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D Proof of Theorem 1

It suffices to prove the result for R0 in the H-Rent configuration and β0 ∈ (0, 1): the L-Rent

case is shown symmetrically, and existence in other cases (No Rent and degenerate prior)

has already been established by Proposition 1. The proof proceeds in two steps:

• Step 1 - Prove the existence of an equilibrium in an auxiliary game played between P and

H .

• Step 2 - Construct a strategy profile of the original game based on the equilibrium estab-

lished in Step 1, and verify that it defines a PBE of the original game.

Step 1: Auxiliary game

The game starts with a contract R0 ∈ H in the H-Rent configuration and a parameter

β ∈ (0, 1). For this auxiliary game, β is just a parameter affecting the payoff functions and

is devoid of its interpretation as a belief.

The auxiliary game is a dynamic game with infinitely many rounds. At each round n,

starting in state Rn, P proposes new contracts Rn+1 ∈ H and Cn ∈ EH subject to the
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constraints

uL(Rn+1) ≥ uL(Rn) (30)

uL(Rn+1) ≥ uL(Cn) (31)

uH(Cn) ≥ uH(Rn). (32)

H then chooses a number µn ∈ [0, 1]. The interpretation of this choice is that H accepts

Rn+1 with probability µn and Cn with probability (1−µn). For this auxiliary game, however,

µn is simply an action deterministically affecting payoffs.

The principal’s cost, for strategies {Rn+1, Cn} and {µn}, is given by

Q({Rn+1, Cn}, {µn}) =
∑

n≥0

Q(Cn)β(1− η)n(1− µn)

n−1
∏

k=0

µk

+
∑

n≥0

Q(Rn+1)

(

β(1− η)nη
n
∏

k=0

µj + (1− β)(1− η)nη

)

, (33)

while H ’s payoff is

V({Rn+1, Cn}, {µn}) =
∑

n≥0

uH(Cn)(1− η)n(1− µn)

n−1
∏

k=0

µk +
∑

n≥0

uH(Rn+1)(1− η)nη

n
∏

k=0

µn.

(34)

These payoffs correspond to the expected cost and utility that P and H would obtain in

an equilibrium of the original game in which P proposes two contracts at each round, the

breakdown probability is η, {µn} is the mixing strategy of H , L always accepts Rn+1, and

the initial probability of facing H is equal to β.

Lemma 17 For any initial R0 and β ∈ (0, 1), there exists a perfect equilibrium of the auxil-

iary game

Proof. The result is direct consequence of Theorem 1 in Harris (1985). We check Assump-

tions 1–5 of this theorem. The payoff function of the principal is simply the negative of his

cost, Q. P’s (unconstrained) action set in round n is SPn = H× EH, while H ’s action space

is SHn = [0, 1] which are both compact and Hausdorff spaces. Hence, Assumptions 1 and 2

are satisfied. P’s feasible set at each round n, as defined by the constraints (30) and (32),

is closed and depends continuously on the current state. Therefore, the set Sf of feasible
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sequences is closed in S = ×n(SPn ×SHn) endowed with the product topology, and the set of

feasible actions in round n depends continuously on past play. Thus, Assumptions 3 and 4

are satisfied. Finally, the payoffs −Q and V are clearly continuous on their domain Sf , so

Assumption 5 is satisfied as well. The result follows. �

Remark 1 We can similarly define an auxiliary game and equilibrium when instead R0 is

in the L-Rent configuration. This equilibrium yields an expected utility for H, as a passive

player of the auxiliary game, given by

VH(β) =
∑

n≥0

(1− η)nηuH(Rn+1). (35)

This equilibrium and payoff is used to define H’s strategy, off the equilibrium path, in the

PBE construction for the original game.

Step 2: Equilibrium of the original game

Starting from R0 ∈ H and a belief β0 ∈ (0, 1), the equilibrium strategies are defined as

follows:

At each round n:

• P proposes the sequence of contracts {Cn, Rn+1} corresponding to the auxiliary game

started at (R0, β0)

• L accepts Rn+1 with probability 1, while H accepts Rn+1 with probability µn and Cn

with probability (1 − µn), where µn is H ’s equilibrium choice in the auxiliary game. If

Rn+1 6= Rn and the agent accepts Rn, P assigns probability 1 to H , so the continuation

play is trivially defined in that case, by Proposition 1 (whose proof is independent of

Theorem 1).

• If P proposes, at some round n, a menuMn that does not correspond to the pair of contracts

defined by the auxiliary game, let R̄n+1 denote the contract of Mn ∪{Rn} that maximizes

L’s utility and C̄n denote the contract of Mn ∪ {Rn} that maximizes H ’s utility.55 By

construction, R̄n+1 and C̄n satisfy (30)–(32). Let R̂n+1 denote the L-efficient contract

55If there are several maximizers, the equilibrium selects any of them. There must be at least one maxi-

mizer, because the menu is finite.
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that gives L the same utility as R̄n+1 and Ĉn denote the H-efficient contract that gives

H the same utility as C̄n. There are three cases to consider: a) uH(Ĉn) ≥ uH(R̂n+1) and

uL(R̂n+1) ≥ uL(Ĉn), b) uH(Ĉn) < uH(R̂n+1) and uL(R̂n+1) ≥ uL(Ĉn), and c) uH(Ĉn) ≥
uH(R̂n+1) and uL(R̂n+1) < uL(Ĉn). Because of the single-crossing property, the fourth

and last logical case cannot occur, as is easily checked.

Continuation play is then defined as follows, according to each case.

a) L chooses R̄n+1 with probability 1, H chooses C̄n with probability 1. If the agent chooses

any other contract R in Mn ∪{Rn}, then the principal assigns probability 1 to a type θ

of the agent such that the other type θ′ 6= θ cannot benefit from choosing that contract

if the principal put probability 1 on θ.56 There always exists at least one such type, as

is easily checked.

b) Case b) can occur only if R̄n+1 is in the H-Rent configuration. Continuation play is

defined by the continuation equilibrium of the auxiliary game in which, following Rn,

P proposes R̄n+1 and Ĉn, but replacing Ĉn by C̄n.
57 In particular, L accepts R̄n+1 with

probability 1, and H randomizes between the contracts C̄n and R̄n+1 according to the

probability µn coming from the auxiliary equilibrium if C̄n is replaced by Ĉn. If the

agent picks any contract other than R̄n+1 and C̄n, P assigns probability 1 to one type

according to the same rule as in Case a). Continuation for rounds m ≥ n + 1 is also

determined by the equilibrium of the auxiliary game.

c) Case c) is symmetric to Case b), and can only occur if C̄n is in the L-Rent configuration.

The continuation equilibrium is defined by the continuation equilibrium, from period 1

onwards (see Remark 1) of the auxiliary game starting in period 0 with belief β̃0 = 1−βn
(since L now plays the role of H and vice versa) and at some fictitious contract R̃ in the

L-Rent configuration such that R̂n+1 and C̄n satisfy equations (32) and (30), respectively

(the inequalities are reversed, because the equilibrium is in the L-Rent configuration).

56That is, θ′ prefers the contract that he is supposed to take with probability 1 in equilibrium (e.g., C̄n if

θ′ = H) to the θ-efficient contract that gives θ the same utility as R.
57By construction, R̄n+1 ∈ H, Ĉn is H-efficient, and the contracts satisfy conditions (30), (31), and (32),

so the contract pair is feasible for the auxiliary games.
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This construction defines the continuation strategies after any possible history. We now

verify that the strategy profile thus constructed forms an equilibrium. The proof uses the

one-shot deviation principle, which applies since the breakdown probability η has the effect

of discounting the utility of future rounds at a geometric rate.

Consider first L’s strategy, assuming that P follows the prescribed sequence of contracts.

From (31), L cannot benefit from picking Cn: indeed, doing so causes βn jumps to 1, and

L to be stuck with utility uL(Cn), which is (weakly) lower than uL(Rn+1) and hence lower

than his continuation utility if he chooses Rn+1.
58 Similarly, if Rn+1 6= Rn and L chooses

Rn, then βn jumps to 1, and L’s continuation utility is bounded above59 by uL(Rn), which

is weakly dominated by accepting Rn+1 by (30) (guaranteeing that L’s continuation utility

is bounded below by uL(Rn+1).

Let us now consider the optimality of H ’s strategy. From (32), uH(Cn) ≥ uH(Rn).

Therefore, if H holds on to Rn, his continuation utility is equal to uH(Rn), which is weakly

dominated by taking Cn. Moreover, given that H randomizes between Cn and Rn+1, his

expected payoff is given by (34), and by perfection of the auxiliary equilibrium, the strategy

{µn} is a best response to the sequence of contracts.

Consider now the agent’s strategy after a deviation by P. In Case a), if L chooses C̄n, his

utility is bounded above by max{uL(C̄n), uL(Ĉn)}, which is less than uL(R̄n+1), by definition

of Case a). Similarly, if L picks any other contract R, then either P puts probability 1 on

L, in which case L gets utility uL(R), which is less than uL(R̄n+1), by definition of R̄n+1, or

P puts probability 1 on H , but in this case L cannot benefit from this erroneous belief. The

same reasoning applies to H : it is optimal for that type to choose C̄n.

In Case b), L prefers R̄n+1 over any other contract in Mn ∪ {Rn}, by an argument

similar to Case a). Now consider H ’s response to P’s deviation. First, H cannot benefit

from choosing a contract R other than C̄n and R̄n+1, for the reason explained in Case a).

Moreover, given the continuation play, which is defined by the auxiliary equilibrium, it is

optimal to randomize according to the probability µn coming from the auxiliary equilibrium

58That utility is always weakly higher than uL(Rn+1), since L can always hold on to Rn+1.
59Indeed, P then proposes the H-efficient contract R that gives H utility uH(Rn), and uL(R) ≤ uL(Rn)

by the single-crossing property and the fact that Rn is in the H-Rent configuration.
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in which R̄n+1 and Ĉn are proposed.60

Case c) is similar to Case b).

There remains to show that P’s strategy is optimal. By construction of the auxiliary

equilibrium, P’s strategy is optimal among all strategies that propose contracts (Rn+1, Cn)

satisfying (30), (31), and (32). As shown by Lemma 2 (whose proof is independent of

Theorem 1), P can never benefit from any deviation in which L accepts a contract that is

not in the H-Rent configuration. Moreover, any contract R accepted by H with positive

probability and that is not in the H-Rent configuration immediately results, at the next

round, in an H-efficient contract that gives H the same utility as R and is less costly to P

than R. We can therefore, without loss of generality, consider deviations in which P proposes

one H-efficient contract, C̄n, and a number of contracts in the H-Rent configuration, among

which R̄n+1 maximizes L’s utility, and such that uL(C̄n) ≤ uL(Rn+1). Given the agent’s

strategy, the menu is equivalent to just proposing C̄n and R̄n+1, which is a feasible strategy

in the auxiliary equilibrium and thus has to be weakly dominated by the equilibrium menu,

by subgame perfection of that menu in the auxiliary game.

E Proof of Inequalities

Proof of Lemma 13

Consider two contracts C and Ĉ on EH ordered as in the statement of the lemma. The

efficiency curve EH can be parameterized by a univariate parameter λ such that, letting

C(λ) = (x1(λ), x2(λ)) denote the H-efficient contract corresponding to parameter λ, the

map λ 7→ C(λ) is continuous, one-to-one, and onto from the parameter set Λ (a compact

interval of R) to EH. We can assume without loss that Λ contains [0, 1] and that C(0) = C

and C(1) = Ĉ. We choose the parametrization to be regular, i.e., such that λ 7→ C(λ), seen

as a function from Λ to R
2, is smooth and does not go “too slow” or “too fast” along EH .61

60Because uH(Ĉn) = uH(C̄n), H gets exactly the same utility as in the auxiliary equilibrium, even though

the contract C̄n is not in the H-Rent configuration.
61Formally, this means that the norm of the gradient of the function λ 7→ C(λ) is uniformly bounded

below and above by strictly positive constants.
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We have

Q(Ĉ)−Q(C) =

∫ 1

0

dQ(x1(λ), x2(λ))

dλ
· dC(λ)

=

∫ 1

0

(

∂Q(C(λ))

∂x1

dx1
dλ

+
∂Q(C(λ))

∂x2

dx2
dλ

)

dλ

and

uH(Ĉ)− uH(C) =

∫ 1

0

duH(x1(λ), x2(λ))

dλ
· dC(λ)

=

∫ 1

0

(

∂uH(C(λ))

∂x1

dx1
dλ

+
∂uH(C(λ))

∂x2

dx2
dλ

)

dλ.

By assumption, the partial derivatives of Q and uH are strictly positive and continuous

on the compact domain C, and hence bounded below away from zero as well as bounded

above. Therefore, there exist positive constants a
¯
< a such that a

¯
∂uH

∂xi
≤ ∂Q

∂xi
≤ a∂uH

∂xi
for

i = 1, 2. Combining these inequalities with the integral representations of Q(Ĉ)−Q(C) and

uH(Ĉ)− uH(C) then shows (14).

For the second part of the lemma, consider the parameterizations of EH and EL in which

the parameter is the utility that each contract gives to H (i.e., uH(C(λ)) = λ), with generic

elements C(λ) = (xH1 (λ), x
H
2 (λ)) for EH and E(λ) = (xL1 (λ), x

L
2 (λ)) for EL. Since uH’s

partial derivatives are strictly positive over the compact domain C and the curves Eθ are

nondecreasing, the parameterizations are well defined and regular in the sense of the previous

paragraph. Consider two contracts C and Ĉ of EH which provide H with utilities uH < ûH

and let E and Ê denote the contracts of EL corresponding to utilities uH and ûH . Repeating

the argument of the previous paragraph, we have

Q(Ĉ)−Q(C) =

∫ ûH

uH

(

∂Q(C(λ))

∂x1

dxH1
dλ

+
∂Q(C(λ))

∂x2

dxH2
dλ

)

dλ

and

Q(Ê)−Q(E) =

∫ ûH

uH

(

∂Q(E(λ))

∂x1

dxL1
dλ

+
∂Q(E(λ))

∂x2

dxL2
dλ

)

dλ.

Since the paramaterizations are regular and the efficiency curves are nondecreasing, there

must exist positive constants x
¯
< x̄ such that 0 < x

¯
max{dxH1 /dλ, dxH2 /dλ} ≤ max{dxL1 /dλ, dxL2 /dλ} ≤

x̄max{dxH1 /dλ, dxH2 /dλ}. Moreover, since Q has strictly positive derivatives, bounded be-

low away from zero and bounded above, there also exist positive constants q
¯
< q̄ such that
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q
¯
∂Q(C(λ))/∂xi ≤ ∂Q(E(λ))/∂xi ≤ q̄∂Q(C(λ))/∂xi for all λ ∈ [uH , ûH] and i = 1, 2. Com-

bining these inequalities with the previous integral representations implies the existence of

positive constants b
¯
< b such that

b
¯
(Q(Ê)−Q(E)) ≤ Q(Ĉ)−Q(C) ≤ b(Q(Ê)−Q(E)),

which concludes the proof. �

Proof of Lemma 14

Lemma 1 implies that

βnQH + (1− βn)QL ≤ βnQ(EH(Rn)) + (1− βn)Q(EL(Rn)).

Moreover, QH is bounded below by the cost of the H-efficient contract CH(n) that provides

utility uH(n) to H , as this contract is the least costly way of providing H with his contin-

uation utility, by convexity of Q. This implies that QL ≤ Q(EL(Rn)) +
βn

1−βn
(Q(EH(Rn))−

Q(CH(n)). The contracts EH(Rn) and CH(n) both lie on EH . Equation (14) implies that

Q(EH(Rn))−Q(CH(n)) ≤ a(uH(EH(Rn))− uH(n)) = awn, proving (16).

From (16), Rn+1 cannot give L a utility greater than the L-efficient contract that costs

Q(EL(Rn)) +
aβn

1−βn
wn. This implies that Q(EL(Rn+1)) − Q(EL(Rn)) is bounded above by

aβn

1−βn
wn. Combining this with (15) yields62

Q(EH(Rn+1))−Q(EH(Rn)) ≤
abβn
1− βn

wn.

This, along with the first part of (14), yields (17). We have

wn+1 = uH(EH(Rn+1))− uH(n + 1) = [uH(EH(Rn+1))− uH(EH(Rn))] + uH(EH(Rn))− uH(n+ 1)

≤ [uH(EH(Rn+1))− uH(EH(Rn))] + uH(EH(Rn))− uH(n)

≤ wn

(

αβn
1− βn

+ 1

)

where the first inequality comes from the monotonicity of uH(n) in n, and the second one

comes from (17). This shows (18).

Because L can hold on forever to Rn, his continuation utility uL(n) is bounded below

by uL(Rn). At round n + 1, P’s expected cost conditional on facing L is bounded above

62Equation (15) applies if Q(EH(Rn+1)) − Q(EH(Rn)) ≥ 0. In the opposite case, the inequality holds

trivially since the left-hand side is negative and the right-hand side is positive.
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by Q(EL(Rn+1)) +
βn+1

1−βn+1
awn+1, from (16) applied to round n + 1. By the same argument

that yielded (14), there exists αL > 0 such that uL(E) − uL(E
′) ≤ αL(Q(E) − Q(E ′)) for

all E,E ′ ∈ EL. Therefore, the highest utility which may be achieved at this cost is bounded

above by uL(Rn+1) + âβn+1/(1− βn+1)wn+1, for some proportionality constant â, and

uL(Rn) ≤ uL(n) ≤ uL(n+ 1) ≤ uL(Rn+1) + âβn+1/(1− βn+1)wn+1,

which yields (19).

Subtracting uH(EH(Rn)) from (39) and rearranging (recalling that wn = uH(EH(Rn))−
uH(n)) leads, along any choice sequence, to

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH(EH(Rn+1))− uH(EH(Rn))). (36)

Combining this with (21) yields wn+1 − wn ≥ ηwn+1 − ηyn − bβn+1wn+1, hence (20).

Finally, consider any two rounds n < n′, and let QL denote P’s expected cost conditional

on facing L at round n′. L’s continuation utility in round n′ is bounded above by the utility

uL(E) of the L-efficient contract E that costs QL. From (16), QL is bounded above by

Q(EL(Rn′)) + a
wn′βn′

1−βn′

. This implies, by the analogue of (14) for EL, that uL(n′) is bounded

above by uL(Rn′)+ û
wn′βn′

1−βn′

for some constant û > 0. Since L’s continuation utility is weakly

increasing in n (see Lemma 5, which also holds for L), we have uL(n
′) ≥ uL(n) ≥ uL(Rn).

This yields uL(Rn′) ≥ uL(Rn)− û
wn′βn′

1−βn′

. From (14) applied to EL instead of EH , this implies

that Q(EL(Rn′)) ≥ Q(EL(Rn))− q̂L
wn′βn′

1−βn′

for some q̂L > 0. This, together with (15), yields

Q(EH(Rn′)) ≥ Q(EH(Rn)) − q̂H
wn′βn′

1−βn′

where q̂H = bq̂L. Combining this result with (14)

implies that uH(EH(Rn′)) − uH(EH(Rn)) ≥ −b̂βn′wn′/(1 − βn′) where b̂ = q̂H/a
¯
, which

proves (21). �

Proof of Lemma 15

Fix some C ∈ EL and consider the referential centered at C whose x-axis is the common

tangent of uL andQ at C, oriented towardsH, and whose y-axis is the normal vector pointing

northeast in C. The components of a contract, in this referential, are denoted xt and xn. We

parameterize the isoutility curve of L going through C, UL(C) = {R ∈ C : uL(C̃) = uL(C)},
in terms of xt: {C(xt) = (xt, xn(xt))}. With this parameterization, C(0) = C and C(xt) ∈ H
if and only if xt ≥ 0.63

63The parameterization is well defined because UL(C) can have only one point for each xt, by strict mono-
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Let Q(xt) = Q(C(xt)) and uH(xt) = uH(C(xt)). By L-efficiency of C, Q′(0) = 0.64 Since

−uL and Q are convex, the isoutility curve of uL going through C is convex and corresponds

to positive values of xn, while the isocost curve going through C is concave and corresponds

to negative values of xn. Moreover, by assumption at least one of these curves has a nonzero

curvature at C. In the (xt, xn) space, this means that either d2uL/dx
2
t > 0 or d2Q/dx2t < 0.

We wish to show the existence of a constant q̂ > 0 such that Q(xt)−Q(0) ≥ q̂x2t for xt in a

right neighborhood of 0. Suppose first that d2uL/dx
2
t > 0. This implies that xn(xt) ≥ qxx

2
t

for some qx > 0 and xt in a neighborhood of zero. Therefore, Q(xt) ≥ Q(0) + qx‖∇Q(C)‖x2t
for that neighborhood. Now suppose that d2Q/dx2t < 0. In this case, let D(xt) denote the

contract of the isocost curve with x-value xt in the new referential (hence, just below C(xt)

in the new referential), so that Q(D(xt)) = Q(C) for all xt. By tangency of the curves,

we have ‖C(xt) −D(xt)‖ = o(xt). Moreover, Q(xt) = Q(C(xt)) = Q(D(xt) +∇Q(D(xt)) ·
(C(xt)−D(xt)) +O(‖C(xt)−D(xt)‖2) by a standard Taylor expansion. Finally, for xt in a

neighborhood of 0, ∇Q(D(xt)) = ∇Q(C) + O(‖D(xt)− C‖) = ∇Q(C) + o(xt). Combining

this, we get Q(xt) = Q(D(xt))+∇Q(C) · (C(xt)−D(xt))+o(xt)(‖C(xt)−D(xt)‖+‖D(xt)−
C‖). Since d2Q/dx2t < 0, the y-value of D(xt) in the new referential satisfies xDn (xt) ≤ −q̂xx2t
for some q̂x > 0. Hence, ∇Q(C) · (C(xt) − D(xt)) ≥ q̃x(xn(xt) − xDn (xt)) ≥ q̌xx

2
t for some

positive constants q̃x, q̌x. These observations imply that

Q(xt) ≥ Q(C) + q̂x2t + o(x2t ), (37)

proving the result for the second case.

By compactness of C and convexity of UL(C), q̂ may be chosen small enough so that the

inequality

Q(xt)−Q(0) ≥ q̂x2t

holds for all nonnegative xt. Since uH has bounded derivatives, there must exist ū > 0 such

that |uH(xt) − uH(0)| ≤ ūxt (the single-crossing property between uH and uL imply that

tonicity of uL in the original coordinates (x1, x2) and the fact that increasing xn corresponds to increasing

both x1 and x2 with at least one of these increases being strict, since the normal vector defining xn points

northeastwards.
64Formally, Q′(xt) =

∂Q
∂x1

dx1

dxt

+ ∂Q
∂x2

dx2

dxt

. Since C is L-efficient, Q and uL are tangent at C. This implies

that the tangent vector (dx1/dxt, dx2/dxt) is orthogonal to the normal vector (∂Q/∂x1, ∂Q/∂x2) at C.
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uH(xt) ≤ uH(0) for all xt ≥ 0 and that ∇uH(C) · (C(xt)− C) 6= 0 for xt in a neighborhood

of 0). Combining these inequalities, there exists q
¯
(C) > 0 such that

Q(Cλ)−Q(C) ≥ q
¯
(C) (uH(C)− uH(Cλ))

2 .

Moreover, q
¯
(C) can be chosen to vary continuously in C ∈ EL.65 By compactness of EL,

q
¯
= minC∈EL q

¯
(C) is strictly positive and yields the desired inequality. �

Proof of Lemma 16

We have

y2n = [(uH(EH(Rn))− uH(EH(Rn+1))) + (uH(EH(Rn+1))− uH(Rn+1))]
2

≤ 2[uH(EH(Rn))− uH(EH(Rn+1))]
2 + 2[uH(EH(Rn+1))− uH(Rn+1)]

2

≤ k1 (max{βnwn/(1− βn), βn+1wn+1})2 + 2[uH(EH(Rn+1))− uH(Rn+1)]
2

≤ k1max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ k2[Q(Rn+1)−Q(EL(Rn+1))]

=k1max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ k2[Q(EL(Rn))−Q(EL(Rn+1)) +Q(Rn+1)−Q(EL(Rn))].

The first inequality is standard ((a+b)2 ≤ 2a2+2b2). The second inequality comes from (17)

and (21), which taken together imply an upper bound on |uH(EH(Rn)−uH(EH(Rn+1))|. The
third inequality comes from the equality uH(EH(Rn+1)) = uH(EL(Rn+1)) and Lemma 15

applied to the contracts C = EL(Rn+1) and R = Rn+1. The difference Q(EL(Rn)) −
Q(EL(Rn+1)) is bounded above in proportion to uL(Rn) − uL(Rn+1) (by a simple trans-

position to EL of the proof of (14)), itself bounded by γβn+1wn+1, from (19). Therefore,

y2n ≤ k2[Q(Rn+1)−Q(EL(Rn))] + k3(max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ βn+1wn+1)

where k3 = max{k1, γk2}, which yields the result. �

F Proofs for Part I

Proof of Lemma 4

65Indeed, all the constants involved in the previous steps are based on the curvature of the isoutility and

isocost curves at C, which only involve the second derivative of the utility and cost functions at C. These

functions were assumed to be C2 over C.
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Let u
¯H

= uH(R0) and, for any ǫ̃ ≥ 0,

D(ǫ̃) = inf{Q(C)−Q(E) : C ∈ H, E ∈ EH : u
¯H

≤ uH(E) ≤ uH(EH(C)) + ǫ̃}. (38)

D(ǫ̃) is nonincreasing in ǫ̃, as a higher ǫ̃ only increases the set of (C,E) pairs over which

the objective is minimized. Since R0 is regular, the contracts C arising in (38) are bounded

away from EH for ǫ̃ small enough, which implies that D(ǫ̃) is strictly positive.66 We choose

any ε such that D(ε) > 0 and set D = D(ε).

From Lemma 5 (whose proof, below, is independent of the present lemma), uH(n) ≥
uH(m) for any round n ≥ m, and Proposition 1 part iv) yields uH(n) ≤ uH(EH(Rn)).

Let C denote the L-efficient contract that gives H utility uH(m). We have uH(C) =

uH(m) ≤ uH(n) ≤ uH(EH(Rn)) = uH(EL(Rn)), which implies that uL(C) ≤ uL(EL(Rn)).
67

Therefore, Rn must cost weakly more than C. By assumption, uH(EH(Rm)) − uH(C) =

uH(EH(Rm)) − uH(m) = wm ≤ ε. Since also uH(Rm) ≤ uH(EH(Rm)) (38) implies that

Q(C) ≥ Q(EH(Rm)) +D. Combining this with Q(Rn) ≥ Q(C) proves the lemma. �

Proof of Lemma 5

Let Rn+1 denote any contract chosen by H with positive probability among Rn ∪ {Mn}.
H ’s utility satisfies the dynamic equation68

uH(n) = ηuH(Rn+1) + (1− η)uH(n + 1). (39)

Therefore, uH(n) is a convex combination of uH(Rn+1) and uH(n+1). Because H can hold on

to Rn+1 in all rounds m ≥ n+1, uH(n+1) is bounded below by uH(Rn+1). Combining these

observations yields uH(n) ≤ uH(n+1). Since uH(n+1)−uH(n) = η(uH(n+1)−uH(Rn+1)),

the second claim follows. �

66For any C entering the definition of D(ǫ̃), uH(EL(C)) = uH(EH(C)) ≥ uH(R0) − ǫ̃. Regularity of R0

implies that any contract for which this inequality holds for ǫ̃ = 0 is strictly H-inefficient. By compactness

of the contract space and continuity of uH and Q, this inefficiency must be bounded below by a positive

constant for ǫ̃ = 0, and thus also for all ǫ̃ small enough. Since C gives H a utility within ǫ̃ of the H-efficient

contract E, the cost Q(C) must exceed Q(E) by a strictly positive amount provided that ǫ̃ is small enough.

Again by compactness, this amount is uniformly bounded below a strictly positive constant.
67For contracts C,C′ on the L-efficiency curve EL, uH(C) ≤ uH(C′) if and only if uL(C) ≤ uL(C

′).
68More generally, H ’s utility satisfies the Bellman equation uH(n) = maxR∈{Rn}∪Mn

{ηuH(R) + (1 −
η)uH(n+ 1)}. Equation (39) then follows for all contracts that are optimal for H in round n.
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Lemma 18 For any round n0, ε̌ > 0, and choice sequence, there exists a round n > n0 such

that uH(Rn) ≥ max{uH(EH(Rm)) : m ≤ n0} − ε̌.

Proof. Fix ε̌ > 0. Proposition 2 guarantees that, along any choice sequence, Rn con-

verges to some L-efficient contract C̄L. Continuity of uH(·) implies that there exists a

round ň such that uH(Rn) ≥ uH(C̄L) − ε̌ for all n ≥ ň. Therefore, it suffices to show

that uH(C̄L) ≥ max{uH(EH(Rm)) : m ≤ n0} for all n0. Equivalently, we must show that

uH(C̄L) ≥ max{uH(EL(Rm)) : m ≤ n0} for all n0 since, by construction, EH(R) and EL(R)

give the same utility to H for any R ∈ H. For contracts C,C ′ on the L-efficiency curve

EL, uH(C) ≤ uH(C
′) if and only if uL(C) ≤ uL(C

′). Therefore, it suffices to show that

uL(C̄L) ≥ maxm∈N{uL(EL(Rm))}. By construction, uL(EL(R)) = uL(R) for all R ∈ H. It

thus suffices to show that

uL(C̄L) ≥ max
m∈N

{uL(Rm)}.

We recall that for all n, uL(n) ≥ uL(Rn) since holding on to Rn is always a feasible strategy for

L, and that uL(n) is nondecreasing in n for all choice sequences (see Lemma 5; the argument

there also applies to L). Since Rn converges to C̄L, uL(n) must converge to uL(C̄L). Finally,

because uL(n) is nondecreasing, we have

uL(Rn) ≤ uL(n) ≤ uL(C̄L),

for all n, which concludes the proof. �

Proof of Lemma 6

P’s gain from reducing H ’s rent between rounds n0 and n1 is bounded above by β̂0(1 −
µ̂0)a(ê0 − û0) for some Lipschitz constant a > 0. To see this, first note that β̂0(1− µ̂0) is the

probability that the agent is of type H and that accepts some H-efficient contract during the

first block. Moreover, because H accepts only H-efficient contracts that give him at least

his continuation utility,69 and because this continuation utility is nondecreasing (Lemma 5),

the smallest utility that H receives when choosing an H-efficient contract within this first

block is û0. Finally, ê0 = uH(EH(Rn0
)) is the utility that P provides to H if he chooses the

immediate jump. Therefore, the maximum rent that P can take away from H is ê0 − û0.

69By accepting such a contract, H reveals his type. His continuation utility is thus equal to the utility

provided by the last accepted contract (Proposition 1, Part i).

13



The constant a is a Lipschitz constant that “translates” utility differences for H along EH
into cost differences for P, derived in Lemma 13. Similarly, the expected net gain made after

round n1, but seen from round n0, is bounded above by β̂0µ̂0a(ê0 − û1), because β̂0µ̂0 is the

probability of facing H and reaching round n1, and û1 is the smallest utility that P must

provide to H at any round following n1.

To compute a lower bound on the inefficiency loss, we note that as long as H accepts

contracts in H, Lemma 4 implies that any breakdown causes an inefficiency cost greater

than D > 0.70 The number of rounds between n0 and n1 is bounded below by n
¯
(1) =

⌊(û1 − û0)/η∆H)⌋, as explained in the main text, below Lemma 5. The probability of a

breakdown before the end of the block is thus bounded below by71

1− (1− η)n¯
(1) = 1− exp (n

¯
(1) ln(1− η)) ≥ −n

¯
(1) ln(1− η)− 1

2
n
¯
(1)2(ln(1− η))2. (40)

Because the gain is of order ε, which is small, while the loss conditional on a breakdown

is of order D, the probability of a breakdown must be (at most) of order ε, which means

that n
¯
(1) ln(1 − η) must also be small (of order ε, from the second expression in (40)).

The quadratic term of (40) is therefore of order ε2 and will be neglected (alternatively,

the breakdown probability could be slightly scaled down to account for this term without

changing the analysis). Moreover, the analysis is concerned with the limit as η goes to zero,

ln(1 − η) can be approximated by −η. Combining these bounds on gains and losses proves

the lemma.72

Lemma 19 There exists a pushdown sequence for Block 1.

Proof. Let µθ({R̃n}) denote the probability, conditional on facing type θ, of observing a

choice sequence {R̃n} until û1 is reached. By definition, summing over all choice sequences

with elements in H truncated at the first round at which H ’s continuation utility reaches

û1, we have
∑

{R̃n}
µH({R̃n}) = µ0. Because L always chooses contracts in H, we also have

70The lower bound D is valid if the rent reduction index at the beginning of a block is less than ε, which

holds without loss of generality as explained in Remark 2 below.
71The inequality comes from the standard inequality 1− exp(x) ≥ −x− x2/2, valid for all x ≤ 0.
72For expositional simplicity, the “floor” operator is dropped. This change is negligible because n

¯
(1) is

large since û1 − û0 = 1
t (ê0 − û0) ≫ η∆H , for η small. This observation applies to each block k as explained

in Footnote 23.
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∑

{R̃n}
µL({R̃n}) = 1. These two equations imply that there exists a choice sequence {R0

n}
such that µH({R0

n})/µL({R0
n}) ≤ µ0. Conditional on observing this sequence, the posterior

is given by Bayesian updating

β̂1 =
µH({R0

n})β̂0
µH({R0

n})β̂0 + µL({R0
n})(1− β̂0)

.

Dividing by µL({R0
n}) and using that µH({R0

n})/µL({R0
n}) ≤ µ0 yields the result. �

Proof of Lemma 7

Let e∗ = max{êk : k ≤ K}. For each block k ≤ K, we have

e∗ − ûk = (e∗ − ûk+1) + (ûk+1 − ûk) ≤ (e∗ − ûk+1) +
1

t− 1
(êk − ûk+1) ≤

t

t− 1
(e∗ − ûk+1).

By induction, e∗ − û0 ≤ [t/(t− 1)]K(e∗ − ûK). Since ê0 ≤ e∗, this implies that

w0 = ê0 − û0 ≤
(

t

t− 1

)K

(e∗ − ûK). (41)

Applying (21) to rounds nk and nK and observing that wnK
≤ ŵK (since uH(nK) exceeds

ûK , by definition of nK), we have

êK ≥ êk −
b̂βK

1− βK
ŵK for each k ≤ K. (42)

Since ŵK ≤ W̄η and βK ≤ β0, this yields êK ≥ e∗− êη where ê = b̂W̄ β0/(1−β0). Therefore,

e∗ − ûK = e∗ − êK + ŵK ≤ êη + W̄η ≤ cwη where cw = ê + W̄ . Combining this with (41)

shows the first part of the lemma.

For the second part, we have

ŵK = êK − ûK ≥ êK−1 −
b̂β̂K

1− β̂K
ŵK − ûK = (êK−1 − ûK−1)− (ûK − ûK−1)−

b̂β̂K

1− β̂K
ŵK ,

where the inequality come from (42) applied to blockK−1. Since êK−1−ûK−1 = t(ûK−ûK−1)

and β̂K ≤ β0, this yields

ŵK

(

1 +
b̂β0

1− β0

)

≥ t− 1

t
(êK−1 − ûK−1).

By definition of K, êK−1 − ûK−1 ≥ W̄η. This, together with W̄ ≥ t
t−1

(1 + b̂β0/(1− β0))(1 +

∆H), yields

ŵK ≥ (1 + ∆H)η
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Finally, since wnK
= ŵK − (uH(nK)− ûK) and uH(nK)− ûK ≤ ∆Hη, by Lemma 5,73 we get

wnK
= êK − uH(nK) ≥ η. (43)

Lemma 20 Suppose there exists Kw > 0 such that w0 ≤ Kwη whenever w0 ≤ ε. Then, for

all η small enough and corresponding equilibrium, w0 ≤ Kwη.

Proof. It suffices to show that w0 cannot exceed ε when η is small enough. Suppose

by contradiction that there exists an equilibrium, for η arbitrarily small, such that w0 > ε.

Following any choice sequence along which βn is nonincreasing,74 let n0 denote the first round

such that wn0
≤ ε. The lemma’s hypothesis implies that wn0

≤ Kwη. By construction,

wn0−1 > ε. Recalling that wn = uH(EH(Rn))− uH(n) we have

wn0
= wn0−1 + (uH(n0 − 1)− uH(n0)) + (uH(EH(Rn0

))− uH(EH(Rn0−1))).

The middle term is of order η by (39) and hence negligible compared to ε for η small enough.

Moreover, (21) implies that uH(EH(Rn0
))− uH(EH(Rn0−1)) ≥ −b̂βn0

wn0
. Combining this,

wn0
≥ wn0−1 − O(η)

1 + b̂βn0

.

Setting ε
¯
= ε

2(1+b̂)
, we thus have wn0

≥ ε
¯
. For η small enough, this contradicts the lemma’s

condition that wn0
≤ Kwη. �

Remark 2 One could reach a block k at the end of which ŵk exceeds ε, invalidating the

inefficiency lower bound D for the following block. In this case, the argument just used

to prove Lemma 20 implies that there is a continuation choice sequence and later round

n for which wn ∈ (ε
¯
, ε) and βn ≤ β̂k−1. After reaching this round, we resume the block

construction. One may encounter a new block for which the problem arises again, in which

case we repeat the previous step. Since wn converges to zero along any choice sequence as n

goes to infinity, there can only be finitely many such iterations: one must reach a round n0

such that wn0
∈ (ε

¯
, ε) and ŵk remains below ε for all blocks constructed from n0. Moreover,

73The reason for using uH(nK) instead of ûK is that H ’s continuation utility at round nK may slightly

overshoot ûK : it is only guaranteed to lie between ûK and ûK +∆Hη.
74Since L puts probability 1 on contracts in H, there must be in each round n a contract Rn+1 chosen by

L with a weakly higher probability than by H , implying that βn+1 ≤ βn.
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by construction we have βn0
≤ β0, because the posterior decreases across each of previous

steps. The analysis applied from this round, instead of round 0, shows that wn0
is of order

η.75

F.1 Complement to Proposition 4

This appendix shows that the limitations of Proposition 4 are robust to changes in the

parameter t used to determined the size of each block. Let t̄ = 1 + D
a∆H

. To guarantee that

ûk ≥ ûk−1 and µ̄k ≤ 1 for all blocks k of Part I, t must lie in (1, t̄), the value used in Section 5

corresponding to t =
√
t̄. For other values of t, the relation w0 ≤ cw(t/(t − 1))Kη is the

same as before as is easily checked. What changes is the value of g, which is now equal to

1/(β0 + (1− β0)(t̄/t)) and implies a new value for ρ0 of

ρ0(t) =
ln(t/(t− 1))

ln(t̄/t)
.

As t̄ gets close to 1, the numerator goes to +∞ and the denominator goes to 0, both uniformly

over t ∈ (1, t̄). In particular, inft∈(1,t̄) ρ0(t) > 1/3. This shows that Proposition 4 cannot be

modified to cover all primitives of the model.

G Proofs for Part II

Proof of Lemma 8

(19) together with (14) applied to EL instead of EH implies that the existence of kQ > 0

such that

Q(Rn+1)−Q(EL(Rn)) ≥ Q(EL(Rn+1))−Q(EL(Rn)) ≥ −kQβn+1wn+1. (44)

Letting µn = µn(Rn+1), this equation, together with (7), yields

βnwna ≥ βnµnηD − ηkQβn+1wn+1

or

µn ≤ wna

ηD
+ kQ

βn+1

βnD
wn+1. (45)

75This, for η small enough, shows that ŵk could not have exceeded ε and thus rules out, ex post, the

possibility considered by this remark.
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Since wN ≤ ηD
2a
, (18) implies that wN+1 ≤ ηD

2a
(1 + αβN/(1− βN )). Combined with (45), this

shows that µN ≤ 1
2
+O(η) ≤ 3

5
.

From Bayesian updating, we have βn+1 = µnβn

µnβn+(1−βn)
. Since βN ≤ β̂, we can choose β̂

small enough to guarantee that the denominator exceeds 1 − ǫ for n = N . More generally,

we have

βn+1 ≤ µnβn(1 + ǫ) (46)

where ǫ is a small positive constant, as long as βn ≤ β̂.

Consider the first round M > N for which µM ≥ 3/4. The sequence βn is decreasing76

from n = N until at least round M . Proceeding by induction from round N to round M

and using (18), the previous inequalities imply that

wN+m ≤ wN

m−1
∏

i=0

(1 + α(1− β̂)−1βN+i) (47)

and

βN+i ≤ βN

i−1
∏

j=0

(µN+j(1 + ǫ)) . (48)

For j ≤ N −M , µN+j ≤ 3/4, so

βN+i ≤
(

3(1 + ǫ)

4

)i

βN .

(47) then implies that

wM ≤ wN

M−N
∏

i=1

(

1 + α(1− β̂)−1β̂

(

3(1 + ǫ)

4

)i
)

.

The product
∞
∏

i=1

(

1 + α(1− β̂)−1β̂

(

3(1 + ǫ)

4

)i
)

(49)

is finite for ǫ < 1/3, and converges to 1 as β̂ goes to zero.77 Therefore, for β̂ small enough,

76From Bayes rule, βn+1 = µnβn

µnβn+(1−βn)
, which is nondecreasing in µn. Taking µn = 1 shows that

βn+1 ≤ βn as long as µn ≤ 1.
77Indeed, taking the logarithm of that product, we obtain a sequence that is approximately geometric

with geometric factor 3(1 + ǫ)/4 and, hence converges, uniformly in β̂. Moreover, each term of the sequence

converges to 0 as β̂ goes to zero. This implies that all partial sums converge to zero and, by uniform

convergence, that the sequence converges to zero as well. By continuity of the exponential function, the

product itself thus converges to 1 as β̂ goes to zero.
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wM is bounded above by 5
4
wN ≤ 5ηD

8a
. From (45), this implies that µM is bounded above by

5/8 + O(η) < 3/4, so M cannot be finite. This shows that for βN below some threshold β̂,

µn is bounded above by 3/4 for all n ≥ N and, from (46), that βn is decreasing. Since wn is

bounded above by 3
2
wN and wN ≤ ηD

2a
, part iii) follows easily.

From Part ii) and the fact that βn+1 ∼ βnµn (which comes from Bayes rule), the second

term in the right-hand side of (45) is of order wn+1 and thus negligible compared to the first

one, which is of order wn

η
. Therefore, by slightly increasing a, whose specific value does not

matter for the proof, we get (8) and (9). �

Lemma 21 There exists a positive constant Ā such that

y2n ≤ Āβn+1

1− β0
(50)

Proof. Equation (9) together with βn ≤ β0 imply that Q(Rn+1) − Q(EL(Rn)) ≤ βnwna
η(1−β0)

.

This, along with (8), yields78

Q(Rn+1)−Q(EL(Rn)) ≤
Dβn+1

1 − β0
.

Combining this inequality with Lemma 16 yields

y2n ≤ k2
Dβn+1

1 − β0
+ k3(max{(βnwn/(1− βn))

2, (βn+1wn+1)
2}+ βn+1wn+1).

Since wn+1 ≤ ηD
2a

≪ 1, the last term is negligible compared to βn+1, as is the maximum since

βn+1 is order βnµn ≫ βnwn. Choosing Ā slightly greater than k2D yields the lemma. �

Proof of Lemma 9

From (36), we have

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH(EH(Rn+1))− uH(EH(Rn))).

Combining this with (21) yields

(1− η)wn+1 ≥ wn − ηyn − b̂βn+1wn+1.

78We are using βn+1 ≥ µnβn, which is implied by the Bayesian updating equation βn+1 = µnβn

µnβn+(1−βn)

and the fact that µn ≤ 1, from Lemma 8.

19



Using the upper bound for y2n provided by Lemma 21, this implies that

wn+1 ≥ wn − η

√

Ā

1− β0

√

βn+1 − b̂βn+1wn+1. (51)

Since wn ≤ ŵη for n ≥ N , by Part iii) of Lemma 8, the last term is negligible compared to

the penultimate one. Slightly increasing the value of Ā, whose precise value does not affect

the proof, and letting Aw =
√

Ā
1−β0

, this yields

wn+1 ≥ wn − ηAw

√

βn+1.

Proof of Lemma 10

Let qn = awn

ηD
. (11) may be re-expressed as

qn+1 ≥ qn − c
√

βn+1 (52)

with c = a
D
Aw. The Bayesian updating equation

βn+1 =
βnµn

βnµn + (1− βn)

implies that79

βn+1

βn
≤ µn + βn+1 +O(βnβn+1). (53)

From (8), this implies that βn+1(1−O(βn))
βn

≤ awn

ηD
= qn. By slightly increasing a, whose precise

value does not matter anyway, we can get rid of the term O(βn), which shows that

βn+1

βn
≤ qn (54)

for all n ≥ N . Since βn+1 = βN ×
∏n

k=N
βk+1
βk

, (52) and (54) yield

qn+1 ≥ qn − c′
√

Πn
Nqk (55)

where c′ =
√
βNc. The first hypothesis of Lemma 10 implies that

qN ≥ 4c2βN (56)

79We have βn+1

βn

= µn
1

1−βn(1−µn)
= µn(1 + βn(1 − µn)) + µnO(β

2
n). Rearranging the expression yields

µn ≥ βn+1

βn
− µnβn + µnO(β

2
n). Since the Bayesian updating equation also implies that µn ≤ βn+1

βn
, the last

two terms are respectively bounded in absolute value by βn+1 and O(βn+1βn).
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Taking the square root on both sides of (56) and multiplying the result by
√

βN+1

βN
,

√

qNβN+1

βN
≥ 2c

√

βN+1.

From (54), this implies that qN ≥ 2c
√

βN+1. Combining this with (52) then yields

qN+1 ≥ c
√

βN+1.

Taking the square root of this expression and dividing both sides by
√

βN+1, we get
√

qN+1

βN+1
≥

√
c

β
1/4
N+1

(57)

The second hypothesis of the lemma may be re-expressed as

β
1/4
N ≤ 1

2
√
c
, (58)

Since βN+1 ≤ βN , (58) implies that the RHS of (57) is greater than 2c and, therefore,

that (56) holds at round N + 1. Since βn is non-increasing in n for n ≥ N and hence

satisfies (58) for all n ≥ N , we can apply the previous argument by induction to conclude

that (56) and (57) hold for all n ≥ N . Dividing (52) by qn yields

qn+1

qn
≥ 1− c

√

βn+1

qn
= 1− c

√

βn+1

βnqn

√

βn
qn
.

From (54), the first factor of the last term is bounded above by 1 and from (57) applied to

round n, the second factor is bounded above by β
1/4
n /

√
c, which converges to zero as n goes

to infinity. �

Proof of Lemma 11

Suppose by contradiction that {qn} converges to zero. This together with the second

assumption of the lemma implies the existence, for any fixed ε > 0, of an integer N̄ ≥ N

such that i) qn+1

qn
≥ 1− ε and ii) qn ≤ qN̄ ≤ ε for all n ≥ N̄ .80 Let Π∗ = ΠN̄

Nqk and ε̃ =
√
qN̄ .

We have ΠN̄+k
N̄+1

qk ≤ ε̃2k for all k ≥ 1. Therefore, for any K ≥ 1

qN̄+K = qN̄+K − q∞ =
∑

n≥N̄+K

(qn − qn+1) ≤ c̃ε̃K
∑

k≥0

ε̃k,

80Indeed, there exist N1 such that i) holds for all n ≥ N1 and N2 such that qn ≤ ε for all n ≥ N2. Letting

N3 = max{N1, N2, N}, any N̄ ∈ argmaxn≥N3
{qn} satisfies conditions i) and ii).
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where c̃ = c′
√
Π∗ and the last inequality comes from the first hypothesis of the lemma.

Taking K = 3 and using
∑

k≥0 ε̃
k = 1/(1− ε̃), this yields

qN̄+3 ≤
c′

1− ε̃
q
3/2

N̄
≤ 2c′q

3/2

N̄
. (59)

Applying inequality i) above to n = N̄ , N̄ + 1, and N̄ + 2, yields

qN̄+3 ≥ qN̄ (1− ε)3. (60)

Combining (59) and (60), we get (1− ε)3 ≤ 2c′q
1/2

N̄
≤ 2c′ε1/2, which is impossible for ε small

enough and yields the desired contradiction. �

Proof of Proposition 6

Suppose by contradiction that wN > ĉηβN . Since βN ≤ β̃ ≤ c−2/16, the hypotheses of

Lemma 10 are satisfied and lim infn→+∞
qn+1

qn
≥ 1. Lemma 11 then implies that wn does not

converge to zero and contradicts Proposition 2. �

H Proofs for Part III

Proof of Lemma 12

Consider any round n and contract Rn+1 in (Mn∪{Rn})∩H. If µL
n(Rn+1) ≥ ε̄µH

n (Rn+1),

then µn(Rn+1) ≤ 1
ε̄
and, by Bayesian updating, βn+1 ≤ βn

ε̄
.81 Contracts Rn+1 for which

µL
n(Rn+1) ≤ ε̄µH

n (Rn + 1) arise with probability at most ε̄ + βn, because L chooses among

these contracts with probability at most ε̄ and H has probability βn.
82 If βn ≤ ε̄, this implies

that with probability at least 1− 2ε̄,

βn+1 ≤
βn
ε̄
.

At round n̄, we have βn̄ ≤ ε̄N̄ , which implies that βn̄+1 ≤ ε̄N̄−1 ≤ ε̄ with probability at least

1− 2ε̄. By induction, with probability at least (1− 2ε̄)N̄ we have

βn ≤ ε̄N̄−(n−n̄) ≤ ε̄

81Equation (53) implies that βn+1 ∼ µn(Rn+1)βn, the term βn+1βn being negligible.
82Formally, let An denote the set of such contracts and µθ(An) denote the probability that θ chooses a

contract in An. By assumption, we have µL(An) ≤ ε̄µH(An) ≤ ε̄. Therefore the unconditional probability

that the agent chooses a contract in An is bounded above by (1 − βn)µ
L(An) + βnµ

H(An) ≤ ε̄+ βn.
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for all n ∈ {n̄, . . . , n̄ + N̄}. Since wn̄ ≤ W̄η, (18) implies that wn̄+1 ≤ k1η for some

constant k1. Applying this reasoning by induction to rounds n = n̄, . . . , n̄ + N̄ − 1 shows

that with probability at least (1− 2ε̄)N̄ ,

βn ≤ ε̄−N̄βN̄ ≤ ε̄ and wn ≤ kwη

for all n ∈ {n̄, . . . , n̄+ N̄ − 1}, where kw is independent of ε̄ and η.83

Consider any choice sequence such that βn and wn satisfy the above inequalities through-

out the block. From (5), we have

∑

Rn+1∈(Mn∪{Rn})∩H

µL
n(Rn+1)(Q(Rn+1)−Q(EL(Rn))) ≤

awnβn
η(1− βn)

.

While some terms in this sum may be negative, (44) permits to bound these terms below:

Q(Rn+1)−Q(EL(Rn)) ≥ Q(EL(Rn+1))−Q(EL(Rn)) ≥ −kQβn+1wn+1.

This implies that

∑

Rn+1∈(Mn∪{Rn})∩H

µL
n(Rn+1)|Q(Rn+1)−Q(EL(Rn))| ≤

awnβn
η(1− βn)

+ kQ
∑

Rn+1∈(Mn∪{Rn})∩H

µL
n(Rn+1)βn+1wn+1.

(61)

Since wn+1 ≤ wn

(

1 + αβn

1−βn

)

from (18), and µL
n(Rn+1)βn+1 is of order βn by Bayesian updat-

ing, the sum in the RHS of (61) is of order wnβn and thus negligible compared to the first

term of the RHS. It can be dropped from the computation by slightly increasing the value

of a.

In order to satisfy (61), the set of contracts Rn+1 for which Q(Rn+1)−Q(EL(Rn)) ≥
√
βn

must be chosen by L with probability at most

awn

√
βn

η(1− βn)
,

which is less than aW̄
1−β0

√
βn since wn ≤ W̄η and βn ≤ β0.

This, combined with Lemma 16, implies the existence of a constant ky > 0 such that yn

is less than kyβ
1/4
n with probability at least 1 − aW̄

1−β0

√
βn. Indeed, y2n is bounded above by

terms proportional to Q(Rn+1) − Q(EL(Rn)) and a term proportional to max{(βnwn/(1 −
83kw depends N̄ , which is set independently of this lemma so as to satisfy the condition aW̄/DN̄ < 1/4.
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βn))
2, (βn+1wn+1)

2} + βn+1wn+1. The first term is of order
√
βn with probability at least

1 − aW̄
1−β0

√
βn as explained in the previous paragraph, while the second term is of order βnη

and thus negligible compared to the first one. For the sequences considered, we have βn ≤ ε̄

for all n in the block, so
√
βn ≤

√
ε̄. Combining these observations, we conclude that with

probability at least (1− aW̄
1−β0

√
ε̄)N̄(1− 2ε̄)N̄ , we have βn ≤ ε̄, wn ≤ kwη and yn ≤ ky ε̄

1/4 for

all rounds of the block. Choosing kε = max{2, aW̄ /(1− β0)} yields the result. �

Proof of Proposition 7

Consider any block of the kind studied by Lemma 12. Let µS
n̄ (resp. µB

n̄) denote the

probability that H rejects all H-efficient contracts conditional on event S (resp. conditional

on its complement, B), and let pS (resp. pB) be the probability that S (B) occurs. We have

µn̄ = pSµ
S
n̄ + pBµ

B
n̄ . Since pS ≥ (1− kε

√
ε̄)2N̄ , (13) implies that

µS
n̄ ≤ µn/pS ≤ aW̄

DN̄
(1− kε

√
ε̄)−2N̄ . (62)

Choose N̄ first so that aW̄
DN̄

< 1
4
and ε̄ second, small enough to satisfy (1−kε

√
ε̄)−2N̄ < 2 and

kyε̄
1/4 < D

4a
(the last condition is used in the next paragraph). This yields µS

n̄ ≤ 1
2
. As with

the blocks of Part I (Lemma 19), there exists a pushdown choice sequence in S such that

the ex post probability that H has not chosen an H-efficient contract is weakly less than µS
n̄ .

Along such a sequence, i) yn ≤ kyε̄
1/4, ii) βn ≤ ε̄, and iii) βn̄+N̄ ≤ βn̄

2
. In particular βn ends

up smaller at the end of the block than at its beginning.

Let β̌ = ε̄N̄ . Starting from round N , we build a sequence of N̄ -sized blocks as described

above. Because wn converges to zero (Proposition 2), it eventually drops below Dη
2a
. Let M

denote the first round at which this happens. From (20), we have

wn+1 − wn ≥ −bβn+1wn+1 − ηyn. (63)

The sequence was constructed so that yn ≤ kyε̄
1/4 ≤ D

4a
. Combining this with (63) applied

to round M − 1 yields

wM − wM−1 ≥ −ηD
4a

.

Since wM−1 ≥ ηD
2a

by definition of M , this shows that wM ≥ ηD
4a

and proves Proposition 7.

Remark 3 Some block may end with wn > W̄η. One then restarts the blocks of Part I from

round n until reaching W̄η again. Since wn converges to zero along any sequence, this back
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and forth between blocks of Parts I and III must end in finite time, leading to a round M for

which wM ∈ (ηD
4a
, ηD
2a
) and βM ≥ β∗. Since βn decreases along blocks of both types, we have

βM ≤ βN , this yields the desired bound for βN .

Proposition 7 implies Proposition 5

Let β̄ = min{ β̃
kβ
, β̌} and suppose that wN ∈ (ηD

2a
, W̄ η). If βN ≤ β̄, we have βM ≤ β̃, from

Part 2 of Proposition 7. From Part 1, moreover, wM lies in [1
2
ηD
2a
, ηD
2a
]. Proposition 6 applied

to round M then implies that βM ≥ 1
2ĉ

and, hence, βN ≥ 1
2ĉkβ

. Therefore, either βN ≥ β̄ or

βN ≥ 1
2ĉkβ

. Let β ′ = min{β̄, 1
2ĉkβ

}. To prove Proposition 5, consider any round N for which

wN ≥ η. If wN ≥ ηD
2a
, then we just showed that βN ≥ β ′. And if wN ≤ ηD

2a
, Proposition 6

applies, showing that βN ≥ 2a
Dĉ

. Setting β∗ = min{β ′, 1
ĉ
} yields the desired lower bound.

I Proof of Theorem 2, Statement B

Fix an initial belief β0 ∈ (0, 1) and suppose without loss that R0 ∈ H. Let Q̂(u, p) denote the

minimal expected cost of providing an expected utility u to H with a contract distribution

that puts probability at least p on contracts lying in H. We have Q̂(uH(EH(R0)), 0) =

Q(EH(R0)), and Q̂(uH(EH(R0)), p) is strictly increasing for p in a neighborhood of zero

because contracts in H are inefficient for H . Statement A of Theorem 2 guarantees that

H must get a utility arbitrarily close to uH(EH(R0)) and that the cost to P conditional on

facing H must be arbitrarily close to Q(EH(R0)) as η goes to zero.84 For any ε > 0, this

implies that there exists a threshold η̃(ε) such that the probability pH that H ends up with a

contract in H satisfies pH < ε for all PBEs corresponding to any η < η̃(ε). For the remainder

of the proof, we consider some small85 ε > 0 and focus on η’s below the threshold η̃ = η̃(ε4),

so that pH ≤ ε4.

From Statement A, there exists a threshold η̂ below which θ’s expected utility at the

beginning of the game is bounded below by vθ(ε) = uθ(Eθ(R0)) − ε4. The least costly

84Indeed, each type θ gets an expected utility arbitrarily close to uθ(Eθ(R0)) while P’s expected cost is

bounded above by β0Q(EH(R0)) + (1 − β0)Q(EL(R0)), from Lemma 1. Since the contracts Eθ(R0)’s are

efficient, the claim follows.
85It suffices to show the claim for all ε small enough, as it immediately implies that claim for higher values

of ε.
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contract Eθ(vθ(ε)) that provides this utility costs Q(Eθ(R0))− O(ε4) and lies within O(ε4)

of Eθ(R0). We also recall from Lemma 1 that P’s expected cost is bounded above by

β0Q(EH(R0)) + (1− β0)Q(EL(R0)). Fix a PBE associated with some η ≤ min{η̂, η̃} and let

Qθ denote P’s expected cost conditional on facing θ and uθ denote θ’s expected utility. The

previous observations imply that |Qθ −Q(Eθ(R0)| = O(ε4).

Let T H
ε denote the set of contracts lying within a distance ε of EH (for the Euclidean

distance, say). For any contract R′ outside of T H
ε , there exists q̂H > 0 such that Q(R′) ≥

Q(EH(R
′)) + q̂Hε

2, by an argument similar to the one made in the proof of Lemma 15. Let

poutH denote the probability that H ends up with a contract outside of T H
ε . Repeating the

proof of Lemma 3 that led to (24) (page 38) we have, letting Q̄H = Q(EH(R0)),

Q̄H +O(ε4) ≥ QH ≥ Q̄H + poutH q̂Hε
4

and hence poutH = O(ε2). With probability 1−O(ε2), H thus gets contracts in the thin tube

T H
ε . There remains to show that, within this tube almost all contracts are clustered within

ε of EH(R0).

First, H never accepts a contract near EH that gives a utility less than uH(EH(R0))− ε4,

as this would be his final utility (his type being revealed) but less than his expected utility in

the game. Therefore, all contracts accepted in T H
ε are located in the upper half of the tube

starting O(ε4) below EH(R0). Second, H ’s expected utility being less than uH(EH(R0)), the

probability of H getting a contract R′ such that uH(R
′) ≥ uH(R0) + ε2 is O(ε2). This shows

that H gets within ε of EH(R0) with probability 1− O(ε2).

The analysis for L is similar: the probability that L gets a contract outside of the set

T L
ε of contracts lying within a distance ε of EL is of order O(ε2). Moreover, H never accepts

contracts R′ ∈ H such that uH(EL(R
′)) ≤ uH(EH(R0))− ε4, by Proposition 1, iv), and the

remaining contracts all give L a utility of at least uL(R0)−O(ε4). Since L’s expected utility

is within ε4 of uL(R0), this implies that the probability of L getting contracts R′ such that

uL(R
′) ≥ uL(R0) + ε2 is order O(ε2).

For ε small enough, the terms O(ε2) are all less than ε. Therefore, each type θ gets a

contract within ε of Eθ(R0) with probability exceeding 1− ε. The threshold min{η̃, η̂} thus

delivers the conclusions of Statement B.
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J Smoothness and Monotonicity of Efficiency curves

It suffices to show the result for EH , the analysis for EL being identical. The set EH of

interior, H-efficient contracts is characterized by the tangency condition (letting u = uH for

notational simplicity and letting fi denote f ’s i
th partial derivative for f ∈ {u,Q})

u2(x1, x2)

u1(x1, x2)
=
Q2(x1, x2)

Q1(x1, x2)
,

or

F (x1, x2) = u2(x1, x2)Q1(x1, x2)− u2(x1, x2)Q1(x1, x2) = 0,

where we recall that the first-order derivatives of Q and u are strictly positive by assumption.

We have F2(x1, x2) = u22Q1 + u2Q12 −Q22u1 −Q2u12 < 0, since i) all first-order derivatives

are positive, ii) u12 and −Q12 are nonnegative by supermodularity and −u11, −u22, Q11 and

Q22 are positive by concavity of u and convexity of Q, and iii) u22Q22 6= 0 by assumption.

Therefore, we can apply the implicit function theorem: EH is smooth, and its slope at any

H-efficient contract (x1, x2) is given by

dx2
dx1

∣

∣

∣

∣

(x1,x2)

=
−F1

F2

∣

∣

∣

∣

(x1,x2)

= − u12Q1 + u2Q11 −Q12u1 −Q2u11
u22Q1 + u2Q12 −Q22u1 −Q2u12

∣

∣

∣

∣

(x1,x2)

.

Under the assumed monotonicity, convexity and supermodularity conditions, the numerator

of the right-hand side is nonnegative, which shows that the slope is nonnegative.

The reason for requiring the efficiency curves to be upward sloping is to preserve the

one-to-one mapping between EH(R) and EL(R). If, say, EL was downward sloping over some

range, then there could be multiple contracts of EL giving the same utility to H , which would

destroy Lipschitz bounds used in some of the proofs.

K The impossibility of Finitely Many Active Rounds

Consider any equilibrium and history with current contract R in H and non-degenerate

belief β. We will show that the principal never jumps immediately to EH(R), EL(R). This

will imply that no L-efficient contract R̃ is ever accepted in equilibrium, since this would be

equivalent to jumping.86

86If an agent of type θ accepts R̃ ∈ EL, his continuation utility jumps to uθ(R̃) by Proposition 1. Therefore,

L accepts such a contract only if uL(R̃) ≥ uL(R) = uL(EL(R)). But this implies that uH(R̃) ≥ uH(EL(R)) =
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If P jumps immediately, he gets βQH(EH(R)) + (1 − β)QL(EL(R)). Suppose that he

proposes instead a contract R′ ∈ H giving L the same utility as R and lying at a small

distance x from EL(R), and the H-efficient contract C that gives H utility

uH(C) = ηuH(R
′) + (1− η)uH(EH(R)), (64)

and jumps one period later. Also suppose that H accepts C with probability 1 and L accepts

R′ with probability 1—we will see shortly that P can guarantee this outcome by modifying

the contracts by an infinitesimal amount which does not affect the strict benefit of this

deviation over the immediate jump. Since uL(R
′) = uL(R), we have EL(R

′) = EL(R) and

EH(R
′) = EH(R), so the only payoff difference between the two strategies (jumping now or

one period later) concerns what happens if a breakdown occurs at the end of the current

period.

By efficiency of EL(R), P’s isocost curve and L’s isoutility curve are tangent at EL(R),

so the cost of R′ is of second order, x2, above EL(R)’s cost.

From (64), we have uH(EH(R))−uH(C) = η(uH(EH(R))−uH(R′)). The difference on the

right-hand side is of order x, because H ’s isoutility curve is not tangent to L’s isoutility curve

at EL(R), from the strict single-crossing property. Therefore, P’s gain from the deviation,

relative to an immediate jump, is bounded below by ηxa
¯
β, where a

¯
is a Lipschitz constant

translating bounds on utility decrements for H into bounds on cost savings (cf. Lemma 13),

while the cost is of order (1−β)ηx2. The deviation is thus strictly beneficial, no matter how

small the current belief β is, provided that x is below some fixed threshold.87

There remains to check that P can implement the desired deviation by forcing H to take

C with probability 1, so that P can reap the full benefit from the deviation, and forcing L

to take R′ with probability 1, so that the loss on L is indeed of order x2. Suppose that H

rejects C. In this case, his utility if there is a breakdown at the end of the current period is

bounded above by uH(R
′). Moreover, from Part iv) of Proposition 1, his continuation utility

if no breakdown occurs is bounded above by uH(EH(R)), regardless of whether he takes R′

uH(EH(R)). From Lemma 1, this can only occur if R̃ = EL(R), as proposing R̃ would otherwise be too

costly for P.
87We also choose x small enough to guarantee that R′ is closer to EL than R, i.e., Q(R′) < Q(R) or,

equivalently, uH(R′) > uH(R).
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or stays at R, since EH(R) = EH(R
′). From (64), it is therefore strictly beneficial for H

to accept C provided that P moves C higher by an arbitrarily small amount ǫ, negligible

compared to η. Similarly, P can guarantee that L takes R′ instead of holding on to R by

moving R′ by ǫ2 above L’s current isoutility curve (L never wants to take C for reasons

explained earlier). Provided that ǫ is small enough (i.e., of order less than η2β2), the cost

increase is negligible compared to the gain from the deviation, which is of order ηβ2.

L Extension to More Agent Types

While the analysis has focused on two types, it offers a path to analyze more general type

structures. To illustrate how the ideas presented here may be used to carry such an extension,

suppose that the agent may have a third, intermediate type M , with utility functions still

ordered by single-crossing. The efficiency curves EL, EM , and EH are distinct. The setting is

otherwise identical to the binary case.

The extension of Theorem 2 is straightforward to conjecture: The contract space is now

divided into 4 regions, separated by the efficiency curves. If the initial contract R lies below

EL, EL(R) is defined as before, EM(R) is the M-efficient contract giving M the same utility

as EL(R) does, and EH(R) is the H-efficient contract giving H the same utility as EM(R)

does. If R lies between EL and EM , then define EL(R) and EM(R) as the L-efficient and

M-efficient contracts giving L and M the same utility as R does and EH(R) be the H-

efficient contract giving H the same utility as EM(R) does. These contracts are defined

analogously when R lies in the other two regions. The conjecture is that if P initially assigns

strictly positive probability to each type, each type θ gets with arbitrarily high probability

an outcome arbitrarily close to Eθ(R) as η goes to zero.

To show this, the suggested strategy is as follows. First, notice that after any history

at which P assigns probability 0 to any of the three types, we are back to the binary case,

and Theorem 2 predicts a unique (up to η) outcome. So suppose instead that the belief

distribution puts positive weight on all types and, for example, that R lies in the first

configuration, i.e., below EL. In this case, one can extend Proposition 1 and its corollaries

to show that L will never accept a contract in another configuration, derive upper bounds

on H ’s and M ’s continuation utilities, and an upper bound on P’s expected cost.
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To analyze equilibrium behavior, one must keep track of the probabilities βH and βM

of facing H and M , respectively. However, it turns out that many steps of earlier proofs

can still be performed using the probability β = βH + βM of facing a type other than L. In

particular, the loss bound D conditional on facing a type other than L in case of a breakdown

is still valid. Lipschitz bounds are still valid, too. As noted, given Theorem 2, it is (almost)

without loss to assume that P proposes only contracts in the first configuration and a pair

of H and M efficient contracts that make H indifferent between these contracts. Indeed,

any contract above EL reveals that the agent type is not L, bringing the analysis back to

the binary type case with H and M . One difference is that Theorem 2 implies only that the

agent’s utility is within O(η) of the outcome, a difference which should be minor for a full

blown analysis.

With three or more types, the principal is more likely to benefit from proposing at least

three contracts in each period, and the belief assigned to any given type is likely to be

non-monotonic. Fortunately, the analysis conducted in this paper already allows for an

arbitrary number of contracts proposed in each period and already handles arbitrary belief

non-monotonicity. This should facilitate any formal extension of the results to more than

two types.
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