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Abstract

Do workers from social groups with comparable productivity distributions ob-

tain comparable lifetime earnings? We study how a small amount of early-career

discrimination propagates over time when workers’ productivity is revealed through

employment. Breakdown learning environments that track on-the-job failures grant a

disproportionately large advantage to marginally more favored groups, whereas break-

through learning environments that track successes guarantee comparable earnings to

groups of comparable productivity. This discrepancy persists with large labor markets,

flexible wages, inconclusive signals, and misspecified employer beliefs. Allowing for

investment in productivity exacerbates inequality between groups under breakdown

learning.

JEL: C78, D83, J71

Keywords: early-career statistical discrimination, star jobs, guardian jobs, spiral-
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1 Introduction

Young workers enter the labor market with uncertain productivity levels. To cope with

this uncertainty, employers have been documented as relying on observable characteristics—

such as a worker’s gender or race—as statistical proxies for the worker’s productivity.1 Such
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1Discrimination in hiring practices has been empirically documented by Goldin and Rouse (2000), Pager
(2003), Bertrand and Mullainathan (2004), and other studies surveyed in Bertrand and Duflo (2017).
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early-career statistical discrimination determines who makes the first cut when opportuni-

ties are scarce. Workers from social groups that are expected to be more productive may be

systematically prioritized even when differences in the groups’ productivity distributions

are infinitesimally small.

Does the impact of such early-career discrimination on workers’ earnings vanish or in-

tensify over time? One conjecture is that social groups of comparable productivity obtain

comparable lifetime earnings: over time, employers learn about workers’ productivity af-

ter observing their on-the-job performance and reallocate opportunities accordingly. An

opposite conjecture suggests that comparable groups fare drastically differently: early op-

portunities to perform are pivotal in a worker’s career progression, and hence, workers

favored early on fare substantially better.

This paper shows that the right conjecture depends crucially on how employers learn

about workers’ productivity. In environments that track on-the-job successes, early-career

discrimination has only minor consequences for workers’ later employment opportunities

and lifetime earnings. In environments that track on-the-job failures, in contrast, early-

career discrimination significantly affects workers’ prospects. Moreover, its adverse effect

on workers who are discriminated against intensifies with job scarcity: the scarcer jobs are

relative to the size of the workforce, the higher the inequality between groups. Our analysis

thus suggests a classification of learning environments that predicts whether and when the

impact of early-career discrimination vanishes or gets amplified over time.

We show that this contrast between learning environments persists when workers can

invest in their productivity and, perhaps counterintuitively, even when wages are flexible.

Workers’ being able to invest in their productivity magnifies the difference in the post-

investment productivity of the two groups in learning environments that track failures, but

not in environments that track successes. It also creates a tradeoff between efficiency and

equality: learning environments that alleviate the impact of early-career discrimination also

lead to lower equilibrium productivity of employed workers. When wages are flexible—a

possibility that we formalize in a dynamic two-sided matching model—comparable groups

face very different wage paths in environments that track failures.

Model. Our analysis focuses on labor markets in which (i) workers from distinct groups

compete for scarce tasks, (ii) employers learn about a worker’s productivity only if the

worker performs a task, and (iii) groups have comparable productivity distributions.2 Sar-

2These stylized features tractably capture a more general setting in which (i’) some tasks are more
desirable than others and desirable tasks are in limited supply, (ii’) workers who perform desirable tasks
reveal more about their productivity in performing these tasks than do workers who are either employed
in other tasks or unemployed, and (iii’) groups need not have comparable productivity distributions. Our
focus on groups with comparable productivity distributions provides a particularly stark illustration of the
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sons (2019) studies one such market, in which male and female surgeons compete for re-

ferrals from physicians. Physicians learn about surgeons’ abilities from surgeries they have

performed in the past. Sarsons (2019) documents the fact that male and female surgeons

have comparable abilities: although female surgeons have a lower average ability in her

sample, the difference is very small.3 We investigate the consequences of such a small

initial difference on workers’ subsequent employment opportunities and earnings.

Scarcity of tasks relative to workers, which our model takes as exogenous, can arise from

various contributing factors. It can stem from increasing automation in the workplace,

which reduces the demand for human labor. It can also arise from the pyramid structure

of most organizations, as positions become scarcer at higher ranks. Another contributing

factor is the high cost of setting up and maintaining certain job positions. Task scarcity

could also be due to job specialization: only a few workers are needed in highly specialized

positions.

We begin with a stylized baseline model that features one employer and two workers

identified by their respective social groups, a and b. We then generalize the analysis to

a dynamic two-sided matching model with multiple workers in each group and multiple

employers. In the baseline model, a worker’s productivity is either high or low, and worker a

is ex ante more likely than worker b to have high productivity. At each instant, the employer

allocates the task to one of the two workers—similar to a physician choosing a surgeon for

referral, as in Sarsons (2019)—or takes an outside option if the expected productivity of

both workers is too low. The employer’s flow payoff is increasing in the productivity of the

employed worker, whereas each worker benefits from being allocated the task regardless of

his productivity.

The employer learns about a worker’s productivity from observing the worker’s perfor-

mance. We contrast two learning environments: breakthrough and breakdown. In the break-

through environment, a high-productivity worker generates successes, or “breakthroughs,”

at randomly distributed times, whereas a low-productivity worker generates no successes.

In the breakdown environment, a low-productivity worker generates failures, or “break-

downs,” at randomly distributed times, whereas a high-productivity worker generates no

failures.4

The employer’s learning environment can be viewed as an intrinsic feature of the job

role played by the learning environment in the dynamics of statistical discrimination.
3See section 2.2.2 and figure 2 in Sarsons (2019).
4Section 7.1 extends the results to the case in which low-productivity workers also generate break-

throughs but at a lower frequency than high-productivity workers. Similarly, our results remain qualita-
tively unchanged when high-productivity workers also generate breakdowns but at a lower frequency than
low-productivity workers.
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considered. Breakthrough and breakdown environments correspond, respectively, to “star

jobs” and “guardian jobs,” as conceptualized by Jacobs (1981) and Baron and Kreps (1999).

In terms of performance, star jobs have a high upside and a low downside, while guardian

jobs have a low upside and a high downside. (Figure 4 in appendix A.1 compares the

performance distributions of star jobs and guardian jobs.5) Following Jacobs (1981) and

Baron and Kreps (1999), scientific researchers and high-stakes salespeople are examples of

star jobs, while routine surgeons, airline pilots, and prison guards are examples of guardian

jobs.6

Main results. In both learning environments, the employer first allocates the task to

worker a, who has a higher expected productivity. However, subsequent task allocations

differ drastically across environments. In the breakthrough environment, worker a’s ex-

pected productivity declines gradually in the absence of a breakthrough, until it drops to

that of worker b’s. From this point onward, the employer treats the two workers equally.

The length of the “grace period” over which the task is allocated exclusively to worker a

reflects the difference in the two workers’ expected productivity at the start. The smaller

this initial difference, the shorter the grace period for worker a, and the smaller the first-

hire advantage of worker a. As this difference shrinks to zero, so does the advantage of

worker a. The breakthrough environment is thus self-correcting.

In the breakdown environment, in contrast, the absence of a breakdown from worker

a makes the employer more optimistic about his productivity. Therefore, the employer

allocates the task exclusively to worker a until a breakdown occurs. Worker b gets a chance

to perform the task only if worker a has low productivity and misperforms the task. As

a result, worker b’s expected lifetime earnings are only a fraction of worker a’s. Even

if worker a’s productivity distribution is only slightly superior ex ante, this small initial

difference spirals into a large payoff inequality. This spiraling effect persists even as learning

becomes arbitrarily fast. It can explain why societies struggle to eliminate inequality in labor

markets.

The contrast between the two employer learning environments is even sharper when

workers can invest in their productivity before entering the labor market. The analysis with

5Similarly to the performance distribution of star jobs in figure 4, O’Boyle and Aguinis (2012) and
Aguinis and Bradley (2015) show that in occupations centered around star performance, such as researchers,
entertainers, and athletes, the empirical distribution of performance is indeed right-skewed. This implies
that “the majority of individuals are assumed to perform at an average level, with very few people actually
achieving a level of performance that would place them in the category of being a star performer” (Aguinis
and Bradley, 2015).

6Bose and Lang (2017) argue that most nonmanagerial jobs are guardian jobs and derive the optimal
monitoring policy for such jobs. We instead compare the lifetime impact of early-career discrimination in
star jobs to that in guardian jobs.
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investment is complicated by the fact that multiple equilibria exist in each environment. To

address such multiplicity, we compare the lowest payoff inequality attained across all equi-

libria in each environment. In every equilibrium of the breakdown environment, slightly

different groups invest in significantly different amounts. Inequality across groups is even

greater (i.e., spiraling is even worse) than in the baseline model, since access to investment

disproportionately benefits the group favored post-investment. In the breakthrough envi-

ronment, in contrast, there generically exists an equilibrium in which comparable groups

invest in their productivity in comparable amounts and obtain comparable lifetime earn-

ings. Hence, the self-correcting property of the breakthrough environment persists with

investment opportunities.

When learning is sufficiently fast, the breakdown environment features greater polar-

ization in investment incentives than does the breakthrough one. Across all equilibria,

the worker who is favored post-investment invests strictly more in the breakdown envi-

ronment than in the breakthrough one, whereas the worker who is discriminated against

post-investment invests strictly less. If, in addition, investment is sufficiently effective, the

employer prefers the breakdown environment, since it induces almost sure investment by the

worker favored post-investment. This result points to a novel tradeoff between efficiency

for the employer and equality between the workers.

We further explore this contrast in a large market with many workers from each group

and many employers. We show that the key determinant of the spiraling effect in the

breakdown environment is the scarcity of tasks relative to the size of each group. As

tasks become scarcer, the inequality between groups increases. This implies that, while all

groups suffer from a decrease in labor demand during economic downturns, groups that are

discriminated against will suffer disproportionately more.

One might a priori conjecture that wage flexibility eliminates inequality between groups

with comparable productivity. For instance, Flanagan (1978) adapts an argument formu-

lated by Becker (1957) to suggest that if employers can flexibly engage in wage discrimina-

tion, the wage differential should equalize the employment rates across groups. To evaluate

this conjecture, we introduce flexible wages into the large market described in the previous

paragraph. From a methodological standpoint, we develop a dynamic two-sided matching

model that incorporates both learning and flexible wages, and show that the essentially

unique stable stage-game matching is dynamically stable (Ali and Liu (2020)).

We find that wage flexibility does not resolve the severe differential treatment of compa-

rable groups in the breakdown environment. Intuitively, flexible wages do not overcome the

tension caused by relative task scarcity: when only a subset of workers can be hired, those

who generate higher surplus in expectation get hired first. Hence, as in the case of fixed
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wages, workers from group b experience a delay in employment relative to workers from

group a: b-workers are not given a chance to perform unless and until sufficiently many

a-workers have experienced breakdowns. This delay further implies that employers learn

more about a-workers than b-workers. Hence, employed a-workers (i.e., those who have not

generated breakdowns) earn a higher wage than employed b-workers. Breakdown learn-

ing thus results in substantial wage and earnings gaps between groups of almost identical

expected productivity.

Figure 1 illustrates the predicted paths of average wages and those of average earnings

for two such groups.7 Both the gap in average wages and that in average earnings expand in

the early part of workers’ careers, and persist for a substantial amount of time. If tasks are

sufficiently scarce relative to workers, the earnings gap persists throughout workers’ careers.

Average wage

Time
0

Group a

Group b

Average earnings

Time
0

Group a

Group b

Figure 1: Average wage/earnings under breakdowns for groups of comparable productivity

Empirical implications and evidence. Our findings are consistent with the persisting

gender pay gap among surgeons documented by Lo Sasso et al. (2011) and Sarsons (2019).

In line with our emphasis on early-career discrimination, a recent statement by the As-

sociation of Women Surgeons finds that “[T]he disparities women face in compensation at

entry level positions lead to a persistent trend of unequal pay for equal work throughout the

course of their careers.”8 Our results are also consistent with empirical evidence of racial

wage gaps that are small at early career stages but widen with labor market experience, as

documented by Arcidiacono (2003) and Arcidiacono, Bayer and Hizmo (2010). We provide

a learning-based mechanism that can explain this growing wage gap across groups.

In contrast to the breakdown environment, the paths of employment rates, average

wages, and average earnings in the breakthrough environment are arbitrarily close across

7Average earnings are defined as the average payoff across both employed and unemployed workers.
The average wage is taken across employed workers only, so it is higher than average earnings.

8For more, see the 2017 Association of Women Surgeons’ Statement on Gender Salary Equity
(https://www.womensurgeons.org/page/SalaryStatement).

6

https://www.womensurgeons.org/page/SalaryStatement


the two groups. Lang and Lehmann (2012) observe that it is challenging to explain the si-

multaneous presence of large racial wage and employment gaps in low-skill occupations and

the absence of such gaps in high-skill occupations. Our model provides a mechanism that

can explain such discrepancies across occupations. We predict that, all else being equal,

breakthrough-like occupations tend to exhibit smaller and more transient wage and employ-

ment gaps than breakdown-like occupations. To the extent that low-skill occupations tend

to be breakdown environments and high-skill occupations tend to be breakthrough ones,

we provide an explanation for the more persistent wage gaps and longer unemployment

duration faced by groups discriminated against in low-skill occupations.

Early-career discrimination due to prejudice. Lastly, prejudice can be another cause

of early-career discrimination: even when different groups have the same productivity dis-

tribution, employers may mistakenly believe that one group’s distribution is inferior to the

other’s. Such prejudice may be caused by inaccurate stereotypes or inaccurate information

about the workforce that enters a particular occupation. The contrast between break-

through and breakdown environments extends to this setting as well, as we show in section

7.2. In a breakdown environment, prejudice among employers, even if very mild, can have

dire consequences for the group that is discriminated against.

Related literature

First and foremost, our paper contributes to the literature on statistical discrimination,

the theoretical contributions of which are surveyed by Fang and Moro (2011). Phelps

(1972) and the literature that followed it (e.g., Aigner and Cain (1977), Cornell and Welch

(1996), and Fershtman and Pavan (2020)) assume that there is a significant, exogenous

difference between social groups; in these models, inequality between groups arises due to

this difference. In contrast, Arrow (1973) and the subsequent literature (e.g., Foster and

Vohra (1992), Coate and Loury (1993), Moro and Norman (2004), and Gu and Norman

(2020)) assume no exogenous difference between groups; in these models, inequality arises

because groups coordinate on different equilibria or specialize in different roles within an

equilibrium.9

Our approach differs from both of these strands of literature. First, we consider groups

that share arbitrarily similar expected productivity. In Phelps (1972) and its subsequent

literature, inequality across groups disappears as the difference between groups vanishes,

whereas our model highlights the fact that a vanishingly small difference can snowball into

9Blume (2006) and Kim and Loury (2018) extend the static setup of Coate and Loury (1993) to
incorporate generations of workers. In contrast, we examine a single generation of long-lived workers
whose productivity is revealed gradually while performing tasks.
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a large payoff gap. Second, in contrast to Arrow (1973) and its subsequent literature, the

across-group inequality that we uncover is not due to the existence of multiple equilibria.

Third, most papers in both of these strands do not model group interaction, whereas in

our model groups compete for tasks. From this standpoint our paper is related to Cornell

and Welch (1996) in the first group and Moro and Norman (2004) in the second. These

two papers consider static task allocation, whereas we explore the consequences of repeated

task allocation.

Our analysis also contributes two insights to the literature on cumulative discrimination

(e.g., Blank, Dabady and Citro (2004), Blank (2005)). First, the nature of the employer

learning environment has a critical impact on the magnitude of cumulative discrimination.

Second, the prospect of future cumulative discrimination casts a long shadow on workers’

investment in productivity.

The paper contributes to the literature on employer learning (e.g., Farber and Gib-

bons (1996), Altonji and Pierret (2001)). The employer’s learning environment can be

interpreted as an intrinsic feature of an occupation. In this respect, our work is related to

Altonji (2005), Lange (2007), Antonovics and Golan (2012), and Mansour (2012). Whereas

the models in these papers assume that occupations differ only in the frequency of signals,

we allow the direction of these signals to differ across occupations, and demonstrate the

importance of this distinction.

Our analysis leverages the tractability of Poisson bandits, which have been used widely

in strategic experimentation models (e.g., Keller, Rady and Cripps (2005), Keller and Rady

(2010), Strulovici (2010), Keller and Rady (2015)).10 In our setting, the employer is the

bandit operator and the workers are the bandit arms. Because we explore workers’ incen-

tives to invest in productivity, the quality of the bandit arms is endogenously determined.

In modeling bandit arms as strategic players, our paper is related to Bergemann and Vali-

maki (1996), Felli and Harris (1996), and Deb, Mitchell and Pai (2019). Unlike our analysis

of investment in productivity, these models assume that the quality of the bandit arms is

exogenously given.11 One exception is Ghosh and Hummel (2013), in which the quality of

the arms is endogenous.

There is a growing literature on bandit problems and statistical discrimination. Li,

Raymond and Bergman (2020) designs a screening algorithm that values exploration and

thus leads to higher quality and diversity of interviewed candidates. Lepage (2020) assumes

10Other areas of applications include moral hazard (e.g., Bergemann and Hege (2005), Hörner and
Samuelson (2013), Halac, Kartik and Liu (2016)), collaboration (e.g., Bonatti and Hörner (2011)), delega-
tion (e.g., Guo (2016)), and contest design (e.g., Halac, Kartik and Liu (2017)).

11Both Felli and Harris (1996) and this paper use the framework of multi-armed bandits to model labor
market learning.
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that employers are uncertain about minority groups’ productivity. He shows that early

negative signals from minority workers deter future learning and lead to group differential in

the long run. Komiyama and Noda (2020) examines social learning by short-run employers,

showing that population imbalance can lead to under-exploration of minority groups. Che,

Kim and Zhong (2019) also considers a social learning model: even with identical groups,

there exist discriminatory equilibria in which one group remains under-explored. Fershtman

and Pavan (2020) shows that policies that aim to recruit more minority candidates can

backfire if evaluation of minority groups is noisier.

Structure of the paper. Section 2 presents the baseline model. Section 3 identifies the

contrast between breakthrough and breakdown environments. Section 4 analyzes the role

of workers’ investment in productivity. Section 5 generalizes the model to many workers

from each group and many employers. Section 6 shows that allowing for flexible wages

does not overturn the contrast drawn in section 3. Section 7 establishes the robustness of

our results to more general learning environments and to misspecified beliefs. Section 8

concludes.

2 Baseline model

Players and types. Time t ∈ [0,∞) is continuous, and the discount rate is r > 0. There

is one employer (“she”) and two workers (each “he”). Workers belong to one of two social

groups, a or b. We refer to the worker from group i ∈ {a, b} as worker i.

Before time t = 0, workers’ types are drawn independently of each other. Worker i’s

type, θi, is either high (θi = h) or low (θi = ℓ). The prior probability that worker i has

a high type is pi ∈ (0, 1). The employer knows (pa, pb), but she does not observe workers’

types. We interchangeably refer to pi as the prior belief for worker i or as worker i’s expected

productivity at time 0. We assume that worker a is ex ante more productive: pa > pb. Our

focus is on groups with comparable expected productivity, i.e., when pb is close to pa.

Task allocation. At each t > 0, the employer allocates a task either to one of the two

workers or to a safe arm. Allocating the task to the safe arm can be interpreted as the

employer resorting to a known outside option.

A worker obtains a flow payoff w > 0 whenever he is assigned the task. Otherwise, his

flow payoff is zero. The parameter w can be interpreted as the fixed wage for a worker who

performs the task. Without loss of generality, we normalize w to one. Section 6 provides a

general analysis of the case in which workers’ wages are flexible.

The employer obtains a flow payoff v > 0 if she allocates the task to a high-type worker,

and a flow payoff normalized to zero if she allocates the task to a low-type worker. These
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payoffs are the employer’s net payoffs after wage w is paid. If the employer allocates the

task to the safe arm, she earns a flow payoff s ∈ (0, v). The employer’s payoffs are observed

at the end of the horizon.12

Learning by allocating. Learning about a worker’s type proceeds via Poisson signals. If

worker i is allocated the task over interval [t, t+dt) and his type is θi, a public signal arrives

with probability λθidt. With complementary probability (1− λθidt), no signal arrives.

Thus, a learning environment is characterized by a pair of type-dependent arrival rates

(λh, λℓ) ∈ R
2
+. Based on whether the arrival of a signal reveals a high or a low type, we

distinguish between two learning environments:

(i) breakthrough environment : a signal is a breakthrough if λh > 0 = λℓ;

(ii) breakdown environment : a signal is a breakdown if λℓ > 0 = λh.

A breakthrough perfectly reveals a high-type worker and a breakdown perfectly reveals a

low-type one. In section 7.1, we extend our analysis to inconclusive breakthrough environ-

ments (λh > λℓ > 0) and inconclusive breakdown environments (λℓ > λh > 0).13

As discussed in the introduction, we can interpret the learning environment as an intrin-

sic feature of the job. We can also interpret it as an intrinsic feature of how performance

is evaluated. The breakthrough environment tracks overperformance (breakthroughs) rel-

ative to expected performance (no signals), whereas the breakdown environment tracks

underperformance (breakdowns).

We let p denote the belief below which the employer switches to the safe arm. This

belief threshold, derived in in appendix A.2, is given by

p :=











rs

(r + λh)v − λhs
if λh > 0 = λℓ;

rs

(r + λℓ)v − λℓs
if λℓ > 0 = λh.

The threshold p is lower than the myopic threshold s/v in both environments due to the

value of learning for future allocation decisions. We assume that pi > p for i ∈ {a, b}, so

the employer prefers to experiment with both workers before turning to the safe arm.

12We scale players’ lifetime payoffs by a factor of r, as per standard practice in experimentation models
(e.g., Keller, Rady and Cripps (2005)). This normalizes the employer’s lifetime payoff from a high type to
v and a worker’s lifetime payoff from being allocated the task for the entire horizon [0,∞) to 1.

13In our formulation, the employer learns through observing signals rather than her payoffs. This is
equivalent to an alternative formulation in which the employer learns through observable payoffs. In this
alternative formulation: (i) in the breakthrough environment type h generates a lump-sum benefit at arrival
rate λh > 0 and the safe arm generates a flow benefit, (ii) in the breakdown environment, type ℓ generates
a lump-sum cost at arrival rate λℓ > 0 and the safe arm generates a flow cost. Our formulation makes it
easier to compare payoffs across the two learning environments.
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3 Benchmark Comparison

This section establishes a stark contrast between the two learning environments. We analyze

workers’ expected lifetime payoffs given the employer’s optimal task allocation behavior.

Our focus is on groups with comparable productivity distributions: we compare workers’

payoffs when the expected productivity of one group is arbitrarily close to that of the

other and study how this comparison depends on whether the signal takes the form of a

breakthrough (section 3.1) or a breakdown (section 3.2).

3.1 Self-correction under breakthrough learning

In the breakthrough environment, the arrival of a signal conclusively proves that the worker

has a high type. In the absence of a breakthrough the employer becomes more pessimistic

about a worker’s type. Proposition 3.1 establishes a self-correcting property of breakthrough

learning: a small difference in prior beliefs can result in only a small payoff advantage for

worker a.

At each instant, the employer allocates the task to the worker with the higher expected

productivity.14 Since pa > pb, the employer first allocates the task to worker a. Because

the belief that worker a has a high type drifts down for as long as no breakthrough arrives,

worker a is effectively given a grace period [0, t∗) over which to perform. Here, t∗ measures

how long it takes for the belief about worker a’s type to drift down from pa to pb in the

absence of a breakthrough. If worker a generates a breakthrough before t∗, the employer

allocates the task to him alone thereafter. Otherwise, starting from t∗, the employer splits

the task equally between the two workers until the belief drops down to p, so the workers

obtain the same continuation payoff starting from t∗. The hiring dynamics therefore go

through two distinct phases: a first phase during which worker a is hired exclusively, and

a second phase during which the two workers are treated symmetrically.

Importantly, as pb gets close to pa, the grace period [0, t∗) shrinks to zero. The proba-

bility that worker a generates a breakthrough before t∗ converges to zero as well. Hence,

the two players obtain similar expected payoffs.

Proposition 3.1 (Self-correcting property of breakthrough learning). As pb ↑ pa, the

expected payoff of worker b converges to that of worker a.

Proof. The employer initially allocates the task exclusively to worker a. If worker a pro-

duces no breakthrough, this initial allocation lasts until the employer’s belief that a has a

14This is true in both learning environments because (i) workers have binary types, and (ii) the arrival
rates of signals and the employer’s type-contingent flow payoffs are the same for both workers.
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high type decreases to pb, which happens at time t∗, where t∗ is defined by

pae
−λht

∗

pae−λht∗ + 1− pa
= pb, i.e., t∗ =

1

λh
log

pa(1− pb)

(1− pa)pb
. (1)

After t∗, the employer splits the task equally between the two workers until either a break-

through occurs or the belief about the workers’ types hits p. If a breakthrough occurs, the

employer thereafter allocates the task only to the worker who generated the breakthrough.

We let Ui(pa, pb) denote worker i’s payoff given belief pair (pa, pb). Note that Ua(p, p) =

Ub(p, p) for any p ∈ (p, 1). Over interval [0, t∗), worker a generates a breakthrough with

probability pa
(

1− e−λht
∗
)

. If a breakthrough arrives, worker a’s payoff is 1. If it does not

arrive, worker a’s payoff consists of the flow payoff from [0, t∗), which is 1− e−rt∗ , and the

continuation payoff from time t∗ onward, which is Ua(pb, pb). Worker a’s total expected

payoff is

pa
(

1− e−λht
∗
)

+
(

1− pa + pae
−λht

∗
) (

1− e−rt∗ + e−rt∗Ua(pb, pb)
)

.

Worker b gets continuation payoff Ub(pb, pb) at time t∗ if and only if no breakthrough occurs

over [0, t∗):
(

1− pa + pae
−λht

∗
)

e−rt∗Ub(pb, pb).

As pb ↑ pa, t
∗ → 0, so the two workers’ payoffs are equal in the limit. �

3.2 Spiraling under breakdown learning

We now turn to the breakdown environment, in which a signal conclusively proves that the

worker has a low type. As long as a worker generates no breakdown, the employer becomes

more optimistic that the worker’s type is high. She first allocates the task to worker a. In

the absence of a breakdown, the employer continues hiring him. If a breakdown is realized,

the employer turns to worker b immediately. If worker b also generates a breakdown, the

employer resorts to the safe arm thereafter.

Proposition 3.2 establishes a spiraling property of breakdown learning: even if pb is just

slightly less than pa, worker a obtains a substantially higher payoff than worker b. In fact,

worker a obtains the same payoff as if worker b did not exist: he is the first to be hired

and remains so unless and until he generates a breakdown. This stands in contrast to

the breakthrough environment, in which worker a loses his preferential status if he fails to

generate a breakthrough within a given time window.

Proposition 3.2 (Spiraling property of breakdown learning). As pb ↑ pa, the ratio of the
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expected payoff of worker b to that of worker a approaches

(1− pa)
λℓ

λℓ + r
< 1. (2)

Proof. If worker a has a high type, his payoff is 1. If he has a low type, his payoff is

(1− e−rt) if the first breakdown arrives at t, and this arrival time t follows density λℓe
−λℓt.

Hence, worker a’s expected payoff is:

pa + (1− pa)
r

λℓ + r
. (3)

If the employer starts hiring worker b at time t, then worker b’s payoff is:

e−rt

(

pb + (1− pb)
r

λℓ + r

)

.

Conditional on worker a having a low type, this time t is distributed according to density

λℓe
−λℓt. Hence, worker b’s expected payoff is:

(1− pa)
λℓ

λℓ + r

(

pb + (1− pb)
r

λℓ + r

)

. (4)

As pb ↑ pa, worker b’s expected payoff converges to

(1− pa)
λℓ

λℓ + r

(

pa + (1− pa)
r

λℓ + r

)

.

�

For spiraling to arise, it is crucial that the delay faced by worker b not depend on how

close pb is to pa. The payoff ratio (2) has two components: (i) (1−pa) reflects the fact that

worker b obtains a chance only if worker a has a low type, and (ii) λℓ/(λℓ + r) reflects the

expected time it takes for worker a’s low type to be revealed. Moreover, even as learning

becomes instantaneous—i.e., as λℓ → ∞—this payoff ratio approaches (1−pa) rather than

one. Being the second hire is detrimental to worker b even when the employer learns very

fast: worker b never obtains a chance if worker a has a high type.

Since groups have similar productivity distributions, even if the employer were blind to

which group each worker belonged to and treated the workers equally, her payoff would not

be much lower than when she observes who belongs to each group. In the limit as pb ↑ pa,

her payoff would be the same in both cases. Therefore, making it more difficult for the

employer to observe who belongs to each group would equalize workers’ payoffs without

13



making the employer worse off.15

4 Investment in productivity

In this section workers can invest in their productivity before entering the labor market. We

explore the equilibrium implications of this investment opportunity for workers’ prospects.

These implications are unclear a priori: access to investment might level the playing field

or it might amplify the expected productivity gap between workers. Yet again, it turns out

that the learning environment plays a key role.

Section 4.2 establishes that access to investment does not disturb the self-correcting

property of the breakthrough environment. In the breakdown environment, however, in-

vestment exacerbates spiraling in that it makes the workers’ payoffs more unequal. Further-

more, section 4.3 shows that when employer learning is sufficiently fast, breakdown learning

leads to more polarized investment behavior across workers. Hence, the post-investment

productivity gap is larger under breakdowns than under breakthroughs.

Formally, the investment stage occurs before time t = 0. This stage comprises three

steps: (i) workers draw their pre-investment types independently according to probabilities

(pa, pb); (ii) a low-type worker of either group draws his cost of investment c ∈ [0, 1]

according to the cumulative distribution function F and decides whether to invest; (iii) if

he invests, he pays cost c and his type improves to high with probability π ∈ (0, 1). Each

worker’s investment cost, investment decision, and post-investment type are observed only

by himself. We assume that F is continuously differentiable and strictly increasing.

Workers enter the labor market at time t = 0. Subsequently, at each t > 0, the employer

allocates a task either to one of the two workers or to a safe arm.

4.1 Investment equilibria

Before turning to the results, we first characterize the set of equilibria in the investment

game. Let (qa, qb) denote the employer’s belief about each worker after the investment

stage. The employer follows an optimal allocation strategy given this belief pair. We let

Bi(qa, qb) denote the benefit of investment for a low-type worker i:

Bi(qa, qb) := π (Ui(h; qa, qb)− Ui(ℓ; qa, qb)) , (5)

15In a study of group-blind hiring practices, Goldin and Rouse (2000) show that blind orchestra auditions
substantially increased the likelihood that female musicians advanced to the final round.
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where Ui(θi; qa, qb) is the expected payoff of worker i with post-investment type θi given the

employer’s optimal allocation strategy for (qa, qb). A low-type worker invests if and only

if the benefit of doing so exceeds his realized cost, drawn according to F . Hence, in any

equilibrium a worker’s investment strategy takes a threshold form. We let ci be the cost

threshold below which worker i invests.

An equilibrium is characterized by a pair of cost thresholds (ca, cb) and a pair of post-

investment beliefs (qa, qb) such that:

1. the employer chooses an optimal allocation strategy given (qa, qb);

2. (ca, cb) are the workers’ best responses to the allocation strategy induced by (qa, qb),

i.e., ci = Bi(qa, qb);

3. (qa, qb) is consistent with the workers’ investment strategy (ca, cb), i.e., qi = pi + (1−

pi)F (ci)π.

Both learning environments have the following feature: if the employer believes that

worker i’s expected productivity post-investment is higher than worker −i’s, then i’s benefit

from investment is strictly higher than −i’s.16 This is because worker i would be the first

to be allocated the task: by investing, he might avoid a breakdown in the near future or

increase the chance of a breakthrough within the grace period allotted exclusively to him.

Lemma 4.1 (The worker favored post-investment has higher benefit of investment). In

both learning environments, if qi > q−i, then Bi(qa, qb) > B−i(qa, qb). For each i, Bi(qa, qb)

is continuously differentiable in the breakthrough environment, but it is not continuous at

qa = qb in the breakdown environment.

Proof of Lemma 4.1. We first show the inequality for the breakdown environment. Suppose

qa > qb, and let µℓ := λℓ/r. The expected payoff of each type of each worker is given by

Ua(θa; qa, qb) =











1 if θa = h
1

µℓ + 1
if θa = ℓ,

Ub(θb; qa, qb) =















µℓ(1− qa)

µℓ + 1
if θb = h

µℓ(1− qa)

(µℓ + 1)2
if θb = ℓ.

From the definition of the benefit of investment (5), it follows that if qa > qb, then

Ba(qa, qb) = π
µℓ

µℓ + 1
> Bb(qa, qb) = π

(

µℓ

1 + µℓ

)2

(1− qa).

16In the breakthrough environment, if qa = qb = q, then Ba(q, q) = Bb(q, q) because the employer
optimally splits her task between the workers. The workers’ benefits are equal also in the breakdown
environment, assuming that the employer randomizes equally between workers at t = 0 if qa = qb.

15



Hence, the benefit to the worker who is favored post-investment is strictly higher. Again,

the benefit of investment for worker i is:

Bi(qa, qb) =















π
µℓ

µℓ + 1
if qi > q−i

π

(

µℓ

1 + µℓ

)2

(1− q−i) if qi < q−i.

Hence, the benefit of investment for worker i is discontinuous at qi = q−i.

The proof for the breakthrough environment, to be found in appendix B, follows similar

steps but is algebraically more involved. �

The worker who is favored by the employer after the investment stage has a stronger

incentive to invest. This, in turn, rationalizes the employer’s decision to favor this worker

in equilibrium. This self-fulfilling force—also noted in Coate and Loury (1993)—leads to

multiple investment equilibria. In fact, when worker a’s expected productivity advantage

prior to investment is sufficiently small, there exist equilibria in which worker b invests

more than worker a and becomes favored post-investment. Therefore, investment can

reverse the initial ranking of groups. To address this multiplicity, in each environment we

characterize the lowest payoff inequality attained across all equilibria as pb ↑ pa. The next

subsection shows that this lowest payoff inequality continues to be zero in the breakthrough

environment. In the breakdown environment, however, it is even greater than the payoff

inequality in the no-investment benchmark.

When pa 6= pb, there cannot exist an equilibrium in which qa = qb. If such an equilib-

rium existed, investment would provide the same benefit to both workers. Workers would

therefore use the same investment strategy. However, since they have unequal probabilities

of having a high type pre-investment (i.e., pb < pa), worker b would need to invest more in

order to attain qa = qb, which means that the workers’ investment strategies would have to

be different.

4.2 An even starker contrast with investment

4.2.1 Self-correction under breakthrough learning

Our next proposition formalizes the notion that the self-correcting property of the break-

through environment continues to hold with investment. It does so by establishing that

there always exists an equilibrium in which qb converges to qa as pb ↑ pa. In this equilib-

rium the workers’ benefits from investment get arbitrarily close, and so do their investment

thresholds. Hence, the payoff gap between comparable workers becomes vanishingly small.
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This equilibrium could either preserve the prior ranking of the workers—with worker a

being favored post-investment—or reverse it.

Proposition 4.1 (Self-correction under breakthrough learning). Suppose that F is weakly

convex. For a generic set of parameters, as pb ↑ pa, there exists an equilibrium in which

the two workers’ expected payoffs as well as their post-investment probabilities of having a

high type converge.

Genericity here is meant as follows: fixing all parameters of the model except for (pa, π),

the set of values of (pa, π) ∈
(

p, 1
)

× (0, 1) for which the proposition does not hold has

measure zero.17 The proof of the proposition builds on two observations. First, when the

pre-investment probabilities are the same (i.e., pa = pb), there always exists a symmetric

equilibrium in which the workers use the same cost threshold and thus have the same post-

investment probability of having a high type. Second, under breakthrough learning the

benefit from investment is continuously differentiable in (qa, qb). We invoke the implicit

function theorem to establish that, when pb is within a small neighborhood of pa, there

exists an equilibrium in which cost thresholds (ca, cb) and post-investment probabilities

(qa, qb) are within a small neighborhood of those in the symmetric equilibrium. The proof

is standard, hence relegated to online appendix D. The other proofs for this section are in

appendix B.

4.2.2 Exacerbated spiraling under breakdown learning

In contrast, access to investment not only fails to tame the propensity of breakdown learning

to magnify small prior differences, but makes it worse. Across all equilibria, the expected

payoffs of ex ante comparable workers are even further apart than in the no-investment

benchmark of section 3.2.

Proposition 4.2 (Exacerbated spiraling under breakdown learning). As pb ↑ pa, in any

equilibrium (qi, q−i) such that qi > q−i, the ratio of the expected payoff of worker −i to that

of worker i is at most

(1− qi)
λℓ

λℓ + r
< 1,

which is strictly lower than the payoff ratio in the no-investment benchmark, given by

(1− pa)λℓ/(λℓ + r).

Unlike the case in the breakthrough environment, the benefit from investment in the

breakdown environment is discontinuous in (qa, qb), as shown in Lemma 4.1. This difference

17When F is not weakly convex, our preliminary analysis suggests that a version of this result continues
to hold according to a different, more involved notion of genericity based on prevalent and shy sets.
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explains why a proof similar to that for Proposition 4.1 does not work here. Nonetheless,

the benefit function takes a simple form—as already previewed in the proof of Lemma

4.1—hence, characterizing the set of equilibria is straightforward. As pb ↑ pa, there exist

only two equilibria: worker a is favored post-investment in one equilibrium and worker b

is favored post-investment in the other. These two equilibria are the same modulo the

workers’ identities.

As we saw in Proposition 3.2, the payoff ratio across workers in the no-investment

benchmark is pinned down by pa, the probability that worker a has a high type without

investment. Because the worker who is favored post-investment—whoever that might be—

has a strong enough incentive to invest, his post-investment probability is strictly higher

than pa. We show that for any realized investment cost, the ratio between the payoff of the

worker who is discriminated against post-investment to that of the worker who is favored

post-investment—after factoring in the investment cost—is lower than the ratio in the no-

investment benchmark. Hence, inequality between workers increases due to the investment

opportunity.

4.3 Polarization in investment behavior under breakdown learning

Our discussion has so far focused on comparing learning environments in terms of workers’

payoffs. We now turn to differences in investment behavior. In a nutshell, when learning is

sufficiently fast, the worker favored post-investment invests strictly more under breakdowns

than under breakthroughs, whereas the worker discriminated against post-investment in-

vests strictly less under breakdowns. Therefore, the breakdown environment is marked by

greater polarization in workers’ investment behavior. Notably, this comparison holds across

all equilibria and does not hinge on the arrival rates being equal across environments. All

that is needed is that the arrival rates be sufficiently high in both environments.

Proposition 4.3 (Investment polarization under breakdown learning). Fixing all model

parameters except for λh and λℓ, there exists λ̄ > 0 such that for any λh, λℓ > λ̄ and in any

pair of equilibria, one from each environment, the worker favored post-investment invests

strictly more in the breakdown environment than in the breakthrough one and the worker

discriminated against post-investment invests strictly less.

When learning is sufficiently fast, investment incentives are seemingly similar across the

two environments. The worker favored post-investment is the first to be allocated the task

and information about his type arrives quickly, so his incentives to invest are quite strong.

For the worker discriminated against post-investment, investment incentives are less clear.

On the one hand, a more strongly favored worker depresses the investment incentives of
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the worker discriminated against. On the other, due to fast learning, the worker who

is discriminated against might get a chance earlier if he invests. Despite these seeming

similarities across environments, Proposition 4.3 identifies a key difference between them.

Under breakdown learning, the return from having a high type is very close to one for the

worker favored post-investment. A high type gets a payoff of one, and a low type is revealed

and fired almost immediately. Under breakthrough learning, in contrast, the return from

having a high type is not as high. As learning becomes very fast, the grace period granted

to the favored worker becomes very small. A high type is revealed with probability strictly

less than one during this shrinking grace period. This uncertainty about whether a high

type will be revealed depresses the return from investment. Therefore, the worker favored

post-investment is more motivated to invest in the breakdown environment.

The worker who is discriminated against post-investment, on the other hand, has a

weaker incentive to invest under breakdowns than under breakthroughs when learning is

sufficiently fast. This is due to two forces that reinforce each other. First, because of

spiraling, the breakdown environment already makes the second worker much less likely

to be hired than in the breakthrough environment. Second, under breakdowns the worker

who is discriminated against faces a competitor who invests strictly more—as explained

above—which further lowers the chance that this worker will get a shot from the employer.

One important implication of Proposition 4.3 is that, when learning is sufficiently fast

and π is sufficiently close to 1, the employer strictly prefers the breakdown environment

to the breakthrough one. That is, if she had the choice between the two learning environ-

ments, she would opt for the environment that magnifies small differences. Therefore, there

exists a tradeoff between efficiency for the employer and equality across the workers. The

employer prefers the breakdown environment because it encourages almost sure investment

by the worker favored post-investment; hence, she hires a high type almost surely. In the

breakthrough environment, however, the probability that the favored worker has a high

type is bounded away from one. Hence, the employer’s payoff is bounded away from v.

Corollary 4.2 (Employer prefers breakdown learning). Fixing all model parameters except

for λh, λℓ, and π, there exists λ̄ > 0 and π̄ ∈ (0, 1) such that for any λh, λℓ > λ̄ and π > π̄,

the employer’s payoff is strictly higher under breakdowns than under breakthroughs.

Note that in the no-investment benchmark, the employer’s payoff is the same across the

two environments as λh, λℓ become very large: her payoff equals the probability that at

least one worker has a high type. This shows that the employer’s strict preference for the

breakdown environment in the presence of investment is due to the difference in investment

incentives across the two environments.
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Indeterminate ranking under slow learning. When learning is very slow, on the

other hand, the two environments are more similar and hence, the ranking can go either

way. For a simple illustration, suppose that λh ≈ 0 and λℓ equals a small number ε > 0.

For such λh and λℓ, investment under breakthrough learning is very close to zero for both

workers, whereas investment under breakdown learing is small but strictly positive for both.

Hence, the breakdown environment provides greater incentives for workers to invest. The

reverse ranking holds if λh equals a small number ε > 0 and λℓ ≈ 0. Therefore, it is harder

to attain a clear-cut ranking of workers’ investment when the environments are qualitatively

more similar.

5 Many employers and workers: The role of task scarcity

Our baseline model focused on a single employer choosing between two workers from distinct

groups. We now consider a market with many employers and many workers from each

of the two groups (still modeling only two groups for simplicity).18 Comparable groups

continue to have comparable payoffs under breakthroughs, but markedly different payoffs

under breakdowns. Moreover, the scarcer tasks become relative to workers, the greater the

inequality between groups in the breakdown environment.

We consider a two-sided market with a unit mass of employers, a mass of size α of a-

workers, and a mass of size β of b-workers. As before, each employer has a task to allocate

at each instant. An i-worker’s type is high with probability pi and is drawn independently

from other workers’ types. As in our baseline model, we focus on the limit pb ↑ pa.

Moreover, we assume that α + β > 1, so tasks are scarce and some workers are not

initially hired. Such task scarcity is both necessary and sufficient for payoff inequality to

emerge in the breakdown environment. For ease of exposition, we further assume α > 1 for

the rest of this discussion. The formal framework for this section is presented in appendix

C.1 and the rest of the analysis is in online appendix E.

Diverse hiring under breakthrough learning. Mirroring the analysis in section 3.1,

the dynamic allocation of tasks goes through two phases. In the first phase, all a-workers

take turns to perform tasks. If an a-worker generates a breakthrough, he “secures his job”

with his current employer: the employer allocates future tasks only to this worker. For those

a-workers without a breakthrough, the employers’ belief drops gradually until it reaches

pb. At that point, a-workers without breakthroughs are believed to be as productive as

b-workers. The allocation now enters a second phase in which the remaining employers let

18The results of this section can be readily extended to more than two groups.
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all remaining a-workers and all b-workers take turns to perform tasks. Again, those who

generate breakthroughs secure their jobs with their current employers.

Breakthrough learning therefore prompts employers to try a broad set of workers. A

similar observation was made in passing by Baron and Kreps (1999) on recruitment for star

jobs:

For a star job, the costs of a hiring error are small relative to the upside potential

from finding an exceptional individual. Therefore, the organization will wish

to sample widely among many employees, looking for the one pearl among the

pebbles. (Baron and Kreps (1999), p. 28-29)

Our focus is on the implications of such a broad allocation of tasks for group inequality.

Employers quickly extend their search to group b, so a b-worker’s payoff converges to an

a-worker’s payoff as pb ↑ pa. Thus, the self-correcting property extends to larger labor

markets.

Narrow hiring under breakdown learning. Breakdown learning, in contrast, leads

to sluggishness in trying new workers: if a worker is hired, he remains employed until

he generates a breakdown. This sluggishness hurts group b disproportionately no matter

how close pb is to pa, thus generalizing the intuition reported in section 3.2 to larger labor

markets.

At the start, a unit mass of a-workers is hired by the unit mass of employers. These

workers remain hired as long as they do not generate breakdowns. When one of these

a-workers generates a breakdown, he is replaced by a new a-worker for as long as one is

available. So b-workers must wait for their turn until all of the a-workers have been tried

and sufficiently many a-workers have generated breakdowns. Crucially, this delay does not

shrink as pb ↑ pa. Therefore, the expected payoff of a b-worker remains bounded away from

that of an a-worker.

Task scarcity and inequality under breakdown learning. In this large market, α

and β parametrize not only group sizes but also the relative scarcity of the unit mass of

tasks. By varying α and β, we explore how inequality among groups varies with relative

task scarcity. We measure group inequality by the ratio of a b-worker’s expected payoff to

that of an a-worker. Proposition 5.1 states that in the breakdown environment, inequality

between groups increases as the size of either group increases while the mass of tasks is

kept fixed.

First, increasing β while keeping α fixed intensifies competition within group b but does

not affect the payoff of a-workers. Second, increasing α while keeping β fixed hurts both

groups: it intensifies competition within group a while also increasing the delay for group
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b. We show that increasing α hurts group b more than it hurts group a, since adding one

more a-worker uniformly delays every b-worker’s employment. Therefore, the scarcer tasks

are relative to the labor supply from either group—i.e., the larger either group is relative

to the unit mass of tasks, the greater is the inequality between groups.

Proposition 5.1 (Inequality increases in task scarcity under breakdown learning). Let

α > 1 and β > 0. As pb ↑ pa, the limiting ratio of the expected payoff of an a-worker to

that of a b-worker increases in both α and β.

This result predicts that when the scarcity of job opportunities intensifies, e.g., when

labor demand falls during an economic downturn, inequality deepens. This is consistent

with the observation that while all groups suffer during an economic downturn, some suffer

disproportionately more.19

6 Flexible wages

This section investigates whether flexible wages can restore earnings equality in the break-

down environment.20 We show that, as long as workers’ wages are nonnegative, both the

self-correcting property of breakthroughs and the spiraling property of breakdowns still

hold. In particular, wage flexibility is insufficient to prevent spiraling.

We incorporate flexible wages into the dynamic, large market from section 5. In this

richer setting, a stage-game outcome specifies not only how workers are matched to em-

ployers but also a wage for each matched pair. We call this a stage-game matching. Using

the solution concept of Shapley and Shubik (1971), we first characterize the stable stage-

game matching, which is essentially unique. The dynamic counterpart of a stage-game

matching—a dynamic matching—specifies, after each history, how workers are matched to

employers and a wage for each matched pair. Adopting the solution concept of Ali and

Liu (2020), we show that prescribing the stable stage-game matching after each history is

dynamically stable: no worker-employer pair and no single player has a profitable one-shot

deviation after any history. The formal framework is presented in appendix C.2. The rest

of the analysis is in online appendix F.

19Estimates from the Pew Research Center (https://www.pewsocialtrends.org/2011/07/26/wealth-gaps-
rise-to-record-highs-between-whites-blacks-hispanics/) show that the white-to-black and white-to-Hispanic
wealth ratios were much higher at the peak of the recession in 2009 than they had been since 1984, the
first year for which the U.S. Census Bureau published wealth estimates by race and ethnicity based on the
Survey of Income and Program Participation.

20Section 6 assumes that workers do not know their types at time 0: they share the same prior belief as
the employers. All players learn symmetrically about a worker’s type. This assumption—which simplifies
the stability approach taken in this section—is standard in models of learning in labor markets, such as
Felli and Harris (1996) and Altonji and Pierret (2001).
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On the equilibrium path, there is a time-dependent marginal productivity pM(t) such

that, at each time t, workers whose expected productivity (i.e., whose probability of having a

high type) exceeds pM(t) are matched and workers whose expected productivity lies below

pM(t) are not. Wages take a strikingly simple form: a matched worker with expected

productivity pt at time t is paid a flow wage of (pt − pM(t))v, which is the additional value

that he creates relative to the marginal-productivity worker. An unmatched worker receives

no wage and, hence, has zero earnings. All employers get the same flow profit of pM(t)v.21

Dynamic stability of the stable stage-game matching. Why is prescribing the

stable stage-game matching after each history dynamically stable? First, in a stable stage-

game matching, an employer’s flow profit from a match is at least as high as that from

the safe arm, so no employer finds it profitable to reject a match and take the safe arm.

Second, no employer-worker pair has a profitable one-shot deviation, since all employers

make the same flow profit. Lastly, one can show that no worker ever finds it profitable

to reject a match in the hope of delaying the arrival of information about his type. This

last point follows from the fact that a worker’s flow earnings are convex in his expected

productivity pt at time t: flow earnings take the form of max
{

0, (pt − pM(t))v
}

, as figure 2

shows.22 By Jensen’s inequality, this implies that any signal about the worker’s type at

time t—which splits the current belief about the worker’s type into a lottery over posterior

beliefs—increases the worker’s earnings, in expectation, at all future dates.

Flexible wages do not fix spiraling under breakdown learning. One plausible

conjecture is that with flexible wages, workers with similar expected productivity obtain

similar earnings. This would indeed be the case in the one-shot version of the model,

because a worker with expected productivity p obtains flow earnings max{0, (p − pM)v},

which is a continuous function of p. In particular, there would be no discontinuity in flow

earnings between an unemployed worker (p < pM) and a worker who barely makes the cut

(p ≈ pM).

However, in a dynamic setting, employed workers benefit from the information that

they generate through employment: unlike unemployed workers, they have an opportunity

to establish an increasingly higher reputation and thereby command an increasingly higher

21For notational ease, in this section (v, 0) denotes the employer’s gross flow payoffs from high and low
types, respectively (i.e., prior to paying the flexible wage to the worker), whereas in the rest of the paper
(v, 0) denotes her net flow payoffs (i.e., after the fixed unit wage is paid).

22The minimum wage for an employed worker is zero since we normalize workers’ cost of effort on the
task to zero. If this cost were strictly positive, the limited liability constraint would require that the wage
be weakly greater than this cost. In the left panel of figure 1 the average-wage paths for both groups
would shift up by this cost, whereas in the right panel the average-earnings paths would remain intact once
reinterpreted as average-net -earnings paths. Moreover, the green curve in figure 2 would be reinterpreted
as net flow earnings.
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wage, which quickly sets them apart from unemployed workers. Naturally, they may also

generate a breakdown and become unemployed. However, such an event occurs only if

a worker has a low type and even then it takes time. The accumulated learning for the

favored group thus translates into a substantial earnings advantage over the less favored

group.

We now expand on this intuition about spiraling in two steps. First, to show how

learning through employment strictly benefits a worker, consider a discretized version of

the model with only two periods and in which α = β = 1, as depicted in figure 2. In the

first period, a-workers and b-workers, who have comparable expected productivity, have

comparable earnings: while only a-workers are hired, their wage is equal to 0 since pM is

equal to pa. The performance of an a-worker in the first period splits the prior belief pa

into posterior beliefs 0 and pa. Since earnings are convex in beliefs, this splitting strictly

benefits a-workers, whose expected earnings in the second period now equal w2. Hence,

first-period learning causes the earnings gap to widen in the second period.

Earnings

p
0 1pb

pM

pa
b b

max{0, (p− pM)v}

First period

Earnings

p
0 1pb

pM

pa pa
b b

b
bw2

b b

Second period

Figure 2: A two-period example with α = β = 1

Second, even though the benefit from learning over each short period (i.e., over [t, t+dt))

is small, such benefit accumulates over time. Because pa is significantly more frequent than

the zero posterior, the delay in employment experienced by b-workers does not vanish even

as pb gets arbitrarily close to pa. By the time that employers start hiring b-workers, they

have already learned a lot about a-workers’ types. Hence, the average earnings of a-workers

are significantly higher than those of b-workers.

For breakthrough learning, in contrast, the delay in employment experienced by b-

workers vanishes as pb ↑ pa. Hence, a-workers do not get a chance to accumulate the

benefit from employer learning. The average earnings of both groups thus converge.

Persistent employment, wage, and earnings gaps under breakdown learning.

Besides establishing the fact that spiraling continues to arise with flexible wages, we are
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able to quantify the magnitude of such spiraling. Online appendix F.3 computes and ana-

lyzes closed-form expressions for the employment rate, the average wage, and the average

earnings of each group.

We first show that if task scarcity is sufficiently severe—in the sense that there are more

high-type workers than tasks—the employment gap persists throughout workers’ careers,

even though it decreases over time (Proposition F.5). Owing to this nonvanishing delay in

employment faced by group b, the wage gap is strictly increasing for a substantial amount

of time. The wage gap starts shrinking only after sufficiently many b-workers have been

employed, and shrinks to zero only in the limit t → ∞ (Proposition F.4). See figure 3

below for an illustration.23

Average-wage gap

t0

Average-earnings gap

t0

Figure 3: Average-wage gap and average-earnings gap as pb ↑ pa

The earnings gap is due to the combination of the wage gap and the employment

gap. Like the wage gap, the earnings gap expands early in workers’ careers and begins to

gradually shrink only in the latter part of their careers (Proposition F.3). But unlike the

wage gap, whether the earnings gap also shrinks to zero depends on how scarce the tasks

are. If there are more high-type workers than tasks, the earnings gap remains bounded

away from zero even in the limit t → ∞. This is due to the nonvanishing employment gap

in the limit t → ∞.

7 Alternative learning and belief specifications

7.1 Inconclusive learning environments

Our baseline model assumes that signals are conclusive: only one productivity type can

generate the signal. More generally, a learning environment is characterized by a pair of

arrival rates (λh, λℓ) such that λθ > 0 for both θ ∈ {h, ℓ}. That is, both high and low

types generate signals. The environment is an inconclusive breakthrough environment if

23Figure 1 in the introduction and figure 3 assume the same parameter values: α = 5/4, β = 1, pa = 1/2,
λℓ = 1, and r = 1.

25



the signal suggests a high type (i.e., λh > λℓ) and an inconclusive breakdown environment

otherwise (i.e., λh < λℓ). If λh = λℓ, signals are uninformative.

The self-correcting property extends to inconclusive breakthrough environments, as

established in Proposition G.1 in online appendix G. Even though the employer does not

assign the task to worker a indefinitely upon the realization of the first breakthrough, there

is still a time window [0, t∗) over which worker a should generate a first breakthrough in

order to continue being allocated the task exclusively. If no breakthrough arrives during

this time window, the belief about worker a’s type drops to pb, at which point both workers

receive the same continuation payoff. It continues to be the case that as pb ↑ pa, duration

t∗ shrinks to zero and hence the probability that worker a generates a breakthrough within

the time window vanishes as well. The two workers’ limit payoffs are therefore equal.

The spiraling property generalizes to inconclusive breakdown environments as well,

provided that players are sufficiently impatient. The departure from a conclusive breakdown

environment brings the complication that the employer might reconsider hiring workers who

have generated breakdowns in the past. But as long as pa > pb, worker a is the first to

be hired and stays employed in the absence of a breakdown. The expected time until the

first breakdown is significant. If players are sufficiently impatient, this already leads to a

significant payoff advantage for worker a.24 Proposition G.2 presents the details.

7.2 Misspecified prior belief

Suppose that the two workers have the same probability ptrue of having a high type, but

the employer believes that worker b has a lower probability pmis < ptrue.
25 The spiraling

property of the breakdown environment continues to hold, in the sense that even a very

slight misspecification grants a large payoff disadvantage to worker b. Worker a is still hired

first based on the employer’s misspecified belief and the workers’ payoffs are still given by

expressions (3) and (4) (with pa and pb being both replaced by ptrue).

The self-correcting property of the breakthrough environment continues to hold as well,

in the sense that a slight misspecification will not have large payoff consequences for workers.

Duration t∗, which is analogous to the grace period in (1), corresponds to the time it takes

for the belief about worker a’s type to drift down from ptrue to pmis. As the amount of

misspecification vanishes to zero, so does t∗. At time t∗, the true probability that worker

a has a high type is pmis, whereas the true probability that worker b has a high type is

24The sufficient condition for spiraling can be also stated in terms of arrival rates (λh, λℓ) rather than
the discount rate r: breakdowns need to be sufficiently infrequent, i.e., λh, λℓ sufficiently small.

25Bohren et al. (2019) refer to this as “inaccurate statistical discrimination.” Bohren, Imas and Rosen-
berg (2019) identify discrimination driven by misspecified beliefs in an experimental setting.
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ptrue. However, the employer believes that both probabilities are pmis, so she splits the task

equally between workers from t∗ onwards.

We let Ûa (pmis, ptrue) and Ûb (pmis, ptrue) be the continuation payoffs of worker a and

worker b, respectively, at time t∗. Because each worker gets half a task but worker a

has a lower true probability of having a high type, his payoff Ûa (pmis, ptrue) is lower than

Ûb (pmis, ptrue). Crucially, as pmis converges to ptrue, the two payoffs get arbitrarily close. To

extend the proof of Proposition 3.1 to the misspecified-prior case, we only need to replace

t∗ with the new definition and replace Ui(pb, pb) with Ûi (pmis, ptrue) for workers’ payoffs.

Belief misspecification is very relevant to discussions of labor-market discrimination.

Lang and Lehmann (2012) provide evidence that suggests the presence of widespread mild

prejudice among employers. Our results show that prejudice, even when infinitesimally

mild, has very different implications in different learning environments. The breakthrough

environment works well against prejudice, whereas the breakdown environment propagates

it further.

8 Concluding remarks

This paper studies the consequences of different employer learning environments for social

groups of comparable expected productivity. Whether the learning environment is closer to

a breakdown environment or a breakthrough one has important implications for whether

discrimination persists in the long run. Lange (2007) observed that “how economically

relevant statistical discrimination is depends on how fast employers learn about workers’

productive types.” Our analysis provides an additional perspective: what matters for

statistical discrimination is not only the speed of employer learning, but also the nature of

that learning.

Our analysis has implications for how negative shocks to labor demand during economic

downturns impact inequality across groups. We predict that breakdown-like occupations

will be prone to significant increases in inequality as jobs become scarcer. To the extent

that low-skill occupations tend to be predominantly breakdown environments and high-skill

occupations tend to be breakthrough ones, our result is in line with substantial evidence

that the groups who are hit the hardest in recessions are those who are already discrimi-

nated against and in low-skill occupations. Moreover, our results provide a learning-based

explanation for the empirical observation that racial wage gaps are more present in low-

skill occupations, which are typically breakdown-like, but are largely absent in high-skill

ones (Lang and Lehmann (2012)). By this same reasoning, we explain why wage gaps

might even widen with labor market experience in low-skill occupations, as documented by
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Arcidiacono, Bayer and Hizmo (2010). Our theoretical framework—and in particular, our

predictions for the employment gap, the wage gap, and the earnings gap—can guide future

empirical investigation of discrimination in breakthrough versus breakdown occupations.

Besides these testable predictions, one natural empirical question for which our frame-

work can be useful is the long-lasting effects of temporary affirmative action for groups that

are discriminated against (Miller and Segal (2012), Kurtulus (2016), Miller (2017)). The

empirical evidence on this question is mixed. One natural corollary of our analysis is that

in breakdown environments, if the employer is obligated to give a chance to group b early

on, this dramatically improves the prospects of b-workers as they will continue to be hired

even after this temporary obligation is fulfilled. This will not be the case in breakthrough

environments.

Finally, our framework can be used to study questions that fall beyond the scope of the

current paper. First, an employer may have to allocate multiple tasks which entail different

employer learning dynamics. For instance, if an employer has both a breakthrough task and

a breakdown task, how will she allocate the tasks among workers from comparable social

groups? Second, in certain contexts the learning environment is an endogenous choice of

the employer rather than exogenously fixed. Corollary 4.2 describes circumstances under

which the employer prefers breakdown learning. More generally, is the endogenous choice

of the learning environment more likely to lead to breakdown or breakthrough learning? If

the employer can adjust her choice of the learning environment in response to the workers’

expected productivities (as in Che and Mierendorff (2019)), how does this affect the lifetime

payoffs of comparable groups? Third, our framework can prove useful to understanding

incentives for occupational segregation: workers from groups that are discriminated against

have an incentive to sort into breakthrough-like occupations in order to avoid spiraling. We

leave these questions to future research.
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A Preliminary results

A.1 Distribution of performance signals for star and guardian jobs

Replicating figure 2-2 in Baron and Kreps (1999), the dashed curves in figure 4 depict the

probability density of performance signals for a guardian job and that for a star job when

the support of performance signals is an interval. The bars depict the probabilities when the

performance signals are binary, as in our baseline model. “Breakdown” and “no breakdown”

correspond to signals in a guardian job, whereas “breakthrough” and “no breakthrough” to

those in a star job. The bars do not condition on a worker’ type, but they would look

similar if the probabilities were conditional on a low type under breakdowns (figure 4a)

and conditional on a high type under breakthroughs (figure 4b). The figure suggests how

to empirically test whether a job is a star (breakthrough-like) job or a guardian (breakdown-

like) one: a right-skewed density suggests a star job while a left-skewed density suggest a

guardian job. See footnote 5 for examples of such empirical studies.

A.2 Derivation of p in section 2

Lemma A.1. The belief threshold at which the employer switches to the safe arm is given

by:

p :=











rs

(r + λh)v − λhs
if λh > 0 = λℓ

rs

(r + λℓ)v − λℓs
if λℓ > 0 = λh.
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breakthroughno breakthrough
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Figure 4: Distribution of performance signals (adapted from Baron and Kreps (1999))

Proof. Consider first λh > λℓ = 0. Fixing an arbitrary prior belief p and threshold belief

p < p, this corresponds to duration

t∗
(

p, p
)

:=
1

λh
log

(

p(1− p)

(1− p)p

)

.

Conditional on the worker having a high type, the payoff of the employer is

v
(

1− e−rt∗(p,p)
)

+
(

1− e−λht
∗(p,p)

)

e−rt∗(p,p)v + e−λht
∗(p,p)e−rt∗(p,p)s,

whereas conditional on the worker having a low type, the employer’s payoff is e−rt∗(p,p)s.

Hence, the expected payoff of the employer simplifies to

VBT (p, p) := pv + t∗
(

p, p
)

−(λh+r)/r
(1− pv).

The smooth pasting condition yields

∂VBT (p, p)

∂p
= 0 ⇒ p =

rs

v(r + λh)− λhs
.

Next, consider λℓ > λh = 0. If the worker has a high type, the payoff of the employer is

v. If the worker has a low type, the payoff of the employer equals the continuation payoff

from the safe arm once a breakdown is realized, which is λℓs/(λℓ+r). Hence, the employer’s

expected payoff if she experiments with a worker given prior belief p is

VBD(p) := pv + (1− p)
λℓs

λℓ + r
.

At the threshold p = p, the employer is indifferent between the worker and the safe arm:
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the value matching condition is VBD(p) = s. This implies the threshold

p =
rs

(r + λℓ)v − λℓs
.

�

B Proofs for section 4

Continuation of the proof of Lemma 4.1. We now show the inequality for the breakthrough

environment. Let qa > qb. The employer uses worker a exclusively for a period of length t∗ =
1
λh

log
(

qa(1−qb)
(1−qa)qb

)

and then splits the task equally among the two workers for a subsequent

period of length ts := 2
λh

log
(

qb(1−p)

(1−qb)p

)

. Let S(h, qb) and S(ℓ, qb) denote the payoffs to a

high-type worker and a low-type worker, respectively, if (i) his competitor has a high type

with probability qb; (ii) the employer holds the same belief about both workers and hence

splits the task equally between the two workers until the belief for both workers drops to

p. The post-investment payoff for each type of each worker is:

Ua(h; qa, qb) = 1− e−rt∗ + e−rt∗
(

1− e−λht
∗

+ e−λht
∗

S(h, qb)
)

,

Ua(ℓ; qa, qb) = 1− e−rt∗ + e−rt∗S(ℓ, qb),

Ub(h; qa, qb) = e−rt∗
(

1− qa + qae
−λht

∗
)

S(h, qb),

Ub(ℓ; qa, qb) = e−rt∗
(

1− qa + qae
−λht

∗
)

S(ℓ, qb).

Note that Ua(h; qa, qb) − Ua(ℓ; qa, qb) > e−rt∗(S(h, qb) − S(ℓ, qb)) whereas Ub(h; qa, qb) −

Ub(ℓ; qa, qb) < e−rt∗(S(h, qb)− S(ℓ, qb)). Hence, Ba(qa, qb) > Bb(qa, qb).

To characterize S(h, qb) and S(ℓ, qb), let t1 be the arrival time of a breakthrough for a

high-type worker and let t2 be the arrival time of his competitor’s breakthrough when the

task is split equally between workers. For a low type, a breakthrough never arrives. In the

absence of any breakthroughs, the employer experiments with the workers until the belief

hits p. The length of this experimentation period is given by ts as defined above. The

CDFs of t1 and t2 for t1, t2 6 ts are:26

F1(t1) = 1− e−
λht1

2 , F2(t2) = qb(1− e−
λht2

2 ),

26When the task is split equally among workers, the arrival rate for each worker is λh/2 instead of λh.
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with corresponding density functions f1 and f2 respectively. Therefore,

S(ℓ, qb) =

∫ ts

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(ts))

1− e−rts

2
,

S(h, qb) =

∫ ts

0

f1(t1)

(
∫ t1

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(t1))

(

1− e−rt1

2
+ e−rt1

))

dt1

+ (1− F1(ts))

(
∫ ts

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(ts))

1− e−rts

2

)

.

This allows us to obtain explicit expressions for Ba and Bb. Letting µh := λh/r, we have

Ba(qa, qb) = π

(

qb(p− 1)

(qb − 1)p

)−2/µh
(

(qb − 1)qa
qb(qa − 1)

)

−1/µh

(1− p)2
(

qb(1−p)

(1−qb)p

)
2
µh (qb(µhqb + 2)− (µh + 2)qa)− (1− qb)

2(p(µh(p− 2)− 2) + (µh + 2)qa)

2(µh + 2)(qb − 1)(1− p)2qa

if qa > qb, and

Ba(qa, qb) = π

(

qa(p− 1)

(qa − 1)p

)−2/µh
(

(qa − 1)qb
qa(qb − 1)

)

−1/µh

(1− p)2
(

qa(1−p)

(1−qa)p

)2/µh

µhqa(qb − 1)− (qa − 1)(qb − 1)
(

p(µh(p− 2)− 2) + (µh + 2)qa
)

2(µh + 2)(qa − 1)(1− p)2qa

if qa 6 qb. It is immediate that Ba is continuously differentiable at any (qa, qb) such that

qa 6= qb. Moreover,

lim
qa→q+b

Ba(qa, qb) = lim
qa→q−b

Ba(qa, qb)

lim
qa→q+b

∂Ba(qa, qb)

∂qa
= lim

qa→q−b

∂Ba(qa, qb)

∂qa
, lim

qa→q+b

∂Ba(qa, qb)

∂qb
= lim

qa→q−b

∂Ba(qa, qb)

∂qb
.

Hence, Ba is continuously differentiable at qa = qb as well.27

�

Proof for Proposition 4.2. Throughout the proof, a “worker’s type” refers to the worker’s

pre-investment type. We focus on the equilibrium with post-investment beliefs qa > qb and

27For detailed calculations, see the online supplement at http://yingniguo.com/wp-
content/uploads/2020/06/differentiability.pdf.

36

http://yingniguo.com/wp-content/uploads/2020/06/differentiability.pdf


cost thresholds ca > cb as pb ↑ pa. The argument for the equilibrium with qb > qa is similar.

We first characterize this equilibrium. Using Ba and Bb derived in the proof of Lemma

4.1, the cost thresholds are:

ca = π
µℓ

µℓ + 1
> cb = π

µ2
ℓ(1− qa)

(µℓ + 1)2
.

where the post investment belief pair (qa, qb) is given by qa = pa + (1 − pa)πF (ca) and

qb = pb + (1 − pb)πF (cb). Note that ci ∈ (0, 1) for each i ∈ {a, b}. Given that ca > cb and

pa > pb, the employer is indeed willing to favor worker a.

Let κ := µℓ(1−qa)
µℓ+1

< 1. Since worker a is favored post-investment, a high-type worker a

obtains payoff 1, while a high-type worker b obtains payoff κ. Hence, the ratio of worker

b’s to worker a’s payoff, conditional on each being a high type, is exactly κ.

We next argue that for any realized cost c, a low-type worker b’s payoff is at most

a fraction κ of the low-type worker a’s payoff. Hence, the same holds when taking the

expectation with respect to c.

1. If c > ca, neither low-type worker a nor low-type worker b invests. The ratio of

low-type worker b’s payoff to low-type worker a’s payoff is exactly κ.

2. If cb < c < ca, a low-type worker a is willing to invest but a low-type worker b is

not. If the low-type worker a deviates to no investment, the ratio of low-type worker

b’s payoff to low-type worker a’s payoff is κ. By investing worker a obtains a strictly

higher payoff. Therefore, the payoff ratio must be strictly lower when the low-type

worker a invests.

3. If c 6 cb, both the low type of worker a and of worker b invest. Ignoring investment

cost c > 0, the payoff ratio of the low-type worker b to that of the low-type worker

a is κ. Once the investment cost is subtracted from both the numerator and the

denominator, the payoff ratio becomes strictly smaller.

�

Proof of Proposition 4.3. Throughout the proof, we set π = 1 without loss, as π merely

scales the benefit from investment Bi(qa, qb) and the threshold for investment for each i. Let

i denote the worker favored post-investment, and −i be the worker discriminated against

post-investment.

As we take λℓ, λh to infinity, worker i’s benefit from investment converges to 1 under
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breakdown learning, while it converges to

B̄i(qi, q−i) :=
(1− q−i)

2qi + qi − q2
−i

2qi(1− q−i)
,

under breakthrough learning, where we use the fact that p → 0 as λh → ∞. The function

B̄i(qi, q−i) increases in qi, and decreases in q−i. Since qi is bounded above by pa+(1− pa)π

and q−i is bounded below by pb, B̄i(qi, q−i) is bounded from above by

B̄i(pa + (1− pa)π, pb) =
(pa + (1− pa)π)((pb − 2)pb + 2)− pb

2

2(pa + (1− pa)π)(1− pb)
< 1.

By continuity of worker i’s benefit from investment in λℓ, λh, when λℓ, λh are sufficiently

large, the worker favored post-investment invests more under breakdown learning than

under breakthrough learning.

As we take λℓ, λh to infinity, worker −i’s benefit from investment converges to (1− qi)

under breakdown learning, while it converges to

B̄−i(qi, q−i) :=
(1− qi)(2− q−i)

(2− 2q−i)
> 1− qi,

under breakthrough learning. Here, the inequality follows from 0 < q−i < 1. Given that

the favored worker i invests more under breakdown than under breakthrough learning, qi is

higher under breakdown learning as well. Hence, the benefit from investment for the worker

who is discriminated against is higher under breakthrough learning than under breakdown

learning when λh, λℓ are large enough. �

C Framework for sections 5 and 6

C.1 Large market framework of section 5

This section extends our baseline model to a two-sided matching market with a continuum

of workers and employers. There is a unit mass of employers, a mass of size α > 1 of a-

workers, and a mass of size β > 0 of b-workers. Both employers and workers are long-lived.

They share the same discount rate r > 0. Employers are ex ante homogeneous. At t = 0,

each worker’s type is drawn independently from other workers’ types. An a-worker’s type

is high with probability pa, and a b-worker’s type is high with probability pb. There is also

a unit mass of identical safe arms available. We assume that pa > pb > p.

At each instant, each employer has one task to allocate and each worker can take up at

most one task.
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Matching protocol. At each t > 0, the following frictionless matching protocol takes

place:

(i) each unmatched employer is matched randomly with an unmatched worker;

(ii) the matched employer and worker decide simultaneously whether to accept the match;

(iii) if at least one rejects, they both return to the unmatched pool and are rematched

instantaneously;

(iv) if an employer rejects all unmatched workers, she takes a safe arm;

(v) this process ends when each employer is either matched to a worker or takes the safe

arm.

An employer returns to the unmatched pool if she fires the worker that she is currently

matched to. We assume that all signals are observed publicly. Therefore, all employers

hold the same belief about the type of any worker at any time t. The frictionless matching

protocol ensures that at each instance the most productive workers are matched provided

that their probabilities of having a high type are higher than p. As in the baseline model,

employers are willing to experiment at a belief that is as low as p, because (i) an employer

reaps the entire benefit from her worker’s successful experimentation in the same manner

as in the baseline model, and (ii) workers’ types are independent.

Task scarcity. When there are more workers than tasks (i.e., α+β > 1), not all workers

are matched immediately at t = 0. Such relative scarcity of tasks is both necessary and

sufficient for spiraling to arise under breakdown learning. To simplify exposition, we impose

the stronger assumption that α > 1.28 This assumption guarantees that only a-workers are

matched at t = 0. The rest of the analysis is in online appendix E.

C.2 Flexible wage framework of section 6

This section introduces endogenous, flexible wages in the context of the two-sided, large

market introduced in section 5 and appendix E. We show that the self-correcting property

of breakthroughs and the spiraling property of breakdowns still hold. In particular, wage

flexibility is insufficient to prevent spiraling under breakdowns.

In this section, we use i ∈ [0, α + β] to index a worker. Worker i is from group a if

i ∈ [0, α] and from group b if i ∈ (α, α + β]. We use j ∈ [0, 1] to index an employer. At

each instant, each employer has one task to allocate and each worker can take up at most

28Our analysis extends to the case of α < 1 and α+ β > 1.
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one task. There is also a unit mass of identical safe arms. An employer takes a safe arm

whenever not matched to a worker. We assume that no one observes the workers’ realized

types and that all learning is public.

Stage-game matching. We consider one-to-one matching between workers and employ-

ers. A stage-game matching describes how workers are matched to employers along with a

wage for each matched pair. We assume that workers are protected by limited liability, so

wages are nonnegative.

Let Dij ∈ {1, 0} indicate whether worker i and employer j are matched to each other,

and if they are, let Wij > 0 denote the wage. If Dij = 1, worker i’s payoff is Wij and

employer j’s payoff is piv − Wij, where pi denotes the probability that worker i’s type is

high. If Dij = 0 for all j, worker i is unmatched and gets zero payoff. If Dij = 0 for all i,

employer j takes a safe arm and gets a fixed payoff of s > 0, which corresponds to a belief

threshold ps := s/v. Let D be the set of all stage-game matchings.

Throughout this section, we make the following assumption. As it will become clear in

subsection F.1, if a worker’s expected productivity (i.e., probability of having a high type)

is below ps, he is not matched to employers in the stable stage-game matching.

Assumption 1. An employer’s flow payoff from an a-worker or a b-worker given the prior

beliefs pa, pb is higher than that from the safe arm: ps < pb < pa.

Dynamic matching. Let H := ∪t>0Ht be the set of all histories and Ht the set of all

time-t histories. All signals are publicly observed, hence a time-t history consists of all past

matchings and realized signals until t. A dynamic matching µ = (µt)t>0 specifies a lottery

over stage-game matchings for any history, i.e., µt : Ht → ∆(D) for each t.

Solution concept. We first adopt the solution concept in Shapley and Shubik (1971)

and define stable stage-game matchings. In appendix F.1 we characterize the set of stable

stage-game matchings. Given a stage-game matching (D,W ), (i, j) is called a blocking pair

if they strictly prefer to be matched to each other at some wage w > 0 rather than following

(D,W ).

Definition 1. A stage-game matching (D,W ) is stable if

(i) there exists no employer j who is matched to some i such that j strictly prefers to

take a safe arm instead;

(ii) there exists no blocking pair.
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Next we define dynamic stability based on the solution concept of a stable convention

in Ali and Liu (2020).29 For a given dynamic matching µ, let µ|h denote the continuation

matching after some history h.

Definition 2. A dynamic matching µ is dynamically stable if at every t and every history

ht ∈ Ht, there exists no dt > 0, however small, and

(i) no matched employer j under µ|ht who strictly prefers to take a safe arm over [t, t+dt)

and then revert to µ|ht+dt
;

(ii) no worker-employer pair (i, j) who strictly prefer to be matched to each other at some

wage w > 0 over [t, t + dt) and then revert to µ|ht+dt
;

(iii) no matched worker i under µ|ht who strictly prefers to be unmatched over [t, t + dt)

and then revert to µ|ht+dt
.

The rest of the analysis is in online appendix F. In particular, appendix F.1 characterizes

the set of stable stage-game matchings, whereas appendix F.2 establishes that repeating a

stable stage-game matching is dynamically stable in both learning environments. For such

dynamically stable matchings, we show that the self-correcting property of breakthrough

learning and the spiraling property of breakdown learning continue to hold. Appendix F.3

analyzes the employment, wage, and earnings gaps under this dynamically stable matching

in the breakdown environment.

29Even though not crucial to our results, we assume that deviation wages are perfectly observable to
all.
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Early-Career Discrimination: Spiraling or Self-Correcting?

Arjada Bardhi Yingni Guo Bruno Strulovici

October 17, 2020

D Proof of Proposition 4.1

Proof of Proposition 4.1. A post-investment belief pair (qa, qb) and a cost-threshold pair

(ca, cb) constitute an equilibrium if and only if ∀i ∈ {a, b}:

Bi(qa, qb) = ci, and qi = pi + (1− pi)F (ci)π.

From the second condition, we have ci = F−1
(

qi−pi
(1−pi)π

)

. Hence, a belief pair (qa, qb) consti-

tutes an equilibrium if and only if:















1

π
Ba (qa, qb)−

1

π
F−1

(

qa − pa
(1− pa)π

)

= 0

1

π
Bb (qa, qb)−

1

π
F−1

(

qb − pb
(1− pb)π

)

= 0.
(6)

Let ga(pa, pb, qa, qb) and gb(pa, pb, qa, qb) denote respectively the LHS of each equation in

(6). Both ga and gb are continuously differentiable, because Ba, Bb and F are continuously

differentiable and F ′ is strictly positive.

Existence of symmetric equilibrium. We first show that if workers have the same

prior belief, there is a symmetric equilibrium in which they have the same post-investment

belief. Let p̂ denote the two workers’ prior belief and define

g(q, π) :=
1

π
Bi(q, q)−

1

π
F−1

(

q − p̂

(1− p̂)π

)

.

Bardhi: Department of Economics, Duke University; email: arjada.bardhi@duke.edu. Guo: Depart-
ment of Economics, Northwestern University; email: yingni.guo@northwestern.edu. Strulovici: Depart-
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A symmetric equilibrium exists if there exists q̂ ∈ [p̂, p̂+ (1− p̂)π] such that g(q̂, π) = 0, or

equivalently,

π



µh +

(

q̂(1−p)

(1−q̂)p

)

−
µh+2
µh ((µh+2)q̂+p(µh(p−2)−2))

(1−p)p





2(µh + 2)
= F−1

(

q̂ − p̂

π(1− p̂)

)

. (7)

Such a q̂ exists because for q̂ ∈ [p̂, p̂+ (1− p̂)π]: (i) Bi(q̂, q̂) is continuous, strictly positive,

and strictly less than one; and (ii) F−1
(

q̂−p̂
(1−p̂)π

)

is strictly increasing, equals 0 if q̂ = p̂,

and equals 1 if q̂ = p̂ + (1 − p̂)π. Therefore, there exists q̂ ∈ (p̂, p̂ + (1 − p̂)π) such that

F−1
(

q̂−p̂
(1−p̂)π

)

crosses Bi(q̂, q̂) from below. Hence, ga(p̂, p̂, q̂, q̂) = gb(p̂, p̂, q̂, q̂) = 0.

Non-singularity of the Jacobian at (p̂, p̂, q̂, q̂). We next show that the Jacobian matrix

evaluated at (p̂, p̂, q̂, q̂) is invertible for a generic set of parameters, where the Jacobian is

given by:

J =

(

∂ga
∂qa

∂ga
∂qb

∂gb
∂qa

∂gb
∂qb

)∣

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

.

Note that J is symmetric: ∂ga
∂qa

= ∂gb
∂qb

∣

∣

∣

(p̂,p̂,q̂,q̂)
and ∂ga

∂qb
= ∂gb

∂qa

∣

∣

∣

(p̂,p̂,q̂,q̂)
. Hence, we only need

to show that:

∂ga
∂qa

+
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

6= 0 (8)

∂ga
∂qa

−
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

6= 0. (9)

Claim (8) holds because
∂g(q, π)

∂q

∣

∣

∣

∣

q=q̂

< 0.

This inequality follows from the fact that 1
π
F−1

(

q − p̂

(1− p̂)π

)

generically crosses 1
π
Bi(q, q)

transversally from below at q = q̂, as shown in the following lemma.

Lemma D.1. There exists a set Π ⊂ (0, 1) of measure one such that g(q, π) intersects zero

transversally at each intersection point for any π ∈ Π.

Proof. First, g(q, π) is strictly increasing in π because the term 1
π
Bi(q, q) is independent of

π and F−1 is strictly increasing in [0, 1]. Therefore 0 is a regular value of g(q, π). By the

Transversality Theorem (Kalman and Lin (1979)), there exists a set Π ∈ (0, 1) of values for

π such that (0, 1) \ Π has measure zero and for any π ∈ Π, 0 is a regular value of g(q, π).
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Hence, generically the derivative of g(q, π) with respect to q at any intersection point q = q̂

such that g(q̂, π) = 0 is non-zero. �

Claim (9) holds unless:

(

q̂(1−p)

(1−q̂)p

)−2/µh
((µh+2)q̂2+µh(2q̂−1)p2−2(µh+1)(2q̂−1)p)

(p−1)2
+ 2q̂(µh q̂+1)

1−q̂

2(µh + 2)q̂2
=

1

π2(1− p̂)F ′

(

F−1
(

q̂−p̂
π(1−p̂)

)) .

(10)

Fix (F, p, µh). The following lemma shows that for almost any (π, p̂) claim (9) holds.

Lemma D.2. Suppose that F is weakly convex. Then, claim (9) is satisfied in equilibrium

for almost all (π, p̂).

Proof. The system of equations (7) and (10) is equivalent to:

g1(p̂, q̂, π):=
1

π
F−1

(

q̂ − p̂

(1− p̂)π

)

− h1(q̂) = 0

g2(p̂, q̂, π):=
1

π(1− p̂)F ′ (πh3(q̂))
− h2(q̂) = 0,

where h1, h2, h3 are functions of q̂ only and h3 is defined from the equilibrium condition (6)

as:

h3(q̂) :=
1

π
F−1

(

q̂ − p̂

(1− p̂)π

)

=
1

π
Ba(q̂, q̂).

Note that g1 is strictly decreasing in p̂ and π, whereas g2 is strictly increasing in p̂ but

decreasing in π, by the convexity of F . Therefore, the determinant of the Jacobian matrix

of this system with respect to (π, p̂) is strictly negative. So the Jacobian matrix is invert-

ible. This implies that for almost all (π, p̂), the function g = (g1, g2)(p̂, q̂, π) crosses (0, 0)

transversally: there exists a set Π × P ⊂ (0, 1) × (p, 1) of measure one such that for any

(π, p̂) ∈ Π× P , the values of q that sustain a symmetric equilibrium satisfy claim (9). �

Implicit function theorem. We apply the implicit function theorem for any parameter

values assumed in the model except for the set of measure zero of parameters identified

above. Therefore, by the implicit function theorem, there exists a neighborhood B ⊂

[0, 1]2 of (p̂, p̂) and a unique continuously differentiable map q : B → [0, 1]2 such that

ga(p̂, p̂,q(p̂, p̂)) = 0, gb(p̂, p̂,q(p̂, p̂)) = 0 and for any (pa, pb) ∈ B

ga(pa, pb,q(pa, pb)) = gb(pa, pb,q(pa, pb)) = 0.
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By the continuity of the map q, q(pa, pb) converges to q(p̂, p̂) = (q̂, q̂) as pa → p̂ and pb → p̂.

Hence, the workers’ post-investment probabilities of having a high type converge as well.

�

E Proofs for section 5

E.1 Breakthrough learning

Once a worker generates a breakthrough, his employer keeps him for the rest of time. To

track how many workers have “secured their jobs”, we let m(t) ∈ [0, 1] be the mass of

workers who have generated a breakthrough by t, so (1 −m(t)) is the mass of employers

who are still learning about the type of their current match.

At t = 0, all employers are matched to a-workers due to α > 1. Within the next

instant, the belief for those matched a-workers who have not generated a breakthrough

drops slightly below pa. Their employers find it optimal to switch to previously unmatched

a-workers, the belief for whom is pa. This is essentially equivalent to all a-workers being

employed and allocated 1/α < 1 of a task at t = 0.

In the next instant, those a-workers who have generated a breakthrough stay matched

forever (and are allocated one full task thereafter). Those who have not are once again

allocated a fraction of a task. This process goes on until the belief for those a-workers

without a breakthrough drops to pb. We let Tb denote this time, which is deterministic.

From Tb onward, employers start allocating tasks to b-workers as well. This Tb is the delay

that is experienced by group b uniformly.

We let q(t) denote the belief for a matched worker who has not generated a breakthrough

until time t. For any t ∈ [0, Tb), a mass (α−m(t)) of a-workers have not generated a

breakthrough. Each has a high type with probability q(t), and is allocated 1−m(t)
α−m(t)

∈ (0, 1)

of a task. Therefore, the evolution of m(t) follows:

dm(t) = (α−m(t))q(t)λh
1−m(t)

α−m(t)
dt = q(t)λh(1−m(t))dt and m(0) = 0. (11)

By the law of large numbers, for any t ∈ [0, Tb), q(t) satisfies:

q(t)(α−m(t)) +m(t) = paα =⇒ q(t) =
αpa −m(t)

α−m(t)
. (12)

The value Tb is given by q(Tb) = pb.
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Starting from Tb, employers who did not have a breakthrough over [0, Tb) start allocating

tasks over a larger set of workers: a-workers who have not generated a breakthrough until

time Tb and all b-workers. The method for solving for m(t) and q(t) is similar. The evolution

of m(t) is the same as (11). By the law of large numbers, for any t > Tb, q(t) satisfies:

q(t)(α + β −m(t)) +m(t) = paα + pbβ =⇒ q(t) =
αpa + βpb −m(t)

α + β −m(t)
.

The process ends when either m(t) reaches 1 or q(t) reaches p, depending on which

event occurs earlier. If m(t) reaches 1 first, then all employers are matched with workers

who have generated a breakthrough. Otherwise, if q(t) drops to p first, some employers

take safe arms.

Proposition E.1 (Self-correction under breakthrough learning). For α > 1 and β > 0,

the expected payoff of an a-worker converges to that of a b-worker as pb ↑ pa.

Proof. We first show that as pb ↑ pa, Tb → 0. By the definition of Tb and the expression for

q(t) in (12), we have that

m(Tb) =
α(pa − pb)

1− pb
.

Therefore, as pb ↑ pa, m(Tb) → 0. Using the fact that (i) m(0) = 0, (ii) m(t) is independent

of pb for t < Tb, and (iii) m(t) is strictly increasing in t, we conclude that Tb ↓ 0.

Conditional on reaching Tb without a breakthrough, an a-worker has the same contin-

uation payoff as a b-worker does. As Tb → 0, the probability of a breakthrough over [0, Tb)

goes to zero and so does the flow payoff from being allocated the task over [0, Tb). Hence,

the payoff of an a-worker approaches that of a b-worker as Tb → 0. �

E.2 Breakdown learning

Under breakdown learning, a matched worker stays matched as long as no breakdown

occurs. At time 0, a unit mass of a-workers are matched with employers. When a matched

worker generates a breakdown, his employer replaces him with an a-worker who has never

been tried before. This process goes on until all the a-workers are tried. From that instant

onward, an employer who just experienced a breakdown hires a b-worker who has never

been tried before. We let Tb denote the first time that a b-worker is hired. Like in the

case of breakthrough learning, this Tb is again the delay that is experienced by group b

uniformly.

We let m(t) > 1 be the mass of workers who have been tried before t. Among these

workers, one unit are currently employed, and a mass (m(t)− 1) of workers have generated
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a breakdown before t.

For any t ∈ [0, Tb), the mass of employers who are matched to high-type workers are

pam(t), so 1 − pam(t) are matched to low-type workers. Hence, the evolution of m(t)

follows:

dm(t) = (1− pam(t))λℓdt.

This along with the boundary condition m(0) = 1 pins down m(t) for any t ∈ [0, Tb):

m(t) =
1− (1− pa)e

−λℓpat

pa
.

If paα < 1, then Tb is finite and solves m(Tb) = α. Otherwise Tb is infinity.

Suppose that paα < 1. For any t > Tb, the mass of employers who are matched to

high-type workers are paα + pb(m(t)− α). Hence, the evolution of m(t) follows:

dm(t) = (1− paα− pb(m(t)− α))λℓdt.

This along with the boundary condition m(Tb) = α pins down m(t) for any t > Tb:

m(t) =
1− (1− αpa)e

λℓpb(Tb−t) − α(pa − pb)

pb

We let Ts denote the time at which this process of hiring untried b-workers ends. If paα +

pbβ < 1, there are fewer high-type workers than employers. Therefore, the process of hiring

untried b-workers ends when m(t) reaches α + β. If paα + pbβ > 1, there are weakly more

high-type workers than employers, in which case the process of hiring untried b-workers

never ends (so Ts = ∞). This is because learning becomes extremely slow when the mass

of employers matched with low-type workers approaches zero.

Proposition E.2 (Spiraling under breakdown learning). As pb ↑ pa, the limiting ratio of

the expected payoff of a b-worker to that of an a-worker is strictly less than one.

Proof. Suppose first that αpa > 1. A b-worker’s payoff is zero, so the ratio is zero as well.

The statement holds trivially.

Next, let 1 < α < 1/pa. This assumption guarantees that 0 < Tb < ∞. Let V (pi)

denote a worker’s continuation payoff from the time he is first allocated the task. From

the proof of Proposition 3.2, we know that V (pi) = pi + (1 − pi)r/(λℓ + r). An a-worker’s

expected payoff is
1

α

(

V (pa) +

∫ Tb

0

e−rtV (pa) dm(t)

)

.
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A b-worker’s expected payoff is

1

β

∫ Ts

Tb

e−rtV (pb) dm(t).

As pb ↑ pa, V (pb) ↑ V (pa). But because each b-worker gets a chance strictly later than any

a-worker, a b-worker’s expected payoff is strictly lower than that of an a-worker. �

Spiraling arises if and only if b-workers are not guaranteed to be allocated the task at

time t = 0. That is, tasks must be relatively scarce. For simplicity, we assumed that α > 1

so that b-workers never get a chance at t = 0. But even if some b-workers get a chance

at t = 0, the expected payoffs of the two groups do not converge as pb ↑ pa for as long as

other b-workers are delayed. Proposition 5.1 shows that the larger the labor force, i.e., the

larger the mass of workers relative to the fixed unit mass of tasks, the greater the inequality

across groups.

Proof for Proposition 5.1. The rest of this argument supposes that pa(α + β) < 1. The

argument for pa(α + β) > 1 is similar, and hence omitted.

Using the expression we have for m(t) and applying the change of variables µℓ = λℓ/r,

we compute the expected payoffs of workers from each group. The ratio of the expected

payoff of an a-worker to that of a b-worker is:

−

β(µℓpb + 1)

(

(µℓ + 1)
(

pa−1
αpa−1

)
1

µℓpa + µℓ(αpa − 1)

)

(

αpa−1
αpa+βpb−1

)
1

µℓpb

αµℓ(µℓpa + 1)

(

(αpa − 1)
(

αpa−1
αpa+βpb−1

)
1

µℓpb − αpa − βpb + 1

) .

We take the limit of this ratio as pb ↑ pa and differentiate with respect to α and β. By

applying the change of variables z = 1−pa
1−αpa

> 1 and y = 1−αpa
1−pa(α+β)

> 1 to replace α and β

and simplify the algebra, it follows that these two derivatives are both positive. �

F Proofs for section 6

F.1 Stable stage-game matching

Recall that pi denotes the probability that worker i’s type is high. Let G denote the CDF

of the distribution of pi for i ∈ [0, α + β]. Hence, (α + β)G(p) is the mass of workers with

pi 6 p. At time 0, pi is either pa or pb, so G(p) equals 0 if p < pb,
β

α+β
if pb 6 p < pa, and

1 if p > pa. As workers are matched to employers so more is learned about their types, G

evolves over time.

7



In this subsection, we characterize the set of stable stage-game matchings for a fixed G.

There exists a unique marginal productivity pM such that worker i is matched if pi > pM

and unmatched if pi < pM . Moreover, worker i’s wage is a linear function of pi.

Lemma F.1 (Equal profit across employers and linear wage for workers). In any stable

stage-game matching,

1. all employers make the same profit. If some employers take safe arms, then this profit

is s;

2. if worker i is matched, his wage takes the form of piv + c1, where c1 is a constant.

Proof. We first prove that employers make the same profit across all worker-employer pairs.

Suppose that workers i1 and i2 are matched to employers j1 and j2 at wages w1 and w2

respectively. Let p1 and p2 be, respectively, the probabilities that i1 and i2 are high types.

Suppose that employer j1 makes a strictly higher profit than j2:

vp1 − w1 > vp2 − w2.

Worker i1 and employer j2 can form a blocking pair at wage w1 + ε. Worker i1’s payoff

improves by ε. Employer j2’s profit improves to vp1−w1− ε > vp2−w2. Hence, employers

must make the same profit across all worker-employer pairs. This implies that the wage

for worker i must take the form of piv + c1.

What remains to be shown is that if some employers take safe arms, then all employers

make a profit of s. If an employer makes more than s, he must be matched to a worker.

Then an employer who is currently taking a safe arm can form a blocking pair with this

worker. �

Based on Lemma F.1, a stable stage-game matching is without loss characterized by

(d(p), w(p)), where d(p) specifies the fraction of workers with expected productivity pi = p

who are matched and w(p) = vp+ c1 is the wage if a worker with expected productivity p

is matched.

We next show that employers are matched to the most productive workers, provided

that these workers are better than safe arms. We need to discuss two cases, depending on

whether there exists a unit mass of workers who are preferred to safe arms. In order to

distinguish these two cases, we look at the unit mass of most productive workers, and let

p∗ correspond to the least productive worker in this mass.
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Definition 3. Let p∗ be the highest probability p such that the mass of workers with pi > p

is greater than 1:

(α + β)

∫ 1

p∗
dG(s) > 1, and (α + β)

∫ 1

p

dG(s) < 1, ∀p > p∗.

Lemma F.2 shows that worker i is matched if pi > max{p∗, ps} and unmatched if

pi < max{p∗, ps}. Therefore, we call max{p∗, ps} the marginal productivity and let pM

denote the marginal productivity.

Lemma F.2 (Most productive workers are matched).

1. Suppose that p∗ > ps. Then d(p) equals 1 if p > p∗, and 0 if p < p∗. If there is no

atom at p∗, then d(p∗) can take any value in [0, 1]. If there is an atom at p∗, then

d(p∗) is given by:

(1−G(p∗)) (α + β) + d(p∗) (G(p∗)−G(p∗−)) (α + β) = 1.

2. Suppose that p∗ 6 ps. Then d(p) equals 1 if p > ps, and 0 if p < ps. Moreover, d(ps)

can take any value in [0, 1] subject to:

(1−G(ps)) (α + β) + d(ps) (G(ps)−G(ps−)) (α + β) 6 1.

Proof. We prove the first part in two steps.

1. If a less productive worker is matched, then a more productive worker must be

matched as well. By way of contradiction, suppose that for a given p1 < p2, a p1

worker is matched but a p2 worker is not. The employer who is matched to the p1

worker can form a blocking pair with the p2 worker.

2. If p∗ > ps, no employer takes a safe arm. Suppose otherwise. Then there exists an

unmatched worker i with pi > p∗. Then an employer who is taking a safe arm can

form a blocking pair with this worker i.

We now prove the second part. Suppose that a worker’s probability of having a high

type is p > ps and he is unmatched. The mass of workers whose pi is weakly above p

is strictly smaller than 1. Hence, there exists an employer who is either matched to a

worker with pi < p or taking a safe arm. This employer can form a blocking pair with the

unmatched worker p. �
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We now fully characterize the wage function for matched workers. If p∗ > ps, we must

distinguish two cases depending on whether there exists an unmatched worker whose belief

is arbitrarily close to p∗. If such a worker exists, then the wage function is pinned down

uniquely. Otherwise, if there is a belief gap between the least productive matched worker

and the most productive unmatched worker, wage can take a range of values. If p∗ 6 ps,

there always exists a safe arm for an employer to take, so the wage function is pinned down

uniquely. Whenever unique, the wage for worker i is (pi − pM)v.

Lemma F.3 (Wage in stable stage-game matchings).

1. Suppose that p∗ > ps.

(1.a) If for any ε > 0,
∫ p∗

p∗−ε

(1− d(s)) dG(s) > 0,

then c1 = −vp∗ so w(pi) = (pi − p∗)v.

(1.b) Otherwise, let p∗∗ be the supremum belief among workers and safe arms whose

belief is strictly smaller than p∗. Then the constant c1 in w(pi) = vpi + c1 can

take any value in [−vp∗,−vp∗∗].

2. Suppose that p∗ 6 ps. Then w(pi) = (pi − ps)v.

Proof. We begin by showing that the wage function must be w(pi) = v(pi − p∗) in the case

of (1.a). The linearity of w(pi) follows from Lemma F.1. First, the wage w(p∗) cannot be

lower than zero because of limited liability. Second, if w(p∗) > 0, then the employer that

is matched to p∗ worker can form a blocking pair with an unmatched worker whose pi is

arbitrarily close to p∗.

Next we show (1.b). If there exists ε > 0 such that

∫ p∗

p∗−ε

(1− d(s))dG(s) = 0,

then it must be that the fraction of workers whose belief is weakly above p∗ is exactly 1.

We argue that the constant c1 in w(pi) = vpi + c1 can be anything in:

c1 ∈ [−vp∗,−vp∗∗].

Pick any c1 in this range. All the employers get the same profit. Hence, an employer cannot

form a blocking pair with another worker that is hired, since to attract that worker the

employer has to offer a higher wage than vpi + c1. This will lead to a lower profit for the
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employer. Also, the employer cannot form a blocking pair with a worker that is not hired.

The most profit the employer can make is vp∗∗, which is smaller than his current profit.

For the case of p∗ 6 ps, the proof is similar to that for the case of (1.a), so is omitted. �

F.2 Stable dynamic matching

So far we characterized the set of stable stage-game matchings for any given G. The

CDF G summarizes how much information there is about workers’ types before the stage-

game matching. Our characterization delineates how this information shapes workers’

and employers’ payoffs. In the dynamic setting, G evolves endogenously over time due

to learning about workers’ types. This section shows that repeating a stable stage-game

matching after any history is dynamically stable.

Lemmata F.2 and F.3 showed that for certain G’s there exist multiple stable stage-game

matchings. Whenever such multiplicity arises, we select a stable stage-game matching that

(i) leaves unmatched marginal-productivity workers as much as possible, and (ii) assigns

the employer-preferred wage. This multiplicity arises only at finitely many instants of the

entire time horizon. Moreover, the selection criterion that we adopt is for ease of exposition

only: the propositions below hold even with a different selection.

Definition 4. Fix G. Let pM(G) denote the marginal productivity. Let

µ∗ :=(d∗(p|G), w∗(p|G))

be a stable stage-game matching that satisfies the following conditions:

1. d∗(pM(G)|G) = 0 if d(·) is multi-valued at p = pM(G) as in Lemma F.2;

2. w∗(p|G) = (p−pM(G))v is the employer-preferred wage function if w(·) is multi-valued

as in Lemma F.3.

Pick any history h ∈ H. Let G(h) denote the CDF of the distribution of pi after

history h. Let µ∗ be the matching that always assigns the stable stage-game matching

(d∗(·|G(h)), w∗(·|G(h))) after every history h.

Proposition F.1. Under either breakthrough or breakdown learning, µ∗ is dynamically

stable.

Proof. Pick any ht ∈ Ht. We want to show that conditions (i)-(iii) in Definition 2 are

satisfied in each learning environment.
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(i) If employer j is matched to a worker under µ∗|ht , his flow payoff on path is at least s.

The distribution G(ht+dt), and hence j’s continuation payoff from t+ dt on, does not

depend on j’s deviation. Hence, he does not strictly prefer to take a safe arm over

[t, t+ dt) and then revert to µ∗|ht+dt
in either learning environment.

(ii) Suppose that worker i and employer j are not matched to each other under µ∗|ht . We

next show that there is no wage w > 0 such that both i and j strictly prefer to be

matched to each other at flow wage w over [t, t + dt) and then revert to µ∗|ht+dt
in

either learning environment.

If i is matched to another employer under µ∗|ht, w needs to be strictly higher than

worker i’s current wage. This implies that employer j’s flow payoff will be strictly

lower than his current flow payoff. Hence, j does not strictly prefer to pair with i

over [t, t + dt).

If i is not matched, this means that pi 6 pM(G(ht)). But employer j’s flow payoff on

path is at least pM(G(ht))v. So employer j will not find it strictly profitable to be

matched to i.

(iii) Suppose that worker i is matched at history ht according to µ∗. Let p(t) be this

worker’s probability of having a high type at history ht. We next show that he does

not strictly prefer to stay unmatched for [t, t+ dt) and then revert to µ∗|ht+dt
.

(a) We first consider breakdown learning. Pick any τ > t + dt. Let Q(τ) denote

the probability that this worker has generated a breakdown in [t, τ), and p(τ)

denote the probability that this worker has a high type at time τ conditional on

no breakdown in [t, τ). By Bayes rule,

(1−Q(τ))p(τ) = p(t).

The worker’s expected flow earnings at time τ are

max
{

0, (1−Q(τ))
(

p(τ)− pM(G(hτ ))
)

v
}

= max

{

0, p(t)
p(τ)− pM(G(hτ ))

p(τ)
v

}

(13)

which is weakly increasing in p(τ). Staying unmatched over [t, t + dt) and then

reverting to µ∗|ht+dt
only makes p(τ) lower than its value on path, so the worker

will not reject the match.

(b) We next consider breakthrough learning. Pick any τ > t+ dt. Let Q̃(τ) denote

the probability that this worker has generated a breakthrough in [t, τ), and p(τ)
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denote the probability that this worker has a high type at time τ conditional on

no breakthrough in [t, τ). By Bayes rule,

Q̃(τ) + (1− Q̃(τ))p(τ) = p(t).

The worker’s expected flow earnings at time τ are

Q̃(τ)(1− pM(G(hτ )))v + (1− Q̃(τ))max
{

0, (p(τ)− pM(G(hτ )))v
}

= max
{

Q̃(τ)(1− pM(G(hτ )))v, (p(t)− pM(G(hτ )))v
}

which is weakly increasing in Q̃(τ). Staying unmatched over [t, t+ dt) and then

reverting to µ∗|ht+dt
only makes Q̃(τ) lower than its value on path, so the worker

will not reject the match.

�

Limited liability is not only sufficient, but also necessary for µ∗ to be dynamically stable.

If the wage can drop below zero, then unmatched workers have an incentive to be matched

at negative wages in order to speed up learning about their types. Intuitively, the flow

earnings to a worker of belief pi are max
{

v
(

pi − pM(G(ht))
)

, 0
}

after history ht. This

flow earnings are convex in pi. Hence, learning about a worker’s type strictly benefits this

worker.

Our next proposition shows that the contrast between breakthrough and breakdown

environments in terms of group inequality continues to hold. In particular, flexible wages

do not close the earnings gap between group a and b in the breakdown environment.

Proposition F.2. Given matching µ∗, as pb ↑ pa the average lifetime earnings of a-workers

converge to those of b-workers under breakthroughs but not under breakdowns.

Proof. Let Tb be as defined in appendix E.

Consider first the breakthrough environment. Because α > 1, for an initial period

t ∈ [0, Tb), only a-workers are matched. If an a-worker has not achieved a breakthrough by

Tb, his probability of having a high type is pb. In this case, he has the same continuation

payoff as a b-worker does. As pb ↑ pa, Tb → 0. Hence, an a-worker’s earnings advantage

vanishes as well.

We now consider the breakdown environment. Equation (13) in the proof of Proposition

F.1 established that a worker who has been matched for longer has higher expected flow

earnings than a worker who has been matched for a shorter period. Hence, at any t the
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expected flow earnings of an a-worker are strictly higher than those of a b-worker. Moreover,

group delay Tb does not converge to zero as pb ↑ pa, hence an a-worker’s earnings advantage

due to [0, Tb) does not converge to zero either. Hence, the average lifetime earnings of a-

workers are strictly higher than those of b-workers. �

F.3 Wage, earnings, and employment gaps under breakdown learn-

ing

In this subsection we normalize v to 1 without loss of generality. We let Ea(τ) (resp., Eb(τ))

denote the average flow earnings of a-workers (resp., b-workers) at any time τ > 0. To

simplify exposition, we assume that (i) α > 1, (ii) αpa < 1, and (iii) αpa+βpb > 1. The first

two conditions ensure that the delay for group b is positive but finite, i.e., 0 < Tb < ∞. The

third condition ensures that the pool of new workers is not exhausted before all employers

identify a high-type worker. That is, there are more high-type workers than employers

available. At the end of this section, we discuss the case of αpa + βpb 6 1.

We first solve for the expected flow earnings at time τ of an i-worker who is first matched

at time t 6 τ . From expression (13), this expected flow earnings are given by

pi

(

1−
pM(τ)

q(pi, τ − t)

)

,

where pi is the prior belief of an i-worker, pM(τ) is the marginal productivity at time τ ,

and q(pi, τ − t) is the employer’s belief at time τ about an i-worker who is first matched

at time t 6 τ and has not generated a breakdown over [t, τ). The marginal productivity

pM(τ) is given by

pM(τ) =







pa if τ 6 Tb

pb otherwise,

where the delay for group b is Tb =
1

λℓpa
log
(

1−pa
1−αpa

)

. Moreover,

q(pi, τ − t) =
pi

pi + (1− pi)e−λℓ(τ−t)
.

In order to calculate the average earnings of i-workers, we also need the density over the

time at which each i-worker is first matched. From appendix E.2, we have the expression
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for m(t), the mass of workers who have been tried until time t:

m(t) =















1− (1− pa)e
−λℓpat

pa
if t 6 Tb

1− (1− αpa)e
λℓpb(Tb−t) − α(pa − pb)

pb
otherwise.

A unit mass of a-workers are matched at time 0. For any t ∈ (0, Tb), new a-workers are

tried at rate m′(t). For any t > Tb, new b-workers are tried at rate m′(t). Therefore, for

any τ > 0, the average earnings of a-workers are

1

α

(

pa

(

1−
pM(τ)

q(pa, τ)

)

+

∫ Tb∧τ

0

pa

(

1−
pM(τ)

q(pa, τ − t)

)

m′(t) dt

)

which simplifies to:

Ea(τ) :=



















(1− pa)
(

1− e−λℓpaτ
)

α
if τ 6 Tb

pb(αpa − 1)
(

pa−1
αpa−1

)
1
pa

e−λℓτ

α
− papb + pa otherwise.

The calculation for the average earnings of b-workers is similar. For any τ < Tb, no b-worker

is tried, so the average earnings of b-workers are 0. For τ > Tb, the average earnings are:

1

β

∫ τ

Tb

pb

(

1−
pM(τ)

q(pb, τ − t)

)

m′(t) dt.

Hence,

Eb(τ) :=



















0 if τ 6 Tb

(αpa − 1)

(

(

pa−1
αpa−1

)

pb
pa

e−λℓpbτ − pb

(

pa−1
αpa−1

)
1
pa

e−λℓτ + pb − 1

)

β
otherwise.

At the start of the horizon, there exists an earnings gap between groups because Ea(τ) >

0 = Eb(τ) for any τ ∈ (0, Tb]. Moreover, the earnings gap persists over the entire horizon

and it does not disappear even in the long run, as the following proposition shows. This is

because even as τ → ∞, there exist a non-zero mass of b-workers who never get tried.

Proposition F.3 (Persistent earnings gap under breakdowns). Suppose that α > 1 > paα

and pa(α + β) > 1. In the limit pb ↑ pa, there exists T̃ ∈ (Tb,∞) such that the wage gap

Wa(τ)−Wb(τ) is strictly increasing for τ < T̃ , and strictly decreasing for τ > T̃ . The limit
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limτ→∞ (Ea(τ)−Eb(τ)) is strictly positive.

Proof. The assumption that α > 1 > paα ensures that Tb ∈ (0,∞). For any τ ∈ [0, Tb),

the earnings gap Ea(τ)−Eb(τ) is simply Ea(τ), which is strictly increasing in τ .

For any τ ∈ [Tb,∞), the earnings gap is increasing in τ if and only if

(α + β)
(

1−pa
1−αpa

)
1
pa

−1

e−λℓ(1−pa)τ

α
> 1.

The LHS is decreasing in τ , so this inequality holds when τ is small enough. Since the LHS

equals zero when τ → ∞ and the inequality holds when τ = Tb, the earnings gap is first

strictly increasing and then strictly decreasing. In the limit of τ → ∞, the earnings gap is

strictly positive:

lim
τ→∞

(Ea(τ)− Eb(τ)) =
(1− pa)(αpa + βpa − 1)

β
> 0.

�

If α < 1, then Tb = 0. If αpa > 1, then Tb = ∞. The results for both cases are similar

to those in Proposition F.3, so we omit them. If paα + pbβ 6 1 instead, all b-workers

will obtain a chance in the long run. Even though for each τ > 0 there exists a non-zero

earnings gap, as t → ∞ the average earnings of the two groups converge.

We next characterize the average wage of a-workers and that of b-workers at each τ .

Let Wa(τ) and Wb(τ) be the average wage for the two groups. Let Q(pi, τ − t) be the

probability that no breakdown has occurred up to time τ if the i-worker is first matched

at time t:

Q(pi, τ − t) = (1− pi)e
−λℓ(τ−t) + pi.

The average wage of a-workers at time τ is:

∫ Tb∧τ

0

(

q(pa, τ − t)− pM(τ)
)

m′(t)Q(pa, τ − t)dt+
(

q(pa, τ)− pM(τ)
)

Q(pa, τ)
∫ Tb∧τ

0
m′(t)Q(pa, τ − t)dt+Q(pa, τ)

,

which simplifies to:

Wa(τ) =



















(pa − 1)e−λℓpaτ − pa + 1 if τ 6 Tb

αpae
λℓτ

αpaeλℓτ + (1− αpa)
(

pa−1
αpa−1

)
1
pa

− pb otherwise.
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The average for b-workers at time τ > Tb is:

∫ τ

Tb

(

q(pb, τ − t)− pM(τ)
)

m′(t)Q(pb, τ − t)dt
∫ τ

Tb
m′(t)Q(pb, τ − t)dt

,

which simplifies to

Wb(τ) =























0 if τ 6 Tb
(

pa−1
αpa−1

)

pb
pa

e−λℓpbτ − pb

(

pa−1
αpa−1

) 1
pa

e−λℓτ + pb − 1

(

pa−1
αpa−1

)
1
pa

e−λℓτ − 1

otherwise.

Proposition F.4 (Persistent wage gap under breakdowns). Suppose that α > 1 > paα

and pa(α + β) > 1. In the limit pb ↑ pa, there exists T̂ ∈ [Tb,∞) such that the wage gap

Wa(τ)−Wb(τ) is strictly increasing for τ < T̂ , and strictly decreasing for τ > T̂ .

Proof. For any τ ∈ [0, Tb), the wage gap Wa(τ)−Wb(τ) is simply Wa(τ), which is strictly

increasing in τ .

For any τ ∈ [Tb,∞), we apply the change of variables x = pa−1
αpa−1

, y =
(

pa−1
αpa−1

)

−
1
pa

eλℓτ .

We can rewrite the wage gap as

y
(

y−pa − x
y(pa+x−1)−pa+1

)

y − 1
, (14)

where x > 1 since 0 < pa < αpa < 1 and y > 1 since τ > Tb. Note also that y is monotone

increasing in τ . This wage gap (14) is increasing in y if and only if

H(y) := xypa
(

y2(pa + x− 1)− pa + 1
)

+ (−(y − 1)pa − 1)(y(pa + x− 1)− pa + 1)2 > 0.

We next argue that H(y) is positive if and only if y is small enough.

First, it is readily verified that H(1) = H ′(1) = 0, H(∞) < 0, and H(4)(y) < 0. This

shows that H
′′

(y) is concave. It is also readily verified that H
′′

(∞) < 0. There are three

cases to consider regarding the shape of H ′′(y), with the third case being impossible:

(1) If H
′′

(1) > 0, then as y increases, H
′′

(y) is first positive and then negative.

(2) If H
′′

(1) 6 0 and H
′′′

(1) 6 0, then H
′′

(y) is negative for all y > 1.

(3) The last case is H
′′

(1) 6 0 but H
′′′

(1) > 0. We show that this is not possible since it
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requires that

2(pa + x) < pax
2 + 2,

pa(x+ 6)x+ 4(x− 3)x+ 6 < 6pa,

which cannot hold simultaneously given that x > 1 and pa ∈ (0, 1).

If case (1) holds, then H(y) is first convex then concave. This, together with H(1) =

H ′(1) = 0 and H(∞) < 0, shows that H(y) is first positive and then negative. If case (2)

holds, then H(y) is concave for all y > 1. This, together with H(1) = H ′(1) = 0, shows

that H(y) is negative for y > 1. �

Finally, we also characterize the employment gap between groups. Let Pa(τ) (resp.,

Pb(τ)) denote the fraction of a-workers (resp., b-workers) that are allocated a task at time

τ . We refer to Pi(τ) as the employment rate for group i. The following proposition shows

that at any time τ , a-workers have a strictly higher chance of being employed than b-

workers. Moreover, the gap Pa(τ)− Pb(τ) does not vanish to zero even as τ → ∞.

Proposition F.5 (Persistent employment gap under breakdowns). Suppose that α > 1 >

paα and pa(α+ β) > 1. In the limit as pb ↑ pa, Pa(τ)−Pb(τ) is weakly decreasing in τ and

lim
τ→∞

(Pa(τ)− Pb(τ)) =
pa(α + β)− 1

β
> 0.

Proof. The employment rate Pi(τ) equals Ei(τ)
Wi(τ)

. From the equations for Ei(τ) and Wi(τ),

we calculate Pi(τ) as pb ↑ pa:

Pa(τ) =















1
α

if τ 6 Tb

pa +
1

α

(

e−λℓτ (1− αpa)

(

1− pa
1− αpa

)1/pa
)

otherwise,

Pb(τ) =















0 if τ 6 Tb

1

β
(1− αpa)

(

1− e−λℓτ

(

1− pa
1− αpa

)1/pa
)

otherwise.

The employment gap Pa(τ)− Pb(τ) is given by

Pa(τ)− Pb(τ) =







1
α

if τ 6 Tb

pa +
(

1
α
+ 1

β

)

(1− αpa)e
−λℓ(τ−Tb) − 1

β
(1− αpa) otherwise.
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It can be readily observed that (i) for τ 6 Tb, Pa(τ) − Pb(τ) is constant in τ , (ii) for

τ > Tb, it strictly decreases in τ , and (iii) as τ → ∞, Pa(τ)− Pb(τ) →
pa(α+β)−1

β
. Because

pa(α+ β) > 1, this limit is strictly greater than 0. �

G Proofs for section 7.1

We consider here the case of a pair of general arrival rates (λh, λℓ) ∈ R
2
+. Based on whether

the arrival of a signal is more likely to suggest a high or a low type, we distinguish two

classes of learning environments:

(i) a signal is an inconclusive breakthrough if λh > λℓ > 0;

(ii) a signal is an inconclusive breakdown if λℓ > λh > 0.

The case of λh = λℓ > 0 corresponds to uninformative signals. We ignore this trivial case

in the rest of this analysis.

Proposition G.1 (Self-correcting property of inconclusive breakthroughs). For any λh >

λℓ, the two workers’ payoffs converge as pa ↓ pb.

Proof. Let Ui(pa, pb) be worker i’s payoff given the belief pair (pa, pb). For any pa > pb, the

employer first uses worker a for a period of length t∗. If no breakthrough occurs in [0, t∗),

the employer’s belief toward worker a drops to pb. Let f(s) for s ∈ [0, t∗) be the density

of the random arrival time of the first breakthrough from worker a. We let pa(s) be the

belief that θa = h if there is no breakthrough up to time s, and let j(pa(s)) be the belief

that θa = h right after the first breakthrough at time s. Worker a’s payoff is given by

∫ t∗

0

f(s)
(

1− e−rs + e−rsUa(j(pa(s)), pb)
)

ds

+

(

1−

∫ t∗

0

f(s) ds

)

(

1− e−rt∗ + e−rt∗Ua(pb, pb)
)

.

Worker b’s payoff is given by

∫ t∗

0

f(s)e−rsUb(j(pa(s)), pb) ds+

(

1−

∫ t∗

0

f(s) ds

)

e−rt∗Ub(pb, pb).

As pa ↓ pb, t
∗ converges to zero. Both workers’ payoffs converge to Ua(pb, pb) = Ub(pb, pb).

�
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Proposition G.2 (Spiraling property of inconclusive breakdowns). For any λh < λℓ, the

two workers’ payoffs do not converge if r2 − (1− 2pa)r(λℓ− λh)− λhλℓ > 0 or equivalently:

λh

λh + r
pa +

λℓ

λℓ + r
(1− pa) <

1

2
.

Proof. Let Ui(qa, qb) be worker i’s payoff given the belief pair (qa, qb). We let pa(s) be the

belief toward worker a if there is no breakdown up to time s, and let j(pa(s)) be the belief

toward him right after the first breakdown at time s.

Given that pa > pb, the employer begins with worker a, and uses worker a exclusively

if no breakdown occurs. We let f(s) = paλhe
−λhs + (1 − pa)λℓe

−λℓs be the density of the

arrival time s ∈ [0,∞) of the first breakdown from worker a. We can write worker a’s

payoff as follows:
∫

∞

0

f(s)
(

1− e−rs + e−rsUa (j(pa(s)), pb)
)

ds.

We can write worker b’s payoff as follows:

∫

∞

0

f(s)e−rsUb (j(pa(s)), pb) ds.

The payoff difference between a and b is:

∫

∞

0

f(s)
(

1− e−rs + e−rs (Ua (j(pa(s)), pb)− Ub (j(pa(s)), pb))
)

ds.

We claim that Ua(qa, qb)−Ub(qa, qb) > −1 for any qa, qb, since Ui(qa, qb) is in the range [0, 1]

for any i, qa, qb. Therefore, the payoff difference is at least:

∫

∞

0

f(s)
(

1− 2e−rs
)

ds.

This term is greater than 0 if and only if r2 − (1− 2pa)r(λℓ − λh)− λhλℓ > 0. �
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