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M  any economic environments can be modelled as common agency games—that 
  is, games where multiple principals contract simultaneously and noncoopera-

tively with the same agent.1 Despite their relevance for applications, the analysis of 
these games has been made difficult by the fact that one cannot safely assume that the 
agent selects a contract with each principal by simply reporting his “type” (i.e., his 
exogenous payoff-relevant information). In other words, the central tool of mecha-
nism design theory—the Revelation Principle—is invalid in these games.2 The reason 
is that the agent’s preferences over the contracts offered by one principal depend not 
only on his type, but also on the contracts he has been offered by the other principals.3

1 We refer to the players who offer the contracts either as the principals or as the mechanism designers. The 
two expressions are intended as synonyms. Furthermore, we adopt the convention of using feminine pronouns for 
the principals and masculine pronouns for the agent.

2 For the Revelation Principle, see, among others, Allan Gibbard (1973), Jerry Green and Jean-Jacques Laffont 
(1977), and Roger B. Myerson (1979). Problems with the Revelation Principle in games with competing principals 
have been documented in Michael L. Katz (1991), R. Preston McAfee (1993), James Peck (1997), Larry Epstein 
and Michael Peters (1999), Peters (2001), and David Martimort and Lars Stole (1997, 2002), among others. Recent 
work by Peters (2003, 2007); Andrea Attar, Gwenael Piaser, and Nicolàs Porteiro (2007a, 2007b); and Attar et al. 
(2008) has identified special cases in which these problems do not emerge.

3 Depending on the application of interest, a contract can be a price-quantity pair, as in the case of competion in 
nonlinear tariffs; a multidimensional bid, as in menu auctions; or an incentive scheme, as in moral hazard settings.
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We introduce new revelation mechanisms for simultaneous common 
agency games which, although they do not always permit a complete 
equilibrium characterization, do facilitate the characterization of 
the equilibrium outcomes that are typically of interest in applica-
tions. We then show how these mechanisms can be used in applica-
tions such as menu auctions, competition in nonlinear tariffs, and 
moral hazard settings. Lastly, we show how one can enrich the rev-
elation mechanisms, albeit at a cost of an increase in complexity, 
to characterize all possible equilibrium outcomes, including those 
sustained by non-Markov strategies and/or mixed-strategy profiles.  
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Two solutions have been proposed in the literature. Epstein and Peters (1999) have 
suggested that the agent should communicate not only his type, but also the mecha-
nisms offered by the other principals.4 However, describing a mechanism requires 
an appropriate language. The main contribution of Epstein and Peters (1999) is in 
proving the existence of a universal language that is rich enough to describe all pos-
sible mechanisms. This language also permits one to identify a class of universal 
mechanisms with the property that any indirect mechanism can be embedded into 
this class. Since universal mechanisms have the agent truthfully report all his private 
information, they can be considered direct revelation mechanisms and therefore a 
universal Revelation Principle holds.

Although this result is a remarkable contribution, the use of universal mecha-
nisms in applications has been impeded by the complexity of the universal lan-
guage. In fact, when asking the agent to describe principal j’s mechanism, principal 
i has to take into account the fact that principal j’s mechanism may also ask the 
agent to describe principal i’s mechanism, as well as how this mechanism depends 
on principal j’s mechanism, and so on, leading to the problem of infinite regress. 
The universal language is obtained as the limit of a sequence of enlargements of 
the message space, where at each enlargement the corresponding direct mechanism 
becomes more complex, and thus more difficult to describe and to use when search-
ing for equilibrium outcomes.

The second solution, proposed by Peters (2001) and Martimort and Lars Stole 
(2002), is to restrict the principals to offering menus of contracts. These authors 
have shown that, for any equilibrium relative to any game with arbitrary sets of 
mechanisms for the principals, there exists an equilibrium in the game in which the 
principals are restricted to offering menus of contracts that sustains the same out-
comes. In this equilibrium, the principals simply offer the menus they would have 
offered through the equilibrium mechanisms of the original game, and then delegate 
to the agent the choice of the contracts. This result is referred to in the literature 
as the Menu Theorem and is the analog of the Taxation Principle for games with a 
single mechanism designer.5

The Menu Theorem has proved quite useful in certain applications. However, 
contrary to the Revelation Principle, it provides no indication as to which contracts 
the agent selects from the menus, nor does it permit one to restrict attention to a 
particular set of menus.6

The purpose of this paper is to show that, in most cases of interest for applica-
tions, one can still conveniently describe the agent’s choice from a menu (equiv-
alently, the outcome of his interaction with each principal) through a revelation 
mechanism. The structure of these mechanisms is, however, more general than the 
standard one for games with a single mechanism designer. Nevertheless, contrary 
to universal mechanisms, it does not lead to any infinite regress problem. In the 
revelation mechanisms we propose, the agent is asked to report his exogenous type 

4 A mechanism is simply a procedure for selecting a contract.
5 The result is also referred to as the “Delegation Principle” (e.g., in Martimort and Stole 2002). For the 

Taxation Principle, see Jean Charles Rochet (1986) and Roger Guesnerie (1995).
6 The only restriction discussed in the literature is that the menus should not contain dominated contracts (see 

Martimort and Stole 2002).
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along with the endogenous payoff-relevant contracts chosen with the other princi-
pals. As is standard, a revelation mechanism is then said to be incentive-compatible 
if the agent finds it optimal to report such information truthfully.

Describing the agent’s choice from a menu by means of an incentive-compatible 
revelation mechanism is convenient because it permits one to specify which con-
tracts the agent selects from the menu in response to possible deviations by the 
other principals, without, however, having to describe such deviations (which would 
require the use of the universal language to describe the mechanisms offered by the 
deviating principals); what the agent is asked to report is only the contracts selected 
as a result of such deviations. This, in turn, can facilitate the characterization of the 
equilibrium outcomes.

The mechanisms described above are appealing because they capture the essence 
of common agency, i.e., the fact that the agent’s preferences over the contracts offered 
by one principal depend not only on the agent’s type, but also on the contracts selected 
with the other principals.7 However, this property alone does not guarantee that one 
can always safely restrict the agent’s behavior to depending only on such payoff-rele-
vant information. In fact, when indifferent, the agent may also condition his choice on 
payoff-irrelevant information, such as the contracts included by the other principals in 
their menus, but which the agent decided not to select. Furthermore, when indifferent, 
the agent may randomize over the principals’ contracts, inducing a correlation that can-
not always be replicated by having the agent simply report to each principal his type 
along with the contracts selected with the other principals. As a consequence, not all 
equilibrium outcomes can be sustained through the revelation mechanisms described 
above. While we find these considerations intriguing from a theoretical viewpoint, we 
seriously doubt their relevance in applications.

Our concerns with mixed-strategy equilibria come from the fact that outcomes 
sustained by the agent mixing over the contracts offered by the principals, or by the 
principals mixing over the menus they offer to the agent, are typically not robust. 
Furthermore, when principals can offer all possible menus (including those contain-
ing lotteries over contracts), it is very hard to construct nondegenerate examples in 
which the agent is made indifferent over some of the contracts offered by the prin-
cipals; and no principal has an incentive to change the composition of her menu, so 
as to break the agent’s indifference and induce him to choose the contracts that are 
most favorable to her (see the example discussed in Section IV).

We also have concerns about equilibrium outcomes sustained by a strategy for the 
agent that is not Markovian, i.e., that also depends on payoff-irrelevant information. 
These concerns are motivated by the observation that this type of behavior does not 
seem plausible in most real-world situations. Think of a buyer purchasing products 
or services from multiple sellers. On the one hand, it is plausible that the quality/
quantity purchased from seller i depends on the quality/quantity purchased from 
seller j. This is the intrinsic nature of the common agency problem which leads to 
the failure of the standard Revelation Principle. On the other hand, it does not seem 
plausible that, for a given contract with seller j, the purchase from seller i would 

7 A special case is when preferences are separable, as in Andrea Attar et al. (2008), in which case they depend 
only on the agent’s exogenous type.
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depend on payoff-irrelevant information, such as which other contracts offered by 
seller j did the buyer decide not to choose.8

For most of the analysis here, we focus on outcomes sustained by pure-strategy 
profiles in which the agent’s behavior in each relationship is Markovian.9 We first 
show that any such outcome can be sustained by a truthful equilibrium of the rev-
elation game. We also show that, despite the fact that only certain menus can be 
offered in the revelation game, any truthful equilibrium is robust in the sense that its 
outcome can also be sustained by an equilibrium in the game where principals can 
offer any menus. This guarantees that equilibrium outcomes in the revelation game 
are not artificially sustained by the fact that the principals are forced to choose from 
a restricted set of mechanisms.

We then proceed by addressing the question of whether there exist environments 
in which making the assumption that the agent follows a Markov strategy is not 
only appealing, but actually unrestrictive. Clearly, this is always the case when the 
agent’s preferences are “strict,” for it is only when the agent is indifferent that his 
behavior may depend on payoff-irrelevant information. Furthermore, even when the 
agent can be made indifferent, restricting attention to Markov strategies never pre-
cludes the possibility of sustaining all equilibrium outcomes when information is 
complete, and the principals’ preferences are sufficiently aligned. By sufficiently 
aligned we mean that, given the contracts signed with all principals other than i, 
the specific contract that the agent signs with principal i to punish a deviation by 
one of the other principals does not need to depend on the identity of the deviating 
principal. See the definition of “Uniform Punishment” in Section II. This property 
is always satisfied when there are only two principals. It is also satisfied when the 
principals are, for example, retailers competing “à la Cournot” in a downstream 
market. Each retailer’s payoff then decreases with the quantity that the agent—here 
in the role of a common manufacturer—sells to any of the other principals.

As for the restriction to complete information, the only role that this restriction 
plays is the following. It rules out the possibility that the equilibrium outcomes 
are sustained by the agent punishing a deviation, say, by principal j, by choosing 
the equilibrium contracts with all principals other than i, and then choosing with 
principal i a contract different from the equilibrium one. In games with incomplete 
information, allowing the agent to change his behavior with a nondeviating princi-
pal, despite the fact that he is selecting the equilibrium contracts with all the other 
principals, may be essential for punishing certain deviations. This in turn implies 
that Markov strategies need not support all equilibrium outcomes in such games. 
However, because this is the only complication that arises with incomplete infor-
mation, we show that one can safely restrict attention to Markov strategies if one 
imposes a mild refinement on the solution concept, which we call “Conformity 

8 That the agent’s behavior is Markovian does not imply that the principals can be restricted to offering menus 
that contain only the contracts (e.g., the price-quantity pairs) that are selected in equilibrium. As is well known, 
the inclusion in the menu of “latent” contracts that are never selected in equilibrium may be essential to prevent 
deviations by other principals. See Gabriella Chiesa and Vincenzo Denicolo (2009) for an illustration.

9 While the definition of Markov strategy given here is different from the one considered in the literature on 
dynamic games (see, e.g., Pavan and Calzolari 2009), it shares with that definition the idea that the agent’s behav-
ior should depend only on payoff-relevant information.
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to Equilibrium.” This refinement simply requires that each type of agent selects 
the equilibrium contract with each principal when the latter offers the equilibrium 
menu, and when the contracts selected with the other principals are the equilibrium 
ones.10 Again, in many real world situations, such behavior seems plausible.

While we find the restriction to pure-strategy-Markov equilibria reasonable and 
appealing for most applications, at the end of the paper, we also show how one can 
enrich our revelation mechanisms (albeit at the cost of an increase in complexity) 
to characterize equilibrium outcomes sustained by non-Markov strategies and/or 
mixed strategy profiles. For the former, it suffices to consider revelation mechanisms 
where, in addition to his type and the contracts he has selected with the other princi-
pals, the agent is asked to report the identity of a deviating principal (if any). For the 
latter, it suffices to consider set-valued revelation mechanisms that respond to each 
report about the agent’s type and the contracts selected with the other principals 
with a set of contracts that are equally optimal for the agent among those available 
in the mechanism. Giving the same type of the agent the possibility of choosing dif-
ferent contracts in response to the same contracts selected with the other principals 
is essential to sustain certain mixed-strategy outcomes.

The remainder of the article is organized as follows. We conclude this section 
with a simple example that (gently) introduces the reader to the key ideas in the 
paper with as little formalism as possible. Section I describes the general contract-
ing environment. Section II contains the main characterization results. Section III 
shows how our revelation mechanisms can be put to work in applications such as 
competition in nonlinear tariffs, menu auctions, and moral hazard settings. Section 
IV shows how the revelation mechanisms can be enriched to characterize equilib-
rium outcomes sustained by non-Markov strategies and/or mixed-strategy equilib-
ria. Section V concludes. All proofs are in the Appendix.

Qualification.—While the approach here is similar in spirit to the one in Pavan 
and Calzolari (2009) for sequential common agency, there are important differences 
due to the simultaneity of contracting. First, the notion of Markov strategies consid-
ered here takes into account the fact that the agent, when choosing the messages to 
send to each principal, has not yet committed himself to any decision with any of the 
other principals. Second, in contrast to sequential games, the agent can condition his 
behavior on the entire profile of mechanisms offered by all principals. These differ-
ences explain why, despite certain similarities, the results here do not follow from 
the arguments in that paper.

A. Simple Menu-Auction Example

There are three players: a policymaker (the agent, A ) and two lobbying domestic 
firms (principals P1 and P2 ). The policymaker must choose between a “protection-
ist” policy, e = p, and a “free-trade” policy, e = f (e.g., opening the domestic market 
to foreign competition). To influence the policymaker’s decision, the two firms can 

10 Note that this refinement is milder than the “conservative behavior” refinement of Attar et al. (2008).
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make explicit commitments about their business strategy in the near future. We 
denote by ai ∈ i = [0,1] the “aggressiveness” of firm i’s business strategy, with ai 
= 1 denoting the most aggressive strategy and ai = 0 the least aggressive one. The 
aggressiveness of a firm’s strategy should be interpreted as a proxy for a combina-
tion of its pricing policy, its investment strategy, the number of jobs the firm prom-
ises to secure, and similar factors.

The policymaker’s payoff is a weighted average of domestic consumer surplus 
and domestic firms’ profits. We assume that under a protectionist policy, welfare is 
maximal when the two domestic firms engage in fierce competition (i.e., when they 
both choose the most aggressive strategy). We also assume that the opposite is true 
under a free-trade policy. This could reflect the fact that, under a free-trade policy, 
large consumer surplus is already guaranteed by foreign supply, in which case the 
policymaker may value cooperation between the two firms.

We further assume that, absent any explicit contract with the government, the two 
firms cannot refrain from behaving aggressively. To make it simple, we assume that 
under a protectionist policy, P1 has a dominant strategy in choosing a1 = 1, in which 
case P2 has an iteratively dominant strategy in also choosing a2 = 1. Likewise, 
under a free-trade policy, P2 has a dominant strategy in choosing a2 = 1, in which 
case P1 has an iteratively dominant strategy in also choosing a1 = 1. By behaving 
aggressively, the two firms reduce their joint profits with respect to what they could 
obtain by “colluding,” i.e., by setting a1 = a2 = 0.

Formally, the aforementioned properties can be captured by the following payoff 
structure:

	 u1(e, a)  =  e ​
a1(1  −  a2/2)  −  a2            
a1(a2  −  1/2)  −  a2  −  1

​ 	​ 
if e  =  p 

      
if e  =  f

 ​

	 u2(e, a)  =  u ​a2(a1  −  1/2)  −  a1             
a2(1  −  a1/2)  −  a1  −  1

​ 	​ 
if e  =  p 

      
if e  =  f

 ​

	 v(e, a)  =  u ​1  +  a2(2a1  −  1)               
10/3  +  a1(a2  −  2)  −  a2/2

​ 	​ 
if e  =  p

     
if e  =  f

 ​ ,

where ui denotes Pi’s payoff, i = 1, 2; v denotes the policymaker’s payoff; and a 
= (a1, a2).

What distinguishes this setting from most lobbying games considered in the lit-
erature is that payoffs are not restricted to being quasi-linear. As a consequence, the 
two lobbying firms respond to the choice of a policy e with an entire business plan 
as opposed to simply paying the policymaker a transfer ti (e.g., a campaign contri-
bution). Apart from this distinction, this is a canonical “menu-auction” setting à la 
Douglas B. Bernheim and Michael D. Whinston (1985, 1986a): the agent’s action 
e is verifiable, preferences are common knowledge, and each principal can credibly 
commit to a contract δi : E→i that specifies a reaction (i.e., a business plan) for 
each possible policy e ∈ E = { p, f }.
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In virtually all menu auction papers, it is customary to assume that the princi-
pals simply make take-it-or-leave-it offers to the agent. That is, they offer a single 
contract δi. Note that in games with complete information, a take-it-or-leave-it offer 
coincides with a standard direct revelation mechanism. It is easy to verify that, in 
the lobbying game in which the two firms are restricted to making take-it-or-leave-it 
offers, the only two pure-strategy equilibrium outcomes are: e* = p and ​a​i​ 

*​ = 1, i 
= 1, 2, which yields each firm a payoff of −1/2 and the policymaker a payoff of 2; 
and e* = f and ​a​i​ 

*​ = 1, i = 1, 2, which yields each firm a payoff of −3/2 and the 
policymaker a payoff of 11/6. The proof is in the Appendix.

In an influential paper, Peters (2003) has shown that when a certain no-external-
ities condition holds, restricting the principals to making take-it-or-leave-it offers 
is inconsequential. Any outcome that can be sustained by allowing the principals 
to offer more complex mechanisms can also be sustained by restricting them to 
making take-it-or-leave-it offers. The no-externalities condition is often satisfied in 
quasi-linear environments (e.g., in Bernheim and Whinston’s seminal 1986a menu-
auction paper). However, it typically fails when a principal’s action is the selection 
of an entire plan of action, such as a business strategy, as in the current example, 
or the selection of an incentive scheme, as in a moral hazard setting. In this case, 
restricting the principals to competing in take-it-or-leave-it offers (or equivalently, 
in standard direct revelation mechanisms) may preclude the possibility of character-
izing interesting outcomes, as shown below.

A fully general approach would then require letting the principals compete by 
offering arbitrarily complex mechanisms. However, because ultimately a mecha-
nism is just a procedure to select a contract, one can safely assume that each prin-
cipal directly offers the agent a menu of contracts, and delegates to the agent the 
choice of the contract. In essence, this is what the Menu Theorem establishes. 
However, as anticipated above, this approach leaves open the question of which 
menus are offered in equilibrium, and how the different contracts in the menu are 
selected by the agent in response to the contracts selected with the other principals.

The solution offered by our approach consists in describing the agent’s choice 
from a menu by means of a revelation mechanism. Contrary to the standard revela-
tion mechanisms considered in the literature (where the agent simply reports his 
exogenous type), the revelation mechanisms we propose ask the agent also to report 
the (payoff-relevant) contracts selected with the other principals. Theorem 2 will 
show that any outcome of the menu game sustained by a pure-strategy equilibrium, 
in which the agent’s strategy is Markovian,  can also be sustained as a pure-strategy 
equilibrium outcome of the game in which the principals offer the revelation mecha-
nisms described above.

In the lobbying game of this example, the policymaker’s strategy is Markovian if, 
given any menu of contracts ​ϕ​i​ 

 M​ offered by firm i, and any contract δj : E → j by 
firm j, there exists a unique contract δi (δj; ​ϕ​i​ 

 M​): E → i such that the policymaker 
always selects the contract δi (δj; ​ϕ​i​ 

 M​ ) from the menu ​ϕ​i​ 
 M​ when the contract he selects 

with firm j is δj, j ≠ i. In other words, the choice from the menu ​ϕ​i​ 
 M​ depends only 

on the contract selected with the other firm, but not on payoff-irrelevant informa-
tion, such as the other contracts included by firm j in her menu that the policymaker 
decided not to choose.
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As anticipated in the introduction, while Markov strategies are appealing, they 
may fail to sustain certain outcomes. However, as Theorem 3 will show, this is never 
the case when the principals’ preferences are sufficiently aligned (which is always 
the case when there are only two principals) and preferences are common knowl-
edge, as in the example considered here. Moreover, as Proposition 4 will show, 
when effort is observable, as in menu-auctions, the revelation mechanisms can be 
further simplified by having the agent directly report to each principal the actions 
he is inducing the other principals to take in response to his choice of effort, as 
opposed to the contracts selected with the other principals. The idea is simple. 
For any given policy e ∈ E, the agent’s preferences over the actions by principal 
i depend on the action by principal j. By implication, the agent’s choice from any 
menu of contracts offered by Pi can be conveniently described through a mapping 
​ϕ​i​ 

r​:E × j → i that specifies, for each observable policy e ∈ E, and for each 
unobservable action aj ∈ j by principal j, an action ai ∈ i that is as good for the 
agent as any other action a′i that the agent can induce by reporting an action a′j ≠ 
aj .

11 Furthermore, the agent’s strategy can be restricted to being truthful in the sense 
that, in equilibrium, the agent correctly reports to each principal i = 1, 2, the action 
aj that will be taken by the other principal.

We conclude this example by showing how our revelation mechanisms can be 
used to sustain outcomes that can not be sustained with simple take-it-or-leave-it 
offers. To this aim, consider the following pair of revelation mechanisms.12

​ϕ​1​ 
r
 ​(e, a2 )  =  e ​

1/2
    

1
 ​ ​ 

if e  =  p  ∀a2         
if e  =   f   ∀a2

 ​, ​ ϕ​2​ 
r
 ​(e, a1)  =  u ​

1    if e  =  p and a1  >  1\2
   

          
   0    if e  =  p and a1 ≤ 1\2                

1    if e  =  f   ∀a1.
 ​

Given these mechanisms, the policymaker optimally chooses a protectionist pol-
icy e = p. At the same time, the two firms sustain higher cooperation than under 
simple take-it-or-leave-it offers, thus obtaining higher total profits. Indeed, the equi-
librium outcome is e* = p, ​a​1​ 

*​ = 1/2, ​a​2​ 
*​ = 0 which yields P1 a payoff of 1/2, P2 a 

payoff of −1/2, and the policymaker a payoff of 1. The key to sustaining this outcome 
is to have P2 respond to the policy e = p with a business strategy that depends on what 
P1 does. Because P2 cannot observe a1 directly at the time she commits to her business 
plan, such a contingency must be achieved with the compliance of the policymaker.

Clearly, the same outcome can also be sustained in the menu game by having 
P2 offer a menu that contains two contracts, one that responds to e = p with a2 = 
1 and the other that responds to e = p with a2 = 0. The advantage of our mecha-
nisms comes from the fact that they offer a convenient way of describing a princi-
pal’s response to the other principals’ actions that is compatible with the agent’s 

11 When applied to games with no effort (i.e., to games where there is no action e that the agent has to take 
after communicating with the principals), these mechanisms reduce to mappings ​ϕ​i​ 

r​: j → i that specify a 
response by Pi (e.g., a price-quantity pair) to each possible action by Pj. Note that in these games, a contract for 
Pi simply coincides with an element of i. In settings where the agent's preferences are not common knowledge, 
these mechanisms become mappings ​ϕ​i​ 

r​ : Θ × j → i according to which the agent is also asked to report his 
“type,” i.e., his exogenous private information θ. 

12 Note that, because e is observable, these mechanisms only need to be incentive compatible with respect to aj. 
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incentives. This simplification often facilitates the characterization of the equilib-
rium outcomes, as will be shown in the other examples in Section III.

I.  The Environment

The following model encompasses essentially all variants of simultaneous com-
mon agency examined in the literature.

Players, Actions, and Contracts.—There are n ∈ 핅 principals who contract 
simultaneously and noncooperatively with the same agent, A. Each principal Pi, i ∈ 
 ≡ {1, … , n}, must select a contract δi from a set of feasible contracts i. A con-
tract δi: E → i specifies the action ai ∈ i that Pi will take in response to the agent’s 
action/effort e ∈ E. Both ai and e may have different interpretations depending on 
the application of interest. When A is a policymaker lobbied by different interest 
groups, e typically represents a policy, and ai may represent either a campaign con-
tribution (as in Bernheim and Whinston 1986a) or a plan of action (as in the non-
quasi-linear example of the previous section). When A is a buyer purchasing from 
multiple sellers, ai may represent the price of seller i and e a vector of quantities/
qualities purchased from the multiple sellers. Alternatively, as is typically assumed 
in models of competition in nonlinear tariffs, one can directly assume that ai 
= (ti, qi ) is a price-quantity pair and then suppress e by letting E be a singleton (see, 
for example, the analysis in Section III).

Depending on the environment, the set of feasible contracts i may also be more 
or less restricted. For example, in certain trading environments, it can be appealing 
to assume that the price ai of seller i cannot depend on the quantities/qualities of 
other sellers.13 In a moral hazard setting, because e is not observable by the prin-
cipals, each contract δi ∈ i must respond with the same action ai ∈ i to each e; 
in this case, ai represents a state-contingent payment that rewards the agent as a 
function of some exogenous (and here unmodelled) performance measure that is 
correlated with the agent’s effort. What is important to us is that the set of feasible 
contracts i is a primitive of the environment and not a choice of principal i.

Payoffs.—Principal i’s payoff, i = 1, … , n, is described by the function ui (e, a, θ), 
whereas the agent’s payoff is described by the function v(e, a, θ). The vector a 
≡ (a1, … , an) ∈  ≡ ​×​i=1​ 

n
  ​i denotes a profile of actions for the principals, while the 

variable θ denotes the agent’s exogenous private information. The principals share 
a common prior that θ is drawn from the distribution F with support Θ. All players 
are expected-utility maximizers.

Mechanisms.—Principals compete in mechanisms. A mechanism for Pi consists 
of a (measurable) message space i along with a (measurable) mapping ϕi: i → 
i. The interpretation is that when A sends the message mi ∈ i, Pi then responds 
by selecting the contract δi = ϕi(mi ) ∈ i. Note that when there is no action that 

13 Such a departure is allowed in Calzolari and Devicolo (2009) and in Martimort and Stole (2005).
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the agent must take after communicating with the principals (that is, when E is a 
singleton, as in the literature on competition in nonlinear schedules), δi reduces to a 
payoff-relevant action ai ∈ i, such as a price-quantity pair.

To save on notation, in the sequel, we will denote a mechanism simply by ϕi, 
thus dropping the specification of its message space i whenever this does not cre-
ate any confusion. For any mechanism ϕi, we will then denote by Im(ϕi ) ≡ {δi ∈ 
i : ∃ mi ∈ i s.t. ϕi(mi ) = δi } the range of ϕi, i.e., the set of contracts that the agent 
can select by sending different messages.

For any common agency game Γ, we will then denote by Φi the set of feasible 
mechanisms for Pi, by ϕ ≡ (ϕ1, … , ϕn ) ∈ Φ ≡ ​×​j=1​ 

n
  ​Φj a profile of mechanisms for 

the n principals, and by ϕ−i ≡ (ϕ1, … , ϕi−1, ϕi+1, … , ϕn ) ∈ Φ−i ≡ ×j≠i Φj a profile 
of mechanisms for all Pj, j ≠ i.14 As is standard, we assume that principals can fully 
commit to their mechanisms and that each principal can neither communicate with 
the other principals,15 nor make her contract contingent on the contracts by other 
principals.16

Timing.—The sequence of events is the following.

	 •	At t = 0, A learns θ.
	 •	At t = 1, each Pi simultaneously and independently offers the agent a mecha-

nism ϕi ∈ Φi.
	 •	At t = 2, A privately sends a message mi ∈ i to each Pi after observing 

the whole array of mechanisms ϕ. The messages m = (m1, … , mn ) are sent 
simultaneously.17

	 •	At t = 3, A chooses an action e ∈ E.
	 •	At t = 4, the principals’ actions a = δ(e) ≡ (δ1(e), … , δn(e)) are determined by 

the contracts δ = (ϕ1(m1), … , ϕn(mn)), and payoffs are realized.

Strategies and Equilibria.—A (mixed) strategy for Pi is a distribution σi ∈ Δ(Φi ) 
over the set of feasible mechanisms. As for the agent, a (behavioral) strategy σA 
= (μ, ξ) consists of a mapping μ : Θ × Φ → Δ() that specifies a distribution over 
 for any (θ, ϕ), along with a mapping ξ : Θ × Φ ×  → Δ(E) that specifies a 
distribution over effort for any (θ, ϕ, m).

Following Peters (2001), we will say that the strategy σA = (μ, ξ) constitutes a 
continuation equilibrium for Γ if for every (θ, ϕ, m), any e ∈ Supp[ξ(θ, ϕ, m)] maxi-
mizes v (e, δ(e), θ), where δ = ϕ(m); and, for every (θ, ϕ), any m ∈ Supp[ μ (θ, ϕ)] 
maximizes V(ϕ(m), θ) ≡ maxe∈Ev(e, δ(e), θ) with δ = ϕ(m).

14 We also define δ ≡ (δ1, … , δn ) ∈  ≡ ​×​j=1​ 
n
  ​j, m ≡ (m1, … , mn ) ∈  ≡ ​×​j=1​ 

n
  ​j, δ−i ∈ −i, m−i ∈ −i 

in the same way.
15 A notable exception is Peters and Cristián Troncoso-Valverde (2009).
16 As in Bernheim and Whinston (1986a), this does not mean that Pi cannot reward the agent as a function of 

the actions he takes with the other principals . It simply means that Pi cannot make her contract δi : E → i contin-
gent on the other principals' contracts δ−i, nor her mechanism ϕi contingent on the other principals’ mechanisms 
ϕ−i. A recent paper that allows for these types of contingencies is Peters and Balazs Szentes (2008).

17 As in Peters (2001) and Martimort and Stole (2002), we do not model the agent’s participation decisions. 
These can be easily accommodated by adding to each mechanism a null contract that leads to the default decisions 
that are implemented in case of no participation such as no trade at a null price.
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Let ρσA
(θ, ϕ) ∈ Δ( × E ) denote the distribution over outcomes induced by σA 

given θ and the profile of mechanisms ϕ. Principal i’s expected payoff when she 
chooses the strategy σi, and when the other principals and the agent follow (σ−i, σA), 
is then given by

	 Ui (σi; σ−i,σA)  ≡ ​ ∫ Φ1
​ 

 

 ​  ⋯​​∫ Φn
​ 

 

 ​  ​
__

 U ​​i (ϕ; σA)dσ1  ×  ⋯  ×  dσn,

where

	​
__

 U ​i(ϕ; σA)  ≡ ​ ∫ 
Θ
​ 

 

 ​  ​∫ 
E
​ 

 

 ​  ​∫ 

​ 

 

 ​  ui​​​(e, a, θ)dρσA
(θ, ϕ)dF(θ).

A perfect Bayesian equilibrium for Γ is then a strategy profile σ ≡ ({σi,​}​i=1​ 
n
  ​, σA ), 

such that σA is a continuation equilibrium and for every i ∈ ,

	 σi ∈ ​arg max     
​      σ​i∈Δ(Φi)

 ​ Ui (​       σ​i; σ−i, σA).

Throughout, we will denote the set of perfect Bayesian equilibria of Γ by (Γ). 
For any equilibrium σ* ∈ (Γ), we will then denote by πσ* : Θ → Δ( × E) the 
associated social choice function (SCF).18

Menus.—A menu is a mechanism ​ϕ​i​ 
 M​ : ​​i​ 

M​ → i whose message space ​​i​ 
M ​ ⊆ 

i is a subset of all possible contracts and whose mapping is the identity function, 
i.e., for any δi ∈ ​​i​ 

M​, ​ϕ​i​ 
 M​(δi) = δi. In what follows, we denote by ​Φ​i​ 

M​ the set of all 
possible menus of feasible contracts for Pi, and by ΓM the “menu game” in which 
the set of feasible mechanisms for each Pi is ​Φ​i​ 

M​. We will then say that the game 
Γ is an enlargement of ΓM (Γ ≽ ΓM ) if for all i ∈ , there exists an embedding 
αi : ​Φ​i​ 

M​ → Φi;
19 and for any ϕi ∈ Φi, Im(ϕi) is compact. A simple example of an 

enlargement of ΓM is a game in which each Φi is a superset of ​Φ​i​ 
M​. More generally, 

an enlargement is a game in which each Φi is “larger” than ​Φ​i​ 
M​ in the sense that each 

menu ​ϕ​i​ 
 M​ is also present in Φi, although possibly with a different representation. The 

game in which the principals compete in menus is “focal” in the sense of the follow-
ing theorem (Peters 2001; Martimort and Stole 2002).

Theorem 1 (Menus): Let Γ be any enlargement of ΓM. A social choice function 
π can be sustained by an equilibrium of Γ if and only if it can be sustained by an 
equilibrium of ΓM.

18 In the jargon of the mechanism design/implementation literature, a social choice function π : Θ→
Δ( × E) is simply an outcome function, which specifies, for each state of nature θ, a joint distribution over 
payoff-relevant decisions (a, e). 

19 For our purposes, an embedding αi : ​Φ​i​ 
M​ → Φi can be thought of as an injective mapping such that, for any 

pair of mechanisms ​ϕ​i​ 
 M​, ϕi with ϕi = αi(​ϕ​i​ 

 M​ ), Im(ϕi) = Im(​ϕ​i​ 
 M​ ). 
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When Γ is not an enlargement of ΓM (for example, because only certain menus 
can be offered in Γ), there may exist outcomes in Γ that cannot be sustained as 
equilibrium outcomes in ΓM and vice versa. In this case, one can still characterize 
all equilibrium outcomes of Γ using menus, but it is necessary to restricting the 
principals to offer only those menus that could have been offered in Γ : that is, the 
set of feasible menus for Pi must be restricted to ​​   

   
 Φ​​i​ 
M​ ≡ {​ϕ​i​ 

 M​ : Im(​ϕ​i​ 
 M​) = Im(ϕi) for 

some ϕi ∈ Φi }.
In the sequel, we will restrict our attention to environments in which all menus 

are feasible. As anticipated above, the value of our results is in showing that, in 
many applications of interest, one can restrict the principals to offering menus that 
can be conveniently described as incentive-compatible revelation mechanisms. This, 
in turn, may facilitate the characterization of the equilibrium outcomes.

Remark.—To ease the exposition, throughout the entire main text, we restrict our 
attention to settings where principals offer simple menus that contain only deter-
ministic contracts, i.e., mapping δi : E → i. All our results apply verbatim to more 
general settings where the principals can offer the agent menus of lotteries over 
stochastic contracts; it suffices to reinterpret each δi as a lottery over a set of stochas-
tic contracts Yi = { yi : E → Δ(i )}, where each yi responds to each effort choice by 
the agent with a distribution over i. Note that, in general, even if one restricts one’s 
attention to pure-strategy profiles (i.e., to strategy profiles in which the principals 
do not mix over the menus they offer to the agent and where the agent does not mix 
over the messages he sends to the principals), allowing the principals to offer lot-
teries over stochastic contracts may be essential to sustain certain outcomes. The 
reason is that such lotteries create uncertainty about the principals’ responses to 
the agent’s effort, which permits one to sustain a wider range of equilibrium effort 
choices (see Peters 2001, for a few examples). All proofs in the Appendix consider 
these more general settings.

II.  Simple Revelation Mechanisms

Motivated by the arguments discussed in the introduction, we focus in this sec-
tion on outcomes that can be sustained by pure-strategy profiles in which the agent’s 
strategy is Markovian.

Definition 1: 
(i) Given the common agency game Γ, an equilibrium strategy profile σ ∈ (Γ) 

is a pure-strategy equilibrium if 
• no principal randomizes over her mechanisms; and 
• given any profile of mechanisms ϕ ∈ Φ and any θ ∈ Θ, the agent does not ran-

domize over the messages he sends to the principals.

	 (ii) The agent’s strategy σA is Markovian in Γ if and only if, for any i ∈ , ϕi ∈ 
Φi, θ ∈ Θ, and δ−i ∈ −i , there exists a unique δi(θ, δ−i ; ϕi ) ∈ Im(ϕi), such that 
A always selects δi(θ, δ−i ; ϕi ) with Pi when the latter offers the mechanism ϕi, the 
agent’s type is θ, and the contracts A selects with the other principals are δ−i.
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An equilibrium strategy profile is thus a pure-strategy equilibrium if no princi-
pal randomizes over her mechanisms and no type of the agent randomizes over the 
messages he sends to the principals. Note, however, that the agent may randomize 
over his choice of effort.

The agent’s strategy σA in Γ is Markovian if and only if the contracts the agent 
selects in each mechanism depend only on his type and the contracts which he selects 
with the other principals, but not on the particular profile of mechanisms (or menus) 
offered by those principals. As anticipated in the introduction, this definition is differ-
ent from the one typically considered in dynamic games, but it shares with the latter 
the idea that the agent’s behavior should depend only on payoff-relevant information.

Definition 2: 
(i) An (incentive-compatible) revelation mechanism is a mapping 

​ϕ​i​ 
r​ : ​​i​ 

r​ → i, with message space ​​i​ 
r​ ≡ Θ × −i, such that Im(​ϕ​i​ 

r​) is compact 
and, for any (θ, δ−i ) ∈ Θ × −i,

	​ ϕ​i​ 
r​(θ, δ−i ) ∈ ​arg max     

δi∈ Im(​ϕ​i​ 
r​)
 ​V(δi, δ−i, θ).

(ii) A revelation game Γ r is a game in which each principal’s strategy space is 
Δ(​Φ​i​ 

r​ ),where ​Φ​i​ 
r​ is the set of all (incentive-compatible) revelation mechanisms for 

principal i.

(iii) Given a profile of mechanisms ϕr ∈ Φr, the agent’s strategy is truthful in ​ϕ​i​ 
r​ if, 

for any θ ∈ Θ, and any (​m​i​ 
r​, ​m​−i​ 

r
  ​ ) ∈ Supp[ μ(θ, ​ϕ​i​ 

r​, ​ϕ​−i​ 
r
  ​ )],

	​ m​i​ 
r​  =  (θ, (​ϕ​j​ 

r​(​m​j​ 
r​ ))j≠i ).

(iv) An equilibrium strategy profile σ r * ∈ (Γr ) is a truthful equilibrium if, given 
any profile of mechanisms ϕr ∈ Φr such that | { j ∈  : ​ϕ​j​ 

r​ ∉ Supp[​σ​j​ 
r *​]} | ≤ 1, ​ϕ​i​ 

r​ ∈ 
Supp[​σ​i​ 

r *​] implies that the agent’s strategy is truthful in ​ϕ​i​ 
r​.

In a revelation mechanism, the agent is thus asked to report his type θ along 
with the contracts δ−i he is selecting with the other principals. Given a profile of 
mechanisms ϕr, the agent’s strategy is then said to be truthful in ​ϕ​i​ 

r​ if the message ​m​i​ 
r​ 

= (θ, δ−i ), which the agent sends to Pi, coincides with his true type θ together with the 
true contracts δ−i = (ϕj(mj ))j≠i that the agent selects with all principals other than i by 
sending the messages m−i ≡ (mj )j≠i. Finally, an equilibrium strategy profile is said to 
be a truthful equilibrium if, whenever no more than a single principal deviates from 
equilibrium play, the agent reports truthfully to any of the nondeviating principals.

The following is our first characterization result.

Theorem 2: 
(i) Suppose that the social choice function π can be sustained by a pure-strategy 

equilibrium of ΓM in which the agent’s strategy is Markovian. Then π can also be 
sustained by a truthful pure-strategy equilibrium of Γ r. 
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(ii) Furthermore, any social choice function π that can be sustained by an equi-
librium of Γ r can also be sustained by an equilibrium of ΓM.

Consider first part (i). When the agent’s choice from each menu depends only on 
his type θ and the contracts δ−i that he is selecting with the other principals, one can 
easily see that, in equilibrium, each principal can be restricted to offering a menu ​
ϕ​i​ 

M*​ such that

	 Im(​ϕ​i​ 
M*​ ) = {δi  ∈  i : δi  =  δi(θ, δ−i; ​ϕ​i​ 

M*​ ), (θ, δ−i )  ∈  Θ  ×  −i }.

It is then also easy to see that, starting from such an equilibrium, one can construct a 
truthful equilibrium for the revelation game that sustains the same outcomes.

Next, consider part (ii). Despite the fact that Γ r is not an enlargement of ΓM, 
the result follows essentially from the same arguments that establish the Menu 
Theorem. The equilibrium that sustains the SCF π in ΓM is constructed from σ r * 
by having each principal offering the menu ​ϕ​i​ 

M*​ that corresponds to the range of the 
equilibrium mechanism ​ϕ​i​ 

r *​ of Γ r. When in ΓM all principals offer the equilibrium 
menus, the agent then implements the same outcomes he would have implemented 
in Γ r. When, instead, one principal (let us say Pi ) deviates and offers a menu ​ϕ​i​ 

 M​ ∉ 
Supp[​σ​i​ 

 M*​], the agent implements the same outcomes he would have implemented in 
Γ r had Pi offered a direct mechanism ​ϕ​i​ 

r​, such that

	 ​ϕ​i​ 
r​(θ, δ−i )  ∈ ​ arg max     

δi∈Im(​ϕ​i​ 
 M​)

 ​ V(δi, δ−i, θ)    ∀(θ, δ−i )  ∈  Θ  ×  −i.

The behavior prescribed by the strategy ​σ​A​ M*​  constructed this way is clearly ratio-
nal for the agent in ΓM. Furthermore, given ​σ​A​ M*​, no principal has an incentive to 
deviate.

Although in most applications it seems reasonable to assume that the agent’s 
strategy is Markovian, it is also important to understand whether there exist environ-
ments in which such an assumption is not a restriction. To address this question, we 
first need to introduce some notation. For any k ∈  and any (δ, θ), let

	 E *(δ, θ)  ≡ ​ arg max    
e∈E

  ​ v(e, δ(e), θ)

denote the set of effort choices that are optimal for type θ given the contracts δ. Then 
let

	​ __ U​ k(δ, θ)  ≡ ​   min     
e∈E *(δ, θ)

​uk(e, δ(e), θ)

denote the lowest payoff that the agent can inflict to principal k by following a strat-
egy that is consistent with the agent’s own-payoff-maximizing behavior.
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Condition  1 (Uniform Punishment): We say that the “Uniform Punishment” 
condition holds if, for any i ∈ , compact set of contracts B ⊆ i, δ−i ∈ −i, and 
θ ∈ Θ, there exists a δi′ ∈ arg maxδi∈BV (δi, δ−i, θ), such that for all j ≠ i, all ​   

  
 δ ​i ∈ 

arg maxδi∈BV(δi, δ−i, θ),

	​ __ U​ j (δi′, δ−i, θ)  ≤  ​__ U​ j (​   
  
 δ ​i, δ−i, θ).

This condition says that the principals’ preferences are sufficiently aligned in the 
following sense. Given any menu of contracts B offered by Pi and any (θ, δ−i ), there 
exists a contract δi′ ∈ B that is optimal for type θ given δ−i, and which uniformly 
minimizes the payoff of any principal other than i. By this we mean the following. 
The payoff of any principal Pj, j ≠ i, under δi′ is (weakly) lower than under any other 
contract δi ∈ B that is optimal for the agent given (θ, δ−i ).

We then have the following result:

Theorem 3: Suppose that at least one of the following conditions holds:
(i) for any i ∈ , compact set of contracts B ⊆ i, and (θ, δ−i ) ∈ Θ × −i, 

| arg maxδi∈B V (δi, δ−i, θ) | = 1;

(ii) | Θ | = 1 and the “Uniform Punishment” condition holds.
Then any social choice function π that can be sustained by a pure-strategy equi-

librium of ΓM can also be sustained by a pure-strategy equilibrium in which the 
agent’s strategy is Markovian.

Condition (i) says that the agent’s preferences are “single-peaked” in the sense 
that, for any (θ, δ−i ) ∈ Θ × −i and any menu of contracts B ⊆ i, there is a single 
contract in B that maximizes the agent’s payoff. Clearly, in this case the agent’s 
strategy is necessarily Markovian.

Condition (ii) says that information is complete and that the principals’ payoffs 
are sufficiently aligned in the sense of the Uniform Punishment condition. The role 
of this condition is to guarantee that, given δ−i, the agent can punish any principal 
Pj, j ≠ i, by taking the same contract with principal i. Note that this condition would 
be satisfied, for example, when the agent is a manufacturer and the principals are 
retailers competing à la Cournot in a downstream market. In this case,

	 ui  =  f (qi  + ​ ∑ 
k≠i

 ​ 
 

  ​ q​k )qi  −  ti

where qi denotes the quantity sold to Pi, ti denotes the total payment made by Pi to 
the manufacturer, and f : ℝ + → ℝ denotes the inverse demand function in the down-
stream market. In this environment, | Θ | = | E | = 1. A contract δi is thus a simple 
price-quantity pair (ti, qi ) ∈ ℝ × ℝ +. One can then immediately see that, given 
any menu B ⊆ ℝ × ℝ + (i.e., any array of price-quantity pairs or, equivalently, any 
tariff) offered by Pi, and any profile of contracts (t−i, q−i ) ∈ ℝn−1 × ​ℝ​+​ n−1​ selected 
by the agent with the other principals, the contract (ti, qi ) ∈ B that minimizes Pj’s 
payoff (for any j ≠ i) among those that are optimal for the agent given (t−i, q−i ) is 
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the one that entails the highest quantity qi. The Uniform Punishment condition thus 
clearly holds in this environment.

The reason why the result in Theorem 3 requires information to be complete in 
addition to having enough alignment in the principals’ payoffs, can be illustrated 
through the following example where n = 2, in which case the Uniform Punishment 
condition trivially holds. The sets of actions are 1 = {t, b} and 2 = {l, r }. There is 
no effort in this example, and hence a contract simply coincides with the choice of 
an element of i. There are two types of the agent: ​_ θ​ and ​

_
 θ ​. The principals’ common 

prior is that Pr (θ = ​
_
 θ ​) = p > 1/5. Payoffs (u1, u2, v) are as in Table 1.

Consider the following (deterministic) SCF: if θ = ​_ θ​, then a1 = b and a2 = r; 
if θ = ​

_
 θ ​, then a1 = t and a2 = l. This SCF can be sustained by a (pure-strategy) 

equilibrium of the menu game in which the agent’s strategy is non-Markovian. The 
equilibrium features P1 offering the menu ​ϕ​1​ 

M*​ = {t, b } and P2 offering the menu ​ϕ​2​ 
M*​ 

= {l, r }. Clearly P2 does not have profitable deviations because in each state she 
is getting her maximal feasible payoff. If P1 deviates and offers {t}, then A selects 
(t, l ) if θ = ​_ θ​ and (t, r ) if θ = ​

_
 θ ​. Note that, given (​_ θ​, t ), A has strict preferences for l, 

whereas given (​
_
 θ ​, t ), he is indifferent between l and r. A deviation to {t} thus yields 

a payoff U1 = 2(1 − p) − 2p = 2 − 4p to P1 that is lower than her equilibrium 
payoff ​U ​1​ 

*​ = 1 + p when p > 1/5. A deviation to {b} is clearly never profitable for 
P1, irrespective of the agent’s behavior. Thus, the SCF π* described above can be 
sustained in equilibrium.

Now, to see that this SCF cannot be sustained by restricting the agent’s strategy to 
being Markovian, first note that it is essential that ​ϕ​2​ 

M*​ contains both l and r because 
in equilibrium A must choose different a2 for different θ. Restricting the agent’s 
strategy to being Markovian then means that when P2 offers the equilibrium menu, 
A necessarily chooses r if (θ, a1) = (​_ θ​, b), and l if (θ, a1) = (​

_
 θ ​, t). Furthermore, 

because given (​_ θ​, t), A strictly prefers l to r, A necessarily chooses l when (θ, a1) 
= (​_ θ​, t). Given this behavior, if P1 deviates and offers the menu ​ϕ​1​ 

M​ = {t}, she then 
induces A to select a2 = l with P2 irrespective of θ, which gives P1 a payoff U1 
= 2 > ​U​1​ 

 *​.
The reason why, when information is incomplete, restricting the agent’s strategy to 

be Markovian may preclude the possibility of sustaining certain social choice func-
tions is the following. Markov strategies do not permit the same type of the agent (let 
us say θ′ ) to punish a deviation by a principal (let us say Pj, j ≠ i) by choosing with all 
principals other than i the equilibrium contracts ​δ​−i​ 

 *
  ​(θ′ ), and then choosing with Pi a 

contract δi ≠ ​δ​i​ 
 *​(θ′ ). As the example above illustrates, it may be essential in order to 

punish certain deviations to allow a type to change his behavior with a principal, even 
if the contracts he selects with all other principals coincide with the equilibrium ones. 
However, because this is the only reason that one needs information to be complete for 

Table 1

θ = ​_ θ​ θ = ​
_
 θ ​

a1\a2 l r a1\a2 l r

t 2  1  1 2  0  0 t 2  2  2 −2  0  2
b 1  0  1 1  2  2 b 1  0  1 −2  1  1
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the result in Theorem 3, it turns out that the assumption of complete information can 
be dispensed with if one imposes the following refinement on the agent’s behavior:

Condition 2 (Conformity to Equilibrium): Let Γ be any simultaneous com-
mon agency game. Given any pure-strategy equilibrium σ* ∈ (Γ), let ϕ* denote 
the equilibrium mechanisms and δ *(θ) the equilibrium contracts selected when the 
agent’s type is θ. We say that the agent’s strategy in σ* satisfies the “Conformity to 
Equilibrium” condition if, for any i, θ, ϕ−i, and m ∈ Supp[ μ(θ, ​ϕ​i​ 

*​, ϕ−i )],

	 (ϕj(mj ))j≠i  = ​ δ​−i​ 
 *
  ​ (θ) implies ​ϕ​i​ 

*​(mi )  = ​ δ​i​ 
 *​(θ).

That is, the agent’s strategy satisfies the Conformity to Equilibrium condition if 
each type of the agent θ selects the equilibrium contract ​δ​i​ 

 *​(θ) with each principal 
Pi when the latter offers the equilibrium mechanism ​ϕ​i​ 

*​, and the agent selects the 
equilibrium contracts ​ δ​−i​ 

 *
  ​ (θ) with the other principals. Consider the same example 

described above and assume that the principals compete in menus, i.e., Γ = ΓM. Take 
the equilibrium in which P1 offers the degenerate menu {t}, and P2 offers the menu 
{l, r}. Given the equilibrium menus, both types select a2 = l with P2. One can imme-
diately see that this outcome can be sustained by a strategy for the agent that satisfies 
the “Conformity to Equilibrium” condition. It suffices that, whenever P2 offers the 
equilibrium menu {l, r }, then each type θ selects the contract a2 = l with P2, when 
selecting the equilibrium contract a1 = t with P1. Note that this refinement does not 
require that the agent does not change his behavior with a nondeviating principal; in 
particular, should P1 deviate and offer the menu {t, b }, then type ​_ θ​ would, of course, 
select a1 = b with P1, and then also change the contract with P2 to a2 = r. What 
this refinement requires is simply that each type of the agent continues to select the 
equilibrium contract with a nondeviating principal conditional on choosing the equi-
librium contracts with the remaining principals. In many applications, this property 
seems to us a mild requirement. We then have the following result:

Theorem 4: Suppose the principals’ payoffs are sufficiently aligned in the sense 
of the Uniform Punishment condition. Suppose, in addition, that the social choice 
function π can be sustained by a pure-strategy equilibrium σ M* ∈ (ΓM ) in which 
the agent’s strategy ​σ​A​  M*​ satisfies the “Conformity to Equilibrium” condition. Then, 
irrespective of whether information is complete or incomplete, π can also be sus-
tained by a pure-strategy equilibrium ​       σ​ M* ∈ (ΓM ) in which the agent’s strategy ​​       σ​​A​  M*​ 
is Markovian.

At this point, it is useful to contrast our results with those in Peters (2003, 2007) 
and Attar et al. (2008). Peters (2003, 2007) considers environments in which a 
certain “no-externality condition” holds and shows that in these environments all 
pure-strategy equilibria can be characterized by restricting the principals to offering 
standard direct revelation mechanisms ϕi : Θ → i.

20 The no-externality condition 

20 A standard direct revelation mechanism reduces to a take-it-or-leave-it-offer, i.e., to a degenerate menu 
consisting of a single contract δi : E → i, when the agent does not possess any exogenous private information, 
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requires that (i) each principal’s payoff be independent of the other principals’ 
actions a−i, and (ii) conditional on choosing effort in a certain equivalence class ​ ˆ 

  
 E​,21

the agent’s preferences over any set of actions B ⊆ i by principal i be indepen-
dent of the particular effort the agent chooses in ​ ˆ 

  
 E​, of his type θ, and of the other 

principals’ actions a−i. Attar et al. (2008) show that in environments in which only 
deterministic contracts are feasible, all action spaces are finite, and the agent’s pref-
erences are “separable” and “generic,” condition (i) in Peters (2003) can be dis-
pensed with: any equilibrium outcome of the menu game (including those sustained 
by mixed strategies) can also be sustained as an equilibrium outcome in the game in 
which the principals’ strategy space consists of all standard direct revelation mecha-
nisms. Separability requires that the agent’s preferences over the actions of any of 
the principals be independent of the effort choice and of the actions of the other prin-
cipals. Genericity requires that the agent never be indifferent between any pair of 
effort choices and/or any pair of contracts by any of the principals.22 Taken together, 
these restrictions guarantee that the messages that each type of the agent sends to 
any of the principals do not depend on the messages he sends to the other principals. 
It is then clear that, in these settings, restricting attention to standard direct revela-
tion mechanisms never precludes the possibility of sustaining all outcomes.

Compared to these results, the result in Theorem 2 does not require any restric-
tion on the players’ preferences. On the other hand, it requires restricting attention 
to equilibria in which the agent’s strategy is Markovian. This restriction is, how-
ever, inconsequential either when the agent’s preferences are single-peaked or when 
information is complete and the principals’ preferences are sufficiently aligned in 
the sense of the Uniform Punishment condition. Our results complement those in 
Peters (2003, 2007) and Attar et al. (2008) in the sense that they are particularly use-
ful precisely in environments in which one cannot restrict attention either to simple 
take-it-or-leave-it offers or to standard direct revelation mechanisms.

For example, consider a pure adverse selection setting, as in the baseline model of 
Attar et al. (2008).23 Then condition (i) in Theorem 3 is equivalent to the “generic-
ity” condition in their paper. If, in addition, preferences are separable (in the sense 
described above), then Theorem 1 in Attar et al. (2008) guarantees that all equilib-
rium outcomes can be sustained by restricting the principals to offering standard 
direct revelation mechanisms. Assuming that preferences are separable, however, can 
be too restrictive. For example, it rules out the possibility that a buyer’s preferences 

i.e., when |Θ| = 1. 
21 In the language of Peters (2003, 2007), an equivalence class ​ ˆ 

  
 E​ ⊆ E is a subset of E, such that any feasible 

contract of Pi must respond to each e, e′ ∈ ​   
  
 E​, with the same action, i.e., δi(e) = δi(e′) for any e, e′ ∈ ​   

  
 E​. 

22 Formally, separability requires that any type θ of the agent who strictly prefers ai to ai′ when the decisions 
by all principals other than i are a−i and his choice of effort is e also strictly prefers ai to ai′ when the decisions 
taken by all principals other than i are a ′−i and his choice of effort is e′, for any (a−i, e),(a ′−i, e′) ∈ −i × E. 
Genericity requires that, given any (θ, ai) ∈ Θ × i, v (θ, ai, a−i, e) ≠ v (θ, ai, a ′−i, e′ ) for any (e, a−i),(e′, a ′−i ) ∈ E × 
−i with (e, a−i ) ≠ (e′, a ′−i ). Note that in general, separability is neither weaker nor stronger than condition (ii) in 
Peters (2003, 2007). In fact, separability requires the agent’s preferences over Pi’s actions to be independent of e, 
whereas condition (ii) in Peters only requires them to be independent of the particular effort the agent chooses in 
a given equivalence class. On the other hand, condition (ii) in Peters (2003, 2007) requires that the agent’s prefer-
ences over Pi’s actions be independent of the agent’s type, whereas such a dependence is allowed by separability. 
The two conditions are, however, equivalent in standard moral hazard settings (i.e., when effort is completely 
unobservable so that ​ ˆ 

  
 E​ = E and information is complete so that | Θ | = 1).

23 A pure adverse selection setting is one with no effort, i.e., where | E | = 1. 
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for the quality/quantity of a seller’s product might depend on the quality/quantity 
of the product purchased from another seller. In cases like these, all equilibrium 
outcomes can still be characterized by restricting the principals to offering direct 
revelation mechanisms; however, the latter must be enriched to allow the agent to 
report the contracts (i.e., the terms of trade) that he has selected with the other prin-
cipals, in addition to his exogenous private information.

Also note that when action spaces are continuous, as is typically assumed in most 
applications, Attar et al. (2008) need to impose a restriction on the agent’s behavior. 
This restriction, which they call “conservative behavior,” consists in requiring that, 
after a deviation by Pk, each type θ of the agent continues to choose the equilibrium 
contracts ​δ​−k​ 

 *
  ​(θ) with the nondeviating principals whenever this is compatible with the 

agent’s rationality. This restriction is stronger than the “Conformity to Equilibrium” 
condition introduced above. Hence, even with separable preferences, the more general 
revelation mechanisms introduced here may prove useful in applications in which 
imposing the “conservative behavior” property seems too restrictive.

III.  Using Revelation Mechanisms in Applications

Equipped with the results established in the preceding section, we now consider 
three canonical applications of the common agency model: competition in nonlinear 
tariffs with asymmetric information, menu auctions, and a moral hazard setting. The 
purpose of this section is to show how the revelation mechanisms introduced in this 
paper can facilitate the analysis of these games by helping one identify the necessary 
and sufficient conditions for the equilibrium outcomes.

A. Competition in Nonlinear Tariffs

Consider an environment in which P1 and P2 are two sellers providing two dif-
ferentiated products to a common buyer, A. In this environment, there is no effort; 
a contract δi for principal i thus consists of a price-quantity pair (ti, qi ) ∈ i ≡ ℝ 
× , where  = [ 0, ​

__
 Q ​] denotes the set of feasible quantities.24

The buyer’s payoff is given by v(a, θ) = θ(q1 + q2) + λq1q2 − t1 − t2, where λ 
parametrizes the degree of complementarity/substitutability between the two prod-
ucts, and where θ denotes the buyer’s type. The two sellers share a common prior 
that θ is drawn from an absolutely continuous cumulative distributions function F 
with support Θ = [ ​_ θ​, ​

_
 θ ​ ], ​_ θ​ > 0, and log-concave density f strictly positive for any θ ∈ 

Θ. The sellers’ payoffs are given by ui(a, θ) = ti − C(qi ), with C(q) = q2/2, i = 1, 2.
We assume that the buyer’s choice to participate in seller i’s mechanism has no 

effect on his possibility to participate in seller j’s mechanism. In other words, the 
buyer can choose to participate in both mechanisms, only in one of the two, or 
in none (In the literature, this situation is referred to as “nonintrinsic” common 

24 An alternative way of modelling this environment is the following. The set of primitive actions for each 
principal i consists of the set ℝ of all possible prices. A contract for Pi then consists of a tariff δi :  → ℝ that 
specifies a price for each possible quantity q ∈ . Given a pair of tariffs δ = (δ1, δ2), the agent's effort then consists 
of the choice of a pair of quantities e = (q1, q2) ∈ E = 2. While the two approaches ultimately lead to the same 
results, we find the one proposed in the text more parsimonious.
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agency.) In the case where A decides not to participate in seller i’s mechanism, the 
default contract (0, 0) with no trade and zero transfer is implemented.

Following the pertinent literature, we assume that only deterministic mechanisms 
ϕi : i → i are feasible. Because the agent’s payoff is strictly decreasing in ti, any 
such mechanism is strategically equivalent to a (possibly nonlinear) tariff Ti, such 
that, for any qi, T(qi) = min {ti : (ti, qi) ∈ Im(ϕi )} if {ti : (ti, qi ) ∈ Im(ϕi)} ≠ ∅, and 
T(qi ) = ∞ otherwise.25

The question of interest is which tariffs will be offered in equilibrium and, even 
more importantly, what are the corresponding quantity schedules ​q​i​ 

*​ : Θ →  that 
they support. Following the discussion in the previous sections, we focus on pure-
strategy equilibria in which the buyer’s behavior is Markovian.

The purpose of this section is to show how our results can help address these 
questions. To do this, we first show how our revelation mechanisms can help iden-
tify necessary and sufficient conditions for the sustainability of schedules ​q​i​ 

*​ : Θ → 
, i = 1, 2, as equilibrium outcomes. Next, we show how these conditions can be 
used to prove that there is no equilibrium that sustains the schedules qc : Θ →  that 
maximize the sellers’ joint payoffs. These schedules are referred to in the literature 
as “collusive schedules.” Last, we identify sufficient conditions for the sustainability 
of differentiable schedules.

Necessary and Sufficient Conditions for Equilibrium Schedules.—By Theorem 
2, the quantity schedules ​q​i​ 

*​(·), i = 1, 2, can be sustained by a pure-strategy equi-
librium of ΓM in which the agent’s strategy is Markovian if and only if they can be 
sustained by a pure-strategy truthful equilibrium of Γ r. Now, let

	 mi(θ)  ≡  θ  +  λ ​q​j​ 
*​(θ)

denote type θ’s marginal valuation for quantity qi when he purchases the equilib-
rium quantity ​q​j​ 

*​(θ) from seller j, j ≠ i. In what follows, we restrict our attention 
to equilibrium schedules (​q​i​ 

*​(·))i=1, 2 for which the corresponding marginal valua-
tion functions mi(·) are strictly increasing, i = 1, 2.26 These schedules can be char-
acterized by restricting attention to revelation mechanisms with the property that  
​ϕ​i​ 

r​(θ, qj, tj ) = ​ϕ​i​ 
r​(θ′, q′j, t′j ) whenever θ + λqj = θ′ + λq′j .27 With an abuse of notation, 

hereafter, we denote such mechanisms by ​ϕ​i​ 
r​ = (​      q​i (θi), ​     

 t ​i (θi ))θi∈Θi
, where

	 Θi  ≡  {θi  ∈  ℝ  :  θi  =  θ  +  λqj , θ  ∈  Θ, qj  ∈  }

25 Clearly, any such tariff is also equivalent to a menu of price-quantity pairs (see also Peters, 2001, 2003).
26 Note that this is necessarily the case when (​q​i​ 

*​(·))i=1, 2 are the collusive schedule (described below). More 
generally, the restriction to schedules for which the corresponding marginal valuation functions mi(·) are strictly 
increasing simplifies the analysis by guaranteeing that these functions are invertible.

27 Clearly, restricting attention to such mechanisms would not be appropriate if either mi(·) were not invertible; 
or the principals’ payoffs also depended on θ and (qj, tj). In the former case, to sustain the equilibrium schedules, 
a mechanism may need to respond to the same mi with a contract that also depends on θ. In the latter case, a 
mechanism may need to punish a deviation by the other principal with a contract that depends not only on mi, but 
also on (θ, qi, ti ). 
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denotes the set of marginal valuations that the agent may possibly have for Pi’s quan-
tity. Note that these mechanisms specify price-quantity pairs also for marginal valu-
ations θi that may have zero measure on the equilibrium path. This is because sellers 
may need to include in their menus price-quantity pairs that are selected only off equi-
librium to punish deviations by other sellers.28 In the literature, these price-quantity 
pairs are typically obtained by extending the principals’ tariffs outside the equilibrium 
range (see, e.g., Martimort 1992). However, identifying the appropriate extensions can 
be quite complicated. One of the advantages of the approach suggested here is that it 
permits one to use incentive compatibility to describe such extensions.

Now, because the set of marginal valuations Θi is a compact interval, and the 
function ​      v ​(θi, q) ≡ θi q is equi-Lipschitz continuous and differentiable in θi, and sat-
isfies the increasing-difference property, the mechanism ​ϕ​i​ 

r​ = (​      q​i(·),​     
 t ​i(·)) is incen-

tive-compatible if and only if the function ​      q​i(·) is nondecreasing and the function
​     
 t ​i(·) satisfies

(1)	​      
 t ​i(θi)  =  θi ​      q​i(θi)  − ​ ∫ 

minΘi
​ 

θi

  ​  ​      q​i​(s) ds  −  Ki  ∀θi ∈ Θi,

where Ki is a constant.29 Next, note that for any pair of mechanisms (​ϕ​i​ 
r​)i=1,2 for 

which there exists an i ∈  and a θi ∈ Θi, such that an agent with marginal valu-
ation θi strictly prefers the null contract (0, 0) to the contract (​      q​i(θi ), ​     

 t ​i(θi )), there 
exists another pair of mechanisms (​ϕ​i​ 

r​′ )i=1,2, such that: for any θi ∈ Θi, the agent 
weakly prefers the contract (​      q​i′(θi ),​     

 t ​i′(θi)) to the null contract (0, 0), i = 1,2; and 
(​ϕ​i​ 

r​′ )i=1,2 sustains the same outcomes as (​ϕ​i​ 
r​)i=1,2.

30 From (1), we can therefore 
restrict Ki to be positive.

Now, given any pair of incentive-compatible mechanisms (​ϕ​i​ 
r​)i=1,2, let ​

__
 U ​i denote 

the maximal payoff that each Pi can obtain given the opponent’s mechanism ​ ϕ​j​ 
r​, 

j ≠ i, while satisfying the agent’s rationality. This can be computed by solving the 
following program:

​ 
˜
 

   

 ​ : u
​  max     
qi(·), ti(·)

​ ​ ∫ 
​_ θ​
​ 
​
_
 θ ​

​  ​cti(θ)  − ​ 
qi(θ)2

 _____ 
2
 ​  d dF(θ)

s.t.

θqi(θ)  + ​ v​i​ 
*​(θ, qi(θ))  −  ti(θ)  ≥  θqi(​   

  
 θ ​)  + ​ v​i​ 

*​(θ, qi(​   
  
 θ ​))  −  ti(​   

  
 θ ​) ∀(θ, ​   

  
 θ ​)  (IC)

θqi(θ)  + ​ v​i​ 
*​(θ, qi(θ))  −  ti(θ)  ≥ ​ v​i​ 

*​(θ, 0) ∀θ  (IR),

where, for any (θ, q) ∈ Θ × ,

(2)​v​i​ 
*​(θ, q)  ≡  (θ   +  λq)​      q​j(θ + λq)  − ​      

 t ​j(θ  +  λq) = ​ ∫ minΘj
​ 

θ+λq

​  ​      q​j​(s) ds  +  Kj,  j ≠  i

28 These allocations are sometimes referred to as “latent contracts;” see, e.g., Gwenael Piaser 2007.
29 This result is standard in mechanism design; see, e.g., Paul R. Milgrom and Ilya R. Segal (2002).
30 The result follows from replication arguments similar to those that establish Theorem 2.
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denotes the maximal payoff that type θ obtains with principal Pj, j ≠ i, when he 
purchases a quantity q from principal Pi. The payoff ​

__
 U ​i is thus computed using 

the standard revelation principle, but taking into account the fact that, given the 
incentive-compatible mechanism ​ϕ​j​ 

r​ offered by Pj, the total value that each type θ 
assigns to the quantity q purchased from Pi is θq + ​v​i​ 

*​(θ, q). Note that, in general, 
one should not presume that Pi can guarantee herself the payoff ​

__
 U ​i, even if ​

__
 U ​i can be 

obtained without violating the agent’s rationality. In fact, when the agent is indiffer-
ent, he could refuse to follow Pi’s recommendations, thus giving Pi a payoff smaller 
than ​

__
 U ​i. The reason that, in this particular environment, Pi can guarantee herself the 

maximal payoff ​
__

 U ​i is twofold: she is not personally interested in the contracts the 
agent signs with Pj; and the agent’s payoff for any contract (qi, ti ) is quasi-linear 
and has the increasing-difference property with respect to (θ, qi ). As we show in 
the Appendix, taken together these properties imply that, given the mechanism ​ϕ​j​ 

r​ 
= (​      q​j(·),​     

 t ​j(·)) offered by Pj, there always exists an incentive-compatible mechanism ​
ϕ​i​ 

r​ = (​      q​i(·),​     
 t ​i(·)), such that, given (​ϕ​j​ 

r​, ​ϕ​i​ 
r​ ), any sequentially rational strategy ​σ​A​  r

 ​ for 
the agent yields Pi a payoff arbitrarily close to ​

__
 U ​i.

Next, let

(3)	 V *(θ)  ≡  θ[​q​1​ 
*​(θ)  + ​ q​2​ 

*​(θ)]  +  λ​q​1​ 
*​(θ)​q​2​ 

*​(θ)  − ​      
 t ​1(m1(θ1 ))  − ​      

 t ​2(m2(θ2))

denote the equilibrium payoff that each type θ obtains by truthfully reporting to each 
principal the equilibrium marginal valuation mi(θ) = θ + λ​q​j​ 

*​(θ). The necessary and 
sufficient conditions for the sustainability of the pair of schedules (​q​i​ 

*​(·)​)​i=1​ 
2
  ​ by an 

equilibrium can then be stated as follows:

Proposition 1: The quantity schedules ​ q​i​ 
*​(·), i = 1, 2, can be sustained by a 

pure-strategy equilibrium of ΓM, in which the agent’s strategy is Markovian if and 
only if there exist nondecreasing functions ​      q​i : Θi →  and scalars ​ ˜ 

   
 K​i ≥ 0, i = 1, 2, 

such that the following conditions hold:

(i) for any marginal valuation θi ∈ [mi(​_ θ​), mi(​
_
 θ ​)], ​      q​i (θi) = ​q​i​ 

*​(​m​i​ 
−1​(θi)), i = 1, 2;31

(ii) for any θ ∈ Θ and any pair (θ1, θ2) ∈ Θ1 × Θ2,

V *(θ)  = ​   sup      
(θ1, θ2)∈Θ1×Θ2

​{θ[​      q​1(θ1)  + ​       q​2(θ2)]  +  λ​      q​1(θ1)​      q​2(θ2)  − ​      
 t ​1(θ1)  − ​      

 t ​2(θ2)},

where the functions ​      
 t ​i(·) are the ones defined in (1) with Ki = ​   

   
 K​i, i = 1, 2, and 

where the function V *(·) is the one defined in (3); and

(iii) each principal’s equilibrium payoff satisfies

(4)	​ U​i​ 
 *​  ≡ ​ ∫ 

​_ θ​
​ 
​
_
 θ ​

​  c​​     
 t ​i(mi(θ))  − ​ 

​q​i​ 
*​(θ)2

 _____ 
2
 ​  d dF(θ)  = ​

__
 U ​i,

31 This condition also implies that ​q​i​ 
*​(·) are nondecreasing, i = 1, 2. 
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where ​
__

 U ​i is the value of the program ​ ˜ 
   

 ​ defined above.

Condition (i) guarantees that, on the equilibrium path, the mechanism ​ϕ​i​ 
r *​ assigns 

to each θ the equilibrium quantity ​q​i​ 
*​(θ). Condition (ii) guarantees that each type θ 

finds it optimal to truthfully report to each principal his equilibrium marginal valua-
tion mi(θ). The fact that each type θ also finds it optimal to participate follows from 
the fact that ​ ˜ 

   
 K​i  ≥  0. Finally, condition (iii) guarantees that no principal has a profit-

able deviation. Instead of specifying a reaction by the agent to any possible pair of 
mechanisms, and then checking that, given this reaction and the mechanism offered 
by the other principal, no Pi has a profitable deviation, condition (iii) directly guar-
antees that the equilibrium payoff for each principal coincides with the maximal 
payoff that the principal can obtain, given the opponent’s mechanism, and without 
violating the agent’s rationality. As explained above, because Pi can always guar-
antee herself the payoff ​

__
 U ​i, condition (iii) is not only sufficient, but also necessary.

When λ > 0, and the function ​ v​i​ 
*​(θ, q) in (2), is differentiable in θ (which is 

the case, for example, when the schedule ​      q​j(·) is continuous), the program ​ ˜ 
   

 ​ has a 
simple solution. The fact that the mechanism ​ϕ​j​ 

 r*​ = (​      q​j(·),​     
 t ​j(·)) is incentive-com-

patible implies that the function gi(θ, q) ≡ θq + ​v​i​ 
*​(θ, q) − ​v​i​ 

*​(θ, 0) is equi-Lipschitz 
continuous and differentiable in θ, satisfies the increasing-difference property, and 
is increasing in θ. It follows that a pair of functions qi : Θ → , ti : Θ → ℝ satisfies 
the constraints (IC) and (IR) in program ​ ˜ 

   
 ​ if and only if qi(·) is nondecreasing and, 

for any θ ∈ Θ,

(5)	 ti(θ)  =  θqi(θ)  +  [​v​i​ 
*​(θ, qi(θ))  − ​ v​i​ 

*​(θ, 0)] 

	 − ​ ∫ 
​_ θ​
​ 
θ

​  [qi​(s)  + ​       q​j (s  +  λqi(s))  − ​       q​j(s)] ds  −  Ki,

with Ki ≥ 0. The value of program ​ ˜ 
   

 ​ then coincides with the value of the following 
program:

	​  ˜ 
   

 ​ new : u ​
​ max    
qi(·), Ki

​​∫ 
​_ θ​
​ 
​
_
 θ ​

​  h​i(qi(θ); θ) dF(θ)  −  Ki

                   
s.t. Ki  ≥  0 and qi(·) is nondecreasing

​,

where

(6)	 hi(q; θ)  ≡  θq  +  [​v​i​ 
*​(θ, q)  − ​ v​i​ 

*​(θ,0)]  − ​ 
q 2

 ___ 
2
 ​ 

	 − ​ 
1  −  F(θ) ________ 

f (θ) ​ [q  + ​       q​j(θ  +  λq)  − ​       q​j(θ)]

with

	​ v​i​ 
*​(θ, q)  − ​ v​i​ 

*​(θ, 0)  = ​ ∫ 
θ
​ 
θ+λq

​  ​      q​j​(s) ds.
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We now proceed by showing how the characterization of the necessary and suf-
ficient conditions given above can be used to establish a few interesting results.

Nonimplementability of the Collusive Schedules.—It has long been noted that 
when the sellers’ products are complements (λ > 0 ), it may be impossible to sus-
tain the collusive schedules with a noncooperative equilibrium. However, this result 
has been established by restricting the principals to offering twice continuously dif-
ferentiable tariffs T : Θ → ℝ, thus leaving open the possibility that it is merely a 
consequence of a technical assumption.32 The approach suggested here permits one 
to verify that this result is true more generally.

Proposition 2: Let q c : Θ → ℝ be the function defined by

	 qc(θ)  ≡ ​   1 ______ 
1  −  λ ​ aθ  − ​ 

1  −  F(θ) ________ 
f (θ) ​ b  ∀θ.

Assume that  the sellers’ products are complements (λ > 0), and q c(θ) ∈ int() for 
all θ ∈ Θ.33 The schedules (qi (·)​)​i=1​ 

2
  ​ that maximize the sellers’ joint profits are given 

by qi(θ) = q c(θ) for all θ, i = 1, 2, and cannot be sustained by any equilibrium of in 
which the agent’s strategy is Markovian.

The proof in the Appendix uses the characterization of Proposition 1. By relying 
only on incentive compatibility, Proposition 2 guarantees that the aforementioned 
impossibility result is by no means a consequence of the assumptions one makes 
about the differentiability of the tariffs, or about the way one extends the tariffs 
outside the equilibrium range.

Sufficient Conditions for Differentiable Schedules.—We conclude this applica-
tion by showing how the conditions in Proposition 1 can be used to construct equi-
libria supporting differentiable quantity schedules.

Proposition 3: Fix λ ∈ (0, 1), and let q* : Θ → ℝ be the solution to the differ-
ential equation

(7)	 λ cq(θ)(1  −  λ)  −  θ + 2 a​ 1  −  F(θ) ________ 
f (θ) ​ bd  ​ dq(θ) _____ 

dθ  ​ 

	 =  θ  − ​ 
1  −  F(θ) ________ 

f (θ) ​   −  q(θ)(1  −  λ),

32 In the approach followed in the literature (e.g., Martimort 1992), twice differentiability is assumed to guar-
antee that a seller’s best response can be obtained as a solution to a well-behaved optimization problem.

33 Note that this also requires λ < 1. 
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with boundary condition q(​
_
 θ ​) = ​

_
 θ ​/(1  −  λ). Suppose that q* : Θ → ℝ is nonde-

creasing and such that q*(θ) ∈  for all θ ∈ Θ, with q*(​_ θ​) ≥ [​
_
 θ ​  − ​ _ θ​]/λ. Then, let 

​      q​ : [0, ​
_
 θ ​ + λ​

__
 Q ​] →  be the function defined by

(8)	​       q​(s)  ≡  u ​
0            if  s  <  m(​_ θ​)

   
            

   q*(m−1(s))      if  s  ∈  [m(​_ θ​), m(​
_
 θ ​)]                   

  q*(​
_
 θ ​)          if  s  >  m(​

_
 θ ​),

 ​

with m(θ) ≡ θ + λq*(θ). Furthermore, suppose that, for any θ ∈ (​_ θ​, ​
_
 θ ​), the function 

h(· ; θ):  → ℝ defined by

(9)	 h(q; θ)  ≡  θq  + ​ ∫ 
θ
​ 
θ+λq

​  ​      q​​(s) ds  − ​ 
q2

 __ 
2
 ​  − ​ 

1  −  F(θ) ________ 
f (θ) ​  [q + ​      q​(θ  +  λq)  − ​       q​(θ)]

is quasi-concave in q. The schedules qi(·) = q*(·), i = 1, 2, can then be sustained 
by a symmetric pure-strategy equilibrium of ΓM in which the agent’s strategy is 
Markovian.

The result in Proposition 3 offers a two-step procedure to construct an equilib-
rium with differentiable quantity schedules. The first step consists in solving the 
differential equation given in (7). The second step consists of checking whether the 
solution is nondecreasing, satisfies the boundary condition q*(​_ θ​) ≥ [​

_
 θ ​  − ​ _ θ​]/λ, and 

is such that the function h(· ; θ) defined in (9) is quasi-concave. If these properties 
are satisfied, the pair of schedules qi(·) = q*(·), i = 1, 2, can be sustained by an 
equilibrium in which the agent’s strategy is Markovian. The equilibrium features 
each principal i offering the menu of price quantity pairs ​ϕ​i​ 

M*​ whose image is given 
by Im(​ϕ​i​ 

M*​) = {(qi, ti ) : (qi, ti ) = (qi (θ), ti (θ)), θ ∈ Θ} with qi (·) = q*(·) and ti(·) 
= t*(·), where, for any θ ∈ Θ,

(10)	 t*(θ)  =  θq*(θ)  − ​ ∫ 
​_ θ​
​ 
θ

​  q*​(s) c1  −  λ ​ ∂q*(s) _____ ∂s
 ​  d ds.

B. Menu Auctions

Consider now a menu auction environment à la Bernheim and Whinston (1985, 
1986a): the agent’s effort is verifiable and preferences are common knowledge (i.e., 
|Θ| = 1).34 As illustrated in the example in the introduction, assuming that the prin-
cipals offer a single contract to the agent may preclude the possibility of sustaining 
interesting outcomes when preferences are not quasi-linear (more generally, when 
Peters (2003) no-externalities condition is violated). The question of interest is then 
how to identify the menus that sustain the equilibrium outcomes.

34 See also Avinash Dixit, Gene M. Grossman, and Elhanan Helpman (1997); Bruno Biais, Martimort, and 
Jean-Charles Rochet (1997); Christine A. Parlour and Uday Rajan (2001); and Segal and Whinston (2003).
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One approach is offered by Theorem 2. A profile of decisions (e*, a* ) can be sus-
tained by a pure-strategy equilibrium in which the agent’s strategy is Markovian if 
and only if there exists a profile of incentive-compatible revelation mechanisms ϕr * 
and a profile of contracts δ * that together satisfy the following conditions: 

• Each mechanism ​ϕ​i​ 
r *​ responds to the equilibrium contracts ​δ​−i​ 

 *
  ​ by the other prin-

cipals with the equilibrium contract ​δ​i​ 
 *​, i.e., ​ϕ​i​ 

r *​(​δ​−i​ 
 *
  ​) = ​δ​i​ 

 *​. 
• Each contract ​δ​i​ 

 *​ responds to the equilibrium choice of effort e* with the equilib-
rium action ​a​i​ 

*​, i.e., ​δ​i​ 
*​(e*) = ​a​i​ 

*​. 
• Given the contracts δ *, the agent’s effort is optimal, i.e., e* ∈ arg maxe∈Ev (e, δ *(e)). 
• For any contract δi ≠ ​δ​i​ 

*​ by principal i, there exists a profile of contracts δ−i by 
the other principals and a choice of effort e for the agent such that: 

(a) each contract δj, j ≠ i, can be obtained by truthfully reporting (δi, δ−i−j ) to 
Pj, i.e., δj = ​ϕ​j​ 

r *​(δ−j−i, δi );35 
(b) given (δi, δ−i ), the agent’s effort e is optimal, i.e., e ∈ arg max​   

  
 e ​∈E v(​      e ​, (δi (​      e ​),

 δ−i (​      e ​))), and there exists no other profile of contracts δ ′−i ∈ ×j≠i Im(​ϕ​j​ 
r *​) and 

effort choice e′ that together give the agent a payoff higher than (e, δi, δ−i ), 
i.e., v (e, (δi (e), δ−i (e))) ≥ v (e′, (δi (e′ ), δ′−i (e′ ))) for any e′ ∈ E and any δ′−i ∈ 
×j≠i Im (​ϕ​j​ 

r *​); 
(c) the payoff that principal i obtains by inducing the agent to select the con-

tract δi is smaller that her equilibrium payoff, i.e., ui(e, (δi (e), δ−i (e))) ≤ ui (e*, a* ).

The approach described above uses incentive compatibility over contracts, i.e., it 
is based on revelation mechanisms that ask the agent to report the contracts selected 
with other principals. As anticipated in the example in the introduction, a more par-
simonious approach consists in having the principals offer revelation mechanisms 
that simply ask the agent to report the actions a−i that will be taken by the other 
principals.

Definition 3: Let ​​ 
∘ 
   

 Φ​​i​ 
r
​ denote the set of mechanisms ​​ 

∘ 
   

 ϕ​​i​ 
r
​ : E × −i → i, such that, 

for any e ∈ E, any a−i, ​      a​−i ∈ −i

	 v(e, ​​ 
∘ 
  
 ϕ​​i​ 
r
​(e, a−i ), a−i )  ≥  v(e, ​​ 

∘ 
  
 ϕ​​i​ 
r
​(e, ​      a​−i ), a−i ).

The idea is simple. In settings in which Peters (2003) no-externalities condi-
tion fails, for given choice of effort e ∈ E, the agent’s preferences over the actions 
ai by principal Pi depend on the actions a−i by the other principals. A revelation 
mechanism ​​ 

∘ 
  
 ϕ​​i​ 
r
​ is then a convenient tool for describing principal i’s response to each 

observable effort choice e by the agent and to each unobservable profile of actions 
a−i by the other principals, which is compatible with the agent’s incentives. This last 
property is guaranteed by requiring that, for any (e, a−i ), the action ai = ​​ ∘ 

  
 ϕ​​i​ 
r
​(e, a−i ) 

specified by the mechanism ​​ 
∘ 
  
 ϕ​​i​ 
r
​ is as good for the agent as any other action a′i that the 

agent can induce by reporting a profile of actions ​      a​−i ≠ a−i.

35 Here, δ−j−i ≡ (δl )l≠i,j . 
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Note, however, that while it is appealing to assume that the action ai that the agent 
induces Pi to take depends only on (e, a−i ), restricting the agent’s behavior to satisfy-
ing such a property may preclude the possibility of sustaining certain social choice 
functions. The reason is similar to the one indicated above when discussing the lim-
its of Markov strategies. Such a restriction is, nonetheless, inconsequential when the 
principals’ preferences are sufficiently aligned in the sense of the following definition.

Definition 4 (Punishment with the same action): We say that the “Punishment 
with the same action” condition holds if, for any i ∈ , compact set of decisions 
B ⊆ i, a−i ∈ −i , and e ∈ E, there exists an action ai′ ∈ arg maxai∈B v(e, ai, a−i ), 
such that for all j ≠ i, all ​      a​i ∈ arg maxai

 ∈B v(e, ai, a−i ),

	 vj (e, ai′, a−i )  ≤  vj (e, ​      a​i, a−i ).

This condition is similar to the “Uniform Punishment” condition introduced above. 
The only difference is that it is stated in terms of actions as opposed to contracts. This 
difference permits one to restrict the agent’s choice from each menu to depending only 
on his choice of effort and the actions taken by the other principals. The two defini-
tions coincide when there is no action the agent must undertake after communicating 
with the principals, i.e., when | E | = 1, for in that case, a contract by Pi coincides with 
the choice of an action ai. Lastly, note that the “Punishment with the same action” 
condition always holds in settings with only two principals, such as in the lobbying 
example considered in the introduction. We then have the following result.

Proposition 4: Assume that the principals’ preferences are sufficiently aligned 
in the sense of the “Punishment with the same action” condition. Let ​   

   
 Γ​ r be the game 

in which Pi’s strategy space is Δ(​​ ∘    
 Φ​​i​ 
r
​), i = 1, … , n. A social choice function π can be 

sustained by a pure-strategy equilibrium of ΓM if and only if it can be sustained by a 
pure-strategy truthful equilibrium of ​   

   
 Γ​ r.

The simplified structure of the mechanisms ​ 
∘ 
   

 ϕ​r proposed above permits one to 
restate the necessary and sufficient conditions for the equilibrium outcomes as fol-
lows. The action profile (e*, a* ) can be sustained by a pure-strategy equilibrium of 
ΓM if and only if there exists a profile of mechanisms ​ 

∘ 
   

 ϕ​r * that satisfy the following 
properties: 

• ​a​i​ 
*​ = ​​ ∘ 

  
 ϕ​​i​ 
r *​(e*, ​a​−i​ 

*
  ​ ) all i = 1, … , n; 

• v(e*, a* ) ≥ v(e′, a′ ) for any (e′, a′ ) ∈ E × , such that aj′ = ​​ ∘ 
  
 ϕ​​j​ 
r *​(e′, ​      a​−j ), ​      a​−j ∈ 

−j, all j = 1, … , n; 
• for any i and any contract δi : E → i, there exists a profile of actions (e, a), such 

that 
(a) ai = δi(e); 
(b) aj = ​​ ∘ 

  
 ϕ​​j​ 
r *​(e, a−j ) all j ≠ i; 

(c) v(e, a) ≥ v(e′, a′ ) for any (e′, a′ ) ∈ E × , such that ai′ = δi(e′ ) and aj′ 
= ​​ ∘ 

  
 ϕ​​i​ 
r *​(e′, ​      a​−j ) for some ​      a​−j ∈ −j; and 
(d) ui (e, a) ≤ ui (e*, a* ).
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As illustrated in the example in the introduction, this more parsimonious approach 
often simplifies the characterization of the equilibrium outcomes.

C. Moral Hazard

We now turn to environments in which the agent’s effort is not observable. In 
these environments, a principal’s action consists of an incentive scheme that speci-
fies a reward to the agent as a function of some (verifiable) performance measure 
that is correlated with the agent’s effort. Depending on the application of interest, 
the reward can be a monetary payment, the transfer of an asset, the choice of a 
policy, or a combination of any of these.

At first glance, using revelation mechanisms may appear prohibitively compli-
cated in this setting due to the fact that the agent must report an entire array of 
incentive schemes to each principal. However, things simplify significantly—as long 
as for any array of incentive schemes, the choice of optimal effort for the agent is 
unique. It suffices to attach a label, say, an integer, to each incentive scheme ai, and 
then have the agent report to each principal an array of integers, one for each other 
principal, along with the payoff type θ. In fact, because for each array of incentive 
schemes, the choice of effort is unique, all players’ preferences can be expressed in 
reduced form directly over the set of incentive schemes . The analysis of incentive 
compatibility then proceeds in the familiar way.

To illustrate, consider the following simplified version of a standard moral-hazard 
setting. There are two principals and two effort levels, ​_ e​ and ​

_
 e ​. As in Bernheim and 

Whinston (1986b), the agent’s preferences are common knowledge, so that | Θ | = 1. 
Each principal i must choose an incentive scheme ai from the set of feasible schemes 
i = {a l, a m, a h }, i = 1, 2. Here, a l stands for a low-power incentive scheme, am for 
a medium-power one, and ah for a high-power one.36

The typical moral hazard model specifies a Bernoulli utility function for each 
player defined over (w, e), where w ≡ (wi​)​i=1​ 

n
  ​ stands for an array of rewards (e.g., 

monetary transfers) from the principals to the agent, together with the description of 
how the agent’s effort determines a probability distribution over a set of verifiable 
outcomes used to determine the agent’s reward. Instead of following this approach, 
in Table 2, we describe the players’ expected payoffs (u1, u2, v) as a function of the 
agent’s effort and the principals’ incentive schemes.

Note that there are no direct externalities between the principals: given e, 
ui (e, ai, aj ) is independent of aj, j ≠ i, meaning that Pi is interested in the incen-
tive scheme offered by Pj only insofar as the latter influences the agent’s choice of 
effort. Nevertheless, Peters (2003) no-externalities condition fails here because the 
agent’s preferences over the incentive schemes offered by Pi depend on the incentive 
scheme offered by Pj. By implication, restricting the principals to offering a single 
incentive scheme may preclude the possibility of sustaining certain outcomes, as we 

36 That the set of feasible incentive schemes is finite in this example is clearly only to shorten the exposition. 
The same logic applies to settings in which each i has the cardinality of the continuum. In this case, an incentive 
scheme can be indexed, for example, by a real number.
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verify below.37 Also note that payoffs are such that the agent prefers a high effort to 
a low effort if and only if at least one of the two principals has offered a high-power 
incentive scheme . The players’ payoffs (U1, U2, V ) can thus be written in reduced 
form as a function of (a1, a2) as follows:

Now suppose the principals were restricted to offering a single incentive scheme 
to the agent (i.e., to competing in take-it-or-leave-it offers). The unique pure-strategy 
equilibrium outcome would be (ah, a m, ​_ e ​) with associated expected payoffs (4, 5, 5).

When the principals are instead allowed to offer menus of incentive schemes, the 
outcome (am, ah, ​

_
 e ​) can also be sustained by a pure-strategy equilibrium.38 The advan-

tage of offering menus stems from the fact that they give the agent the possibility of 
punishing a deviation by the other principal by selecting a different incentive scheme 
with the nondeviating principal. Because the agent’s preferences over a principal’s 
incentive schemes, in turn, depend on the incentive scheme selected by the other princi-
pal, these menus can be conveniently described as revelation mechanisms ​ϕ​i​ 

r​ : j → i

with the property that, for any aj, ​ϕ​i​ 
r​(aj ) ∈ arg ma​x​

ai∈Im(​ϕ​i​ 
r​ )​V(ai, aj ). Now, consider the 

mechanisms

	​ ϕ​1​ 
r  *​(a2)  =  e​a

h  if a2  =  al, am

          
am  if a2  =  ah ​ 	​ ϕ​2​ 

r  *​(a1)  =  e ​a
h  if a1  =  ah, am

          
al   if a1  =  a l

 ​ .

Given these mechanisms, it is strictly optimal for the agent to choose (am, ah ) and 
then to select e = ​_ e ​. Furthermore, given ​ϕ​−i​ 

r *
 ​, it is easy to see that principal i has no 

profitable deviation, i = 1, 2, which establishes that (am, ah, ​
_
 e ​) can be sustained in 

equilibrium.

37 See Attar, Piaser, and Porteiro (2007a) and Peters (2007) for the appropriate version of the no-externalities 
condition in models with noncontractable effort, and Attar, Piaser, and Porteiro (2007b) for an alternative set of 
conditions.

38 Note that the possibility of sustaining (am, ah, ​
_
 e ​) is appealing because (am, ah, ​

_
 e ​) yields a Pareto improve-

ment with respect to (ah, am, ​
_
 e ​).

Table 2—Example: Common Agency with Normal Hazzard

e = ​_ e​ e = ​_ e ​

a1\a2 ah am al a1\a2 ah am al

ah 1  2  2 1  3  1 1  6  0 ah 4  5  4 4  5  5 4  4  3

am 2  2  2 2  3  4 2  6  1 am 5  5  5 5  5  1 5  4  0

al 3  2  0 3  3  1 3  6  4 al 6  5  2 6  5  0 6  4  0

Table 3—Reduced Form of Table 2

a1\a2 ah am al

ah 4  5  4 4  5  5 4  4  3

am 5  5  5 2  3  4 2  6  1

al 6  5  2 3  3  1 3  6  4
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IV.  Enriched Mechanisms

Suppose now that one is interested in SCFs that cannot be sustained by restrict-
ing the agent’s strategy to being Markovian, or in SCFs that cannot be sustained by 
restricting the players’ strategies to being pure. The question we address in this sec-
tion is whether there exist intuitive ways of enriching the simple revelation mecha-
nisms introduced above that permit one to characterize such SCFs, while at the same 
time avoiding the problem of infinite regress of universal revelation mechanisms.

First, we consider pure-strategy equilibrium outcomes sustained by a strategy for 
the agent that is not Markovian. Next, we turn to mixed-strategy equilibrium outcomes.

Although the revelation mechanisms presented below are more complex than the 
ones considered in the previous sections, they still permit one to conceptualize the 
role that the agent plays in each bilateral relationship, thus possibly facilitating the 
characterization of the equilibrium outcomes.

A. Non-Markov Strategies

Here, we introduce a new class of revelation mechanisms that permit us to 
accommodate non-Markov strategies. We then adjust the notion of truthful equi-
libria accordingly, and finally prove that any outcome that can be sustained by a 
pure-strategy equilibrium of the menu game can also be sustained by a truthful equi-
librium of the new revelation game.

Definition 5: 
(i) Let ​    

  
 Γ​ r denote the revelation game in which each principal’s strategy space is 

Δ(​​   
   

 Φ​​i​ 
r
​ ), where ​​   

   
 Φ​​i​ 
r
​ is the set of revelation mechanisms ​​      ϕ​​i​ r​ : ​​  ˆ 

    
 ​​i​ 
r 
​ →  i with message 

space ​​  ˆ 
    

 ​​i​ 
r 
​ ≡ Θ × −i × −i with −i ≡   \{i} ∪ {0}, such that Im(​​      ϕ​​i​ r​) is compact 

and, for any (θ, δ−i, k) ∈ Θ × −i × −i,

	​​       ϕ​​i​ r​(θ, δ−i, k) ∈ ​arg max     
δi∈Im(​​      ϕ​​i​ r​)

 ​ V(δi, δ−i, θ).

(ii) Given a profile of mechanisms ​      ϕ​r ∈ ​   
   

 Φ​r, the agent’s strategy is truthful in ​​      ϕ​​i​ r​ if 
and only if, for any θ ∈ Θ, any (​​       m​​i​ 

r​, ​​ ˆ     m​​−i​ 
r
  ​ ) ∈ Supp [ μ(θ, ​      ϕ​r )],

	​​        m​​i​ 
r​ = (θ,(​​      ϕ​​j​ 

r​ (​​       m​​j​ 
r​ ))j≠i, k), for some k ∈ −i.

(iii) An equilibrium strategy profile σ r * ∈  (​   
  
 Γ​ r ) is a truthful equilibrium if and 

only if, for any profile of mechanisms ​      ϕ​r, such that |{ j ∈  : ​​      ϕ​​j​ 
r​ ∉ Supp[​σ​j​ 

r *​]}| ≤ 1,
​​      ϕ​​i​ r​ ∈ Supp[​σ​i​ 

r *​] implies the agent’s strategy is truthful in ​​       ϕ​​i​ r​, with k = 0 if ​​       ϕ​​j​ 
r​ ∈ 

Supp[​σ​j​ 
r *​ ] for all j ∈ , and k = l if ​​      ϕ​​j​ 

r​ ∈ Supp[​σ​j​ 
r *​] for all j ≠ l while for some l ∈ ,

​​      ϕ​​l​ 
r​ ∉ Supp[​σ​l​ 

r *​].

The interpretation is that, in addition to (θ, δ−i ), the agent is now asked to report 
to each Pi the identity k ∈ −i of a deviating principal, with k = 0 in the absence of 
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any deviation. Because the identity of a deviating principal is not payoff-relevant, a 
revelation mechanism ​​      ϕ​​i​ r​ is incentive-compatible only if, for any (θ, δ−i ) ∈ Θ × −i 
and any k, k′ ∈ −i, V(​ϕ​i​ 

r​(θ, δ−i, k), θ, δ−i ) = V (​ϕ​i​ 
r​(θ, δ−i, k′ ), θ, δ−i ). As shown below, 

allowing a principal to response to (θ, δ−i ) with a contract that depends on the iden-
tity of a deviating principal may be essential to sustain certain outcomes when the 
agent’s strategy is not Markovian.

An equilibrium strategy profile is then said to be a truthful equilibrium of the new 
revelation game ​   

  
 Γ​ r if, whenever no more than one principal deviates from equilib-

rium play, the agent truthfully reports to any of the nondeviating principals his true 
type θ, the contracts he is selecting with the other principals, and the identity k of the 
deviating principal. We then have the following result:

Theorem 5:
(i) Any social choice function π that can be sustained by a pure-strategy equilib-

rium of ΓM can also be sustained by a pure-strategy truthful equilibrium of ​   
  
 Γ​ r. 

(ii) Furthermore, any π that can be sustained by an equilibrium of ​   
  
 Γ​ r can also be 

sustained by an equilibrium of ΓM.

Part (ii) follows from essentially the same arguments that establish part (ii) in 
Theorem 2).39 Thus, consider part (i). The key step in the proof consists in showing 
that if the SCF π can be sustained by a pure-strategy equilibrium of ΓM, it can also 
be sustained by an equilibrium in which the agent’s strategy ​σ ​A​ M*​ has the following 
property. For any principal Pk, k ∈ , any contract δk ∈ k, and any type θ ∈ Θ, there 
exists a unique profile of contracts δ−k(θ, δk) ∈ −k, such that A always selects δ−k(θ, δk) 
with all principals other than k when (a) his type is θ, (b) the contract A selects with 
Pk is δk, and (c) Pk is the only deviating principal. In other words, the contracts that the 
agent selects with the nondeviating principals depend on the contract δk of the deviating 
principal, but not on the menus offered by the latter. The contracts δ−k(θ, δk) minimize 
the payoff of the deviating principal Pk from among those contracts in the equilibrium 
menus of the nondeviating principals that are optimal for type θ given δk.

The rest of the proof follows quite naturally. When the agent reports to Pi that no 
deviation occurred—i.e., when he reports that his type is θ, that the contracts he is 
selecting with the other principals are the equilibrium ones ​δ​−i​ 

 *
  ​(θ), and that k = 0—

then the revelation mechanism ​​      ϕ​​i​ 
r *​ responds with the equilibrium contract ​δ​i​ 

 *​(θ). In 
contrast, when the agent reports that principal k deviated and that, as a result of such 
deviation, the agent selected the contract δk with Pk and the contracts (δj (θ, δk ))j≠i,k 
with the other nondeviating principals, then the mechanism ​ϕ​i​ 

r *​ responds with the 
contract δi(θ, δk) that, together with the contracts (δj(θ, δk))j≠i,k , minimizes the payoff 
of the deviating principal Pk.

40 Given the equilibrium mechanisms ​​      ϕ​​−k​ 
r * ​, following a 

truthful strategy in these mechanisms is clearly optimal for the agent. Furthermore, 
given ​​      σ​​A​ r *​, a principal Pk, who expects all other principals to offer the equilibrium 

39 Note that, in general, ​   
   

 Γ​ r is not an enlargement of ΓM since certain menus in ΓM may not be available in Γ r, 
nor is ΓM an enlargement of ​   

   
 Γ​ r since ​   

   
 Γ​ r may contains multiple mechanisms that offer the same menu.

40 This is only a partial description of the equilibrium mechanisms ​      ϕ​r * and of the agent’s strategy ​σ​A​ r *​. The 
complete description is in the Appendix.
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mechanisms ​​ ˆ    ϕ​​−k​ 
r * ​ cannot do better than offering the equilibrium mechanism ​​ ˆ    ϕ​​k​ 

r *​ her-
self. We conclude that if the SCF π can be sustained by a pure-strategy equilibrium 
of ΓM, it can also be sustained by a pure-strategy truthful equilibrium of ​   

  
 Γ​ r.

To see why it may be essential with non-Markov strategies to condition a princi-
pal’s response to (θ, δ−i ) on the identity of a deviating principal, consider the follow-
ing example, where n = 3, | Θ | = |E| = 1, 1 = {t, m, b}, 2 = {l, r }, 3 = {s, d }, and 
where payoffs (u1, u2, u3, v) are as in Table 4.

Because there is no effort in this example, a contract δi here simply coincides with 
the choice of an element of i. It is then easy to see that the outcome (t, l, s) can be 
sustained by a pure-strategy equilibrium of the menu game ΓM. The equilibrium fea-
tures each Pi offering the menu that contains all contracts in i. Given the equilibrium 
menus, the agent chooses (t, l, s). Any deviation by P2 to the (degenerate) menu {r} is 
punished by the agent choosing m with P1 and d with P3. Any deviation by P3 to the 
degenerate menu {d } is punished by the agent choosing b with P1 and r with P2. This 
strategy for the agent is clearly non-Markovian: given the contracts (a2, a3) = (r , d) 
with P2 and P3, the contract that the agent chooses with P1 depends on the particular 
menus offered by P2 and P3. This type of behavior is essential to sustain the equilib-
rium outcome. By implication, (t, l, s) cannot be sustained by an equilibrium of the 
revelation game in which the principals offer the simple mechanisms ​ϕ​i​ 

r​ : −i → i 
considered in the previous sections.41 The outcome (t, l, s) can, however, be sus-
tained by a truthful equilibrium of the more general revelation game ​   

  
 Γ​ r in which the 

agent reports the identity of the deviating principal in addition to the payoff-relevant 
contracts a−i.

42

B. Mixed Strategies

We now turn to equilibria in which the principals randomize over the menus they 
offer to the agent and/or the agent randomizes over the contracts he selects from 
the menus.43

41 In fact, any incentive-compatible mechanism ​ϕ​1​ 
r
 ​ that permits the agent to select the equilibrium contract t 

with P1 must satisfy ​ϕ​i​ 
r​ (a2, a3) = t for any (a2, a3) ≠ (r, d ). This is because the agent strictly prefers t to both m 

and b for any (a2, a3) ≠ (r, d). It follows that any such mechanism fails to provide the agent with either the contract 
m that is necessary to punish a deviation by P2, or the contract b that is necessary to punish a deviation by P3. 

42 Consistently with the result in Theorem 3, note that the problems with simple revelation mechanisms
​ϕ​i​ 

r​ : −i → i emerge in this example only because (i) the agent is indifferent about P1’s response to (a2, a3) 
= (r, d ) so that he can choose different contracts with P1 as a function of whether it is P2 or P3 who deviated from 
equilibrium play; (ii) the principals’ payoffs are not sufficiently aligned so that the contract the agent must select 
with P1 to punish a deviation by P2 cannot be the same as the one he selects to punish a deviation by P3. 

43 Recall that the notion of pure-strategy equilibrium of Definition 1 allows the agent to mix over effort.

Table 4

a3 = s a3 = d

a1\a2 l r a1\a2 l r

t 1 4 4 5 1 5 0 4 t 1 0 5 4 1 1 1 3

m 1 1 1 0 1 5 1 0 m 1 1 1 0 1 0 5 5

b 1 1 1 0 1 0 1 0 b 1 1 5 0 1 5 0 5
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The reason why the simple mechanisms considered in Section II may fail to sus-
tain certain mixed-strategy outcomes is that they do not permit the agent to select 
different contracts with the same principal in response to the same contracts δ−i he 
is selecting with the other principals. To illustrate, consider the following example 
in which | Θ | = | E | = 1, n = 2, 1 = {t, b}, 2 = {l, r}, and where payoffs (u1, u2, v) 
are as in Table 5.

Again, because there is no effort in this example, a contract for each Pi simply 
coincides with an element of i. The following is then an equilibrium in the menu 
game. Each principal offers the menu ​ϕ​i​ 

M*​ that contains all contracts in i. Given 
the equilibrium menus, the agent selects with equal probabilities the contracts (t, l ), 
(b, l ), and (t, r). Note that, to sustain this outcome, it is essential that principals 
cannot offer lotteries over contracts. Indeed, if P1 could offer a lottery over 1, she 
could do better by deviating from the strategy described above and offering the lot-
tery that gives t and b with equal probabilities. In this case, A would strictly prefer 
to choose l with P2, thus giving P1 a higher payoff.

As anticipated in the introduction, we see this as a serious limitation on what 
can be implemented with mixed-strategy equilibria. When neither the agent’s nor 
the principals’ preferences are constant over E × , and when principals can offer 
lotteries over contracts, it is very difficult to construct examples where the agent is 
indifferent over some of the lotteries offered by the principals so that he can random-
ize, and no principal can benefit by breaking the agent's indifference so as to induce 
him to choose only those lotteries that are most favorable to her.

Nevertheless, it is important to note that, while certain stochastic SCFs may not 
be sustainable with the simple revelation mechanisms ​ϕ​i​ 

r​ : −i → i of the previous 
sections, any SCF that can be sustained by an equilibrium of the menu game can 
also be sustained by a truthful equilibrium of the following revelation game. The 
principals offer set-valued mechanisms ​​       ϕ​​i​ 

r​ : Θ × −i → 2i with the property that, 
for any (θ, δ−i ) ∈ Θ × −i,

44

	​​        ϕ​​i​ 
r​(θ, δ−i )  = ​ arg max     

δi∈Im(​​       ϕ​​i​ 
r​)
 ​V (δi, δ−i, θ).

The interpretation is that the agent first reports his type θ along with the contracts δ−i 
that he is selecting with the other principals (possibly by mixing, or in response to 
a mixed strategy by the other principals). The mechanism then responds by offering 

44 With an abuse of notation, we will hereafter denote by 2i the power set of i, with the exclusion of the 
empty set. For any set-valued mapping f : i → 2i, we then let Im( f ) ≡ {δi ∈ i : ∃ mi ∈ i s.t. δi ∈ f (mi )} 
denote the range of f. 

Table 5

a1\a2 l r

t 2  1  1 1  0  1

b 1  0  1 1  2  0



Vol. 2 No. 2� 165Pavan and Calzolari: Revelation Mechanisms for Common Agency

the agent the entire set ​​       ϕ​​i​ 
r​(θ, δ−i) of contracts that are optimal for type θ, given δ−i, 

out of those contracts that are available in ​​       ϕ​​i​ 
r​. Finally, the agent selects a contract 

from the set ​​       ϕ​​i​ 
r​(θ, δ−i) and this contract is implemented.

In the example above, the equilibrium SCF can be sustained by having P1 offer the 
mechanism ​​        ϕ​​1​ 

r *​(l) = {t, b} and ​​        ϕ​​1​ 
r *​(r) = {t}; and by having P2 offer the mecha-

nism ​​       ϕ​​2​ 
r *​(t) = {l, r} and ​​       ϕ​​2​ 

r *​(b) = {l }. Given the equilibrium mechanisms, with prob-
ability 1/3 the agent then selects the contracts (t, l ), with probability 1/3 he selects 
the contracts (t, r), and with probability 1/3 he selects the contracts (b, l ). Note that a 
property of the mechanisms introduced above is that they permit the agent to select the 
equilibrium contracts by truthfully reporting to each principal the contracts selected 
with the other principals. For example, the contracts (t, l ) can be selected by truthfully 
reporting l to P1 and then choosing t from ​​       ϕ​​1​ 

r *​(l ), and by truthfully reporting t to P2 
and then choosing l from ​​       ϕ​​2​ 

r *​(t). The equilibrium is thus truthful in the sense that the 
agent may well randomize over the contracts he selects with the principals, but once 
he has chosen which contracts he wants (i.e., for any realization of his mixed strategy), 
he always reports these contracts truthfully to each principal.

Next, note that while the revelation mechanisms introduced above are conve-
niently described by the correspondence ​​       ϕ​​i​ 

r​ : Θ × −i → 2i, formally any such 
mechanism is a standard single-valued mapping ​​

__
 ϕ ​​i​ 
 r​ : ​ ​i​ 

r​ → i with message 
space ​​  ˜ 

    
 ​​i​ 
r
​ ≡ Θ × −i × i such that45

	​​
__

 ϕ ​​i​ 
r​(θ, δ−i, δi ) = e ​

δi               if δi ∈ ​​   
   

 ϕ​​i​ 
r
​(θ, δ−i ),                  

δ′i ∈ ​​   
   

 ϕ​​i​ 
r
​(θ, δ−i )     otherwise.

 ​

These mechanisms are clearly incentive-compatible in the sense that, given (θ, δ−i ), 
the agent strictly prefers any contract in ​​        ϕ​​i​ 

r​(θ, δ−i ) to any contract that can be 
obtained by reporting (θ′, δ′−i ). Furthermore, as anticipated above, given any profile 
of mechanisms ​       ϕ​ r, the contracts that are optimal for each type θ always belong to 
those that can be obtained by reporting truthfully to each principal.

Definition 6: Let ​   
  
 Γ​ r denote the revelation game in which each principal’s strat-

egy space is Δ(​​   
   

 Φ​​i​ 
r
​), where ​​   

   
 Φ​​i​ 
r
​ is the class of set-valued incentive-compatible revela-

tion mechanisms defined above. Given a mechanism ​​      
 ϕ​​i​ 
r​ ∈ ​​   

   
 Φ​​i​ 
r
​, the agent’s strategy is 

truthful in ​​      
 ϕ​​i​ 
r​ if and only if, for any ​​      

 ϕ​​−i​ 
r
  ​ ∈ ​​   

   
 Φ​​−i​ 
r
  ​ , θ ∈ Θ and ​       m​ r ∈ Supp[ μ(θ, ​​      

 ϕ​​i​ 
r​, ​​      

 ϕ​​−i​ 
r
  ​ )],

	​​        m​​i​ 
r​ = (​​

__
 ϕ ​​1​ 
r
 ​(​​       m​​1​ 

r
 ​), … , ​​

__
 ϕ ​​i​ 
r​(​​       m​​i​ 

r​ ), … , ​​
__

 ϕ ​​n​ r
 ​(​​       m​​n​ 

r
 ​), θ).

An equilibrium strategy profile ​       σ​ r ∈ (​   
   

 Γ​ r ) is a truthful equilibrium if​ ​       σ​​A​ r
 ​ is truthful 

in every ​​       ϕ​​i​ 
r​ ∈ ​​   

   
 Φ​​i​ 
r
​ for any i ∈ .

45 The particular contract δ′i associated to the message ​m​i​ 
r​ = (θ, δ−i, δi ), with δi ∉ ​​   

    
 ϕ​​i​ 

r
​(δ−i, θ), is not important. 

The agent never finds it optimal to choose any such message.
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The agent’s strategy is thus said to be truthful in ​​       ϕ​​i​ 
r​ if the message ​​       m​​i​ 

r​ = (θ, δ−i, δi ), 
which the agent sends to principal i, coincides with his true type θ along with the true 
contracts δ−i = (​​

__
 ϕ ​​j​ 
 r​(​​       m​​j​ 

r​ ))j≠i that the agent selects with the other principals by send-
ing the messages ​​       m​​−i​ 

r
  ​, and the contract δi = ​​

__
 ϕ ​​i​ 
r​(​​       m​​i​ 

r​) that A selects with Pi by sending 
the message ​​       m​​i​ 

r​. We then have the following result:

Theorem 6: A social choice function π : Θ → Δ(E × ) can be sustained by an 
equilibrium of ΓM if and only if it can be sustained by a truthful equilibrium of ​   

   
 Γ​ r.

The proof is similar to the one that establishes the Menu Theorems (e.g., Peters 
2001). The reason that the result does not follow directly from the Menu Theorems 
is that ​   

   
 Γ​ r is not an enlargement of ΓM. In fact, the menus that can be offered through 

the revelation mechanisms of ​   
   

 Γ​ r are only those that satisfy the following property. 
For each contract δi in the menu, there exists a (θ, δ−i ), such that, given (θ, δ−i ), δi 
is as good for the agent as any other contract in the menu.46 That the principals can 
be restricted to offering menus that satisfy this property should not be surprising. 
The proof, however, requires some work to show how the agent’s and the princi-
pals’ mixed strategies must be adjusted to preserve the same distribution over out-
comes as in the unrestricted menu game ΓM. The value of Theorem 6 is, however, 
not in refining the existing Menu Theorems, but in providing a convenient way of 
describing which contracts the agent finds it optimal to choose as a function of the 
contracts he selects with the other principals. This, in turn, can facilitate the char-
acterization of the equilibrium outcomes in applications in which mixed strategies 
are appealing.

V.  Conclusions

We have shown how the equilibrium outcomes that are typically of interest in 
common agency games (i.e., those sustained by pure-strategy profiles in which the 
agent’s behavior is Markovian) can be conveniently characterized by having the 
principals offer revelation mechanisms in which the agent truthfully reports his type 
along with the contracts he is selecting with the other principals.

When compared to universal mechanisms, the mechanisms proposed here have 
the advantage that they do not lead to the problem of infinite regress, for they do not 
require the agent to describe the mechanisms offered by the other principals.

When compared to the Menu Theorems, our results offer a convenient way of 
describing how the agent chooses from a menu as a function of “who he is” (i.e., his 
exogenous type) and “what he is doing with the other principals” (i.e., the contracts 
he is selecting in the other relationships). The advantage of describing the agent’s 
choice from a menu by means of a revelation mechanism is that this often facilitates 
the characterization of the necessary and sufficient conditions for the equilibrium 

46 These menus are also different from the menus of undominated contracts considered in Martimort and 
Stole (2002). A menu for principal i is said to contain a dominated contract, say, δi, if there exists another contract 
δ′i in the menu, such that, irrespective of the contracts δ−i of the other principals, the agent’s payoff under δ′i is 
strictly higher than under δi.
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outcomes. We have illustrated such a possibility in a few cases of interest: competi-
tion in nonlinear tariffs with adverse selection; menu auctions; and moral hazard 
settings.

We have also shown how the simple revelation mechanisms described above can 
be enriched (albeit at the cost of an increase in complexity) to characterize outcomes 
sustained by non-Markov strategies and/or mixed-strategy equilibria.

Throughout the analysis, we maintained the assumption that the multiple prin-
cipals contract with a single common agent. Clearly, the results are also useful 
in games with multiple agents, provided that the contracts that each principal 
offers to each of her agents do not depend on the contracts offered to the other 
agents (see also Seungjin Han, 2006, for a similar restriction.) More generally, 
it has recently been noted that in games in which multiple principals contract 
simultaneously with three or more agents (or those in which principals also 
communicate among themselves), a “folk theorem” holds: all outcomes yielding 
each player a payoff above the Max-Min value can be sustained in equilibrium 
(Takuro Yamashita, 2007; and Peters and Christian Troncoso Valverde, 2009). 
While these results are intriguing, they also indicate that, to retain predictive 
power, it is now time for the theory of competing mechanisms to accommo-
date restrictions on the set of feasible mechanisms and/or on the agents’ behav-
ior. These restrictions should, of course, be motivated by the application under 
examination. For many applications, we find appealing the restriction imposed 
by requiring that the agents’ behavior be Markovian. Investigating the implica-
tions of such a restriction for games with multiple agents is an interesting line 
for future research.

Appendix 1: Take-It-or-Leave-It-Offer Equilibria in the Menu-Auction 
Example in the Introduction

Assume that the principals are restricted to making take-it-or-leave-it offers to the 
agent, that is, to offering a single contract δi : E → [0, 1]. Denote by e* the equilib-
rium policy, and by (​δ​i​ 

 *​)i=1,2 the equilibrium contracts.

	 •	We start by considering (pure-strategy) equilibria sustaining e* = p. First, note 
that if an equilibrium exists in which ​ δ​2​ 

 *​(p) > 0, then necessarily ​ δ​1​ 
 *​(p) = 1. 

Indeed, if ​δ​1​ 
 *​(p) < 1, then P1 could deviate and offer a contract δ1, such that δ1(p) 

= 1 and δ1( f ) = ​δ​1​ 
 *​( f ). Such a deviation would ensure that A strictly prefers e 

= p and would give P1 a strictly higher payoff. Thus, if ​δ​2​ 
 *​(p) > 0, then necessar-

ily ​δ​1​ 
 *​(p) = 1. This result, in turn, implies that, if an equilibrium exists in which ​

δ​2​ 
 *​(p) > 0, then necessarily ​δ​2​ 

 *​(p) = 1. Or else, P2 could offer herself a contract 
δ2, such that δ2(p) = 1 and δ2( f ) = ​δ​2​ 

 *​( f ), ensuring that A strictly prefers e = p 
and obtaining a strictly higher payoff. Finally, observe that there exists no equi-
librium sustaining e* = p in which ​δ​2​ 

 *​(p) = 0. This follows directly from the 
fact that v(p, ​δ​1​ 

 *​(p), 0) < v(f, a1, a2), for any ​δ​1​ 
 *​(p) and any (a1, a2). We conclude 

that any equilibrium sustaining e* = p must be such that ​δ​i​ 
 *​(p) = 1, i = 1,2. 

That such an equilibrium exists follows from the fact that it can be sustained, for 
example, by the following contracts: ​δ​i​ 

 *​(e) = 1 all e, i = 1,2. Given ​δ​i​ 
 *​ and ​δ​2​ 

 *​, A 
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strictly prefers e = p. Furthermore, when a−i = 1, each Pi strictly prefers e = p,
which guarantees that no principal has a profitable deviation.

	 •	Next, consider equilibria sustaining e* = f. In any such equilibrium, necessar-
ily ​ δ​1​ 

 *​( f ) > 1/2. Indeed, suppose that there existed an equilibrium in which 
​δ​1​ 

 *​( f ) ≤ 1/2. Then, necessarily ​δ​2​ 
 *​( f ) = 1. This follows from (i) the fact that, for 

any a2, v(f, ​δ​1​ 
 *​( f ), a2) > 2 whenever ​δ​1​ 

 *​( f ) ≤ 1/2; and (ii) the fact that, for any a1, 
v(p, a1, 0) = 1. Taken together these properties imply that, if ​δ​1​ 

 *​( f ) ≤ 1/2 and 
​δ​2​ 

 *​( f ) < 1, then P2 could deviate and offer a contract such that δ2( f ) = 1 and 
δ2(p) = 0. Such a contract would guarantee that A strictly prefers e = f and, at 
the same time, would give P2 a strictly higher payoff than the proposed equilib-
rium contract, which is clearly a contradiction. Hence, if an equilibrium existed 
in which ​δ​1​ 

 *​( f ) ≤ 1/2, then necessarily ​δ​2​ 
 *​( f ) = 1,  but P1 would have a profit-

able deviation that consists in offering the agent a contract such that δ1( f ) = 1 
and δ1(p) = 0. Such a contract would induce A to select e = f and would give 
P1 a payoff strictly higher than the proposed equilibrium payoff, once again a 
contradiction. We thus conclude that, if an equilibrium sustaining e* = f exists, 
it must be such that ​δ​1​ 

 *​( f ) > 1/2. But then, in any such equilibrium, necessarily
​δ​2​ 

 *​( f ) = 1. This follows from the fact that, when e = f and a1 > 1/2, both A’s 
and P2’s payoffs are strictly increasing in a2. But if ​δ​2​ 

 *​( f ) = 1, then necessar-
ily ​δ​1​ 

 *​( f ) = 1. Else, P1 could deviate and offer a contract such that δ1( f ) = 1 
and δ1(p) = 0. Such a contract would guarantee that A strictly prefers e = f 
and would give P1 a payoff strictly higher than the one she obtains under any 
contract that sustains e = f with δ1( f ) < 1. We conclude that in any equilibrium 
in which e* = f, necessarily ​δ​1​ 

 *​( f ) = ​δ​2​ 
 *​( f ) = 1. The following pair of contracts 

then supports the outcome ( f , 1, 1): ​δ​i​ 
 *​( f ) = 1, and ​δ​i​ 

 *​(p) = 0, i = 1, 2. Note that, 
given ​δ​−i​ 

*
  ​, there is no way Pi can induce A to switch to e = p. Furthermore, when 

e = f and a−i = 1, each Pi’s payoff is maximized at ai = 1. Thus, no principal 
has a profitable deviation.

Appendix 2: Omitted Proofs

As explained in Section I, to ease the exposition, throughout the main text, we 
restricted attention to settings where the principals offer the agent deterministic con-
tracts. However, all our results apply to more general settings where the principals 
can offer the agent mechanisms that map messages into lotteries over stochastic 
contracts. All proofs here in the Appendix thus refer to these more general settings.

Below, we show how the model set up of Section I must be adjusted to accom-
modate these more general mechanisms and then turn to the proofs of the results in 
the main text.

Let Yi denote the set of feasible stochastic contracts for Pi. A stochastic contract 
yi : E → Δ(i ) specifies a distribution over Pi’s actions i, one for each possible 
effort e ∈ E. Next, let i ⊆ Δ(Yi ) denote a (compact) set of feasible lotteries over 
Yi and denote, by δi ∈ i, a generic element of i. Clearly, depending on the appli-
cation of interest, the set i of feasible lotteries may be more or less restricted. For 
example, the deterministic environment considered in the main text corresponds to 
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a setting where each set i contains only degenerate lotteries (i.e., Dirac measures) 
that assign probability one to contracts that responds to each effort e ∈ E with a 
degenerate distribution over i.

Given this new interpretation for i, we then continue to refer to a mechanism as 
a mapping ϕi : i → i. However, note that, given a message mi ∈ i, a mecha-
nism now responds by selecting a (stochastic) contract yi from Yi using the lottery δi 
= ϕi (mi ) ∈ Δ(Yi ). The timing of events must then be adjusted as follows:

	 •	At t = 0, A learns θ.
	 •	At t = 1, each Pi simultaneously and independently offers the agent a mecha-

nism ϕi ∈ Φi.
	 •	At t = 2, A privately sends a message mi ∈ i to each Pi after observing the 

whole array of mechanisms ϕ = (ϕ1, … , ϕn). The messages m = (m1, … , mn) 
are sent simultaneously.

	 •	At t = 3, the contracts y = (y1, … , yn ) are drawn from the (independent) lotter-
ies δ = (ϕ1(m1 ), … , ϕn(mn )).

	 •	At t = 4, A chooses e ∈ E after observing the contracts y = (y1, … , yn ).
	 •	At t = 5, the principals’ actions a = (a1, … , an ) are determined by the (inde-

pendent) lotteries (y1(e), … , yn(e)), and payoffs are realized.

Both the principals’ and the agent’s strategies continue to be defined as in the 
main text. However, note that the agent’s effort strategy ξ : Θ × Φ ×  × Y 
→ Δ(E) is now contingent also on the realizations y of the lotteries δ = ϕ(m). 
The strategy σA = (μ, ξ) is then said to be a continuation equilibrium if for every 
(θ, ϕ, m, y), any e ∈ Supp[ ξ (θ, ϕ, m, y)] maximizes

	 ​
__

 V ​(e; y, θ)  ≡ ​ ∫ 1
​ 

 

 ​  ​⋯​∫ n
​ 

 

  ​  v​(e, a, θ)dy1(e) × ⋯ × dyn(e),

and for every (θ, ϕ), any m ∈ Supp[μ(θ, ϕ)] maximizes

	​ ∫ 
Y1
​ 

 

 ​  ​⋯​∫ 
Yn
​ 

 

 ​  ​max    
e∈E

 ​​​
__

 V ​(e; y, θ) dϕ1(m1) × ⋯ × dϕn(mn ).

We then denote, by

	 V(δ, θ)  ≡ ​ ∫ 
Y1
​ 

 

 ​  ​⋯​∫ 
Yn
​ 

 

 ​  ​​max    
e∈E

 ​​
__

 V ​(e; y, θ) dδ1 × ⋯ × dδn,

the maximal payoff that type θ can obtain given the principals’ lotteries δ. All results 
in the main text apply verbatim to this more general setting provided that (i) one 
reinterprets δi ∈ Δ(Yi ) as a lottery over the set of (feasible) stochastic contracts Yi, as 
opposed to a deterministic contract δi : E → i; and (ii) one reinterprets V(δ, θ) as the 
agent’s expected payoff given the lotteries δ, as opposed to his deterministic payoff.
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Proof of Theorem 2:
Part 1: We prove that if there exists a pure-strategy equilibrium σ M * of ΓM, in which 

the agent’s strategy is Markovian and which implements π, then there also exists a 
truthful pure-strategy equilibrium σ r * of Γ r which implements the same SCF.

Let ϕ M * and ​σ​A​  M*​ denote, respectively, the equilibrium menus and the continuation 
equilibrium that support π in ΓM. Because ​σ​A​  M*​ is Markovian, then for any i and any 
(θ, δ−i, ​ϕ​i​ 

 M​), there exists a unique δi(θ, δ−i; ​ϕ​i​ 
 M​) ∈ Im (​ϕ​i​ 

 M​), such that A always selects 
δi(θ, δ−i; ​ϕ​i​ 

 M​) with Pi when the latter offers the menu ​ϕ​i​ 
 M​, the agent’s type is θ, and the 

lotteries A selects with the other principals are δ−i. Finally, let δ *(θ) = (​δ​i​ 
 *​(θ)​)​i=1​ 

n
  ​ denote 

the equilibrium lotteries that type θ selects in ΓM when all principals offer the equi-
librium menus, i.e., when ϕ M = (​ϕ​i​ 

 M *​​)​i=1​ 
n
  ​.

Now, consider the following strategy profile σ r * for the revelation game Γ r. Each 
principal Pi, i ∈ , offers the mechanism ​ϕ​i​ 

r *​, such that

	 ​ϕ​i​ 
r *​(θ, δ−i )  =  δi (θ, δ−i; ​ϕ​i​ 

M *​)  ∀  (θ, δ−i )  ∈  Θ  ×  −i.

The agent’s strategy ​σ​A​ r *​ is such that, when ϕr = (​ϕ​i​ 
r *​​)​i=1​ 

n
  ​, then each type θ reports 

to each principal Pi the message ​m​i​ 
r​ = (θ, ​δ​−i​ 

 *
  ​ (θ)), thus selecting ​δ​i​ 

 *​(θ) with each Pi. 
Given the contracts y selected by the lotteries δ *(θ), then each type θ chooses the 
same distribution over effort he would have selected in ΓM had the contracts profile 
been y, the menus profile been ϕM *, and the lotteries profile been δ *(θ).

If, instead, ϕr is such that ​ϕ​j​ 
r​ = ​ϕ​j​ 

r *​ for all j ≠ i, whereas ​ϕ​i​ 
r​ ≠ ​ϕ​i​ 

r *​, then each type 
θ induces the same outcomes he would have induced in ΓM had the menu profile 
been ϕM = ((​ϕ​j​ 

M *​)j≠i, ​ϕ​i​ 
 M​), where ​ϕ​i​ 

 M​ is the menu whose image is Im (​ϕ​i​ 
 M​) = Im (​ϕ​i​ 

r​).
That is, let δ (θ; ϕM ) denote the lotteries that type θ would have selected in ΓM given 
ϕM. Then given ϕr

 , A selects the lottery δi (θ; ϕM ) with the deviating principal Pi and 
then reports to each non-deviating principal Pj the message ​m​j​ 

r​ = (θ, δ−j (θ; ϕM )) thus 
inducing the same lotteries δ (θ; ϕM ) as in ΓM. In the continuation game that starts 
after the contracts y are drawn, A then chooses the same distribution over effort 
he would have chosen in ΓM given the contracts y, the menus ϕM, and the lotteries 
δ (θ; ϕM ).

Finally, given any profile of mechanisms ϕr, such that | { j ∈  : ​ϕ​j​ 
r​ ≠ ​ϕ​j​ 

r *​} | > 1, 
the strategy ​σ​A​ r *​ prescribes that A induces the same outcomes he would have induced 
in ΓM given ϕM, where ϕM is the profile of menus, such that Im(​ϕ​i​ 

 M​ ) = Im(​ϕ​i​ 
r​ )

for all i.
The strategy ​σ ​A​ r *​ described above is clearly a truthful strategy. The optimality of 

such a strategy follows from the optimality of the agent’s strategy ​σ​A​ M *​ in ΓM together 
with the fact that Im(​ϕ​i​ 

r *​) ⊆ Im (​ϕ​i​ 
M *​) for all i.

Given the continuation equilibrium ​σ​A​ r *​, any principal Pi, who expects the other 
principals to offer the mechanisms ​ϕ​−i​ 

r *
 ​, cannot do better than offering the equilibrium 

mechanism ​ϕ​i​ 
r *​. We conclude that the pure-strategy profile σ r * constructed above is a 

truthful equilibrium of Γ r and sustains the same SCF π as the equilibrium σ M * of ΓM.

Part 2: We now prove the converse. If there exists an equilibrium σ r * of Γ r that 
sustains the SCF π, then there also exists an equilibrium σ M * of ΓM that sustains the 
same SCF.
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First, consider the principals. For any i ∈  and any ​ ϕ​i​ 
 M​ ∈ ​Φ​i​ 

M​, let ​ Φ​i​ 
r​(​ϕ​i​ 

 M​ ) 
≡ {​ϕ​i​ 

r​ ∈ ​Φ​i​ 
r​ : Im (​ϕ​i​ 

r​ ) = Im (​ϕ​i​ 
 M​)} denote the set of revelation mechanisms with the 

same image as ​ϕ​i​ 
 M​ (note that ​Φ​i​ 

r​ (​ϕ​i​ 
 M​) may well be empty). The strategy ​σ​i​ 

 M *​ ∈ Δ(​Φ​i​ 
M​ )

for Pi in ΓM is then such that, for any set of menus B ⊆ ​Φ​i​ 
M​,

	 ​σ​i​ 
 M *​(B) = ​σ​i​ 

r *​( ​ ∪    
​ϕ​i​ 

 M​∈B
​​Φ​i​ 

r​(​ϕ​i​ 
 M​ )).

Next, consider the agent.

Case 1: Given any profile of menus ϕM ∈ ΦM such that, for any i ∈ , ​Φ​i​ 
r​(​ϕ​i​ 

 M​) 
≠ ∅, the strategy ​σ​A​ M *​ induces the same distribution over  × E as the strategy ​σ​A​ r *​ 
in Γ r given the event that ϕ r ∈ Φr(ϕM ) ≡ Πi​Φ​i​ 

r​(​ϕ​i​ 
 M​). Precisely, let ​ρ​​σ​A​  r *

​
​ : Θ × Φr → 

Δ( × E) denote the distribution over outcomes induced by the strategy ​σ​A​ r *​ in Γ r. 
Then, for any θ ∈ Θ, ​σ​A​  M *​(θ, ϕ M) is such that

	 ​ρ​​σ​A​ M *​
​(θ, ϕM ) = ​∫ 

Φ r
​ 

 

  ​  ​ρ​​σ​A​ r *​
​​(θ, ϕr ) d​σ​1​ 

r *​(​ϕ​1​ 
r
 ​ | ​Φ​1​ 

r
 ​(​ϕ​1​ 

M​)) × ⋯ × d​σ​n​ 
r *​(​ϕ​n​ 

r
 ​ | ​Φ​n​ r

 ​(​ϕ​n​ 
M​ )),

where, for any i, ​σ​i​ 
r *​(· | ​Φ​i​ 

r​(​ϕ​i​ 
 M​ )) denotes the regular conditional probability distribu-

tion over ​Φ​i​ 
r​ generated by the original strategy ​σ​i​ 

r *​, conditioning on the event that ​ϕ​i​ 
r​ 

belongs to ​Φ​i​ 
r​ (​ϕ​i​ 

 M​).

Case 2: If, instead, ϕM is such that there exists a j ∈ , such that ​Φ​i​ 
r​(​ϕ​i​ 

 M​) ≠ ∅ for all 
i ≠ j while ​Φ​j​ 

r​(​ϕ​j​ 
M​) = ∅, then let ​ϕ​j​ 

r​ be any arbitrary revelation mechanism, such that

	​ ϕ​j​ 
r​(θ, δ−j) ∈ ​arg max     

δj∈Im(​ϕ​j​ 
M​)
 ​V(δj, δ−j, θ)    ∀(θ, δ−j ) ∈ Θ × −j.

The strategy ​σ​A​ M *​ then induces the same outcomes as the strategy ​σ​A​ r *​ given ​ϕ​j​ 
r ​and 

given ​ϕ​−j​ 
r
  ​ ∈ ​Φ​−j​ 

r
  ​ (​ϕ​−j​ 

M
 ​ ) ≡ ​∏ i≠j​     ​  ​Φ​i​ 

r​​(​ϕ​i​ 
 M​). That is, for any θ ∈ Θ,

(11)​ρ​​σ​A​ M *​
​(θ, ϕM ) = ​∫ ​Φ​−j​ 

r
  ​​ 

 

  ​  ​ρ​​σ​A​ r *​
​​(θ, ​ϕ​j​ 

r​, ​ϕ​−j​ 
r
  ​ ) d​σ​1​ 

r *​(​ϕ​1​ 
r
 ​ | ​Φ​1​ 

r
 ​(​ϕ​1​ 

M​ )) × ⋯ × d​σ​n​ 
r *​(​ϕ​n​ 

r
 ​ | ​Φ​n​ 

r
 ​(​ϕ​n​ 

M​ )).

Case 3: Finally, for any ϕ M, such that | { j ∈  : ​Φ​j​ 
r​ (​ϕ​j​ 

M​) = ∅ | > 1, simply let 
​σ​A​  M *​(θ, ϕ M ) be any strategy that is sequentially optimal for A given (θ, ϕ M ).

The fact that ​σ​A​  r *​ is a continuation equilibrium for Γ r guarantees that the strategy ​
σ​A​  M *​ constructed above is a continuation equilibrium for ΓM. Furthermore, given ​σ​A​  M*​,
any principal Pi who expects any other principal Pj, j ≠ i, to follow the strategy ​σ​j​ 

 M*​ 
cannot do better than following the strategy ​σ​i​ 

 M *​. We conclude that the strategy pro-
file σ M * constructed above is an equilibrium of ΓM and sustains the same outcomes 
as σ r * in Γ r.
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Proof of Theorem 3
When condition (i) holds, the result is immediate. In what follows, we prove that 

when condition (ii) holds, then if the SCF π can be sustained by a pure-strategy 
equilibrium σM * of ΓM, it can also be sustained by a pure-strategy equilibrium ​      σ​ M in 
which the agent’s strategy ​​      σ​​ A​ M​ is Markovian.

Let ϕ M * denote the equilibrium menus under the strategy profile σ M *, and let δ * 
denote the equilibrium lotteries that are selected by the agent when all principals 
offer the equilibrium menus ϕ M *.

Suppose that ​σ​A​  M *​ is not Markovian. This means that there exists an i ∈ , a ​​       ϕ​​i​ 
  M​ 

∈ ​Φ​i​ 
 M​, a δ′−i × −i and a pair ​​__ ϕ​​−i

​  M
 ​,​ ​

__
 ϕ ​​−i​ 
 M

 ​ ∈ ​Φ​−i​ 
 M

 ​, such that A selects (​_ δ​ i, δ′−i ) when ϕ M 
= (​​       ϕ​​i​ 

 M​, ​​__ ϕ​​−i
​  M
 ​ ) and ( ​

_
 δ ​i, δ′−i ) when ϕ M = (​​       ϕ​​i​ 

 M​, ​​
__

 ϕ ​​−i​ 
 M

 ​ ), with ​_ δ​ i ≠ ​
_
 δ ​ i. Below, we show 

that when this is the case, then, starting from ​σ​A​  M *​, one can construct a Markovian 
continuation equilibrium ​​      σ​​A​   M​ which induces all principals to continue to offer the 
equilibrium menus ϕ M * and sustains the same outcomes as ​σ ​A​  M *​.

Case 1: First consider the case in which ​​       ϕ​​i​ 
  M​ = ​ϕ​i​ 

  M​ * and δ′−i = ​δ​−i​ 
 *
  ​. Then, let ​​      σ​​A​   M​ 

be the strategy that coincides with ​σ​A​   M *​ for all ϕ M ≠ (​​       ϕ​​i​ 
 M​, ​​__ ϕ​​−i

​  M
 ​ ), (​​       ϕ​​i​ 

 M​, ​​
__

 ϕ ​​−i​ 
  M

 ​ ) and that 
prescribes that A selects δ * both when ϕ M = (​​       ϕ​​i​ 

  M​, ​​__ ϕ​​−i
​  M
 ​ ) and when ϕ M = (​​       ϕ​​i​ 

 M​, ​​
__

 ϕ ​​−i​ 
  M

 ​). In 
the continuation game that starts after the lotteries δ *, select the contracts y, ​​      σ​​A​   M​ then 
prescribes that A induces the same distribution over effort he would have induced 
according to the original strategy ​σ​A​  M *​ had the menus offered been ϕ M *. Clearly, if 
the strategy ​σ​A​   M *​ was sequentially rational, so is ​​      σ​​A​   M​. Furthermore, it is easy to see 
that, given ​​      σ​​A​   M​, any principal Pj who expects any other principal Pl, l ≠ j, to offer 
the equilibrium menu ​ϕ​l​ 

  M *​ cannot do better than continuing to offer the equilibrium 
menu ​ϕ​j​ 

 M *​.

Case 2: Next, consider the case in which ​​       ϕ​​i​ 
  M​ = ​ϕ​i​ 

  M *​, but where δ′−i ≠ ​δ​−i​ 
 *
  ​ (which 

implies that both ​​__ ϕ​​
 −i

​   M
 ​ and ​​

__
 ϕ ​​−i​ 
  M

 ​ are necessarily different from ​ϕ​−i​ 
  M *​ ). For any j ∈ , 

any δ ∈ , let ​__ U​ j(δ) denote the lowest payoff that the agent can inflict to principal 
Pj, without violating his rationality. This payoff is given by

(12) ​__ U​ j (δ) ≡ ​ ∫ 
Y
​ 

 

 ​  ​c​∫ 

​ 

 

 ​  u​j(a, ξj (y))dy1(ξj (y)) × ⋯ ×  dyn(ξj (y))d dδ1 × ⋯ ×  dδn,

where for any y ∈ Y,

(13)	 ξj(y) ∈ ​arg min     
e∈E *(y)

 ​  e​∫ 

​ 

 

 ​  u​j (a, e)dy1(e)  ×  ⋯  ×  dyn(e)f

with

	 E *(y)  ≡ ​ arg max     
e∈E

  ​  e​∫ 

​ 

 

 ​  v​(a, e)dy1(e)  ×  ⋯  ×  dyn(e)f.
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Now, let ​​      σ​​A​  M​ be the strategy that coincides with ​σ​A​  M *​ for all ϕ M ≠ (​​       ϕ​​i​ 
 M​, ​​__ ϕ​​

 −i
​  M
 ​ ), (​​       ϕ​​i​ 

 M​, ​​
__

 ϕ ​​−i​ 
 M

 ​ )
and that prescribes that A selects (δ′i, δ′−i ) both when ϕ M = (​​       ϕ​​i​ 

 M​, ​​__ ϕ​​−i
​  M
 ​) and when ϕ M 

= (​​       ϕ​​i​ 
 M​, ​​

__
 ϕ ​​−i​ 
 M

 ​ ), where δi′ ∈ arg ​max​δi∈Im(​​       ϕ​​i​ 
M​ )​V(δi, δ′−i ) is any contract such that, for all 

j ≠ i,

	 ​__ U​ j (δ′i, δ′−i )  ≤  ​__ U​ j (​  
  
 δ​i, δ′−i ) for all ​   

  
 δ​i ∈ ​arg max     

δi∈Im(​​       ϕ​​i​ 
M​)
 ​V(δi, δ′−i ),

By the Uniform Punishment condition, such a contract always exists. In the con-
tinuation game that starts after the lotteries, δ = (δ′i , δ′−i ) selects the contracts y, A 
then selects effort ξk(y), where

	 k ∈ { j ∈  \ { i } : ​ϕ​j​ 
 M​  ≠ ​ ϕ​j​ 

 M *​}

is the identity of one of the deviating principals, and where ξk(y) is the level of effort 
defined in (13). Clearly, when | { j ∈  \ { i } : ​ϕ​j​ 

 M​ ≠ ​ϕ​j​ 
 M *​| > 1, the identity k of the 

deviating principal can be chosen arbitrarily. Once again, it is easy to see that the 
strategy ​​      σ​​A​  M​ is sequentially rational for the agent and that, given ​​      σ​​A​  M​, any principal Pj 
who expects any other principal Pl, l ≠ j, to offer the equilibrium menu ​ϕ​l​ 

 M * ​cannot 
do better than continuing to offer the equilibrium menu ​ϕ​l​ 

 M *​.

Case 3: Lastly, consider the case where ​​       ϕ​​i​ 
 M​ ≠ ​ϕ​i​ 

 M *​. Irrespective of whether δ′−i  = ​
δ​−i​ 

 *
  ​ or δ′−i  ≠ ​δ​−i​ 

 *
  ​, let ​​      σ​​A​  M​ be the strategy that coincides with ​σ​A​  M *​ for all ϕ M ≠ (​​       ϕ​​i​ 

 M​, ​​__ ϕ​​ −i
​  M
 ​),

(​​       ϕ​​i​ 
 M​, ​​

__
 ϕ ​​−i​ 
 M

 ​) and that prescribes that A selects (δ′i, δ′−i ) both when ϕ M = (​​       ϕ​​i​ 
 M​, ​​__ ϕ​​−i

​  M
 ​) and 

when ϕ M = (​​       ϕ​​i​ 
 M​, ​​

__
 ϕ ​​−i​ 
 M

 ​), where δ′i ∈ arg ​max​δi∈Im(​​       ϕ​​i​ 
M​)​V(δi, δ′−i ) is any contract such that

	 ​__ U​i (δ′i, δ′−i )  ≤ ​ __ U​i (​  
  
 δ​i, δ′−i ) for all ​   

  
 δ​i ∈ ​arg max     

δi∈Im(​​       ϕ​​i​ 
M​)
 ​V(δi, δ′−i ).

Again, ​​      σ​​A​  M​ is clearly sequentially rational for the agent. Furthermore, given ​​      σ​​A​  M​, no 
principal has an incentive to deviate.

This completes the description of the strategy ​​      σ​​A​  M​. Now, note that the strategy ​​      σ​​A​  M​ 
constructed from ​ σ​A​  M *​, using the procedure described above, has the property that, 
given any ϕ M ∈ Φ M, such that ​ϕ​i​ 

  M​ ≠ ​​       ϕ​​i​ 
 M​, the behavior specified by ​​      σ​​A​  M​ is the same 

as that specified by the original strategy ​σ​A​  M *​. Furthermore, for any ϕ M ∈ Φ M, the 
lottery over contracts that the agent selects with any principal Pj, j ≠ i, is the same 
as under the original strategy ​σ​A​  M *​. When combined together, these properties imply 
that the procedure described above can be iterated for all i ∈ , all ​​       ϕ​​i​ 

 M​ ∈ ​Φ​i​ 
 M​. This 

gives a new strategy for the agent that is Markovian, that induces all principals to 
continue to offer the equilibrium menus ϕ M *, and that implements the same out-
comes as ​σ​A​  M *​.

Proof of Theorem 4:
The result follows from the same construction as in the proof of Theorem 3, now 

applied to each θ ∈ Θ, and by noting that, when ​σ​A​  M *​ satisfies the “Conformity to 
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Equilibrium” condition, the following is true. For any i ∈ , there exists no ​​__ ϕ​​
 −i

​  M
 ​, ​​

__
 ϕ ​​−i​ 
 M

 ​ 
∈ ​Φ​−i​ 

 M
 ​, such that some type θ ∈ Θ selects (​_ δ​ i, ​δ​−i​ 

 *
  ​ (θ)) when ϕ M = (​ϕ​i​ 

 M *​, ​​__ ϕ​​−i
​  M
 ​ ) and 

(​
_
 δ ​i, ​δ​−i​ 

 *
  ​ (θ)) when ϕ M = (​ϕ​i​ 

 M *​, ​​
__

 ϕ ​​−i​ 
 M

 ​ ), with ​_ δ​i ≠ ​
_
 δ ​ i. In other words, Case 1 in the proof 

of Theorem 3 is never possible when the strategy ​σ​A​  M * ​satisfies the “Conformity to 
Equilibrium” condition. This, in turn, guarantees that when one replaces the original 
strategy ​σ​A​  M *​ with the strategy ​​      σ​​A​  M​ obtained from ​σ​A​ 

 M *,​ iterating the steps in the proof 
of Theorem 3 for all θ ∈ Θ, all i ∈ , and all ​​       ϕ​​i​ 

 M​ ∈ ​Φ​i​ 
 M​, it remains optimal for each 

Pi to offer the equilibrium menu ​ϕ​i​ 
 M *​.

Proof of Proposition 1:
One can immediately see that conditions (i)–(iii) guarantee existence of a truth-

ful equilibrium in the revelation game Γ r sustaining the schedules ​q​i​ 
 *​(·), i = 1, 2. 

Theorem 2 then implies that the same schedules can also be sustained by an equilib-
rium of the menu game Γ M.

The proof below establishes the necessity of these conditions. That conditions 
(i) and (ii) are necessary follows directly from Theorem 2. If the schedules ​q​i​ 

 *​(·), i 
= 1, 2, can be sustained by a pure-strategy equilibrium of ΓM, in which the agent’s 
strategy is Markovian, then they can also be sustained by a pure-strategy truthful 
equilibrium of Γ r. As discussed in the main text, the same schedules can then also be 
sustained by a truthful (pure-strategy) equilibrium in which the mechanism offered 
by each principal is such that ​ϕ​i​ 

r​(θ, qj, tj ) = ​ϕ​i​ 
r​(θ′, q′j, t′j ), whenever θ + λqj = θ′ + 

λq′j. The definition of such an equilibrium then implies that there must exist a pair 
of mechanisms ​ϕ​i​ 

r​ * = (​      q​i(·),​     
 t ​i(·)), i = 1, 2, such that ​      q​i(·) is nondecreasing, ​     

 t ​i(·) 
satisfies (1), and conditions (i) and (ii) in the proposition hold.

It remains to show that condition (iii) is also necessary. To see this, first note 
that if there exists a pair of mechanisms (​      q​i(·),​     

 t ​i(·))i=1,2, and a truthful continuation 
equilibrium ​σ​A​ r

 ​ that sustain the schedules ​q​i​ 
*​(·), i = 1, 2, in Γ r, then it must be that the 

schedules ​q​i​ 
*​(·) and ​t​i​ 

*​(·) ≡ ​     
 t ​i(mi(·)), i = 1, 2, satisfy the equivalent of the (IC) and 

(IR) constraints of program ​ ˜ 
   

 ​ in the main text. In turn, this means that necessarily ​
U​i​ 

 *​ ≤ ​
__

 U ​i, i = 1, 2. To prove the result it then suffices to show that if ​U​i​ 
 *​ < ​

__
 U ​i, then 

Pi has a profitable deviation.
This property can be established by contradiction. Suppose that there exists a 

truthful equilibrium σ r ∈ (Γ r ) which sustains the schedules (​q​i​ 
*​(·))i=1,2 and such 

that ​ U​i​ 
 *​ < ​

__
 U ​i, for some i ∈ . Then there also exists a (pure-strategy) equilib-

rium σM * of Γ M which sustains the same schedules and such that each Pi offers the 
menu ​ ϕ​i​ 

 M *​ defined by Im(​ϕ​i​ 
 M *​ ) = Im(​ϕ​i​ 

r *​ ), and each type θ selects the contract 
(​q​i​ 

*​(θ), ​t​i​ 
*​(θ)) from each menu ​ϕ​i​ 

 M *​, thus giving Pi a payoff ​U​i​ 
 *​. (See the proof of part 

2 of Theorem 2.) Below, we, however, show that this cannot be the case, Irrespective 
of which continuation equilibrium ​σ​A​  M *​ one considers, Pi has a profitable deviation, 
which establishes the contradiction.

Case 1: Suppose that the schedules qi(·) and ti(·) that solve the program ​ ˜ 
   

 ​ defined 
in the main text are such that the set of types θ ∈ Θ, who strictly prefer the con-
tract (qi(θ), ti(θ)) to any other contract (qi, pi) ∈ {(qi(θ′ ), ti(θ′ )) : θ′ ∈ Θ, θ′ ≠ θ} ∪ 
{(0, 0)}, in the sense defined by the IC and IR constraints, has (probability) measure 
one. When this is the case, principal Pi has a profitable deviation in Γ M that consists 
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of offering the menu ​ϕ​i​ 
  M​ defined by Im(​ϕ​i​ 

  M​ ) = {(qi(θ), ti(θ)) : θ ∈ Θ}. Irrespective 
of which particular continuation equilibrium ​σ​A​  M *​ one considers, given (​ϕ​i​ 

  M​, ​ϕ​−i​ 
 M *​), 

almost every type θ must necessarily choose the contract (qi(θ), ti(θ)) from ​ϕ​i​ 
  M​, thus 

giving Pi a payoff ​
__

 U ​i > ​U​i​ 
 *​.47

Case 2: Next, suppose that the schedules qi(·) and ti(·) that solve the program ​ ˜ 
   

 ​ 
are such that almost every θ ∈ Θ strictly prefers the contract (qi(θ), ti(θ)) to any other 
contract (qi, pi ) ∈ {(qi(θ′ ), ti(θ′ )) : θ′ ∈ Θ, θ′ ≠ θ}, again in the sense defined by the IC 
constraints. However, now suppose that there exists a positive-measure set of types 
Θ′ ⊂ Θ, such that, for any θ′ ∈ Θ′, the (IR) constraint holds as an equality. In this 
case, a deviation by Pi to the menu whose image is Im(​ϕ​i​ 

  M​) = {(qi(θ), ti(θ)) : θ ∈ Θ} 
need not be profitable for Pi . In fact, any type θ′ ∈ Θ′ could punish such a deviation 
by choosing not to participate (equivalently, by choosing the null contract (0, 0)). 
However, if this is the case, then Pi could offer the menu ​ϕ​i​ 

  M​′, such that Im(​ϕ​i​ 
 M′​ )

= {(​q​i​ ′ ​(θ), ​t​i​ ′ ​(θ)) : θ ∈ Θ}, where, for any θ ∈ Θ, q′i (θ) ≡ qi(θ) and t′i (θ) ≡ ti(θ) − ε, 
ε > 0. Clearly, any such menu guarantees participation by all types. Furthermore, 
by choosing ε > 0 small enough, Pi can guarantee herself a payoff arbitrarily close 
to ​

__
 U ​i > ​U​i​ 

 *​, once again a contradiction.

Case 3: Finally, let Vi(θ, θ′ ) ≡ θqi(θ′ ) + ​v​i​ 
 *​(θ, qi(θ′ )) − ti(θ′ ) denote the payoff 

that type θ obtains by selecting the contract (qi(θ′ ), ti(θ′ )) specified by the schedules 
qi (·) and ti (·) for type θ′, and then selecting the contract (​      q​j(θ + λqi(θ′ )), ​     

 t ​j(θ + 
λqi(θ′ )) with principal Pj, where qi (·) and ti (·) are, again, the schedules that solve 
program ​ ˜ 

   
 ​ in the main text. Now, suppose that the schedules qi (·) and ti (·) are such 

that there exists a positive-measure set of types Θ0 ⊂ Θ, such that for any θ ∈ Θ0, 
there exists a θ′ ∈ Θ, and such that

	 Vi(θ, θ)  =  Vi(θ, θ′ )

with qi(θ′ ) ≠ qi(θ);48 and for any θ ∈ Θ \ Θ0,

	 Vi(θ, θ) > Vi(θ, ​   
  
 θ ​) for any ​   

  
 θ ​ ∈ Θ such that qi(​   

  
 θ ​) ≠ qi(θ).

The set Θ0 thus corresponds to the set of types θ for whom the contract (qi(θ), ti(θ)) 
is not strictly optimal, in the sense that there exists another contract (qi(θ′ ), ti(θ′ )) with 
(qi(θ′ ), ti(θ′ )) ≠  (qi(θ), ti(θ)) that is as good for type θ as the contract (qi(θ), ti(θ)).

47 Note that while almost every θ ∈ Θ strictly prefers (qi(θ), ti(θ)) to any other pair (qi, pi) ∈ Im(​ϕ​
i
​   M​ ) ∪ {(0, 0)}, 

there may exist a positive-measure set of types θ′, who, given (qi(θ′ ), ti(θ′ )), are indifferent between choosing the 
contract (​   

   
 q​j(θ′ + λqi(θ′ )),​   

   
 t ​j(θ′ + λqi(θ′ )) with Pj or choosing another contract (qj, tj ) ∈ Im (​ϕ​j​ 

 M *​ ). The fact that Pi 
is not personally interested in (qj, tj ), however, implies that Pi’s deviation to ​ϕ​

i
​   M​ is profitable, irrespective of how one 

specifies the agent’s choice with Pj. 
48 Clearly, if qi(θ) = qi(θ′ ), which also implies that ti(θ) = ti(θ′ ), then whether type θ selects the contract 

designed for him or that designed for type θ′ is inconsequential for Pi’s payoff.
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Without loss of generality, assume that the schedules qi(·) and ti(·) are such that 
each type θ ∈ Θ strictly prefers the contract (qi(θ), ti(θ)) to the null contract (0, 0). 
As shown in Case 2, when this property is not satisfied, there always exists another 
pair of schedules q′i(·) and t′i(·) that guarantee participation by all types, preserve 
incentive compatibility for all θ, and yield Pi a payoff Ui > ​U​i​ 

 *​.
Now, given qi(·) and ti(·), let z : Θ ⇉ Θ ∪ {∅} be the correspondence defined by

	 z(θ)  ≡  {θ′  ∈  Θ : Vi(θ, θ)  =  Vi(θ, θ′ )  and  qi(θ′ )  ≠  qi(θ)} ∀θ  ∈  Θ,

and denote by z(Θ) ≡ Im (z) the range of z(·). This correspondence maps each type 
θ ∈ Θ into the set of types θ′ ≠ θ that receive a contract (qi(θ′ ), ti(θ′ )) different from 
the one (qi(θ), ti(θ)) specified by qi(·), ti(·) for type θ, but which, nonetheless, gives 
type θ the same payoff as the contract (qi(θ), ti(θ)).

Next, let g : Θ ⇉ Θ ∪ {∅} denote the correspondence defined by

	 g(θ)  ≡  {θ′  ∈  Θ, θ′  ≠  θ : (qi(θ′ ), ti(θ′ ))  =  (qi(θ), ti(θ))} ∀θ  ∈  Θ.

This correspondence maps each type θ into the set of types θ′ ≠ θ that, given the 
schedules (qi(·), ti(·)), receive the same contract as type θ. Finally, given any set Θ′ 
⊂ Θ, let

	 g(Θ′ )  ≡  {∪ g(θ) : θ  ∈  Θ′ }.

Starting from the schedules qi (·) and ti (·), then let q′i (·) and t′i (·) be a new pair 
of schedules such that q′i (θ) = qi (θ) for all θ ∈ Θ, t′i (θ) = ti(θ) for all θ ∉ Θ0 ∪ 
g(Θ0), and, for any θ ∈ Θ0 ∪ g(Θ0), t′i (θ) = ti(θ) − ε with ε > 0.49 Clearly, if 
ε > 0 is chosen sufficiently small, then the new schedules q′i (·) and t′i (·) continue to 
satisfy the (IC) and (IR) constraints of program ​ ˜ 

   
 ​ for all θ.

Now, suppose that the original schedules qi(·) and ti(·) were such that {Θ0 ∪ g(Θ0)} 
∩ z(Θ) = ∅. Then, the new schedules q′i (·) and t′i (·) constructed above guarantee that 
each type θ ∈ Θ now strictly prefers the contract (q′i (θ), t′i (θ)) to any other contract 
(q′i (θ′ ), t′i (θ′ )) ≠ (q′i (θ), t′i (θ)). This, in turn, implies that, irrespective of the agent’s 
continuation equilibrium ​σ​A​  M​, Pi can guarantee herself a payoff arbitrarily close to ​

__
 U ​i

by choosing ε > 0 sufficiently small and offering the menu ​ϕ​i​ 
 M′​, such that Im(​ϕ​i​ 

 M′​ ) 
= {(q′i (θ), t′i (θ)) : θ ∈ Θ}. Thus, starting from ​ϕ​i​ 

 M *​, Pi has again a profitable deviation.
Next, suppose that {Θ0 ∪ g(Θ0)} ∩ z(Θ) ≠ ∅. Note that this also implies that 

Θ0 ∩ z(Θ) ≠ ∅. To see this, note that for any ​   
  
 θ ​ ∈ g(Θ0) ∩ z(Θ), with ​   

  
 θ ​ ∉ Θ0, there 

exists a θ′ ∈ Θ0 such that (qi(θ′ ), ti (θ′ )) = (qi(​   
  
 θ ​), ti(​   

  
 θ ​)). But then, by definition of z, 

θ′ ∈ z(Θ). That Θ0 ∩ z(Θ) ≠ ∅, in turn, implies that, given the new schedules q′i (·) 
and t′i (·), there must still exist at least one type θ ∈ Θ0 together with a type ​   

  
 θ ​ ∈ z(θ) 

49 Note that Θ0 ∪ g(Θ0) represents the set of types who are either willing to change contract, or receive the 
same contract as another type who is willing to change.
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such that type θ is indifferent between the contract (q′i (θ), t′i (θ)) designed for him 
and the contract (q′i (​   

  
 θ ​), t′i (​   

  
 θ ​)) ≠ (q′i (θ), t′i (θ)) designed for type ​   

  
 θ ​. However, the fact 

that the agent’s payoff θqi + ​v​i​ 
 *​(θ, qi ) − ​v​i​ 

 *​(θ, 0) has the strict increasing-difference 
property with respect to (θ, qi ) guarantees that θ ∉ z(​   

  
 θ ​). That is, if type θ is indiffer-

ent between the contract designed for him and the contract designed for type ​   
  
 θ ​, then 

it cannot be the case that type ​   
  
 θ ​ is also indifferent between the contract designed for 

him and that designed for type θ. Clearly, the same property also implies that for 
any θ″ ∈ z(​   

  
 θ ​), with θ″ ≠ θ, then necessarily θ ∉ z(θ″ ). That is, if type θ is willing to 

swap contract with type ​   
  
 θ ​ and if, at the same time, type ​   

  
 θ ​ is willing to swap contract 

with type θ″, then it cannot be the case that type θ″ is also willing to swap contract 
with type θ. These properties, in turn, guarantee that the procedure described above 
to transform the schedules qi (·) and ti (·) into the schedules q′i (·) and t′i (·) can be 
iterated (without cycling) until no type is any longer indifferent.

We conclude that if there exists a pair of schedules qi (·) and ti (·) that solve the 
program ​ ˜ 

   
 ​ in the main text and yield Pi a payoff ​

__
 U ​i > ​U​i​ 

 *​, then irrespective of how 
one specifies the agent’s continuation equilibrium ​σ​A​  M *​, Pi necessarily has a profit-
able deviation. This, in turn, proves that condition (iii) is necessary.

Proof of Proposition 2:
Suppose that the principals collude so as to maximize their joint profits. In any 

mechanism that is individually rational and incentive compatible for the agent, the 
principals’ joint profits are given by50

(14)  ​∫ 
​_ θ​
​ 
​
_
 θ ​

​  ​{θ[q1(θ)  +  q2(θ)]  +  λq1(θ)q2(θ)  − ​  1 __ 
2
 ​[q1(θ)2  +  q2(θ)2 ]

	 − ​ 1−F(θ) ______ 
f (θ) ​  [q1(θ)  +  q2(θ)]} dF(θ)  − ​ __ U​,

where ​__ U​ = ​_ θ​[q1(​_ θ​) + q2(​_ θ​)] + λq1(​_ θ​)q2(​_ θ​) − t(​_ θ​) ≥ 0 denotes the equilibrium pay-
off of the lowest type. It is easy to see that, under the assumptions in the proposition, 
the schedules (qi(·)​)​i=1​ 

2
  ​ that maximize (14) are those that maximize pointwise the 

integrand function and are given by qi(θ) = q c(θ), all θ, i = 1, 2. The fact that these 
schedules can be sustained in a mechanism that is individually rational and incentive 
compatible for the agent, and that gives zero surplus to the lowest type, follows from 
the following properties: 

• the agent’s payoff θ(q1 + q2) + λq1q2 is increasing in θ and satisfies the strict 
increasing-difference property in (θ, qi), i = 1, 2; and 

• the schedules qi(·), i = 1, 2, are nondecreasing (see, e.g., Diego Garcia 2005).

Next, consider the result that the collusive schedules cannot be sustained by a 
noncooperative equilibrium in which the agent’s strategy is Markovian. This result 

50 The result is standard and follows from the fact that the agent’s payoff θ(q1 + q2) + λq1q2 is equi-Lipschitz 
continuous and differentiable in θ (see, e.g., Milgrom and Segal 2002).
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is established by contradiction. Suppose, on the contrary, that there exists a pair of 
tariffs Ti :  → ℝ, i = 1, 2, that sustain the collusive schedules as an equilibrium 
in which the agent’s strategy is Markovian. Using the result in Proposition 1, this 
means that there exists a pair of nondecreasing functions ​      q​i : Θi → , i = 1, 2, and 
a pair of scalars ​ ˜ 

   
 K​i ≥ 0, i = 1, 2, that satisfy conditions (i)–(iii) in Proposition 1, 

with ​q​i​ 
 *​(·) = q c(·), i = 1, 2. In particular, for any θ ∈ Θ, any i = 1, 2, it must be that

(15)V *(θ)  = ​   sup      
{(θ1, θ2)∈Θ1×Θ2

​{θ[​      q​1(θ1)  + ​       q​2(θ2)]  +  λ​      q​1(θ1)​      q​2(θ2) −  ​     
 t ​1(θ1) −  ​     

 t ​2(θ2)}

	 = ​  sup    
θi∈Θi

​ {θ​      q​i(θi)  + ​ v​i​ 
 *​(θ, ​      q​i(θi)) − ​     

 t ​i(θi)} 

	 = ​   sup      
θi∈[mi(​_ θ​), mi(​

_
 θ ​)]
​{θ​      q​i(θi)  + ​ v​i​ 

 *​(θ,​      q​i(θi))  −  ​     
 t ​i(θi)},

where the functions ​      
 t ​i(·) are the ones defined in (1) with Ki = ​   

   
 K​i, i = 1, 2, and 

where the function V *(·) is the one defined in (3). Note that all equalities in (15) 
follow directly from the fact that the mechanisms ​ϕ​i​ 

r​ = (​      q​i(·),​     
 t ​i(·)), i = 1, 2, are 

incentive-compatible and satisfy conditions (i) and (ii) in Proposition 1.
Next, note that the property for any message θi ∈ [mi(​_ θ​), mi(​

_
 θ ​)], and any θ 

∈ Θ, the marginal valuation θ + λ​      q​i(θi) ∈ [mj(​_ θ​), mj(​
_
 θ ​)], combined with the 

property that the schedule ​      q​j(·), j ≠ i, is continuous over [mj(​_ θ​), mj(​
_
 θ ​)], implies that, 

given any θi ∈ [mi(​_ θ​), mi(​
_
 θ ​)], the agent’s payoff

	 wi(θ; θi )  ≡  θ​      q​i(θi )  + ​ v​i​ 
 *​(θ, ​      q​i(θi ))  − ​      

 t ​i(θi ) 

	 =  θ​      q​i(θi)  + ​ ∫ minΘj
​ 

θ+λ​      q​i(θi)

​ ​      q​​j(s)ds  + ​  ˜ 
   

 K​j  −  ​     
 t ​i(θi)

is Mi -Lipschitz continuous and differentiable in θ with derivative

	​ 
∂wi(θ; θi ) _______ ∂θ  ​  = ​       q​i(θi)  + ​       q​j(θ  +  λ​      q​i(θi))  ≤  2​

__
 Q ​  ≡  Mi.

Standard envelope theorem results (see, e.g., Milgrom and Segal 2002) then imply 
that the value function

	 Wi (θ)  ≡ ​   sup      
θi∈[mi(​_ θ​), mi(​

_
 θ ​)]
​{θ​      q​i(θi )  + ​ v​i​ 

 *​(θ, ​      q​i(θi))  −  ​     
 t ​i (θi )}

is Lipschitz continuous with derivative almost everywhere given by

(16)	 ​ ∂Wi(θ) ______ ∂θ  ​  = ​       q​i(​θ​i​ 
 *​)  + ​       q​j(θ  +  λ​      q​i(​θ​i​ 

 *​))  =  q c(m−1(​θ​i​ 
 *​))  + ​       q​j(θ  +  λ​      q​i(​θ​i​ 

 *​)),
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where ​θ​i​ 
 *​ ∈ arg ​max​ θi∈[mi(​_ θ​), mi(​

_
 θ ​)] ​{θ​      q​i(θi ) + ​v​i​ 

*​(θ, ​      q​i(θi ))  −  ​     
 t ​i(θi )} is an arbitrary max-

imizer for type θ. The fact that the mechanisms (​      q​i(·),​     
 t ​i(·)), i = 1, 2, satisfy condi-

tions (i) and (ii) in Proposition 1, however, implies that

	 m(θ) ∈ ​  arg max      
θi∈[mi(​_ θ​), mi(​

_
 θ ​)]
​{θ​      q​i(θi)  + ​ v​i​ 

*​(θ, ​      q​i (θi ))  − ​      
 t ​i (θi )}.

Using (16) and property (i) in Proposition 9, the agent’s value function can then be 
rewritten as

(17)	 Wi(θ)  =  θq c(θ)  + ​ v​i​ 
*​(θ, q c(θ))  − ​      

 t ​i(m(θ)) 

	 = ​ ∫ 
​_ θ​
​ 
θ

​  [​q c(s)  + ​       q​j(s  +  λq c(s))]ds  +  Wi (​_ θ​).

We thus conclude that the functions ​     
 t ​i(·) must satisfy

(18)	​     
 t ​i(m(θ))  =  θq c(θ)  + ​ v​i​ 

*​(θ, q c(θ))  − ​ ∫ 
​_ θ​
​ 
θ

​  [​q c(s) + ​      q​j(s + λq c(s))]ds  −  Wi(​_ θ​) 

	 =  θq c(θ)  +  [​v​i​ 
*​(θ, q c(θ))  −  ​v​i​ 

*​(θ, 0)] 

	 − ​ ∫ 
​_ θ​
​ 
θ

​  [​q c(s)  + ​       q​j(s  +  λq c(s))  −  ​      q​j(s)]ds  −  Wi(​_ θ​)  + ​  ˜ 
   

 K​j.

Note that the second equality follows from the fact that ​v​i​ 
*​(θ, 0) = ​∫minΘi

​ θ
  ​  ​      q​​j(s)ds + ​ ˜ 

   
 K​j

= ​∫​_ θ​​ 
θ​  ​      q​j​(s)ds + ​ ˜ 

   
 K​j. Also note that necessarily Bi ≡ Wi(​_ θ​) − ​ ˜ 

   
 K​j ≥ 0, i = 1, 2; other-

wise, given ​ϕ​1​ 
r
 ​ and ​ϕ​2​ 

r
 ​, type ​_ θ​ would be strictly better off participating only in principal 

Pj’s mechanism, j ≠ i. Using (18), principal i’s equilibrium ​U​i​ 
 *​ can then be expressed as

	​ U​i​ 
 *​ = ​∫ 

​_ θ​
​ 
​
_
 θ ​

​  h​i(q c(θ); θ)dF(θ) − Bi,

where hi (q; θ) is the function defined in (6).
We are finally ready to establish the contradiction. Below, we show that, given 

ϕj = (​      q​j(·),​     
 t ​j(·)), j ≠ i, the value ​

__
 U ​i of program , as defined in the main text, is 

strictly higher than ​U​i​ 
 *​. This contradicts the assumption made above that the pair of 

mechanisms ϕi = (​      q​i(·),​     
 t ​i(·)), i = 1, 2, satisfies condition (iii) of Proposition 1.

Take an arbitrary interval [ θ′, θ″ ] ⊂ (​_ θ​, ​
_
 θ ​) and, for any θ ∈ [ θ′, θ″ ], let Q(θ)

≡ [ q c(θ) − ε, q c(θ) + ε], where ε > 0 is chosen, so that, for any θ ∈ [ θ′, θ″ ] and any 
q ∈ Q(θ), (θ + λq) ∈ [m(​_ θ​), m(​

_
 θ ​)]. Note that, for any θ ∈ [ θ′, θ″ ], the function hi(·; θ) 

defined in (6) is continuously differentiable over Q(θ) with
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​ ∂hi(q c(θ); θ)  _________ ∂q
 ​  = θ + λ​      q​j(θ + λq c(θ)) − q c(θ) −   ​ 

1 − F(θ) ________ 
f (θ) ​ [1 + λ ​ 

∂​      q​j(θ + λq c(θ))
  ____________ 

∂​   
  
 θ ​j
 ​ ] 

	 = θ − (1 − λ)q c(θ)  −   ​ 
1 − F(θ) _______ 

f (θ) ​   − ​ 
1 − F(θ) _______ 

f (θ) ​  λ ​ 
∂​      q​j(θ + λq c(θ))

  ____________ 
∂​   

  
 θ ​j
 ​   <  0,

where the inequality follows from the definition of q c(θ) and from the fact that ​      q​j(·)
is strictly increasing over [m(​_ θ​), m(​

_
 θ ​)]. The last result implies that there exists a 

nondecreasing schedule qi : Θ →  such that 

(19)	​ ∫ 
​_ θ​
​ 
​
_
 θ ​

​  h​i(qi(θ); θ)dF(θ)  > ​ ∫ 
​_ θ​
​ 
​
_
 θ ​

​  h​i(q c(θ); θ)dF(θ),

and 

θ + λqi(​   
  
 θ ​) ∈ [m(​_ θ​), m(​

_
 θ ​)] for all (θ,  ​   

  
 θ ​) ∈ Θ2. Now, let ti : Θ → ℝ be the function that 

is obtained from qi(·) using (5) and setting Ki = 0. That is, for any θ ∈ Θ,

ti(θ)  =  θqi(θ) + [​v​i​ 
*​(θ, qi(θ))  − ​ v​i​ 

*​(θ, 0)]  − ​ ∫ 
​_ θ​
​ 
θ

​  [q​i(s) + ​      q​j(s + λqi(s))  − ​       q​j(s)]ds.

It is easy to see that the pair of functions qi(·), ti(·) constructed above satisfies all the 
IR constraints of program ​ ˜ 

   
 ​. To see that they also satisfy all the IC constraints, note 

that the agent’s payoff under truthtelling is

	 X(θ) ≡ θqi(θ) + [​v​i​ 
*​(θ,qi(θ)) − ​v​i​ 

*​(θ,0)] − ti(θ) 

	 = ​∫ 
​_ θ​
​ 
θ

​  [q​i(s) + ​      q​j(s + λqi(s))  − ​       q​j(s)]ds,

whereas the payoff that type θ obtains by mimicking type ​   
  
 θ ​ is

	 R(θ; ​   
  
 θ ​)  ≡  θqi(​   

  
 θ ​) + [​v​i​ 

*​(θ, qi(​   
  
 θ ​))  − ​ v​i​ 

*​(θ, 0)]  −  ti(​   
  
 θ ​) 

	 = θqi(​   
  
 θ ​)  + ​ ∫ 

θ
​ 
θ+λqi(​   

  
 θ ​)

​  ​      q​j​(s)ds  −  ti(​   
  
 θ ​).

Now, for any (θ, ​   
  
 θ ​) ∈ Θ2, let Φ(θ; ​   

  
 θ ​) ≡ X(θ) − R(θ; ​   

  
 θ ​). Note that, for any ​   

  
 θ ​, Φ(·; ​   

  
 θ ​) 

is Lipschitz continuous and its derivative, wherever it exists, satisfies

	​ 
∂Φ(θ; ​   

  
 θ ​) _______ ∂θ  ​  =  qi(θ)  + ​       q​j(θ  +  λqi(θ))  −  [qi(​   

  
 θ ​)  + ​       q​j(θ  +  λqi(​   

  
 θ ​))].

Because qi(·) and ​      q​j(·) are both nondecreasing, we then have that, for all ​   
  
 θ ​, a.e. θ, 

(∂Φ(θ; ​   
  
 θ ​)/∂ θ)(θ − ​   

  
 θ ​) ≥ 0. Because, for any θ, Φ(θ; θ) = 0, this implies that, for 
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all (θ, ​   
  
 θ ​) ∈ Θ2, Φ(θ; ​   

  
 θ ​) = ​∫

​   
  
 θ ​
​ θ​  (​∂Φ(s; ​   

  
 θ ​)/∂θ) ≥ 0, which establishes that qi(·), ti(·) is 

indeed incentive compatible.
Now, it is easy to see that principal i’s payoff under qi(·), ti(·) is

	 Ui  = ​ ∫ 
​_ θ​
​ 
​
_
 θ ​

​  c​ti(θ)  − ​ 
qi(θ)2

 _____ 
2
 ​  d dF(θ)  = ​ ∫ 

​_ θ​
​ 
​
_
 θ ​

​  hi​ (qi(θ); θ)dF(θ),

which, by construction, is strictly higher than ​U​i​ 
 *​. This, in turn, implies that, given 

the mechanism ​ϕ​j​ 
r​ = (​      q​j(·), ​     

 t ​j(·)), the value ​
__

 U ​i of program ​ ˜ 
   

 ​ is necessarily higher 
than ​U​i​ 

 *​. Hence, any pair of mechanisms ϕi = (​      q​i(·),​     
 t ​i(·)), i = 1, 2, that satisfy con-

ditions (i) and (ii) in Proposition 1, necessarily fail to satisfy condition (iii). Because 
conditions (i)–(iii) are necessary, we conclude that there exists no equilibrium in 
which the agent’s strategy is Markovian that sustains the collusive schedules.

Proof of Proposition 3:
The result is established using Proposition 1. Below, we show that the pair of 

quantity schedules ​      q​i(·) = ​      q​(·), i = 1, 2, together with the pair of transfer sched-
ules ​     

 t ​i(·) = ​     
 t ​(·), i = 1, 2, satisfies conditions (i) and (ii) in Proposition 1, where 

​      q​ : [0, ​
_
 θ ​ + λ​

__
 Q ​] →  is the function defined in (8), and where ​     

 t ​ : [0, ​
_
 θ ​ + λ​

__
 Q ​] → ℝ 

is the function defined by

	​      
 t ​(s)  =  s​      q​(s)  − ​ ∫ 

0
​ 

s

​ ​      q​​(s)ds    ∀s  ∈  [0, ​
_
 θ ​  +  λ​

__
 Q ​].

That these schedules satisfy condition (i) is immediate. Thus, consider condition 
(ii). Fix ​ϕ​j​ 

r *​ = (​      q​j(·), ​     
 t ​j(·)). Note that, given any q ∈ , the function gi(·, q): Θ → 

ℝ defined by

gi(θ, q) ≡  θq  + ​ v​i​ 
*​(θ, q) −  ​v​i​ 

*​(θ, 0) =  θq  + ​ ∫ 
θ
​ 
θ+λq

​ ​      q​​(s)ds =  θq  + ​ ∫ 
θ
​ 
θ+λq

​ ​      q​​(s)ds

is Lipschitz continuous with derivative bounded uniformly over q, and satisfies the 
“convex-kink” condition of Assumption 1 in Jeffrey C. Ely (2001). This last prop-
erty follows from the assumption that ​_ θ​ + λq*(​_ θ​) ≥ ​

_
 θ ​. Combining Theorem 2 of 

Milgrom and Segal (2002) with Theorem 2 of Ely (2001), it is easy to verify that 
the schedules qi : Θ →  and ti : Θ → ℝ satisfy all the (IC) and (IR) constraints of 
program ​ ˜ 

   
 ​ if and only if qi(·) is nondecreasing and ti(·) satisfies

(20)	 ti(θ)  =  θqi (θ)  +  [​v​i​ 
*​(θ, qi(θ))  − ​ v​i​ 

*​(θ, 0)] 

	 − ​∫ 
​_ θ​
​ 
θ

​  [​qi(s)  + ​       q​(s  +  λqi(s))  − ​       q​(s)]ds  −  K′i 

for all θ ∈ Θ, with K′i ≥ 0.
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Next, let t* : Θ → ℝ be the function that is obtained from (20), letting qi(·) = 
q*(·) and setting K′i  = 0. Note that this function reduces to the one in (10) after a 
simple change in variable. The fact that qi(·) and ti(·) satisfy all the IC and IR con-
straints of program ​ ˜ 

   
 ​, together with the fact that the mechanism ​ϕ​j​ 

r *​ = (​      q​j(·),​     
 t ​j(·)) 

is incentive compatible and individually rational for each θj ∈ Θi, in turn, implies 
that each type θ prefers the allocation

	 (q*(θ), t*(θ), ​      q​(m(θ)), ​     
 t ​(m(θ)))  =  (q*(θ), t*(θ), q*(θ), ​     

 t ​(m(θ)))

to any allocation (qi, ti, qj, tj ), such that (qi, ti ) ∈ {(q*(θ′ ), t*(θ′ )) : θ′ ∈ Θ} ∪ (0, 0), 
and (qj, tj) ∈ {(​      q​(θj), ​     

 t ​(θj)) : θj ∈ Θj } ∪ (0, 0). But this also means that the schedules 
q′ : [m(​_ θ​), m(​

_
 θ ​)] →  and t′ : [m(​_ θ​), m(​

_
 θ ​)] → ℝ given by

	 q′(s)  ≡  q*(m−1(s)) and t′(s)  ≡  t*(m−1(s))

are incentive-compatible over [m(​_ θ​), m(​
_
 θ ​)]. In turn, this means that the schedule t′(·) 

can also be written as

	 t′(s)  ≡  sq′(s)  − ​ ∫ m(​_ θ​)​ 

s

  ​ q​′(x)dx.

Furthermore, it is immediate that, when Pj offers the mechanism ​ϕ​j​ 
r *​ = (​      q​j(·), ​     

 t ​j(·)) 
and Pi offers the schedules (q′(·), t′(·)), it is optimal for each type θ to participate in 
both mechanisms and report m(θ) to each principal. Because for each s ∈ [m(​_ θ​), m(​

_
 θ ​)],

q′(s) = ​      q​(s) and because ​      q​(s) = 0, for any s < m(​_ θ​), we then have that, for any s ∈ 
[m(​_ θ​), m(​

_
 θ ​)],

	 t′(s)  = ​      
 t ​(s).

Furthermore, because for any s > m(​
_
 θ ​), (​      q​(s), ​     

 t ​(s)) = (​      q​(m(​
_
 θ ​)), ​     

 t ​(m(​
_
 θ ​))) 

= (q′(​
_
 θ ​), t′(​

_
 θ ​)), it immediately follows from the aforementioned results that, when 

both principals offer the mechanism ​ϕ​i​ 
r *​ = (​      q​i(·),​     

 t ​i(·)), i = 1, 2, each type θ finds it 
optimal to participate in both mechanisms and report s = m(θ) to each principal. 
Note that, in so doing, each type θ obtains the equilibrium quantity q*(θ) and pays 
the equilibrium price ​     

 t ​(m(θ)) = t*(θ) to each principal.
We have thus established that the pair of mechanisms ​ϕ​i​ 

r *​ = (​      q​i(·),​     
 t ​i(·)), i = 1, 2, 

satisfies conditions (i) and (ii) in Proposition 1. To complete the proof, it remains 
to show that they also satisfy condition (iii). For this purpose, recall that, given ​ϕ​j​ 

r *​ 
= (​      q​j(·),​     

 t ​j(·)), a pair of schedules qi : Θ →  and ti : Θ → ℝ satisfies the (IC) 
and (IR) constraints of program ​ ˜ 

   
 ​ if and only if the function qi(·) is nondecreasing 

and the function ti(·) is as in (20). This, in turn, means that the value of program ​ ˜ 
   

 ​ 
coincides with the value of program ​ ˜ 

   
 ​ new, as defined in the main text. Now, note that 

for any θ ∈ int(Θ), the function h(· ; θ):  → ℝ is maximized at q = q*(θ). To see 
this, note that the fact that q*(·) solves the differential equation in (7) implies that 
the function h(· ; θ) is differentiable at q = q*(θ) with derivative
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(21)	​ 
∂h(q*(θ); θ)  _________ ∂q

 ​  = θ + λ​      q​(θ + λq*(θ)) − q*(θ) 

	 −  ​ 1 − F(θ) _______ 
f (θ) ​  c1 + λ ​ ∂​      q​(θ + λq*(θ))  ___________ ∂θi

 ​ d = 0.

Together with the fact that h(· ; θ) is quasiconcave, this property implies that h(q; θ) 
is maximized at q = q*(θ). This implies that the solution to the program ​ ˜ 

   
 ​ new is 

the function q*(·) along with Ki = 0. However, by construction, the payoff ​U​i​ 
 *​ that 

principal Pi obtains in equilibrium by offering the mechanism ​ϕ​i​ 
r *​ is

	​U ​i​ 
 *​ = ​∫ 

​_ θ​
​ 
​
_
 θ ​

​  c​ ̃   
 t ​​(m(θ)) −  ​ ​      q​(m(θ))2

 _______ 
2
 ​  d dF(θ) = ​∫ 

​_ θ​
​ 
​
_
 θ ​

​  ct*​(θ) −  ​ q
*(θ)2

 _____ 
2
 ​  d dF(θ) 

	 = ​∫ 
​_ θ​
​ 
​
_
 θ ​

​  h(​q*(θ); θ)dF(θ) = ​
__

 U ​i,

where ​
__

 U ​i is the value of program ​ ˜ 
   

 ​ new (and hence of program ​ ˜ 
   

 ​ as well). We thus 
conclude that the pair of mechanisms ​ϕ​i​ 

r *​ = (​      q​i(·),​     
 t ​i(·)), i = 1, 2, satisfies condition 

(iii), which completes the proof.

Proof of Proposition 4:
Consider the “only if” part of the result. Starting from any pure-strategy equilib-

rium σ M of Γ M, one can construct another pure-strategy equilibrium ​      σ​ M that sustains 
the same SCF π, but in which the agent’s strategy ​​      σ​​A​  M​ satisfies the following prop-
erty. Given any i ∈ , any menu ​ϕ​i​ 

  M​, and any action profile (e, a−i ), there exists a 
unique action ai (e, a−i; ​ϕ​i​ 

  M​ ) ∈ i, such that the agent always chooses a contract δi 
from ​ϕ​i​ 

  M​ which responds to effort e with the action ai (e, a−i; ​ϕ​i​ 
  M​ ), when the contracts 

the agent selects with the other principals respond to the same effort choice with the 
actions a−i . The proof for this step follows from arguments similar to those that 
establish Theorem 3. Given ​      σ​ M, it is then easy to construct a pure-strategy truthful 
equilibrium ​ ∘     σ​* of ​ 

∘    
 Γ​ r that sustains the same SCF. The proof for this step follows from 

arguments similar to those that establish Theorem 2. The only delicate part is in 
specifying how the agent reacts off-equilibrium to a revelation mechanism ​​ 

∘ 
   

 ϕ​​i​ 
r
​ ≠ ​​ ∘ 

   
 ϕ​​i​ 
r *​.

In the proof of Theorem 2, it was assumed that the agent responds to an off-equilib-
rium mechanism ​ϕ​i​ 

r​ ≠ ​ϕ​i ​ 
r *

 ​ as if the game were ΓM and Pi offered the menu whose 
image is Im(​ϕ​i​ 

  M​) = Im(​ϕ​i​ 
r ​). However, in the new revelation game ​ 

∘    
 Γ​ r, the image Im(​​ ∘ 

   
 ϕ​​i​ 
r 
​)

of a direct revelation mechanism ​​ 
∘ 
   

 ϕ​​i​ 
r 
​ is a subset of i as opposed to a menu of con-

tracts. This, nonetheless, does not pose any problem. It suffices to proceed as fol-
lows. Given any direct mechanism ​​ 

∘ 
   

 ϕ​​i​ 
r 
​, and any effort choice e, let i (e; ​ϕ​i​ 

r ​ ) ≡ {ai : ai 
= ​ϕ​i​ 

r ​(e, a−i ), a−i ∈ −i } denote the set of responses to effort choice e that the agent 
can induce in ​​ 

∘ 
   

 ϕ​​i​ 
r 
​ by reporting different messages a−i ∈ −i. Given any mecha-

nism ​​ 
∘ 
   

 ϕ​​i​ 
r 
​, then let ​ ϕ​i​ 

  M​ = χ(​​ ∘ 
   

 ϕ​​i​ 
r 
​) denote the menu of contracts whose image is 

Im(​ϕ​i​ 
  M​) = {δi ∈ i : δi(e) ∈ i (e; ​​ 

∘ 
   

 ϕ​​i​ 
r 
​ ) all e ∈ E}. Clearly, for any (e, a−i), the maxi-

mum payoff that the agent can guarantee himself in Γ M, given the menu ​ϕ​i​ 
  M​, is the 

same as in ​ 
∘    
 Γ​ r given ​​ 

∘ 
   

 ϕ​​i​ 
r 
​. The rest of the proofs then parallels that of Theorem 2, by 
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having the agent react to any mechanism ​​ 
∘ 
   

 ϕ​​i​ 
r 
​ ≠ ​​ ∘ 

   
 ϕ​​i​ 
r 
​
*
as if the game were ΓM and Pi 

offered the menu ​ϕ​i​ 
  M​ = χ(​​ ∘ 

   
 ϕ​​i​ 
r 
​).

Next, consider the “if ” part of the result. The proof parallels that of part (ii) of 
Theorem 2 using the mapping χ : ​​ 

∘ 
   

 Φ​​i​ 
r
​ → ​Φ​i​ 

 M​ defined above to construct the equilib-
rium menus, and the mapping φ : ​Φ​i​ 

 M​ → ​​ ∘    
 Φ​​i​ 
r
​ defined below to construct the agent’s 

reaction to any off-equilibrium menu ​ϕ​i​ 
  M​ ≠ ​ϕ​i​ 

  M​ *. Let φ : ​Φ​i​ 
 M​ → ​​ ∘    

 Φ​​i​ 
r
​ be any arbitrary 

function that maps each menu ​ϕ​i​ 
  M​ into a direct mechanism ​​ 

∘ 
   

 ϕ​​i​ 
r
​ = φ (​ϕ​i​ 

  M​) with the 
following property

	​​ 
∘ 
   

 ϕ​​i​ 
r
​(e, a−i)  ∈ ​   arg max           

ai∈{​      a​i : ​      a​i =δi(e),δi∈Im(​ϕ​i​ 
 M​)}

​ v(e, ai, a−i )  ∀(e, a−i )  ∈  E  ×  −i.

The agent’s reaction to any menu ​ϕ​i​ 
 M​ ≠ ​ϕ​i​ 

 M​ * is then the same as if the game were ​ 
∘    
 Γ​ r 

and Pi offered the direct mechanism ​​ 
∘ 
   

 ϕ​​i​ 
r
​ = φ(​ϕ​i​ 

 M​). The rest of the proof is based 
on the same arguments as in the proof of part (ii) of Theorem 2 and is omitted for 
brevity.

Proof of Theorem 5:
The proof is in two parts. Part 1 proves that if there exists a pure-strategy equilibrium 

σM * of ΓM that implements the SCF π, there also exists a truthful pure-strategy equilib-
rium σ r * of ​   

  
 Γ​r that implements the same outcomes. Part 2 proves that any SCF π that 

can be sustained by an equilibrium of ​   
  
 Γ​r can also be sustained by an equilibrium of ΓM.

Part 1. Let ϕ M* and ​σ​A​  M​* denote, respectively, the equilibrium menus and the con-
tinuation equilibrium that support π in ΓM. Then, for any i, let ​δ​i​ 

*​(θ) denote the con-
tract that A takes in equilibrium with Pi when his type is θ.

As a preliminary step, we establish the following result.

Lemma 1: Suppose the SCF π can be sustained by a pure-strategy equilibrium of 
ΓM. Then it can also be sustained by a pure-strategy equilibrium in which the agent’s 
strategy satisfies the following property. For any k ∈ , θ ∈ Θ and δk ∈ k , there 
exists a unique δ−k(θ, δk ) ∈ −k, such that A always selects δ−k(θ, δk ) with all prin-
cipals other than k when (i) Pk deviates from the equilibrium menu, (ii) the agent’s 
type is θ, (iii) the lottery over contracts A selects with Pk is δk , and (iv) any principal 
Pi, i ≠ k, offers the equilibrium menu.

Proof of Lemma 1: 
Let ​       ϕ​ M and ​​       σ ​​A​ M​ denote, respectively, the equilibrium menus and the continuation 

equilibrium that support π in ΓM. Take any k ∈  and, for any (δ, θ), let ​__ U​ k(δ, θ) 
denote the lowest payoff that the agent can inflict to principal Pk, without violating 
his rationality. This payoff is given by

​__ U​k(δ,θ) ≡ ​∫ 
Y
​ 

 

 ​  c​​∫ 

​ 

 

 ​  u​k(a, ξk(y, θ), θ)dy1(ξk(y, θ)) × ⋯ × dyn(ξk(y, θ))d dδ1 × ⋯ × dδn,

where, for any y ∈ Y,
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	 ξk(y, θ)  ∈ ​ arg min     
e∈E*(y, θ)

 ​ e​∫ 

​ 

 

 ​  u​k(a, e, θ)dy1(e)  ×  ⋯  ×  dyn(e)f

with

	 E *(y, θ)  ≡ ​ arg max     
e∈E

  ​  e​∫ 

​ 

 

 ​  v​(a, e, θ)dy1(e)  ×  ⋯  ×  dyn(e)f.

Next, for any (θ, δk ) ∈ Θ × k, let

	 D−k(θ, δk; ​​       ϕ​​−k​ 
 M

 ​ )  ≡ ​  arg max     
δ−k∈Im(​​       ϕ​​−k​ 

M
 ​)
​ V(δ−k, δk, θ)

denote the set of lotteries in the menus ​​        ϕ​​−k​ 
 M

 ​ that are optimal for the agent, given 
(θ, δk ), where Im(​​       ϕ​​−k​ 

 M
 ​) ≡ ×j≠k Im(​​       ϕ​​j​ 

 M​). Then, for any (θ, δk ) ∈ Θ × k, let δ−k(θ, δk ) 
∈ −k be any profile of lotteries such that

(23)	 δ−k(θ, δk)  ∈ ​   arg min        
​δ​

−k​  ′  ​∈D−k(θ, δk; ​​       ϕ​​−k​ 
M

 ​)
​ ​__ U​ k(δk, ​δ​−k​ 

′  ​, θ).

Now, consider the following pure-strategy profile ​ ∘     σ​ M. For any i ∈ , ​​ ∘     σ​​i​ 
 M​ is the pure 

strategy that prescribes that Pi offers the same menu ​​       ϕ​​i​ 
 M​ as under ​        σ​ M. The continu-

ation equilibrium ​​ ∘     σ​​A​  M​ is such that, when either ​ϕ​i​ 
 M​ = ​​       ϕ​​i​ 

 M​ for all i, or | {i ∈  : ​ϕ​i​ 
 M​ 

≠ ​​       ϕ​​i​ 
 M​ } | > 1, then ​​ ∘     σ​​A​  M​(θ, ϕ M ) = ​​       σ​​A​  M​(θ, ϕ M ), for any θ. When, instead, ϕ M is such that ​

ϕ​i​ 
 M​ = ​​       ϕ​​i​ 

 M​ for all i ≠ k, while ​ϕ​k​ 
 M​ ≠ ​​       ϕ​​k​ 

 M​ for some k ∈ , then each type θ selects 
the profile of lotteries (δk , δ−k ) defined as follows. δk is the same lottery that type θ 
would have selected with Pk according to the original strategy ​​       σ​​A​  M​, given the menus 
(​​       ϕ​​−k​ 

 M
 ​, ​ϕ​k​ 

 M​); δ−k = δ−k (θ, δk) is the profile of lotteries defined in (23). Given any pro-
file of contracts y selected by the lotteries (δk , δ−k ), the effort the agent selects is 
then ξk(θ, y), as defined in (22). It is immediate that the behavior prescribed by the 
strategy ​​ ∘     σ​​A​  M​ is sequentially rational for the agent. Furthermore, given ​​ ∘     σ​​A​  M​, a principal 
Pi who expects all other principals to offer the equilibrium menus ​​       ϕ​​−i​ 

 M
 ​ cannot do bet-

ter than offering the equilibrium menu ​​       ϕ​​i​ 
 M​. We conclude that ​ ∘     σ​ M is a pure-strategy 

equilibrium of Γ M and sustains the same SCF as ​       σ​  M.
Hence, without loss, assume σ M* satisfies the property of Lemma 1. For any i, k 

∈  with k ≠ i, and for any (θ, δk ) ∈ Θ × k, let δi (θ, δk ) denote the unique lottery 
that A selects with Pi when his type is θ, the contract selected with Pk is δk , and the 
menus offered are ​ϕ​i​ 

  M​ = ​ϕ​j​ 
 M*​ for all j ≠ k, and ​ϕ​k​ 

 M​ ≠ ​ϕ​k​ 
 M​*.

Next, consider the following strategy profile ​      σ​ r * for ​   
  
 Γ​r. Each principal offers a 

direct mechanism ​​      ϕ​​i​ 
r *​ such that, for any (θ, δ−i , k) ∈ Θ × −i × −i,

  ​​      ϕ​​i​ 
r *​(θ, δ−i , k) = e   ​

​δ​i​ 
 *​(θ) if k = 0 and δ−i = ​δ​−i​ 

 *
 ​ (θ)
   

                     
     δi(θ, δk ) if k ≠ 0 and δ−i is such that δj = δj(θ, δk ) for all j ≠ i, k                               

 δi ∈ arg ​max​δ′i ∈Im(​ϕ​i​ 
M *​ )​ V(δ−i, δ′i , θ) in all other cases.

 ​ 
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By construction, ​​       ϕ​​i​ 
r *​  is incentive compatible. Now, consider the following strat-

egy ​​      σ​​A​ r *​ for the agent in ​   
  
 Γ​r.

• Given the equilibrium mechanisms ​       ϕ​ r *, each type θ reports a message ​​  ˆ     m​​i​ 
r​ 

= (θ, ​δ​−i​ 
 *
  ​(θ), 0) to each Pi. Given any profile of contracts y selected by the lotteries 

δ *(θ), the agent then mixes over E with the same distribution he would have used in 
ΓM given (θ, ϕ M *, m*(θ), y), where m*(θ) ≡ δ *(θ) are the equilibrium messages that 
type θ would have sent in ΓM given the equilibrium menus ϕ M *.

• Given any profile of mechanisms ​      ϕ​r, such that ​​       ϕ​​i​ 
r​ = ​​      ϕ​​i​ 

r *​ for all i ≠ k, while 
​​      ϕ​​k​ 

r
 ​ ≠ ​​      ϕ​​k​ 

r *​ for some k ∈ , let δk denote the lottery that type θ would have selected 
with Pk in ΓM, had the menus offered been ϕ M = (​ϕ​−k​ 

 M *​, ​ϕ​k​ 
 M​ ), where ​ϕ​k​ 

 M​ is the menu with 
image Im(​ϕ​k​ 

 M​ ) = Im(​​      ϕ​​k​ 
r
 ​ ). The strategy ​​      σ​​A​ r *​ then prescribes that type θ reports to Pk any

message ​m​k​ 
r
 ​ such that ​ϕ​k​ 

r
 ​(​m​k​ 

r
 ​) = δk and then reports to any other principal Pi , i ≠ k,

the message ​​ ˆ     m​​i​ 
r​ = (θ, δ−i, k), with

	 δ−i = (δk, (δj (θ, δk))j≠i, k ).

Given any contracts y selected by the lotteries δ = (δk, δj (θ, δk)j≠k ), A then selects 
effort ξk(θ, y), as defined in (22).

• Finally, for any profile of mechanisms ​      ϕ​ r such that |{i ∈  : ​​      ϕ​​i​ 
r​ ≠ ​​      ϕ​​i​ 

r *​} | > 1, 
simply let ​​      σ​​A​ r

 ​(θ, ϕ r ) be any strategy that is sequentially rational for A, given (θ, ​      ϕ​ r ).
The behavior prescribed by the strategy ​​      σ​​A​ r *​ is clearly a continuation equilibrium. 

Furthermore, given ​​      σ​​A​ r *​, any principal Pi who expects all other principals to offer the 
equilibrium mechanisms ​​      ϕ​​i​ 

r *​ cannot do better than offering the equilibrium mecha-
nism​ ​      ϕ​​i​ 

r *​, for any i ∈ . We conclude that the strategy profile ​      σ​ r * in which each Pi 
offers the mechanism ​​      ϕ​​i​ 

r *​ and A follows the strategy ​​      σ​​A​  *​ is a truthful pure-strategy 
equilibrium of ​   

  
 Γ​r and sustains the same SCF π as σ M * in ΓM.

Part 2: We now prove that if there exists an equilibrium ​      σ​ r of ​   
  
 Γ​r that sustains the 

SCF π, then there also exists an equilibrium σ M * of ΓM that sustains the same SCF. 
For any i ∈  and any ​ϕ​i​ 

  M​ ∈ ​Φ​i​ 
 M​, let ​​   

   
 Φ​​i​ 
r
​(​ϕ​i​ 

  M​ ) ≡ {​​      ϕ​​i​ 
r​ ∈ ​Φ​i​ 

r​ : Im(​​      ϕ​​i​ 
r​ ) = Im(​ϕ​i​ 

  M​ )}
denote the set of revelation mechanisms with the same image as ​ ϕ​i​ 

  M​. The proof 
follows from the same arguments as in the proof of Part 2 in Theorem 2. It suffices 
to replace the mappings ​Φ​i​ 

r​(·) with the mappings ​​   
   

 Φ​​i​ 
r
​(·) and then make the following 

adjustment to Case 2. For any profile of menus ϕ M for which there exists a j ∈  
such that ​​   

   
 Φ​​i​ 
r
​(​ϕ​i​ 

  M​) ≠ ∅ for all i ≠ j, and ​​   
   

 Φ​​j​ 
r
​(​ϕ​j​ 

 M​) = ∅, let ​​      ϕ​​j​ 
r​ be any arbitrary revela-

tion mechanism, such that

	​​       ϕ​​j​ 
r​(θ, δ−j, k) ∈ ​arg max     

δj∈Im(​ϕ​j​ 
M​)
 ​ V(δj, δ−j, θ)  ∀(θ, δ−j, k) ∈ Θ × −j × −j.

For any θ ∈ Θ, the strategy ​σ​A​  M​ *(θ, ϕ M) induces the same distribution over outcomes 
as the strategy ​​      σ​​A​ r *​ given ​​      ϕ​​j​ 

r​ and given ​​      ϕ​​−j​ 
r
  ​ ∈ ​​   

   
 Φ​​−j​ 
r
  ​(​ϕ​−j​ 

 M
 ​) ≡ ×i≠j​​   

   
 Φ​​i​ 
r
​(​ϕ​i​ 

  M​), in the sense 
made precise by (11).
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Proof of Theorem 6:
The proof is in two parts. Part 1 proves that for any equilibrium σM of ΓM, there 

exists an equilibrium ​       σ​ r of ​   
   

 Γ​ r that implements the same outcomes. Part 2 proves the 
converse.

Part 1: Let i be a generic partition of ​ Φ​i​ 
 M​ and denote by Qi ∈ i a generic 

element of i. Now, consider a partition-game Γ in which first each principal Pi 
chooses an element of i. After observing the collection of cells Q = (Qi​ )​i=1​ 

n
  ​, the 

agent then selects a profile of menus ϕ M = (​ϕ​1​ 
 M​, … , ​ϕ​n​ 

 M​), one from each cell Qi, then 
chooses the lotteries over contracts δ, and finally, given the contracts y selected by 
the lotteries δ, chooses effort e ∈ E.

The proof of Part 1 is in two steps. Step 1 identifies a collection of partitions  Z 
= (​ ​i​ 

Z​ )i∈ such that the agent’s payoff is the same for any pair of menus ​ϕ​i​ 
  M​, ​ϕ​i​ 

 M′​ ∈ ​Q ​i​ 
Z​,

i = 1, … , n. It then shows that, for any σ M ∈ (Γ M ) there exists a ​ ∘     σ​ ∈  (Γ Z ) that 
implements the same outcomes. Step 2 uses the equilibrium ​ ∘    σ​ of Γ Z constructed in 
Step 1 to prove existence of a truthful equilibrium ​       σ​ r of ​   

   
 Γ​ r which also supports the 

same outcomes as σ  M.

Step 1. Take a generic collection of partitions  = (i)i∈ , one for each ​Φ​i​ 
 M​, 

i = 1, … , n with i consisting of measurable sets.51 Consider the following strategy 
profile ​ ∘    σ​ for the partition game Γ. For any Pi, let ​ ∘    σ​i ∈ Δ(i ) be the distribution 
over i induced by the equilibrium strategy ​σ​i​ 

 M​ of ΓM. That is, for any subset Ri of 
i the union of whose elements is measurable,

	 ​ ∘    σ​i(Ri )  = ​ σ​i​ 
 M​(∪ Ri ).

Next, consider the agent. For any Q = (Q1, … , Qn ) ∈ ×i∈ i, A selects the menus 
ϕ M from  ×i∈ Qi using the distribution ​ ∘    σ​A( · |Q) ≡ ​σ​1​ 

 M​( · |Q1) × ··· × ​σ​n​ 
 M​( · |Qn ), 

where for each Qi, ​σ​i​ 
 M​( · |Qi ) is the regular conditional distribution over ​Φ​i​ 

 M​ that is 
obtained from the equilibrium strategy ​σ​i​ 

 M​ of Pi conditioning on ​ϕ​i​ 
  M​ ∈ Qi.

52 After 
selecting the menus ϕ M, A follows the same behavior prescribed by the strategy ​σ​A​  M​ 
for ΓM.

Now, fix the agent’s strategy ​       σ​A as described above. It is immediate that, irrespec-
tive of the partitions , the strategies (​ ∘    σ​i )i∈ constitute an equilibrium for the game 
Γ(​ ∘    σ​A) among the principals.

In what follows, we identify a collection of partitions Z that make ​ ∘    σ​A sequen-
tially rational for the agent. Consider the equivalence relation ∿i defined as follows: 
given any two menus ​ϕ​i​ 

  M​ and ​ϕ​i​ 
  M​′,

	 ​ϕ​i​ 
 M​ ∿i ​ϕ​i​ 

 M​′ ⇔ Zθ(δ−i; ​ϕ​i​ 
 M​ )  =  Zθ(δ−i; ​ϕ​i​ 

 M​′ )  ∀ (θ, δ−i ),

51 In the sequel, we assume that any set of mechanisms ​Φ​i​ 
 M​ is a Polish space, and whenever we talk about 

measurability, we mean with respect to the Borel σ-algebra Σ on ​Φ​i​ 
 M​. 

52 Assuming that each ​Φ​i​ 
 M​ is a Polish space endowed with the Borel σ-algebra Σi, the existence of such a con-

ditional probability measure follows from Theorem 10.2.2 in Dudley (2002, 345).
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where, for any mechanism ϕi, Zθ(δ−i; ϕi ) ≡ arg ​max​δi∈Im(ϕi)
​V(δi, δ−i, θ).

Now, let  Z = (​ ​i​ 
Z​ )i∈ be the collection of partitions generated by the equiva-

lence relations ∿i , i = 1, … , n. It follows immediately that, in the partition game 
ΓZ

, ​ ∘    σ​A is sequentially rational for A. We conclude that for any σ M ∈ (Γ M ) there 
exists a ​ ∘    σ​ ∈  (ΓZ ) which implements the same outcomes as σ M.

Step 2. We next prove that starting from ​ ∘    σ​, one can construct a truthful equilib-
rium ​       σ​ r for ​   

   
 Γ​ r that also sustains the same outcomes as σ M in Γ M. To simplify the 

notation, hereafter, we drop the superscrips Z from the partitions , with the under-
standing that  refers to the collection of partitions generated by the equivalence 
relations ∿ i defined above. For any i ∈ , any Qi ∈ i, and any (θ, δ−i ) ∈ Θ × −i, 
then let Zθ (δ−i; Qi ) ≡ Zθ (δ−i; ​ϕ​i​ 

 M​ ) for some ​ϕ​i​ 
 M​ ∈ Qi. Since for any two menus ​ϕ​i​ 

 M​, ​
ϕ​i​ 

 M​′ ∈ Qi, Zθ (δ−i; ​ϕ​i​ 
 M​ ) = Zθ (δ−i;​ϕ​i​ 

 M​′ ) for all (θ, δ−i ), then Zθ (δ−i; Qi ) is uniquely deter-
mined by Qi. Now, for any Qi ∈ i, let ​​       ϕ​​i​ 

r​ | Qi
 ∈ ​​   

   
 Φ​​i​ 
r
​ denote the revelation mechanism 

given by

(24)	​​        ϕ​​i​ 
r​(θ, δ−i )  =  Zθ (δ−i; Qi )  ∀ (θ, δ−i )  ∈  Θ × −i.

For any set of mechanisms B ⊆ ​​   
   

 Φ​​i​ 
r
​, then let i(B) ≡ {Qi ∈ i : ​​       ϕ​​i​ 

r​ ​| ​
​Q​ i​ 

Z​
​ ∈ B} denote 

the set of corresponding cells in i. The strategy ​​       σ​​i​ 
r​ ∈ Δ(​​   

   
 Φ​​i​ 
r
​ ) for Pi is given by

	​​        σ​​i​ 
r​ (B) = ​ ∘    σ​i (i (B))  ∀B  ⊆ ​​    

   
 Φ​​i​ 
r
​.

Next, consider the agent. Given any profile of mechanisms ​       ϕ​ r ∈ ​   
   

 Φ​ r, let Q(​       ϕ​ r ) 
= (Qi(​​       ϕ​​i​ 

r​ ))i∈  ∈ ×i∈ i denote the profile of cells in Γ  such that, for any i ∈ , 
the cell Qi(​​       ϕ​​i​ 

r​) is such that Zθ (δ−i; Qi(​​       ϕ​​i​ 
r​)) = ​​       ϕ​​i​ 

r​ (δ−i, θ) for any (θ, δ−i) ∈ Θ × −i. 
Now, let ​​       σ​​A​ r

 ​ be any truthful strategy that implements the same distribution over  
× E as ​ ∘    σ​A given Q(ϕ r ). That is, for any (θ, ​       ϕ​ r ) ∈ Θ × ​   

   
 Φ​ r,

 ​ ρ​​​       σ​​A​ r
 ​​(θ, ​       ϕ​ r ) = ​ρ​σA​(θ, Q(​       ϕ​ r )) ≡ ​∫ ​Φ​1​ 

M​​ 

 

  ​   ⋯​ ​∫ 
​Φ​n​ 

M​
​ 

 

  ​  ​ρ​
​σ​ A​ M​

​​ (θ, ϕ M )d​σ​1​ 
 M​(​ϕ​1​ 

 M​ | Q1(​​       ϕ​​1​ 
r
 ​ )) 

	 × ⋯ × d​σ​n​ 
 M​(​ϕ​n​ 

 M​ | Qn(​​       ϕ​​n​ 
r
 ​ )).

The strategy ​​       σ​​A​ r
 ​ is clearly sequentially rational for A. Furthermore, given ​​       σ​​A​ r

 ​, the 
strategy profile (​​       σ​​i​ 

r​ )i∈ is an equilibrium for the game among the principals. We 
conclude that ​       σ​ r = (​​       σ​​A​ r

 ​, (​​       σ​​i​ 
r​ )i∈) is an equilibrium for ​   

   
 Γ​ r and sustains the same out-

comes as σM in ΓM.

Part 2: We now prove the converse. Given an equilibrium ​       σ​ r of ​   
   

 Γ​ r that sustains 
the SCF π, there exists an equilibrium σ M of ΓM that sustains the same SCF.

For any i ∈ , let αi : ​​    
   

 Φ​​i​ 
r
​ → ​Φ​i​ 

 M​ denote the injective mapping defined by the 
relation
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	 Im(αi(​​       ϕ​​i​ 
r​ ))  =  Im(​​       ϕ​​i​ 

r​)  ∀​​       ϕ​​i​ 
r​  ∈ ​​    

   
 Φ​​i​ 
r
​

and αi (​​   
   

 Φ​​i​ 
r
​) ⊂ ​Φ​i​ 

 M​ denote the range of αi (·). For any ​ϕ​i​ 
 M​ ∈ αi (​​   

   
 Φ​​i​ 
r
​), then let ​α​i​ 

−1​(​ϕ​i​ 
 M​ ) 

denote the unique revelation mechanism such that Im(​​       ϕ​​i​ 
r​ ) = Im(​ϕ​i​ 

 M​ ).
Now, consider the following strategy for the agent in ΓM. For any ϕ M such that, for all

i ∈ , ​ ϕ​i​ 
 M​ ∈ αi (​​   

   
 Φ​​i​ 
r
​ ), let ​ σ​A​  M​  be such that ​ ρ​​σ​A​  M​

​ (θ, ϕ M ) = ​ ρ​​​       σ​​A ​  r
 ​​ (θ, α−1(ϕ M )),

where α−1(ϕ M ) ≡ (​α​i​ 
−1​(​ϕ​i​ 

 M​)​)​i=1​ 
n
  ​. If, instead, ϕ M is such that ​ ϕ​j​ 

 M​ ∈ αj (​​   
   

 Φ​​j​ 
r
​ ) for all 

j ≠ i, while for i, ​ϕ​i​ 
 M​ ∉ αi(​​   

   
 Φ​​i​ 
r
​ ), then let ​σ​A​  M​ be such that ​ρ​

​σ​A​  M​
​ (θ, ϕ M ) = ​ρ​​​       σ​​A​  r ​​(θ, ​​       ϕ​​i​ 

r​, 
(​α​j​ 

−1​(​ϕ​j​ 
 M​ ))j≠i ) where ​​       ϕ​​i​ 

r​ is any revelation mechanism that satisfies

	​​        ϕ​​i​ 
r​ (θ, δ−i )  =  Zθ (δ−i; ​ϕ​i​ 

 M​ )  ∀ (θ, δ−i )  ∈  Θ  ×  −i.

Finally, for any ϕ M such that | { j ∈  : ​ϕ​j​ 
 M​ ∉ αj (​​   

   
 Φ​​j​ 
r
​ )}| > 1, simply let ​σ​A​  M​ (θ, ϕ M ) be 

any sequentially rational response for the agent given (θ, ϕ M ). It immediately fol-
lows that the strategy ​σ​A​  M​ constitutes a continuation equilibrium for Γ M.

Now, consider the following strategy profile for the principals. For any i ∈ , 
let ​σ​i​ 

 M​ = αi (​​       σ​​i​ 
r​ ), where αi (​​       σ​​i​ 

r​ ) denotes the randomization over ​Φ​i​ 
 M​ obtained from 

the strategy ​​        σ​​i​ 
r​ using the mapping αi. Formally, for any measurable set B ⊆ ​Φ​i​ 

 M​,
​σ​i​ 

 M​(B) = ​​       σ​​i​ 
r​ ({​​       ϕ​​i​ 

r​ : αi (​​       ϕ​​i​ 
r​ ) ∈ B }). It is easy to see that any principal Pi, who expects 

the agent to follow the strategy ​σ​A​ 
 M​ and any other principal Pj to follow the strategy ​

σ​j​ 
 M​ = αj (​​       σ​​j​ 

r​ ), cannot do better than following the strategy ​σ​i​ 
 M​ = αi (​​       σ​​i​ 

r​ ). We con-
clude that σM is an equilibrium of ΓM and sustains the same SCF π as ​       σ​ r in ​   

   
 Γ​ r.
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