads listed in sequence, positions m = 1, 2, ...

1 Expansion = reading ad displayed at next position

Each category ξ ∈ Ξ corresponds to different firm

Reading next ad brings its product into CS

Reveals identity ξ(m) of firm, drawn from stationary distr ρ ∈ ∆(Ξ)

c(m) cost of reading m’th result, c(·) non-decreasing

2 Opening box = clicking to view product’s page (learn vm at cost λξ(m))

3 Stopping and choosing an opened box = purchasing a product

Optimal policy for consumer follows from the extension of Weitzman:

IS(m): “reading index” (for decision to read m’th position)

Im: “clicking index” (for clicking m’th ad)

(1− δ)vm: “purchase index” (for purchasing product on m’th position)



Online search: Eventual purchase

Choi Dai Kim ’18 - static condition characterizing eventual purchase in
Weitzman’s setting (w. exogenously fixed CS)

Eventual purchase characterized by comparison of “effective values”

wm ≡ min{Im, vm(1− δ)}
Special case of our model where all products have already been read

Define dm ≡ min{wm, IS(m)}“discovery value”

Outside option → position m = 0 (with w0 = d0 = 0)

Eventual purchase with endogenous CS

Consumer purchases product m if, for all l ∈ N ∪ {0}, l 6= m, dl < dm
(and only if dl ≤ dm, for all l 6= m).

Discovery values account for endogenous order in which various alternatives are
read - can be used to study the effects of varying this order



Endogenizing click-through-rates (CTR)

CTR(m) ≡ Pr (m’s ad is clicked|m’s ad is read)

Important for sponsored search

But connection between CTRs and positions typically exogenously assumed

Characterization of CTR
The CTR for each position m ≥ 1 is given by

CTR(m) = Pr
(
Im ≥ max {maxl<m{wl},maxl>m{dl}} | IS(m) ≥ maxl<m{wl}

)
.



Adverse effects of additional ad space on firms’ profits

Three multi-product firms ξ ∈ Ξ = {A,B,C}

Consumer’s initial CS has three products, one from each firm ξ = A,B,C

Searching online → consumer presented w. fourth ad, drawn from ρ ∈ ∆(Ξ)

i.e., fourth ad belongs to one of the three firms (realized firm’s 2nd product)

Additional ad space may reduce firm’s profits

An increase in the probability ρξ that search brings an additional firm-ξ product may
reduce firm ξ’s ex-ante expected profits.

Increase in prob search brings additional firm-ξ product may reduce index of search

Can induce consumer to click on firm ξ’s competitors before searching

Reduces prob that one of firm ξ’s product is selected, and hence its profits



Conclusion

Study sequential learning with endogenous set of alternatives

CS constructed gradually in response to arrival of info (dynamic micro-foundation)

Key tradeoff: exploring alternatives already in CS vs expanding CS

Characterize optimal policy, implications for dynamics, comparative statics

Useful for applications where DM unaware of all feasible options from the start

limited attention
sequential provision of information by another party

Applications: clinical trials, persuading a regulator, consumer search, recruitment

Special case: extension of Weitzman ’79 Pandora’s boxes problem

THANKS! ,
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Meta Arms

Arm 1:

1,000 first time
λ ∈ {1, 10} subsequent times (equal probability, perfectly persistent)

Arm 2 (Meta Arm) can be used in two modes

2(A): 100 first time, 0 thereafter

2(B): 11 each period

Selection of Arm 2’s mode is irreversible

Optimal policy (δ = .9):

start w. Arm 1, and then

If λ = 10, use arm 2 in mode 2(A) for one period, followed by arm 1
thereafter

If λ = 1, use arm 2 in mode 2(B) thereafter

No index representation, regardless of how we define the “index”

Go back



Interpretation of reservation prices

Suppose only two alternatives:

Alternative i characterized by ξ (which determines (F ξ, λξ)), and

hypothetical alternative, j , with known value vj

Reservation price of box i is value vj for which DM is indifferent between

taking j right away

inspecting i while maintaining option to recall j once vi is discovered



Interpretation of reservation price of search IS

Suppose only two options:

hypothetical alternative, j , with known value vj

option of expanding the CS

Reservation price of search is value vj for which DM is indifferent between

taking j right away,

expanding the CS, maintaining the option to take j either

once ξ of new alternative is discovered and vj ≥ IP(ξ, ∅)
or if vj < IP(ξ, ∅), after value vi of new alternative is learned and vi ≤ vj

Go back



Go back



Policy: formal definition

Period-t decision: dt ≡ (xt , yt)

xit = 1 if alternative i explored; xit = 0 otherwise
yt = 1 if search; yt = 0 otherwise

Sequence of decisions d = (dt)
∞
t=0 feasible if, for all t ≥ 0:

xjt = 1 only if j ∈ It∑
j∈It xjt + yt = 1

Rule χ governing feasible decisions (dt)t≥0 is a policy iff sequence of decisions
{dχt }t≥0 under χ is {Fχt }t≥0-adapted, where {Fχt }t≥0 is natural filtration induced
by χ

Go back



Proof of Lemma 1

v 0 = max{I∗(SP
0 ), IS(ωS

0 )}

t0: first time all indices (including search) strictly below v 0 (t0 =∞ if event never
occurs)

η(v 0): discounted sum of payoffs, net of search costs, till t0

(includes payoffs from newly added alternatives)

v 1 = max{I∗(SP
t0 ), IS(ωS

t0 )} (note: t0 = κ(v 1))

...

η(v i ): net payoff between κ(v i ) and κ(v i+1)− 1

Stochastic sequence of values (v i )i≥0, times (κ(v i ))i≥0, and discounted net payoff
(η(v i ))i≥0



Proof of Lemma 1
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Proof of Lemma 1

(Average) payoff under index policy:

V(S0) = (1− δ)E

[
∞∑
i=0

δκ(v i )η(v i )|S0

]
.

Starting at κ(v i ), optimal stopping time in index defining v i is κ(v i+1)

if v i is index of alternative, κ(v i+1) is first time its index drops below v i

if v i is index of expansion, κ(v i+1) is first time search index + index of all
alternatives discovered after κ(v i ) drop below v i

Hence, v i = expected discounted sum of net payoffs, per unit of expected
discounted time, from κ(v i ) until κ(v i+1)− 1:

v i =
E
[
η(v i )|Fκ(v i )

]
E
[
1− δκ(v i+1)−κ(v i )|Fκ(v i )

]
/(1− δ)

Same true if multiple alternatives and/or search have index equal to v i at κ(v i )



Proof of Lemma 1

Plugging in expression for v i ,

V(S0) = E

[
∞∑
i=0

v i
(
δκ(v i ) − δκ(v i+1)

)
|S0

]

Therefore,

V(S0) = E
[∫ ∞

0

vdδκ(v)|S0

]
=

∫ ∞
0

(
1− Eδκ(v|S0)

)
dv

Go back



Proof of DP

Want to show that V(S0) solves dynamic programming equation:

V(S0) = max{ V S(ωS |S0)︸ ︷︷ ︸
value from searching

and reverting
to index

policy thereafter

, max
ωP∈{ω̂P∈ΩP :SP

0
(ω̂P )>0}

V P(ωP |S0)︸ ︷︷ ︸
value from pulling
physical arm and
reverting to index
policy thereafter

}



Auxiliary alternatives

e(ωA
M): state with single auxiliary alternative yielding fixed payoff M

Note: κ(v | S0 ∨ e(ωA
M)︸ ︷︷ ︸

S0 + auxiliary arm

) =

{
κ(v |S0) if v ≥ M

∞ otherwise

From Lemma 1, payoff from index policy when auxiliary alternative added:

V(S0 ∨ e(ωA
M)) =

∫ ∞
0

[1− Eδκ(v|S0∨e(ωA
M ))]dv

= M +

∫ ∞
M

[1− Eδκ(v|S0)]dv

= V(S0) +

∫ M

0

Eδκ(v|S0)dv



Auxiliary alternatives

DS(ωS |e(ωS) ∨ e(ωA
M))︸ ︷︷ ︸

loss from starting
with search given only

search + auxiliary
arm

≡ V(e(ωS) ∨ e(ωA
M))︸ ︷︷ ︸

value under index
policy given only

search + auxiliary
arm

− V S(ωS |e(ωS) ∨ e(ωA
M))︸ ︷︷ ︸

value of searching
and reverting to index
policy given only search

+ auxiliary arm

=

{
0 if M ≤ IS(ωS)

> 0 if M > IS(ωS)

Similarly, for physical alternative in state ωP :

DP(ωP |e(ωP) ∨ e(ωA
M)) =

{
0 if M ≤ IP(ωP)

> 0 if M > IP(ωP)



Proof that V solves Bellman eq

Can show (“tedious”): DS(ωS |S0) =
∫ v0

0
DS(ωS |e(ωS) ∨ e(ωA

M))dEδκ(M|SP
0 )

Hence: DS(ωS |S0) = 0

⇐⇒ DS(ωS |e(ωS) ∨ e(ωA
M)) = 0, ∀M ∈ [0,max{I∗(SP

0 ), IS(ωS)}]

⇐⇒ I∗(SP
0 ) ≤ IS(ωS)

loss from starting with search = 0 iff search has largest index, and > 0 otherwise

Similarly, DP(ωP |S0) = 0 ⇐⇒ IP(ωP) = I∗(SP
0 ) ≥ IS(ωS)

Hence, V(S0) = max

{
V S(ωS |S0), max

ωP∈{ω̂P∈ΩP :SP
0

(ω̂P )>0}
V P(ωP |S0)

}

V(S0) solves dynamic programming equation (hence index policy optimal) �



Validation

Assumption: For any S, and policy χ,

lim
t→∞

δtEχ
 ∞∑

s=t

δs

 ∞∑
j=1

Us

 |S
 = 0

Solution to DP equation coincides with value function

Assumption satisfied if payoffs uniformly bounded

Also compatible with unbounded payoffs. E.g., alternatives are sampling
processes, with payoffs drawn from Normal distribution with unknown mean
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