Adversarial Coordination and Public Information Design

Nicolas Inostroza Alessandro Pavan
U of Toronto Northwestern

May 25, 2022
Motivation

- Coordination: central to many socio-economic environments

- Damages to society of mkt coordination on undesirable actions can be severe
 - Monte dei Paschi di Siena (MPS)
 - creditors + speculators with heterogenous beliefs about size of nonperforming loans
 - default by MPS: major crisis in Eurozone (and beyond)

- Government intervention
 - limited by legislation passed in 2015

- Information Design (e.g., stress testing): instrument of last resort
Questions

- Structure of optimal policy?
 - What information should be passed on to mkt?
- “Right” notion of transparency?
- Optimality of
 - pass/fail policies
 - monotone rules
- Properties of persuasion in global games?
Related literature

- **Adversarial Coordination/Unique Implementation:** Segal (2003), Winter (2004), Sakovics and Steiner (2012), Frankel (2017), Halac et al. (2020), Halac et al. (2021)...

Plan

- Baseline Model
- Perfect Coordination Property
- Pass/Fail
- Monotone Policies
- Enrichments
- Micro-foundations
Global Games of Regime Change

- Specific game in spirit of Rochet and Vives (2004)
- Information designer: Policy maker (PM)
- Agents: investors, $i \in [0, 1]$
- Actions

 $a_i = \begin{cases}
 1 & \text{(pledge)} \\
 0 & \text{(not pledge)}
 \end{cases}$

- $A \in [0, 1]$: aggregate pledge
- Regime change: default
- Default outcome: $r \in \{0, 1\}$, with

 $r = \begin{cases}
 0 \text{ (default)} & \text{if } A \leq 1 - \theta \\
 1 & \text{if } A > 1 - \theta
 \end{cases}$

- “fundamentals” θ: liquidity, performing loans, etc.
- Supermodular game w. dominance regions: $(-\infty, 0]$ and $(1, +\infty)$
- θ drawn from abs. continuous cdf F, smooth density f
PM’s payoff

\[U^P(\theta, A) = \begin{cases}
W(\theta) > 0 & \text{if } r = 1 \\
L(\theta) < 0 & \text{if } r = 0
\end{cases} \]

Agents’ payoff from not pledging (safe action) normalized to zero

Agents’ payoff from pledging

\[u = \begin{cases}
g(\theta) > 0 & \text{if } r = 1 \\
b(\theta) < 0 & \text{if } r = 0
\end{cases} \]
Beliefs

- \(x \equiv (x_i)_{i \in [0,1]} \in X \): signal profile with each
 \[
 x_i \sim p(\cdot|\theta)
 \]
i.i.d., given \(\theta \).

- \(p(x|\theta) \) strictly positive over an open interval \(\varrho_{\theta} \equiv (\underline{\varrho}_{\theta}, \bar{\varrho}_{\theta}) \) containing \(\theta \).

- \(X(\theta) \subset \mathbb{R}^{[0,1]} \): collection of signal profiles consistent with \(\theta \)

Example 1: \(x_i = \theta + \sigma \xi_i \) with \(\xi_i \sim N(0, 1) \)
Example 2: \(x_i = \theta + \sigma \zeta_i \) with \(\zeta_i \sim U(-1, 1) \)
Disclosure Policies (Stress Tests)

- **Stress Test** $\Gamma = (S, \pi)$
 - S: set of scores/grades/disclosures
 - $\pi: \Theta \rightarrow \Delta(S)$
Timing

1. PM announces $\Gamma = (S, \pi)$ and commits to it

2. (θ, x) realized

3. $s \in S$ drawn from $\pi (\theta)$ and publicly announced

4. Agents simultaneously choose whether or not to pledge

5. Default outcome and payoffs
Solution Concept: MARP

- Robust/adversarial approach

- PM does not trust her ability to coordinate mkt on her favorite course of action

- **Most Aggressive Rationalizable Profile (MARP):**
 - minimizes PM’s payoff across all profiles surviving *iterated deletion of interim strictly dominated strategies* (IDISDS)

- \(a^\Gamma \equiv (a_i^\Gamma)_{i \in [0,1]} \): MARP consistent with \(\Gamma \) (\(a_i^\Gamma \): complete plan of action)
Perfect Coordination Property [PCP]

Definition 1

\(\Gamma = \{ S, \pi \} \) satisfies PCP if, for any \(\theta \in \Theta \), any exogenous information \(x \in X(\theta) \), any \(s \in \text{supp}(\pi(\theta)) \), and any pair of individuals \(i, j \in [0, 1] \),

\[a_\Gamma^i(x_i, s) = a_\Gamma^j(x_j, s), \]

where \(a_\Gamma \equiv (a_\Gamma^i)_{i \in [0,1]} \) is MARP consistent with \(\Gamma \).
Theorem 1

Given any (regular) Γ, there exists (regular) Γ^* satisfying PCP and s.t., at any θ, default probability under Γ^* same as under Γ.

- Regularity: MARP well defined

(formal proof)
Perfect Coordination Property [PCP]

- Policy $\Gamma^* = (S^*, \pi^*)$ removes any **strategic uncertainty**
- It preserves **structural uncertainty**
- Under Γ^*, agents know actions all other agents but not **beliefs rationalizing such actions**
- Inability to predict beliefs that rationalize other agents’ actions essential to minimization of default risk
- “Right” form of transparency
 - conformism in beliefs about mkt response
 - ...not in beliefs about “fundamentals”
Optimal policy combines:

- public **Pass/Fail** announcement

- eliminate strategic uncertainty

- additional disclosures necessary to guarantee that, when $r = 1$ announced (i.e., when bank passed test), all agents pledge under MARP
When is optimal policy binary?

Theorem 2

Assume \(p(x|\theta) \) satisfies MLRP. Given any policy \(\Gamma \) satisfying PCP, there exists **binary policy** \(\Gamma^* = (\{0, 1\}, \pi^*) \) also satisfying PCP and s.t., for any \(\theta \), prob of default under \(\Gamma^* \) same as under \(\Gamma \).

- MARP in threshold strategies: signals other than regime outcome can be dropped (averaging over \(s \)) without affecting incentives
- Result hinges on Log-SM of \(p(x|\theta) \), i.e., on MLRP
 - co-movement between state \(\theta \) and belies

(Example-PF)
Optimality of Monotone Tests

Figure: Optimal Monotone Policy.
\[\bar{x}_G \equiv \sup \left\{ x : \int_{\Theta} u(\theta, 1 - P(x|\theta)) \mathbb{I}(\theta \geq 0)p(x|\theta) \, dF(\theta) \leq 0 \right\} \]

Condition M: Following properties hold:

1. \(\inf \{ \theta \in \Theta : \bar{x}_G \in \varrho_\theta \} \leq 0; \)
2. \(p(x|\theta) \) and \(|u(\theta, 1 - P(x|\theta))| \) (weakly) log-supermodular over \(\{(\theta, x) \in [0, 1] \times \mathbb{R} : u(\theta, 1 - P(x|\theta)) \leq 0\} ; \)
3. \(\forall \theta_0, \theta_1 \in [0, 1] \), with \(\theta_0 < \theta_1 \), \(\forall x \leq \bar{x}_G \) s.t. (a) \(u(\theta_1, 1 - P(x|\theta_1)) \leq 0 \) and (b) \(x \in \varrho_{\theta_0}, \)

\[
\frac{U^P(\theta_1, 1) - U^P(\theta_1, 0)}{U^P(\theta_0, 1) - U^P(\theta_0, 0)} > \frac{p(x|\theta_1) u(\theta_1, 1 - P(x|\theta_1))}{p(x|\theta_0) u(\theta_0, 1 - P(x|\theta_0))}
\]

Theorem 3

Suppose \(p(x|\theta) \) log-supermodular, Condition M holds. Given any \(\Gamma \), there exists deterministic binary monotone \(\Gamma^* = (\{0, 1\}, \pi^*) \) satisfying PCP and yielding payoff weakly higher than \(\Gamma \).
Sub-optimality of Monotone Tests

Example 1

Suppose that, for any θ,

(a) $g(\theta) = g$, $b(\theta) = b$, $W(\theta) = W$, and $L(\theta) = L$;

(b) $\theta \sim U[-K, 1+K]$, $K \in \mathbb{R}_{++}$;

(c) $x_i = \theta + \sigma \epsilon_i$, with $\sigma \in \mathbb{R}_+$ and $\epsilon_i \sim U[-1, 1]$, with $\sigma < K/2$.

There exists $\sigma^\# \in (0, K/2)$ such that, for all $\sigma \in (0, \sigma^\#)$, there exists (deterministic) non-monotone policy satisfying PCP that yields payoff strictly higher than optimal monotone policy.
Optimality of Monotone Tests
Sub-optimality of Monotone Tests

- Let $\theta^{MS} \in (0, 1)$ be implicitly defined by $\int_0^1 u(\theta^{MS}, l) dl = 0$

- $D^\Gamma \equiv \{d_i = (\theta_i, \bar{\theta}_i) : i = 1, \ldots, N\}$: partition of $[0, \theta^{MS}]$ induced by deterministic Γ

- $\Delta (\Gamma) \equiv \max_{i=1,\ldots,N} |\bar{\theta}_i - \theta_i|$: mesh of D^Γ

Example 2

Suppose $\theta \sim U[\mathbb{R}]$ and $x_i = \theta + \sigma \varepsilon_i$, with $\varepsilon_i \sim N(0, 1)$. Assume that, for any θ, $g(\theta) = g$, $b(\theta) = b$, $W(\theta) = W$ and $L(\theta) = L$. There exists $\bar{\sigma} > 0$ and $\mathcal{E} : (0, \bar{\sigma}] \rightarrow \mathbb{R}_+$, with $\lim_{\sigma \rightarrow 0^+} \mathcal{E}(\sigma) = 0$, s.t., for any $\sigma \in (0, \bar{\sigma}]$, the following is true: given any deterministic binary Γ satisfying PCP and s.t. $\Delta (\Gamma) > \mathcal{E}(\sigma)$, there exists another deterministic binary Γ^* with $\Delta (\Gamma^*) < \mathcal{E}(\sigma)$ that also satisfies PCP and yields payoff strictly higher than Γ.
Extensions

- Default iff $R(\theta, A, z) \leq 0$
 - z drawn from Q_θ: residual uncertainty

- PM’s payoff
 $$\hat{U}^P(\theta, A, z) = \begin{cases}
 \hat{W}(\theta, A, z) & \text{if } r = 1 \\
 \hat{L}(\theta, A, z) & \text{if } r = 0
 \end{cases}$$

- Agents’ payoffs
 $$\hat{u}(\theta, A, z) = \begin{cases}
 \hat{g}(\theta, A, z) & \text{if } r = 1 \\
 \hat{b}(\theta, A, z) & \text{if } r = 0
 \end{cases}$$

- Expected payoff differential: $u(\theta, A)$
Generalizations

Condition FB. For any \(x \), \(u(\theta, 1 - P(x|\theta)) \geq 0 \) (alternatively, \(u(\theta, 1 - P(x|\theta)) \leq 0 \)) implies \(u(\theta'', 1 - P(x|\theta'')) > 0 \) for all \(\theta'' > \theta \) (alternatively, \(u(\theta', 1 - P(x|\theta')) < 0 \) for all \(\theta' < \theta \)).

Condition PCP. For any \(\Lambda \in \Delta(\Delta(\Theta)) \) consistent with \(F \)

\[
\int \left(\int_{-\infty}^{\theta^G} U^P(\theta, 0) G(d\theta) + \int_{\theta^G}^{+\infty} U^P(\theta, 1) G(d\theta) \right) \Lambda(dG) \geq \\
\int \left(\int U^P(\theta, 1 - P(\xi^G|\theta)) G(d\theta) \right) \Lambda(dG)
\]

\(\xi^G \): MARP given \(G \)
\(\theta^G \equiv \inf \{ \theta : u(\theta, 1 - P(\xi^G|\theta)) \geq 0 \} \)
Generalizations

Theorem 4

(a) Given any Γ, there exists Γ^* satisfying PCP and s.t., for any θ, agents' expected payoff under σ^{Γ^*} is at least as high as under σ^{Γ}. PM’s payoff under Γ^* at least as high as under Γ.

(b) Suppose $p(x|\theta)$ satisfies MLRP; then Γ^* binary.

(c) Suppose condition M holds. Then Γ^* monotone.

- PCP: announcement of sign of agents’ expected payoff under MARP
Comparative statics: increase in uncertainty

- Former liabilities: D

- Bank’s legacy asset delivers
 - $l(\theta) \in \mathbb{R}$ end of period 1
 - $C(\theta)$ end of period 2

- Bank can issue (i) **new shares** OR (ii) **short-term debt**

- Potential investors submit market orders

- Noise traders $z \sim Q_\theta$
Comparative statics: increase in uncertainty

- $Y(p, \theta, z)$: exogenous demand for shares (alternatively, debt)

- Market clearing price $p^*(\theta, A, z)$ solves

 $$q + 1 - A = A + Y(p^*, \theta, z).$$

- Default:

 $$R(\theta, A, z) = l(\theta) + \rho_s q p^*(\theta, A, z) - D \leq 0$$
Comparative statics: increase in uncertainty

Analysis can be used to study

- effect of different recapitalization policies
 - \((q_E, q_D)\)

- role of uncertainty for toughness of optimal stress tests
 - uncertainty about bank’s profitability: \(\sigma\)
 - uncertainty about macro variables: \(z\)

Proposition 1

There exists \(\bar{\sigma} > 0\) such that, for any \(\sigma, \sigma' \in (0, \bar{\sigma}]\), with \(\sigma' > \sigma\):

\[
\theta^*_E(\sigma') < \theta^*_E(\sigma) \text{ and } \theta^*_D(\sigma') > \theta^*_D(\sigma).
\]
Conclusions

- Public information design under adversarial coordination

- Key properties:
 - Perfect coordination property ("right" notion of transparency)
 - Optimality of Pass/Fail policies
 - Monotone rules

- Extension 1: PM uncertain about mkt’s beliefs
 - robust-undominated design (see also Dworczak & Pavan (2021))

- Extension 2: Elicitation and persuasion (see also Inostroza (2021))
THANKS!
Let \(r(\omega; a^\Gamma) \in \{0, 1\} \) be default outcome at \(\omega \equiv (\theta, x, s) \) when agents play according to \(a^\Gamma \).

Let \(\Gamma^* = \{S^*, \pi^*\} \) be s.t. \(S^* = S \times \{0, 1\} \) and
\[
\pi^*((s, r(\omega; a^\Gamma))|\theta) = \pi(s|\theta), \text{ all } (\theta, s) \text{ s.t. } \pi(s|\theta) > 0
\]

After receiving \(s^* \equiv (s, 1) \), agents use Bayes' rule to update beliefs about \(\omega \equiv (\theta, x, s) \):
\[
\partial \Lambda^\Gamma_i(\omega|x_i, (s, 1)) = \frac{1\{r(\omega; a^\Gamma) = 1\}}{\Lambda^\Gamma_i(1|x_i, s)} \partial \Lambda^\Gamma_i(\omega|x_i, s)
\]

where
\[
\Lambda^\Gamma_i(1|x_i, s) \equiv \int_{\{\omega:r(\omega;a^\Gamma)=1\}} \ d\Lambda^\Gamma_i(\omega|x_i, s)
\]
Let $a_{\Gamma}^{(n)}, a_{\Gamma^*}^{(n)}$ be most aggressive profile surviving n round of IDISDS under Γ and Γ^*, respectively.

Definition 2

Strategy profile $a_{\Gamma^*}^{(n)}$ less aggressive than $a_{\Gamma}^{(n)}$ iff, for any $i \in [0, 1]$,

$$a_{\Gamma}^{(n),i}(x_i, s) = 1 \implies a_{\Gamma^*}^{(n),i}(x_i, (s, 1)) = 1$$

Lemma 1

For any n, $a_{\Gamma^*}^{(n)}$ less aggressive than $a_{\Gamma}^{(n)}$
Induction

Let $a^\Gamma_0 = a^\Gamma_0^*$ be strategy profile where all agents refrain from pledging, regardless of their (endogenous and exogenous) information.

Suppose that $a^\Gamma_{(n-1)}^*$ less aggressive than $a^\Gamma_{(n-1)}$

Note that $r(\omega|a^\Gamma) = 0 \Rightarrow r(\omega|a^\Gamma_{(n-1)}) = 0$

Hence, $r(\omega; a^\Gamma) = 1$ “removes” from support of agents’ beliefs states $\omega = (\theta, x, s)$ for which default occurs under $a^\Gamma_{(n-1)}$
Payoffs from pledging in case of default are negative
Payoff from \textbf{pledging} under Γ^* when agents follow $a_{(n-1)}^\Gamma$

\[
U_i^{\Gamma^*}(x_i, (s, 1); a_{(n-1)}^\Gamma) = \frac{\int_\omega u(\theta, A(\omega; a_{(n-1)}^\Gamma))1\{r(\omega; a^\Gamma)=1\}d\Lambda_i^\Gamma(\omega|x_i,s)}{\Lambda_i^\Gamma(1|x_i,s)} > \frac{\int_\omega u(\theta, A(\omega; a_{(n-1)}^\Gamma))d\Lambda_i^\Gamma(\omega|x_i,s)}{\Lambda_i^\Gamma(1|x_i,s)} = \frac{U_i^\Gamma(x_i, s; a_{(n-1)}^\Gamma)}{\Lambda_i^\Gamma(1|x_i,s)}
\]

Hence, $U_i^\Gamma(x_i, s; a_{(n-1)}^\Gamma) > 0 \Rightarrow U_i^{\Gamma^*}(x_i, (s, 1); a_{(n-1)}^\Gamma) > 0$
That \(a_{(n-1)}^{\Gamma^*} \) less aggressive than \(a_{(n-1)}^{\Gamma} \) along with supermodularity of game implies that

\[
U^*_{i} (x_i, (s, 1); a_{(n-1)}^{\Gamma}) > 0 \Rightarrow U^*_{i} (x_i, (s, 1); a_{(n-1)}^{\Gamma^*}) > 0
\]

As a consequence,

\[
a_{(n),i}^{\Gamma} (x_i, s) = 1 \Rightarrow a_{(n),i}^{\Gamma^*} (x_i, (s, 1)) = 1
\]

This means that \(a_{(n)}^{\Gamma^*} \) less aggressive than \(a_{(n)}^{\Gamma} \).
Above lemma implies MARP under Γ^*, $a^\Gamma^* \equiv a^\Gamma^{(\infty)}$, less aggressive than MARP under Γ, $a^\Gamma \equiv a^{(\infty)}$

In turn, this implies that $r(\omega; a^\Gamma) = 1$ makes it common certainty that $r(\omega; a^\Gamma^*) = 1$

Hence, all agents pledge after hearing that $r(\omega; a^\Gamma) = 1$

Similarly, $r(\omega; a^\Gamma) = 0$ makes it common certainty that $\theta \leq 1$. Under MARP, all agents refrain from pledging when hearing that $r(\omega; a^\Gamma) = 0$
Assume $g(\theta) = k, b(\theta) = -k$

Pledging rationalizable iff $Pr(r = 1) \geq 1/2$
Example PF/Suboptimality

No disclosure: under MARP, $a_i^\Gamma(x_i) = 0$, all x_i
Example P/F Suboptimality

- Suppose PM informs agents of whether \(\theta \) is extreme or intermediate
- \(a_i^\Gamma(x_i, s) = 1 \), all \((x_i, s)\)
Example P/F Suboptimality

If, instead, PM only recommends to pledge (equivalently, Γ is pass/fail):

$$a_i^\Gamma(x_i, 1) = 0 \text{ for all } x_i$$

Suboptimality of P/F policies (+ failure of RP)