
Online Appendix
to Persistent Private Information Revisited

Appendices C–K present technical proofs and secondary results omitted from the main
paper. Most of this material is presented in the same order that it is mentioned in the
main text; Appendix K collects auxiliary mathematical facts.

C. Facts about AC Change-of-Measure

Following PPI (p. 1239) and Karatzas and Shreve (1998, p. 59), we view P˚ and Pm as
probability measures on the space Cr0,8q of continuous paths. There exists a density
process �m

t ” dPm
t {dP˚

t i� m P MLAC. By Karatzas and Shreve (1998, p. 191): (a) �m

is a continuous P˚-local martingale and can be expressed as1

�m
t ” exp

„ª t

0

p�⌧ ` �m⌧ q
�

dW y
⌧ ´ 1

2

ª t

0

p�⌧ ` �m⌧ q2
�2

d⌧

⇢
,

where W y is a standard Brownian motion under P˚;2 (b) m P MLAC i� �m is a P˚-
martingale; and (c) m P MGAC i� �m is a uniformly integrable (UI) P˚-martingale, in
which case there exists an infinite-horizon density �m

8 :“ dPm {dP˚ and �m
t Ñ �m

8
P˚-a.s. These facts imply that the strategies constructed in the proofs of Observations
1–2 are in the claimed feasible sets. Furthermore, as claimed in Sections 2.2 and 4.2:

Fact 3. The following hold:
(i) If � ° 0, every m P MGAC

§ satisfies mt ” 0.
(ii) MGAC

: Ñ MLAC
: X Mr

: for all : P t§,´u and r ° 0.

Proof. Part (i): Suppose there exists m P MGAC
§ ztm˚ ” 0u. Then �m

t ” exppXt ´
1
2 xXytq is a UI P˚-martingale, where Xt :“

≥t
0

p�⌧`�m⌧ q
� dW y

⌧ is a martingale and xXyt “≥t
0

p�⌧`�m⌧ q2
�2 d⌧ is its quadratic variation. On the event tm ı 0u, we have limtÑ8 xXyt “

8 because m is nonincreasing. Thus, there exists a time-changed Brownian motion B

such that Xt “ BxXyt (see Theorem 4.6 and Problem 4.7 in Karatzas and Shreve (1998,
Ch. 3)). The SLLN for Brownian motion implies that limtÑ8 Xt{ xXyt “ 0, so on the
event tm ı 0u we have �m

8 “ limtÑ8 exp
“
xXyt

`
Xt{ xXyt ´ 1

2

˘‰
“ 0. Hence, �m

8 ¨ 1 on
C pr0,8qq and therefore Pm pC pr0,8qqq † 1, a contradiction.
Part (ii): Trivially, MGAC

: Ñ MLAC
: . The inclusions MGAC

: Ñ Mr
: follow from y being a P˚-

OU process, Lemma K.3(iii) in Appendix K, and the definitions [GAC] and [NP-m].

1This formula presumes that
≥t
0

p�⌧ `�m⌧ q
� dW y

⌧ is well-defined (e.g., � ` �m P L2
loc).

2As in Section 3, dW y
t :“ 1

� rdyt ´ pµ ´ �ytqdts, which is a P˚-Brownian motion by definition
of P˚. When using the “weak formulation” of the agent’s reporting problem to conduct change-of-
measure (see CvitaniÊ and Zhang (2012)), PPI denotes W y by W˚ and the process W that drives b by
W�

t ” W˚
t ´ ≥t

0

`
�⌧ `�m⌧

�

˘
d⌧ . We maintain the (equivalent) notation W y and W for simplicity.
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D. PPI’s Su�icient Conditions for IC

Theorem 4.1 in §4 of PPI presents su�cient conditions under which the first-order
approach from §3 is valid in the finite-horizon setting from §2. That is, fixing a finite
horizon r0, T s, PPI’s Theorem 4.1 o�ers conditions under which we can conclude that a
given contract is IC, assuming that (i) the agent’s feasible set consists of all reporting
strategies satisfying IML and finite-horizon AC change-of-measure (Pm

T ! P˚
T ), and (ii)

the contract satisfies the equation [A.1] for q, the downward FO-IC condition �t ` pt • 0

(cf. Footnote 57), and the equation [J.3] for p (see also pp. 1244-45 in PPI). These
conditions take the form of inequalities (displays (17) and (18) on p. 1247) to be satisfied
by the y-adapted process Q “ pQtqtPr0,T s controlling the volatility of p in [J.3].

Issue 1: The proof of Theorem 4.1 requires IML. PPI presents the proof of Theorem
4.1 in §A.2 (pp. 1265-69). Three key steps of the proof rely on IML and would not go
through as stated under NHB alone.

(a) On p. 1267, PPI writes: “when Qt § 0, then we have both Qtm2
t § 0 and Qtmt�t § 0.”

The final inequality requires that mt�t • 0, which is implied by IML but can fail
under NHB (which permits mt † 0 † �t).

(b) Later on p. 1267, PPI writes: “Thus the optimality condition for truthtelling (�t “ 0)
is Qtmt ` ⇠t • 0,” where the inequality appears as display (A.9) and ⇠ is a co-
state process in the agent’s reporting problem. Direct inspection reveals that PPI’s
derivation of the inequality (A.9) from the preceding display (A.8) requires the IML
constraint �t § 0. Without IML, to conclude that setting �t “ 0 in (A.8) is optimal
for the agent, one would need to strengthen (A.9) to the equality Qtmt ` ⇠t “ 0.
Furthermore, truthful reporting corresponds to mt “ 0 rather than �t “ 0; without
IML, under many FO-IC contracts—including all DR-SICs—the agent will find it
optimal to set�t “ `8 in (A.8) whenmt † 0 (see Sections 6 and 7.3 and Appendix I).

(c) The final two displays on p. 1268 and the first display on p. 1269 invoke the inequality
version of (A.9), and therefore also require IML. Without IML but maintaining the
equality version of (A.9) and PPI’s hypothesis that m⌧ “ mt for all ⌧ • t (middle
of p. 1268), the final two displays on p. 1268, in particular (A.10), would need to
hold as equalities. This is problematic because the inequality at the top of p. 1269,
which yields (17) in the statement of Theorem 4.1, is not su�cient to ensure that the
equality version of (A.10) holds. Furthermore, as noted in Point (b) above, without
IML the equality version of (A.9) and the hypothesis that m⌧ “ mt for all ⌧ • t are
both too demanding, so a di�erent argument would be needed even if the equality
version of (A.10) could be addressed.

In summary, the proof of Theorem 4.1 would not go through as stated if IML were
weakened to NHB. We do not know whether the statement of Theorem 4.1 would remain
valid, but conjecture that it would not.
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Issue 2: The application of Theorem 4.1 to Contract PPI is incomplete. In §A.3.2
(p. 1271), PPI attempts to apply Theorem 4.1 to prove that Contract PPI is MLAC

§ -IC
when � ° 0. This conclusion is false (Observation 2). There are two issues with PPI’s
argument:

(a) Theorem 4.1 pertains to the finite-horizon model, while Contract PPI arises in the
infinite-horizon model. PPI attempts to apply an infinite-horizon variant of Theorem
4.1 in which the key inequalities for the Q process (displays (17) and (18) on p. 1247)
are modified by replacing the terminal time T † 8 with T “ 8 wherever the former
appears. PPI does not formally state or prove such a variant of Theorem 4.1.

(b) The proof of Theorem 4.1, as stated, does not extend to the infinite-horizon model
unless a su�ciently tight lower bound is imposed on the agent’s misreports. In
particular, it does not extend when the agent’s infinite-horizon feasible set is MLAC

§ .
To illustrate, we specialize to Contract PPI in the hidden endowment model. Following
PPI’s derivation of (A.4) on p. 1265, the agent’s lifetime utility gain V pmq ´ q0 from
using strategy m instead of truthfully reporting is

V pmq ´ q0 “ Em0
„ª T

0

e´⇢t rupct ´ mtq ´ upctqs dt `
ª T

0

e´⇢t�tdW
y
t

⇢

` e´⇢T Em0
„ª 8

T

e´⇢pt´T qupct ´ mtqdt ´ qT

⇢
,

[D.1]

where [D.1] is an accounting identity that holds for all T ° 0.3 For a given T ° 0,
if the strategy m satisfies mt “ mT for all t • T , then by the same logic as PPI’s
(A.5) on p. 1266, the second line of [D.1] is bounded above by e´⇢T Em0 rpTmT s.4 This
yields the overall bound: for all T ° 0,

[D.2] V pmq ´ q0 § Kps,m, T q ` e´⇢T Em0 rpTmT s ,

where Kps,m, T q denotes the first expectation in [D.1]. After using PPI’s (A.4) to
substitute out e´⇢TpTmT , [D.2] reduces to PPI’s (A.6), which is the basis for the rest
of PPI’s (finite-horizon) proof of Theorem 4.1. To adapt those later proof steps to
derive the infinite-horizon variant of Theorem 4.1 that PPI applies to Contract PPI
(viz., the infinite-horizon variant of (17) invoked on p. 1271), one must consider the

3[D.1] is the same as PPI’s (A.4), specialized to the hidden endowment model and with time-T
continuation payo�s in place of time-T terminal payo�s. As noted in Footnote 2, our W y is PPI’s W˚.

4PPI’s (A.5) concerns pTmT at the terminal time T . With an infinite horizon, let
UT pmT q :“ EmT

T

“≥8
T e´⇢pt´T qupct ´ mT qdt

‰
denote the agent’s time-T continuation pay-

o� under the continuation strategy mt ” mT . Then UT p¨q is smooth and concave, with
U 1pmT q “ ´EmT

T

“≥8
T e´p⇢`�qpt´T qu1pct ´ mT qdt

‰
. Concavity yields UT pmT q ´ UT p0q § mTU 1

T p0q and
[3.1]–[3.2] imply that UT p0q “ qT and U 1

T p0q “ pT . Taking expectations yields the desired upper bound.
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T Ñ 8 limit of [D.2]. This adaptation is meaningful only if5

[D.3] lim
TÑ8

e´⇢T Em0 rpTmT s † 8,

for otherwise subsequent calculations would involve expectations that are either
infinite or ill-defined. However, there exist strategies in MLAC

§ that violate [D.3]. In
particular, any deterministic strategy m P MLAC

§ that, for some fixed time T̂ ° 0,
satisfies mt “ M † M :“ ´p⇢ ` �q{p✓�q for all t • T̂ violates [D.3].6 To see this,
recall that pt ” k˚

0qt under Contract PPI (where k˚
0 “ ⇢✓

⇢`�), and use [3.3] and the
identity W y

t ” Wt `
≥t
0

`
�m⌧`�⌧

�

˘
d⌧ to write

pTmT “ k˚
0q

˚
TmT exp

„
´k˚

0

ˆ
mT ` �

ª T

0

mtdt

˙⇢
,

where q˚
T :“ q0 exp

`
´1

2pk˚
0�q2T ´ k˚

0�WT

˘
is promised utility under truthful report-

ing. Thus, we have

lim
TÑ8

e´⇢T Em0 rpTmT s “ p0M ¨ lim
TÑ8

exp

«
´⇢T ´ k˚

0

˜
M ` �MpT ´ T̂ q ` �

ª T̂

0

mtdt

¸�

“ p0Me
k˚
0

´
�MpT̂´1q´�

≥T̂
0 mtdt

¯

¨ lim
TÑ8

exp r´T ¨ p⇢ ` k˚
0�Mqs

“ 8,

where the first equality uses the facts that (a) m is deterministic and satisfies mt “ M

for all t • T̂ and (b) Em0 rk˚
0q

˚
T s “ k˚

0q0 “ p0 because q˚ is a martingale, and the
last equality uses the fact that M † M implies ⇢ ` k˚

0�M † 0. We conclude that
PPI’s argument for the infinite-horizon variant of Theorem 4.1 requires the additional
constraint that mt • M for all t • 0.

E. Proof of Lemma �.�

Note that ĉ satisfies [5.2] and [NP-A] i� it satisfies the intertemporal constraint
ª 8

0

e´rtĉt dt §
ª 8

0

e´rtbt dt ` A0 P-a.s.[E.1]

Given any ⇠ P R, [E.1] implies the following properties: (i) ĉ P ApA0, b0q i� ĉ ` r⇠ P
ApA0 ` ⇠, b0q, and (ii) ApA0, b0 ` ⇠q “ ApA0 ` ⇠{pr ` �q, b0q. Property (i) is immediate.

5IML implies pTmT ° 0 for all T • 0.
6One such strategy is mt ” maxtM,Mt{T̂ u; all such strategies, being eventually constant, satisfy the

hypothesis used above to derive [D.2] from [D.1]. Also, note the parallel to Section 4.2: M is the same
constant defined below [4.1] and the strategies considered here violate [TVC].

OA–4



Property (ii) follows from inserting the closed-form solution for bt (see Footnote 10)
into [E.1]. Using these facts, we can characterize the agent’s value function V SI from
[5.1] up to a parameter, � P R, to be determined later.

Lemma E.1. Let ⇠ P R. The value function V SI : R2 Ñ R´´ satisfies:
(i) V SIpA0 ` ⇠, b0q “ e´✓r⇠V SIpA0, b0q.
(ii) V SIpA0, b0 ` ⇠q “ e´fpr;�q⇠V SIpA0, b0q.
(iii) V SIpA0, b0q “ ´ exp

`
´ ✓rpA0 ` b0{pr ` �q ` �q

˘
, where ´e´✓r� :“ V SIp0, 0q.

Proof. Fix pA0, b0q P R2. Note that V SIpA0, b0q P R´´ is well-defined: V SIpA0, b0q † 0

because up¨q † 0 and [E.1] renders infeasible consumption processes approximating
ĉt ” `8, and V SIpA0, b0q ° ´8 because there exist ĉ P ApA0, b0q that deliver finite
lifetime utility to the agent.7 Point (i) follows from property (i) above, point (ii) follows
from property (ii) above and point (i), and point (iii) follows from points (i) and (ii).

Lemma E.1(iii) implies that V SI P C8pR2q. Thus, letting pAt, btq denote a generic state,
standard arguments imply that V SI is a classical solution to the HJB equation8

⇢V SIpAt, btq “ sup
ctPR

“
upctq ` prAt ` bt ´ ctqV SI

A pAt, btq
‰

` pµ ´ �btqV SI
b pAt, btq ` 1

2�
2V SI

bb pAt, btq.
[E.2]

This allows us to determine � and the optimal (Markovian) control.

Lemma E.2. The following hold:
(i) The parameter � P R from Lemma E.1(iii) is

� “ µ

rp� ` rq ` logprq
r✓

´
«
r ´ ⇢

✓r2
` 1

2

pfpr;�q�q2
✓r2

�
.[E.3]

(ii) The supremum in [E.2] at state pAt, btq is uniquely attained by

ĈpAt, btq :“ rAt ` r

� ` r
bt ` µ

� ` r
´

«
r ´ ⇢

✓r
` 1

2

pfpr;�q�q2
✓r

�
.[E.4]

(iii) At every state pAt, btq, we have upĈpAt, btqq “ rV SIpAt, btq.

Proof. The FOC for [E.2] in state pAt, btq is u1pctq “ V SI
A pAt, btq. Because u is exponential

7For one example, see the consumption process [5.3] constructed below.
8For instance, see Yong and Zhou (1999, Theorem 3.3) or Touzi (2018, Propositions 2.4-2.5).
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and V SI satisfies Lemma E.1(iii), it follows that upctq “ rV SIpAt, btq. Equivalently,

ct “ rAt ` r

� ` r
bt ` r� ´ log r

✓
.[E.5]

Substituting [E.5] into [E.2] and solving for � yields [E.3], hence point (i). Substituting
[E.3] into [E.5] yields [E.4], hence point (ii). Point (iii) follows from the above observation
that upctq “ rV SIpAt, btq and point (ii).

Next, plugging [E.5] into the flow constraint [5.2] yields the following:

Lemma E.3. Define the asset process A˚ by

dA˚
t “

ˆ
r ´ ⇢

✓r
` 1

2

�2fpr;�q2
✓r

` �bt ´ µ

� ` r

˙
dt.[E.6]

The consumption process ĉ˚ defined by ĉ˚
t :“ ĈpA˚

t , btq satisfies:
(i) Its induced asset process Aĉ˚ satisfies Aĉ˚ “ A˚.
(ii) It evolves as

dĉ˚
t “

ˆ
r ´ ⇢ ` �2fpr;�q2{2

✓

˙
dt ` �fpr;�q

✓
dWt[E.7]

(iii) It is feasible, i.e., is b-adapted and satisfies [5.2] and [NP-A].

Proof. Point (i) follows from plugging ĉ˚
t “ ĈpA˚

t , btq into [5.2]. Point (ii) follows from
noting that dĉ˚

t “ r dA˚
t ` r

pr`�q dbt and plugging in [E.6] and [2.1]. For point (iii), only
[NP-A] is nontrivial. Writing [E.6] in integrated form yields

A˚
t “ A0 `

ˆ
r ´ ⇢

✓r
` 1

2

�2fpr;�q2
✓r

´ µ

� ` r

˙
t ` �

� ` r

ª t

0

b⌧ d⌧.[E.8]

When � “ 0, A˚ is deterministic and a�ne in t, so limtÑ8 e´↵tA˚
t “ 0 for every ↵ ° 0.

When � ° 0, the same conclusion holds because limtÑ8 e´↵t
≥t
0 b⌧ d⌧ “ 0 for all ↵ ° 0

by Lemma K.3(iii) in Appendix K.

Lemmas E.2 and E.3 immediately yield:

Corollary E.4. The strategy ĉ˚ from Lemma E.3 satisfies upĉ˚
t q ” rV SIpAĉ˚

t , btq.

The next two lemmas are useful technical facts:

Lemma E.5. Under ĉ˚ from Lemma E.3, epr´⇢qtu1pĉ˚
t q, epr´⇢qtupĉ˚

t q, and epr´⇢qtV SIpA˚
t , btq

are martingales.
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Proof. Note that epr´⇢qtupĉ˚
t q “ ´e´✓ĉ˚

0 exp
`
´1

2�
2pfpr;�qq2 ´ �fpr;�qWt

˘
is a martin-

gale, u1pcq “ ´✓upcq by CARA, and V SIpA˚
t , btq “ 1

rupĉ˚
t q by Corollary E.4.

Lemma E.6. Under A˚ from [E.6], Mt :“
≥t
0 e

´⇢⌧V SI
b pA˚

⌧ , b⌧ q� dW⌧ is a martingale.

Proof. It su�ces to show E0
”≥T

0

`
e´⇢tV SI

b pA˚
t , btq�

˘2
dt

ı
† 8 for all T ° 0. Lemma E.1(iii)

implies that V SI
b pA˚

t , btq ” p´r✓q
r`� V SIpA˚

t , btq and Lemma E.2(i) implies that upĉ˚
t q “

rV SIpA˚
t , btq. Thus, by Fubini’s Theorem, it su�ces to show that

≥T
0 e´2⇢t E0 rupĉ˚

t q2s dt †
8. To that end, Lemma E.3(ii) implies that

upĉ˚
t q2 “ expp´2✓ĉ˚

0q expp´2pr ´ ⇢qt ` �2f 2pr;�qtq expp´2�2f 2pr;�qt ´ 2�fpr;�qWtq.

Because expp´2�2f 2pr;�qt ´ 2�fpr;�qWtq is a martingale, we have e´2⇢t E0 rupĉ˚
t q2s “

expp´2✓ĉ˚
0q expp´2rt ` �2f 2pr;�qtq. Thus,

≥T
0 e´2⇢t E0 rupĉ˚

t q2s dt † 8, as desired.

We now are in a position to prove Lemma 5.1 itself:

Proof of Lemma 5.1. We show that, given initial condition pA0, b0q, the strategy ĉ˚ from
Lemma E.3 attains lifetime utility V SIpA0, b0q. The Itô expansion of e´⇢tV SIpA˚

t , btq is

e´⇢TV SIpA˚
t , btq “ V SIpA0, b0q `

ª T

0

e´⇢t
“
L

ĉ˚
V SIpA˚

t , btq ´ ⇢V SIpA˚
t , btq

‰
dt

`
ª T

0

e´⇢tV SI
b pA˚

t , btq� dWt,

[E.9]

where for any v P C2pR2q, we let Lĉ˚
vpA, bq :“ prA ` b ´ ĉ˚qBAvpA, bq ` �pµ{� ´

bqBbvpA, bq ` 1
2�

2BbbvpA, bq. Lemma E.2(ii) implies that Lĉ˚
V SIpA˚

t , btq ´ ⇢V SIpA˚
t , btq “

´upĉ˚
t q. Substituting this into [E.9] and applying Lemma E.6 yields

V SIpA0, b0q “ E0
„ª T

0

e´⇢tupĉ˚
t q dt

⇢
` E0

“
e´⇢TV SIpA˚

t , btq
‰
.[E.10]

Lemma E.5 shows that epr´⇢qtV SIpA˚
t , btq is a martingale. Therefore,

E0
“
e´⇢TV SIpA˚

t , btq
‰

“ e´rT E0
“
epr´⇢qTV SIpA˚

t , btq
‰

“ e´rTV SIpA0, b0q,

so that letting T Ñ 8 in [E.10] yields V SIpA0, b0q “ E0
“≥8

0 e´⇢tupĉ˚
t q dt

‰
, as desired.
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F. Proof of Lemma �.�

We must calculate A0´E0r
≥8
0 e´⇢tp⇢´rqA˚

t dts, where A0 :“ A0pb0, q0, rq and the process
A˚ is from [E.6]. We claim that

A0 ´ p⇢ ´ rq
ª 8

0

e´⇢tA˚
t dt “ ⇧̂pb0, q0, rq ` pr ´ ⇢q��

⇢pr ` �qp⇢ ` �q

ª 8

0

e´⇢t dWt,[F.1]

where ⇧̂pb0, q0, rq denotes the expression for ⇧pb0, q0, rq on the RHS of the first line
of [5.12]. To see this, note that

≥8
0 e´⇢tA˚

t dt “ A0
⇢ ` 1

⇢

≥8
0 e´⇢t dA˚

t because dpe´⇢tA˚
t q “

´⇢e´⇢tA˚
t dt`e´⇢t dA˚

t and, by (the proof of) Lemma E.3, limTÑ8 e´⇢TA˚
T “ 0. Plugging

in [E.6], the expression for
≥8
0 e´⇢tbt dt in Lemma K.4, and simplifying yields [F.1]. A

similar calculation yields

A0 ´ p⇢ ´ rq
ª 8

0

e´⇢tA˚
t dt “

ª 8

0

e´⇢tpĉ˚
t ´ btq dt.[F.2]

Taking expectations in [F.1]–[F.2] and noting that E0r
≥8
0 e´⇢t dWts “ 0 yields [5.12].9

G. Further Properties of SI Contracts

This appendix develops the properties of SI Contract described in Section 5.4.

Stationarity & State-Consistency. We say that a (direct-revelation) contract is Sta-
tionary if (i) it is FO-IC and (ii) kt :“ pt{qt ” k0 for some constant k0 ° 0. Strulovici
(2022) defines the class of “state-consistent” renegotiation-proof contracts; Theorem 1
therein states, in our terminology, that a contract is state-consistent i� it is Stationary.

Lemma G.1. Suppose that � ° 0. A contract is Stationary with constant k0 ° 0 if and
only if it is a DR-SIC with rate r ° 0 such that k0 “ fpr;�q.

Proof. For the“if” direction, note that under a DR-SIC with rate r ° 0, the agent’s
promised utility satisfies qt ” V SIpAv

t , ytq (where V SI is defined in [5.10]) and hence

[G.1] dqt “ p⇢ ´ rqqtdt ´ fpr;�qqt�dW y
t .

Furthermore, the Euler equation [5.7] and fact that u1pcq “ ´✓upcq imply pt ” fpr;�qqt.
Thus, the contract satisfies [FO-IC] and kt ” fpr;�q. For the “only if” direction, fix a
Stationary contract with k0 ° 0. By [A.1] and [FO-IC], promised utility satisfies

[G.2] dqt “ p⇢qt ´ utqdt ´ k0qt�dW
y
t .

9The process Mt :“
≥t
0 e

´r⌧ dW⌧ is a uniformly integrable martingale because
≥8
0 pe´↵⌧ q2 d⌧ † 8

(see Exercise 5.24 of Karatzas and Shreve (1998, p. 38)). Thus, E0r≥8
0 e´↵t dWts “ M0 “ 0.
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Comparing [G.1]–[G.2], it su�ces to show that ut ” rpk0;�qqt, where rpk0;�q :“ �k0
✓´k0

is
the inverse of k0prq :“ fpr;�q. By the Martingale Representation Theorem, marginal
promised utility [3.2] satisfies

[G.3] dpt “ rp⇢ ` �qpt ´ ✓uts dt ` Qt�dW
y
t

for some y-adapted process Q. By the Stationarity hypothesis (that pt ” k0qt) and the
unique decomposition property for Itô processes, the drift (volatility) of p in [G.3] must
a.e. equal k0 times the drift (volatility) of q in [G.2]. Equating the drifts and using the
identity pt ” k0qt yields ut ” rpk0;�qqt, as desired.

Long-Run Properties. Under an SI Contract, we say that the agent converges to
misery if ut, Vt Ñ ´8 P-a.s. and say that he converges to bliss if ut, Vt Ñ 0 P-a.s., where
ut :“ upĉ˚

t q and Vt :“ V SIpAĉ˚
t , btq.

Theorem 3. Under the optimal SI Contract, the following hold:
(i) For each � ° 0, there exists a �p�q ° 0 such that the agent converges to misery if

� ° �p�q and to bliss if � P r0,�p�qq.10
(ii) For each � ° 0, there exists a �p�q • 0 such that the agent converges to misery if

� ° �p�q and to bliss if � P p0, �p�qq. Furthermore, �p�q “ 0 if and only if � • ⇢.

By Lemma 5.3, the principal’s optimization over SI Contracts can be written as

inf
r°0

„
´ logprq

✓⇢
` r ´ ⇢ ` �2fpr;�q2{2

✓⇢2

⇢
.[G.4]

Let p�, �q fiÑ r˚p�, �q denote an arbitrary selection from the argmin correspondence of
[G.4], which is nonempty. Let k˚p�, �q :“ f pr˚p�, �q,�q. We require two lemmas.

Lemma G.2. Under the optimal SI Contract:
(i) For each � ° 0, k˚p¨, �q is strictly decreasing, with lim�Ñ0 k˚p�, �q “ k˚p0, �q “ ✓

and lim�Ñ8 k˚p�, �q “ 0.
(ii) For each � ° 0, k˚p�, ¨q is strictly decreasing, with lim�Ñ0 k˚p�, �q “ fp⇢;�q and

lim�Ñ8 k˚p�, �q “ 0.

Proof. Point (i): Let � ° 0 be given. For each � ° 0, let rpk0;�q :“ �k0
✓´k0

denote the
inverse of k0prq :“ fpr;�q. Changing variables in [G.4] from r to k and noting that

B2

BkB�rpk;�q ° 0, Edlin and Shannon (1998, Theorem 1) (for minimization problems)
implies that k˚p¨, �q is strictly decreasing. Next, recall from the proof of Theorem 1
that r˚p�, �q satisfies the FOC [5.14] and 0 † r˚p�, �q § ⇢ for all � • 0. (Furthermore,

10For � “ �p�q, ut and Vt are transient, with lim inftÑ8 ut, Vt “ ´8 and lim suptÑ8 ut, Vt “ 0.
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r˚p0, �q “ ⇢, which yields k˚p0, �q “ ✓.) Multiplying [5.14] through by ⇢r˚p�, ✓q ° 0 and
rearranging yields

⇢ “ r˚p�, �q ` �2 ¨ �✓2r˚p�, �q2
pr˚p�, �q ` �q3

.[G.5]

Because r˚p¨, �q is bounded, the second term in [G.5] goes to 0 as � Ñ 8. This implies
lim�Ñ8 r˚p�, �q “ ⇢, and hence lim�Ñ8 k˚p�, �q “ lim�Ñ8 fp⇢;�q “ 0. Finally, we show
that lim�Ñ0 r˚p�, �q “ ⇢, which implies lim�Ñ0 k˚p�, �q “ lim�Ñ0 fp⇢;�q “ ✓. To this
end, notice that r :“ lim inf�Ñ0 r˚p�, �q ° 0 (if not, [G.4] would explode as � Ñ 0,
contradicting the finite upper bound from setting r “ ⇢). Consequently, we have

0 § lim inf
�Ñ0

�✓2r˚p�, �q2
pr˚p�, �q ` �q3

§ lim sup
�Ñ0

�✓2r˚p�, �q2
pr˚p�, �q ` �q3

§ lim sup
�Ñ0

�✓2r˚p�, �q2
r3

“ 0,

where the equality uses r˚p¨, �q § ⇢. Display [G.5] then yields lim�Ñ0 r˚p�, �q “ ⇢.
Point (ii): Let � ° 0 be given. Because B2

BrB� r�2fpr;�qs ° 0, Edlin and Shannon (1998,
Theorem 1) (for minimization problems) applied to [G.4] implies that r˚p�, ¨q is strictly
decreasing, which further implies that k˚p�, ¨q is strictly decreasing. The limit properties
follow from calculations similar to those in point (i) above, which are omitted.

Lemma G.3. Let D˚ : R` ˆ R`` Ñ R be defined by

D˚p�, �q :“ r˚p�, �q ´ ⇢ ` �2

2
f pr˚p�, �q;�q2 .[G.6]

Under the optimal SI Contract, the following hold:
(i) If D˚p�, �q ° 0, then ĉ˚

t Ñ 8 and Vt, ut Ñ 0 P-a.s.
(ii) If D˚p�, �q † 0, then ĉ˚

t Ñ ´8 and Vt, ut Ñ ´8 P-a.s.

Proof. By [5.3], ĉ˚ is a Brownian motion with drift D˚p�, �q{✓. The long-run properties
of ĉ˚ thus follow from the SLLN for Brownian motion (Lemma K.1 in Appendix K). The
long-run properties of ut and Vt then follow from CARA utility, [5.8], and the Continuous
Mapping Theorem.

Proof of Theorem 3. Recall from the proof of Theorem 1 that r˚p�, �q satisfies the FOC
[5.14], which as noted above is equivalent to [G.5]. Plugging [G.5] into [G.6] yields

D˚p�, �q “ �2f pr˚p�, �q;�q2
° 0

¨
„
1

2
´ �

r˚p�, �q ` �

⇢
.[G.7]
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It follows from [G.7] that

D˚p�, �q ° 0 ñ r˚p�, �q ° � ñ k˚p�, �q ° ✓{2,[G.8]

D˚p�, �q † 0 ñ r˚p�, �q † � ñ k˚p�, �q † ✓{2.[G.9]

Point (i): Let � ° 0 be given. By Lemma G.2(i), there exists a unique �p�q ° 0 such that
k˚p�, �q ° ✓{2 i� � P

“
0,�p�q

˘
and k˚p�, �q † ✓{2 i� � ° �p�q. The result then follows

from [G.8]–[G.9] and Lemma G.3.
Point (ii): Let � ° 0 be given. By Lemma G.2(ii), there exists a unique �p�q • 0 such
that k˚p�, �q ° ✓{2 i� � P p0, �p�qq and k˚p�, �q † ✓{2 i� � ° �p�q. Furthermore,
lim�Ñ0 k˚p�, �q “ fp⇢;�q, and fp⇢;�q ° ✓{2 i� ⇢ ° �. Thus, �p�q ° 0 i� ⇢ ° �. The
result then follows from [G.8]–[G.9] and Lemma G.3.

H. Hidden Savings

In this appendix, we consider the hidden savings variant of PPI’s hidden endowment
model in which (a) the agent can directly self-insure via the market at rate ⇢, and (b)
both the agent’s endowment and trading activity are his private information (as in Allen
1985 and Cole and Kocherlakota 2001).

Given a contract s (as in Section 2.1) and a feasible set of (extended) misreporting
strategies F Ñ Mext (as in Section 6.1), the agent chooses an m P F and a b-adapted
consumption strategy ĉ subject to the constraint that the induced b-adapted asset process
Am,ĉ solves the equation

Am,ĉ
t “

`
⇢Am,ĉ

t ` bt ` st ´ ĉt
˘
dt

and satisfies the no Ponzi condition [NP-A] at the market rate r “ ⇢. The agent’s joint
strategy pm, ĉq is optimal given contract s if it maximizes his lifetime utility from the
consumption process ĉ among all strategies satisfying the above constraints.

A contract is F -HS-IC if it makes truthful reporting—i.e., some joint strategy
pm˚ ” 0, ĉq—optimal for the agent.11 It is F -NS-IC it makes truthful reporting and no
savings—i.e., the joint strategy pm˚ ” 0, ĉ “ s ` bq—optimal for the agent. It is NS-FO-
IC if (i) it is FO-IC and (ii) conditional on truthful reporting, the consumption process
ĉ “ s ` y satisfies the agent’s Euler equation [5.7] at rate r “ ⇢. Intuitively, properties
(i)–(ii) defining NS-FO-IC contracts are the infinitesimal optimality conditions implied
by F -NS-IC.12 Finally, Contract PPI is implementable as an F -HS-IC contract if there

11In an analogous discrete-time setting, Doepke and Townsend (2006) show that it is without loss of
generality (in terms of implementable consumption processes and payo�s) to focus on F -HS-IC contracts.

12Cf. Footnotes 56 and 57 for possible technical caveats to this intuition.
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is an F -HS-IC contract under which the agent’s optimal joint strategy pm, ĉq satisfies
m “ m˚ ” 0 (truthful reporting) and ĉ “ c from [3.4] with y “ y˚ “ b (consumption is
the same as that under Contract PPI and truthful reporting). We define implementability
as an F -NS-IC contract in the obvious analogous manner.

Theorem 4. Given any � • 0, Contract PPI satisfies the following properties:
(i) It is the unique (hence, optimal) NS-FO-IC contract.
(ii) It is implementable as an F -HS-IC contract for any F Ñ tm : m is b-adaptedu.

Proof. Point (i): Under any NS-FO-IC contract, the agent’s flow utility ut ” upst ` ytq
and marginal flow utility u1pst ` ytq ” ´✓ut are P˚-martingales. Plugging this into [3.1]–
[3.2] and using Tonelli’s Theorem to interchange the order of integration yields qt ” ut{⇢
and pt ” ✓ut{p⇢ ` �q. The only FO-IC contract with these properties is Contract PPI.
Point (ii): As noted in Section 5.3, Contract PPI can be implemented as an SI Contract
with zero taxes (r “ ⇢); moreover, this can be done with deterministic flow transfers
rather than a lump-sum transfer at t “ 0, per Footnote 36. This implies the present result
because (a) those transfers are independent of the agents’ reports by construction and
(b) from the agent’s perspective, saving via the ambient market is a perfect substitute for
saving via the principal at rate ⇢.

The intuition for Theorem 4(i) is familiar from Allen’s (1985) two-period model. With
hidden savings, the agent only cares about the net present value (NPV) of the contract’s
transfers, so HS-IC requires that the agent receive the same NPV along every path of
reports. Thus, it is as if all transfers were made in lump-sum at time t “ 0, as in the
SI Contract with no taxes (r “ ⇢), which implements Contract PPI. Two aspects of
Theorem 4(ii) warrant elaboration:
• Theorem 4(ii) states that Contract PPI is implementable even when the agent’s

misreporting strategies are permitted to violate the no Ponzi constraint [NP-m]. This
might seem to contradict Observation 2 and Theorem 2, but it does not. The above
proof shows that, with hidden savings, Contract PPI can be implemented without
communication via determinstic transfers by having the agent save and consume
outside of the contract. In such implementations, the no Ponzi constraint on assets
[NP-A]—which is necessary for the agent’s self-insurance problem to be well-posed—
e�ectively imposes the same restrictions on the agent’s consumption that [NP-m] does
in PPI’s model without hidden savings. This suggests that [NP-m] is needed for PPI’s
model to be well-behaved: without it, we would reach the unreasonable conclusion
that Contract PPI is not IC in the original model (without hidden savings) but is
HS-IC in the hidden savings model, wherein the agent has access to more deviations.

• Theorem 4(ii) does not state that Contract PPI is always implementable as an F -
NS-IC contract. In fact, the obvious adaptation of Observation 2 implies that it is
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not
“
MLAC

§ X Mr
‰
-NS-IC for any r ° ⇢. Again, this suggests that [NP-m] (with an

appropriately chosen rate r) is needed for PPI’s model to be well-behaved: without it,
restricting attention to NS-IC contracts would be with loss of generality, undercutting
a key simplification on which much of the hidden savings literature is based (e.g.,
Cole and Kocherlakota 2001; DeMarzo and Sannikov 2006; He et al. 2017).

I. Incentive Compatibility of DR-SICs without Jump Reports

In this appendix, we consider the following corollary of Theorem 2:

Theorem 5. For any given r ° 0, every DR-SIC pb0, q0, rq is Mr-IC. Per Fact 1, such
contracts are also F -IC for any smaller strategy space F Ñ Mr.

Our goal is to prove Theorem 5 from first principles, without reference to the “extended”
reporting problem from Section 6, and to highlight some subtleties that arise in such an
analysis. We first introduce the requisite definitions, then discuss the relevant subtleties,
and finally present the proof (sketch) of Theorem 5.

Preliminaries. Fix a DR-SIC with rate r ° 0. When the agent’s strategy space is Mr,
she is constrained to misreports with absolutely continuous sample paths, viz., mt ”≥t
0 �⌧d⌧ . Thus, as in PPI, her reporting problem can be viewed as one of stochastic control

with states pAv
t , yt,mtq P R3 and control �t P R. As in Appendix B, V NJpAv

t , yt,mtq
denotes the agent’s value function in this problem.

For a smooth function  P C2pR3q and �t P R, define the infinitesimal generator13

L
�t pAv

t , yt,mtq :“ rµ ´ � ¨ pyt ´ mtq ` �ts ypAv
t , yt,mtq ` �t ¨  mpAv

t , yt,mtq

`
„
Āpr;�q ` �

r ` �
yt

⇢
 ApAv

t , yt,mtq ` �2

2
¨  yypAv

t , yt,mtq,

where Āpr;�q is the constant from [5.5]; define the Hamiltonian

HpAv
t , yt,mt |  q :“ upĈpAv

t , ytq ´ mtq ` sup
�tPR

“
L

�t pAv
t , yt,mtq

‰
,[H]

where ĈpAv
t , ytq is from [5.4]; and define the (“no jump”) HJB equation

[HJB-NJ] ⇢ pAv
t , yt,mtq “ HpAv

t , yt,mt |  q.

The relevant notion of a “solution” to [HJB-NJ] will be that of a supersolution.

Definition I.1. A (continuous) locally bounded function F : R3 Ñ R is:

13We have dmt “ �tdt, dyt “ dbt ` dmt (where dbt satisfies [2.1] and bt ” yt ´ mt), and dAv
t “

rĀpr;�q ` �
r`�ytsdt by [6.1].
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(i) A viscosity supersolution of [HJB-NJ] if

⇢ pAv
t , yt,mtq • HpAv

t , yt,mt |  q[I.1]

for all pAv
t , yt,mtq P R3 and  P C2pR3q such that pAv

t , yt,mtq is a minimizer of F ´ .
(ii) A classical supersolution of [HJB-NJ] if it is a viscosity supersolution and in C2pR3q.
(iii) A classical solution to [HJB-NJ] if it is a classical supersolution and satisfies [I.1] (for

 “ F ) with equality everywhere.

Definition I.1 is standard in the stochastic control literature (e.g., Pham 2009, Ch. 3–4;
Touzi 2018, Ch. 2 and 6). For essentially any (maximization) control problem, if the
value function is locally bounded (but possibly non-smooth), it is necessarily a viscosity
supersolution of the relevant HJB equation (Touzi 2018, Proposition 6.2). If the value
function is also smooth, it is necessarily a classical supersolution of the HJB equation
(Touzi 2018, Proposition 2.4).

Discussion. Generally, even if a value function is smooth, additional regularity con-
ditions on the Hamiltonian are needed to conclude that it is a classical solution, rather
than just a supersolution (Touzi 2018, Proposition 2.5).14 It is known that the requisite
regularity conditions typically fail in settings where the control variable is unbounded
and enters linearly in the infinitesimal generator, as in the present formulation of the
agent’s reporting problem (e.g., Pham 2009, Sec. 3.4.2 and 4.5). In such cases, the value
function only satisfies the HJB equation in the weaker sense of being a supersolution.

To illustrate, recall from Lemma B.1 that, given the agent’s value function V DR P
CpR2q from Section 6.4 in the extended reporting problem (with feasible set Mr

ext), we
can deduce that V NJpAv

t , yt,mtq “ V DRpAv
t , yt ´ mtq, and hence V NJ P CpR3q. This fact

motivates the following observation:

Lemma I.2. The function F pAv
t , yt,mtq :“ V DRpAv

t , yt ´mtq is a classical supersolution
of [HJB-NJ]. However, it is not a classical solution: [I.1] (with  “ F ) holds with equality
at pAv

t , yt,mtq i� mt “ 0.

Proof. By [6.9], we have V DRpAv
t , yt ´ mtq “ V̂ DR exp

“
´✓r

`
Av

t ` bt
r`�

˘‰
for V̂ DR “

´1
r exp

“
✓Āpr;�q

‰
(where Āpr;�q is from [5.5]). Thus, for F defined as above, we have

FA “ ´✓rF , Fy “ FA{pr ` �q, Fm ` Fy “ 0, and Fyy “ ✓2r2F {pr ` �q2. Furthermore,
for each pAv

t , yt,mtq P R3, upĈpAv
t , ytq ´ mtq “ exp

“
✓�
r`�mt

‰
¨ rF pAv

t , yt ´ mtq. These

14These conditions concern the Hamiltonian’s continuity, when viewed as a function of the partial
derivatives of  . For all other HJB equations stated in this paper (viz., [6.9] in Section 6.4, [E.2] in
Appendix E, and [J.6] and [J.9] in Appendix J.3.1) it can be shown that the regularity conditions in Touzi
(2018, Proposition 2.5) are satisfied because the control variables enter the strictly concave/convex “flow
return” functions, yielding interior optima and allowing one to solve for the relevant Hamiltonians in
closed-form. This justifies our focus on classical solutions elsewhere in the paper.
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properties imply that

⇢F pAv
t , yt,mtq´HpAv

t , yt,mt | F q “ ´rF pAv
t , yt,mtq

° 0

¨
ˆ
exp

„
✓�

r ` �
mt

⇢
´ 1 ´ ✓�

r ` �
mt

˙

• 0, with equality i� mt “ 0

where (strict) positivity of the last term follows from strict convexity of x fiÑ ex.

One way to “restore equality” in the agent’s HJB equation is to reformulate the
agent’s problem by expanding his strategy space and treating mt P R as a control
(rather than state) variable, as in Section 6. Another way is to keep �t P R as the
control, but reformulate [HJB-NJ]. For instance, noting that HpAv

t , yt,mt |  q † 8 i�
 ypAv

t , yt,mtq `  mpAv
t , yt,mtq “ 0, [HJB-NJ] is equivalent to the variational inequality

min
 
⇢ p¨q ´ Hp¨ |  q,

ˇ̌
 yp¨q `  mp¨q

ˇ̌(
“ 0

described in Pham’s (2009) treatment of singular control problems. Alternatively, one
can reformulate [HJB-NJ] as the variational inequality in the associated impulse control
problem (Oksendal and Sulem 2019) where setting �t “ ˘8 is viewed as inducing a
jump in mt, as in Strulovici (2022).

Proof of Theorem 5. We work directly with [I.1], the inequality version of [HJB-NJ].
We describe the main steps, only sketching some details for brevity.

Step 1: Shape of Value Function. It is not a priori clear that the value function V NJ

coincides with V DR (cf. Lemma B.1). But by applying the same controls at di�erent
states, it can be shown that

V NJpAv
t , yt,mtq “ V̂ NJ ¨ hpmtq ¨ exp

„
´✓r

ˆ
Av

t ` yt
r ` �

˙⇢
[I.2]

for some constant V̂ NJ † 0 and convex function h : R Ñ R``. Without loss of generality,
we can normalize hp0q :“ 1.

Step 2: Determining the h Function. It is not a priori clear that h is smooth. But Step
1 implies that V NJ is locally bounded, so Touzi (2018, Proposition 6.2) implies that V NJ

is a viscosity supersolution of [HJB-NJ]. By standard smooth approximation results,15
there exists a dense subset D Ñ R such that, at every point mt P D, there exists a
function �pmtq P C2pRq satisfying �pmtqpmtq “ hpmtq and �pmtqp¨q • hp¨q; hence, h is
di�erentiable at mt and h1pmtq “ �1

pmtqpmtq. Thus, for any pAv
t , yt,mtq with mt P D, the

15See, for instance, Lemma 8(g), Theorem 9, and associated discussion in Katzourakis (2015, Ch. 2).
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function

 pmtqpmtqpAv
t , yt,mtq :“ V̂ NJ ¨ �pmtqpmtq ¨ exp

„
´✓r

ˆ
Av

t ` yt
r ` �

˙⇢
[I.3]

satisfies the conditions of Definition I.1(i). Plugging [I.3] into [H], we see that HpAv
t , yt,mt |

 pmtqq † 8—a necessary condition for [I.1]—i� �1
pmtqpmtq “ fpr;�q�pmtqpmtq, which is

equivalent to h1pmtq “ fpr;�qhpmtq. As h1p¨q “ fpr;�qhp¨q on the dense set D Ñ R and
h is convex (hence continuous and directionally di�erentiable on R), it can be shown
that h1p¨q “ fpr;�qhp¨q on R. The unique solution to this ODE satisfying hp0q “ 1 is

hpmtq “ exp rfpr;�qmts .[I.4]

Step 3: Determining the V̂ NJ
Constant. Combining [I.1], [I.2], and [I.4] yields V̂ NJ •

´1
r exp

“
✓Āpr;�q

‰
. We conclude that this inequality holds with equality because V DRpAv

t , yt´
mtq • V NJpAv

t , yt,mtq by construction (cf. Section 6.4).16

Step 4: Optimal Strategy. Together, [I.2] and [I.4] imply that, for all states pAv
t , yt,mtq,

the supremum in [H] is attained at �t “ 0 (in fact, at any �t P R). Step 3 and the same
calculations underlying Lemma I.2 imply that V NJ satisfies [I.1] with equality when
mt “ 0. Thus, integrating [I.1] forward from an truthful initial state pAv

0, y0,m0 “ 0q
implies that truthful reporting attains V NJpAv

0, y0,m0 “ 0q, i.e., [IC] holds.

J. Optimal FO-IC Contracts

This appendix presents supporting details for the discussion of fully optimal contracts
in Section 7.1. In Appendix J.3.1 (see Remark J.10), we also independently verify Steps
1–3 and 5 of PPI’s derivation of Contract PPI, as described in Appendix A.

J.1. Domain of Implementable (Marginal) Promised Utilities

Lemma J.1. For each q0 † 0, the following hold:
(i) If � ° 0, then under any FO-IC contract kt P p0, ✓q for all t • 0. Furthermore, for

each k0 P p0, ✓q there exists an FO-IC contract with kt ” k0.
(ii) If � “ 0, then under any FO-IC contract kt “ ✓ for all t • 0. Furthermore, an FO-IC

contract exists.

16This is the only place in the proof that we reference the extended reporting problem from Section 6;
alternatively, we could reach the same conclusion by appealing to the (equivalent) self-insurance problem
from Section 5.1. We do not know if this step can be avoided: [I.1] only places a lower bound on V̂ NJ and
in principle could hold as a strict inequality everywhere, so it seems necessary to appeal elsewhere for an
upper bound on V̂ NJ. (One could instead conjecture that V̂ NJ “ ´1

r exp
“
✓Āpr;�q

‰
and then appeal to a

“verification theorem” as desribed in Section 4.2, but this would entail additional technical restrictions on
the agent’s strategy space beyond those embodied in Mr. See Pham (2009, Theorem 3.5.3) for details.)

OA–16



Proof. Point (i): Let � ° 0 and fix an FO-IC contract. Since � ° 0 and up¨q † 0, we
have ut † e´�tut † 0 for all t ° 0, so [3.1]–[3.2] imply that pt ° ✓qt. Dividing through by
qt † 0 yields kt “ pt{qt † ✓, while qt, pt † 0 implies kt ° 0. DR-SICs demonstrate the
existence claim (see [5.15] and recall that fp¨;�q has range p0, ✓q).
Point (ii): Let � “ 0 and fix an FO-IC contract. Since � “ 0, we have ut ” e´�tut. Thus,
[3.1] and [3.2] imply that pt “ ✓qt, and dividing through by qt † 0 yields kt “ pt{qt “ ✓.
Contract PPI demonstrates the existence claim.

Lemma J.1 allows us to define the domain D of implementable pq, pq pairs by

D :“
# 

pq, pq P R2
´´ : p{q P p0, ✓q

(
if � ° 0

 
pq, pq P R2

´´ : p “ ✓q
(

if � “ 0.
[J.1]

J.2. Permanent Shocks

Theorem 6. If � “ 0, then Contract PPI satisfies the following properties:
(i) It is the unique optimal FO-IC contract.
(ii) It is F -IC for any feasible set F Ñ tm : m is b-adaptedu.

Proof. Point (i). For any FO-IC contract, Lemma J.1 implies that pt ” ✓qt. Display [A.1]
then implies that, under truthful reporting, promised utility satisfies

[J.2] qt “ q0 exp

„ª t

0

ˆ
⇢ ´ �⌧ ´ �2✓2

2

˙
d⌧ ´ �✓Wt

⇢
,

where �t ” ut{qt. The agent’s recommended consumption process is then ct ” cpqt, �tq :“
´ logp´qt�tq{✓. Thus, substituting the transfer process st ” cpqt, �tq ´ yt into [2.2] and
ignoring terms that do not involve �, the principal minimizes

E˚
0

„ª 8

0

e´⇢t

ˆ
´ logp�tq `

ª t

0

�⌧d⌧

˙
dt

⇢

over all b-adapted, strictly positive � processes. This objective is strictly convex, so the
optimal � process is unique, deterministic, and satisfies the pointwise FOC17

d

d�t

„
´ logp�tq ` �t

⇢

⇢
“ 0 for all t • 0.

17Focusing on deterministic � and applying integration by parts, the objective in [J.3] becomes≥8
0 e´⇢t p´ logp�tq ` �t{⇢qdt. Note that the flow cost in this transformed objective satisfies an Inada

condition at �t “ 0, implying that the optimal process must be strictly positive. Thus, the pointwise
first-order condition from this transformed objective is [J.3].
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Thus, the optimal � is �t ” ⇢, which upon substitution into [J.2] yields Contract PPI.
Point (ii). Under Contract PPI, ct “ cpq0; ⇢q` Āp⇢; 0qt`yt when � “ 0. Thus, the transfer
process st ” ct ´ yt is deterministic, i.e., report-independent.

Remark J.2. Theorem 6(i) can be strengthened: Contract PPI is the unique optimal
contract satisfying �t ` pt • 0 for all t • 0, the one-sided variant of [FO-IC] that is
appropriate under NHB or IML (cf. Footnote 57). We adapt the above proof as follows.
Defining k̂t :“ ´�t{qt, the constraint becomes k̂t • ✓. Promised utility satisfies qt “
q0 exp

”≥t
0

´
⇢ ´ �⌧ ´ �2k̂2⌧

2

¯
d⌧ ´

≥t
0 �k̂⌧dW⌧

ı
. The principal’s problem is then additively

separable in � and k̂. The optimization over � is unchanged. The portion of the principal’s
objective involving k̂ is E˚

0

”≥8
0 e´⇢t

´
�2

2

≥t
0 k̂

2
⌧d⌧ ` �

≥t
0 k̂⌧dW⌧

¯ı
. The stochastic integral

vanishes in expectation, and (constrained) minimization of the first term yields k̂t ” ✓.

J.3. Transient Shocks

Let Jpy0, q0, p0q denote the principal’s value function over FO-IC contracts given the
initial condition py0, q0, p0q (see [J.4] below for details). We call J : R ˆ D Ñ R the
principal’s FO value function.

Definition J.3. The environment is regular if:
(i) An optimal FO-IC contract (as defined in Appendix A) exists.
(ii) The principal’s FO value function J is twice continuously di�erentiable.

Regularity is a technical assumption, which is implicitly adopted in PPI. It is needed to
analyze the principal’s FO problem with standard stochastic control techniques.

Theorem 7. Suppose that � ° 0. If the environment is regular, then the optimal DR-SIC
is not an optimal FO-IC contract.

We prove Theorem 7 in Appendix J.3.1 below. Recall that DR-SICs are equivalent
to Stationary contracts, i.e., those with constant kt “ pt{qt processes (Lemma G.1).
Thus, Theorem 7 equivalently states that the optimal FO-IC contract is not Stationary,
consistent with Implication 2 at the end of Appendix A. Of course, if the first-order
approach is valid—viz., every IC contract is FO-IC, and the optimal FO-IC contract is
IC—then Theorem 7 also implies that the fully optimal contract outperforms the optimal
DR-SIC/Stationary contract. It is an open question whether the first-order approach is
valid in PPI’s model with � ° 0.

J.3.1. Proof of Theorem 7

By the Martingale Representation Theorem, the agent’s promised utility process q

(defined in [3.1]) under any FO-IC contract satisfies [A.1] and FO-IC, and his marginal
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promised utility process p (defined in [3.2]) satisfies

[J.3] dpt “ rp⇢ ` �qpt ´ ✓uts dt ` Qt�dW
y
t ,

where �dW y
t ” dyt ´ pµ ´ �ytqdt and Q is a y-adapted process.

Definition J.4. The principal’s auxiliary first-order (FO) problem is

Jpy0, q0, p0q :“ inf
pc,QqPAP py0,q0,p0q

E˚
0

„ª 8

0

e´⇢t pct ´ btq dt

⇢
[J.4]

where AP py0, q0, p0q consists of the y-adapted processes pc, Qq such that [A.1] and [J.3]
have unique solutions satisfying [FO-IC] and the transversality conditions: for all t • 0,
limTÑ8 E˚

t

“
e´⇢pT´tqqT

‰
“ limTÑ8 E˚

t

“
e´⇢pT´tqpT

‰
“ 0.18 The first-stage FO problem is

inf
p0†0 s.t. pq0, p0q P D

Jpy0, q0, p0q,[J.5]

and the FO problem is the joint optimization [J.4]–[J.5].

Definition J.3(ii) requires that J P C2 pR ˆ Dq. Standard arguments (Yong and Zhou
1999, Theorem 3.3; Touzi 2018, Propositions 2.4–2.5) then imply that J is a classical
solution to the HJB equation

⇢Jpyt, qt, ptq “ min
pct,QtqPR2

”
ct ´ yt ` Jypyt, qtq ¨ pµ ´ �ytq ` Jqpyt, qt, ptq ¨ p⇢qt ´ upctqq

` Jppyt, qt, ptq ¨ pp⇢ ` �qpt ` ✓upctqq[J.6]

` �2

2
Jyypyt, qt, ptq ` �2p2t

2
Jqqpyt, qt, ptq ` �2Q2

t

2
Jpppyt, qt, ptq

´ �2ptJyqpyt, qt, ptq ` �2QtJyppyt, qt, ptq ´ �2ptQtJqppyt, qt, ptq
ı
.

(Cf. display (19) on p. 1249 of PPI.) We wish to rewrite [J.6] in terms of pyt, qt, ktq. This
requires two lemmas, the latter of which appears in PPI as a conjecture.

Lemma J.5. Under any FO-IC contract and truthful reporting, the kt ” pt{qt process
satisfies

[J.7] dkt “
”
p�t ` �q kt ´ ✓�t ` �2kt

´
k2
t ´ Q̂t

¯ı
dt ` �

”
k2
t ´ Q̂t

ı
dWt,

where the process Q̂ “ pQ̂tqt•0 is defined as Q̂t :“ ´Qt{qt.

Proof. Apply Ito’s lemma to [A.1] and [J.3] under truthtelling (W y
t ” Wt).

18As in Section 2, we also implicitly restrict attention to pc,Qq processes such that the double-integral
defining Jpy0, q0, p0q is well-defined.
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Lemma J.6. Let � ° 0. If the environment is regular, then J satisfies Jpyt, qt, ptq ”
Ĵpy0, q0, p0{q0q, where

[J.8] Ĵpy0, q0, k0q :“ ´ y0
⇢ ` �

´ logp´q0q
⇢✓

` hpk0q

for some function h P C2 pp0, ✓qq.

Proof. Regularity implies that J is well-defined and finite-valued and, given [J.8], also
that h P C2 pp0, ✓qq. Let pq0, p0q P D, y0 P R, and ↵ ° 0 be given for Steps 1-2 below.
Step 1: We assert that Jpy0, q0, p0q “ Jp0, q0, p0q ´ y0{p⇢` �q. Let pc, Qq P AP py0, q0, p0q
be given. Define gt :“ y0e´�t, c̃tpyq :“ ctpy ` gq, and Q̃tpyq :“ Qtpy ` gq.19 We have
pc̃, Q̃q P AP p0, q0, p0q. Let P˚,py0q denote the distribution over report paths starting from
y0 and P˚,p0q denote the distribution starting from ỹ0 “ 0, assuming truthful reporting.
The law of pc, Qq under P˚,py0q equals the law of pc̃, Q̃q under P˚,p0q. Thus,

E˚,py0q
0

„ª 8

0

e´⇢t pct ´ ytq dt

⇢
“ E˚,p0q

0

„ª 8

0

e´⇢t pc̃t ´ ytq dt

⇢
´
ª 8

0

e´⇢tgt dt

“ y0{p⇢ ` �q

.

Step 2: We assert that Jpy0,↵q0,↵p0q “ Jpy0, q0, p0q´logp↵q{p⇢✓q. Let pc, Qq P AP py0, q0, p0q
be given. Define c̃t :“ ct ´ logp↵q{✓ and Q̃t :“ ↵Qt. Note that upc̃tq ” ↵upctq. Display
[A.1], [J.3], and [FO-IC] then imply that pc̃, Q̃q P AP py0,↵q0,↵p0q. The distribution over en-
dowment paths is the same at both initial states, so the principal’s cost of c̃ at py0,↵q0,↵p0q
equals her cost of c at py0, q0, p0q plus

≥t
0 e

´⇢t p´ logp↵q{✓q dt “ ´ logp↵q{p✓⇢q.
Step 3: Fix pq0, p0q P D and y0 P R. Combining Steps 1 and 2 with ↵ “ ´p0{q0 yields

Jpy0, q0, p0q “ ´ y0
⇢ ` �

´ logp´q0q
⇢✓

` J p0,´1,´p0{q0q .

Defining hpk0q :“ J p0,´1,´k0q and Ĵ as in [J.8] completes the proof.

Using Lemmas J.5 and J.6, we can write the HJB equation [J.6] in terms of pyt, qt, ktq as

⇢Ĵpyt, qt, ktq “ min
�t°0,Q̂tPR

!
cpqt, �tq ´ yt ´ 1

⇢ ` �
rµ ´ �yts ´ 1

⇢✓
r⇢ ´ �ts

` h1pktq
”
p�t ` �q kt ´ ✓�t ` �2kt

`
k2
t ´ Q̂t

˘ı

` �2k2
t

2⇢✓
` �2pk2

t ´ Q̂tq2
2

h2pktq
)
,

[J.9]

19That is, the path of pc̃, Q̃q when the agent reports the endowment path ŷ P C pr0,8qq is the same as
the path of pc,Qq when he reports the endowment path ŷ ` g.
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where �t “ upctq{qt and cpqt, �tq “ ´ logp´�tqtq{✓.

Lemma J.7. Let � ° 0. If the environment is regular, then any optimal �: satisfies
�:
t ” �̂pktq, where �̂ : p0, ✓q Ñ R is defined by

�̂pktq :“
1

1{⇢ ` ✓pkt ´ ✓qh1pktq
.[J.10]

Proof. Eliminating terms on the RHS of [J.9] yields the following minimization over �t,
which any optimal �: process must a.e. satisfy

[J.11] min
�t°0

„
´ logp�tq ` �t

⇢
` �t ¨ h1pktqpkt ´ ✓q

⇢
.

The unique solution to [J.11] is interior and characterized by the FOC [J.10].

Lemma J.8. Let � ° 0. If the environment is regular, then any k:
0 P argmink0Pp0,✓q hpk0q

satisfies �̂pk:
0q “ ⇢.

Proof. Because h P C2 pp0, ✓qq by Definition J.3(i) and Lemma J.6, any such k:
0 must

satisfy the FOC h1pk:
0q “ 0. Plugging this into [J.10] completes the proof.

Lemma J.9. Let � ° 0. If the environment is regular and an optimal FO-IC contract is
Stationary (i.e., induces a constant k process), then that contract is Contract PPI.

Proof. Consider any optimal FO-IC contract that is Stationary. Lemma J.5 and the
unique decomposition property for Ito processes imply that k2

t ” Q̂:
t (so k has zero

volatility) and thus that �:
t p�` ktq ´ ✓�:

t ” 0 (so k has zero drift). Furthermore, [J.5] and
[J.8] imply that kt ” k:

0 P argmink0Pp0,✓q hpk0q. Then Lemma J.8 implies that �̂:
t ” ⇢ and

Lemma G.1 implies that kt ” fp⇢;�q “ k˚
0 . This yields Contract PPI.

Proof of Theorem 7. Suppose the environment is regular. Theorem 1(i) implies that the
optimal SI Contract / DR-SIC strictly dominates Contract PPI. Every DR-SIC is FO-IC
(by construction) and Stationary (by Lemma G.1). If an optimal FO-IC were Stationary,
then Lemma J.9 would imply that it is Contract PPI, a contradiction.

Remark J.10. The above work confirms Steps 1–3 and 5 of PPI’s derivation of Contract
PPI, as described in Appendix A. The conjecture in Step 1 is established by Lemma J.6.
Step 2 follows from Lemma J.6 and [J.9]. Step 3 follows from plugging the optimal Q̂t

from [J.9] into [J.7]. Step 5 is Lemma J.9.

K. Properties of Brownian Motion and OU Process

This appendix collects auxiliary facts about Brownian motion (BM) and OU processes.
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Lemma K.1 (SLLN for BM). Let W “ pWtqt•0 be a standard Brownian motion. Then
limtÑ8 Wt{gptq “ 0 for any function g : R` Ñ R` such that limtÑ8 t{gptq † 8.

Proof. The gptq “ t case is standard (e.g., Problem 9.4 in Karatzas and Shreve (1998, p.
104)). Thus, more generally, limtÑ8 Wt{gptq “ limtÑ8 pWt{tq ¨ limtÑ8 pt{gptqq “ 0.

Let b be an OU process as defined by the equation [2.1], the solution to which is

bt “ b0e
´�t ` µ

ˆ
1 ´ e´�t

�

˙

“ t when � “ 0

` e´�t

ª t

0

�e�⌧ dW⌧

“: Xt

.[K.1]

We invoke X “ pXtqt•0 from [K.1] below. Note that Xt ” bt when b0 “ µ “ 0.

Lemma K.2. Given Xt from [K.1], the following holds for each t • 0:
(i) When � “ 0,

ª t

0

b⌧ d⌧ “ b0t ` 1

2
µt2 ` �

ˆ
tWt ´

ª t

0

⌧ dW⌧

˙
[K.2]

(ii) When � ° 0,
ª t

0

b⌧ d⌧ “ b0

ˆ
1 ´ e´�t

�

˙
` µ

�

ˆ
t ´ 1 ´ e´�t

�

˙
` �Wt ´ Xt

�
[K.3]

Proof. In both points (i) and (ii), the deterministic terms follow from straightforward
integration of the first two terms in [K.1]. The stochastic terms follow from stochastic
integration by parts calculations:
Point (i): When � “ 0, we have Xt “ �Wt. Itô’s lemma yields applied to tWt yields
tWt “

≥t
0 W⌧ d⌧ `

≥t
0 ⌧ dW⌧ . Thus,

≥t
0 X⌧ d⌧ “ �

´
tWt ´

≥t
0 ⌧ dW⌧

¯
, as desired.

Point (ii): When � ° 0, we have Xt “ e´�t
≥t
0 �e

�⌧ dW⌧ “: e´�tYt. Itô’s lemma applied
to Xt yields dXt “ ´�Xt dt` e´�t dYt “ ´�Xt dt`� dWt. Putting this in integral form
and rearrangning yields

≥t
0 X⌧ d⌧ “ p�Wtq {� ´ Xt{�, as desired.

Lemma K.3. The following hold (almost surely):
(i) If � ° 0, then limtÑ8 bt{t “ 0. If � “ 0, then limtÑ8 bt{t “ µ,
(ii) For all � • 0 and ↵ ° 0, limtÑ8 e´↵tbt “ 0, and
(iii) For all � • 0 and ↵ ° 0, limtÑ8 e´↵t

≥t
0 b⌧ d⌧ “ 0.

Proof. We consider each point of the lemma in turn.
Point (i): When � “ 0, the result is immediate from [K.1] and Lemma K.1. When � ° 0,
we have

lim
tÑ8

1

t

„
b0e

´�t ` µ

ˆ
1 ´ e´�t

�

˙⇢
“ 0.
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Thus, it su�ces to show that limtÑ8 Xt{t “ 0 for Xt in [K.1]. Defining the time-change
vptq :“ e2�t ´ 1 (with inverse tpvq :“ logpv ` 1q{p2�q), the process Bv :“

?
2�
� e�tXtpvq is

a standard BM (Karatzas and Shreve 1998, p. 174). By construction,

Xt

t
“ �

?
2�Bvptqa

vptq log pvptqq
.[K.4]

It su�ces to show that the RHS of [K.4] goes to zero as v Ñ 8. To this end, the Law of
the Iterated Logarithm (Mörters and Peres 2010, p. 119) implies that

lim sup
vÑ8

|Bv|a
2v log plogpvqq

“ 1[K.5]

and L’Hôpital’s rule implies that

lim
vÑ8

a
2v log plogpvqq?

v log pvq “ lim
vÑ8

1?
2 logpvq

a
log plogpvqq

“ 0.[K.6]

Combining [K.5] with [K.6] yields the desired conclusion that

lim sup
vÑ8

|Bv|?
v log pvq “ lim sup

vÑ8

|Bv|a
2v log plogpvqq

a
2v log plogpvqq?

v log pvq “ 0.

Point (ii): Let ↵ ° 0 be given. Then

lim sup
tÑ8

e´↵t|bt| “ lim sup
tÑ8

|bt|
t

¨ t

e↵t
“ 1p� “ 0q|µ| ¨ lim

tÑ8
t

e↵t
“ 0

where the second equality follows from point (i).
Point (iii): First, suppose that � ° 0. Lemma K.2(ii) yields

e´↵t

ª t

0

b⌧ d⌧ “ e´↵t

„
b0

ˆ
1 ´ e´�t

�

˙
` µ

�

ˆ
t ´ 1 ´ e´�t

�

˙⇢
` �

�
e´↵tWt ´ e´↵t

�
Xt

The first term clearly goes to zero as t Ñ 8. The second term also goes to zero by
Lemma K.1. The third term goes to zero by point (ii) of the present lemma. Next, suppose
that � “ 0. Lemma K.2(i) yields

e´↵t

ª t

0

b⌧ d⌧ “ e´↵t

„
b0t ` 1

2
µt2

⇢
` �e´↵ttWt ´ �e´↵t

ª t

0

⌧ dW⌧[K.7]
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The first term clearly goes to zero as t Ñ 8, as does the second term because

lim
tÑ8

e´↵ttWt “ lim
tÑ8

Wt

e↵t{2
¨ lim
tÑ8

t

e↵t{2
“ 0

and limtÑ8 Wt{e↵t{2 “ 0 by Lemma K.1. For the final term in [K.7], defineZt :“
≥t
0 ⌧ dW⌧ .

Using the time-change �ptq :“ t3{3 (with inverse tp�q :“ p3�q1{3), the process B̂�ptq :“ Zt

is a standard BM. Therefore,

lim
tÑ8

e´↵tZt “ lim
�Ñ8

e´↵tp�qB̂� “ lim
�Ñ8

B̂�

�
¨ �

expp↵p3�q1{3q “ 0,

where the last equality is by Lemma K.1 and L’Hôpital’s rule.

Lemma K.4. For any ↵ ° 0, the following holds:
ª 8

0

e´↵tbt dt “ b0
↵ ` �

` µ

↵p↵ ` �q ` �

↵ ` �

ª 8

0

e´↵t dWt[K.8]

Proof. We integrate [K.1], discounted by e´↵t. The first two terms yield

ª 8

0

e´↵t

»

——–b0e
´�t ` µ

ˆ
1 ´ e´�t

�

˙

“ t when � “ 0

fi

��fl dt “ b0
↵ ` �

` µ

↵p↵ ` �q[K.9]

For the final
≥8
0 e´↵tXt dt term, applying Itô’s lemma twice yields

e´↵TXT “ ´p↵ ` �q
ª T

0

e´↵tXt dt `
ª T

0

e´↵t� dWt.

Rearranging and letting T Ñ 8, we obtain
ª 8

0

e´↵tXt dt “ �

↵ ` �

ª 8

0

e´↵t dWt ´ 1

↵ ` �
lim
TÑ8

e´↵TXT

“ 0 by Lemma K.3(ii)

.[K.10]

Combining [K.1], [K.9], and [K.10] completes the proof.
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