Learning and Corruption on Monitoring Chains

By Bruno Strulovici

Many institutions rely on specific agents, or “monitors,” for their enforcement. These monitors are subject to incentive problems such as shirking—emphasized by the inspection games literature (Dresher 1962, Maschler 1966)—fabrication, and corruption (Becker and Stigler 1974).

This issue is fundamental for the enforcement of legal and political institutions as well as for numerous other institutions, such as trade institutions (Milgrom, North, and Weingast 1990), financial markets, and agencies in charge of taxation and auditing.

When monitors cannot merely be trusted to behave ethically, they must also be monitored, their monitors must be monitored, and so on. This issue has been recognized by Hurwicz (2007), who proposed a cyclical incentive structure: B monitors A, C monitors B’s monitoring of A, A monitors C’s monitoring of B’s monitoring of A.

However, this structure seems vulnerable to collusion, not least because monitors exert indirect control over their own monitors. In practice, monitors are rarely monitored by their own target, even indirectly. However, collusion between enforcers is a real and well-documented concern.

This paper studies the effect of collusion along monitoring chains, along which each monitor is monitored by a new monitor. The main result is that when (i) monitors are devoid of ethical motives and have quasilinear preferences and (ii) any two consecutive monitors in the chain can make Pareto-improving corruptive arrangements, truthful, collusion-free monitoring is impossible unless rewards and/or punishments are unbounded.

In these monitoring chains, even a local form of collusion suffices to derail monitoring. This result underlines the importance of ethical behavior for the enforcement of institutions. In a separate paper (Strulovici 2020), I consider a decentralized monitoring structure that is immune to collusion but show that learning environments that are subject to information attrition also require ethical behavior.

I. Model

A. Investigation Structure

We consider a sequence $\{M_n\}_{n \in \mathbb{N}}$ of agents forming a monitoring chain.

Round 0: Agent M_0 decides between committing a crime and abstaining from it.

Round 1: Agent M_1 decides between investigating M_0 at cost $c > 0$ and shirking at no (direct) cost. If M_0 committed the crime and M_1 investigates him, M_1 discovers M_0’s guilt with probability $\lambda \in (0, 1]$. If M_1 shirks, he finds nothing.

Agent M_1 then makes a public announcement: M_1 can either claim that he discovered that M_0 was guilty or say that he found nothing.

If M_1 made no discovery, which happens because M_0 was innocent, M_1 was unlucky (when $\lambda < 1$, the investigation does not always succeed even if M_0 is guilty), or because M_1 shirked, M_1 can still claim that M_0 committed a crime, that is, make a wrongful accusation. An accusation is wrongful if it is unsubstantiated. It does not imply, per se, that the accused is innocent of the crime.

*Northwestern University (email: b-strulovici@northwestern.edu). I am grateful to Steve Callander, Théo Durandard, Ariel Rubinstein, Leeat Yariv, and participants of 2019 Summer School of the Econometric Society in Sapporo, Japan, and the ASSA 2021 Virtual Annual Meeting.

† Go to https://doi.org/10.1257/pandp.20211053 to visit the article page for additional materials and author disclosure statement.

1 See also Levine and Modica (2016). Rahman (2012) proposes an ingenious way to incentivize first-degree monitoring, although this way is vulnerable to corruption between the principal and the monitored agent.

2 Well-known examples in the United States include the findings of the Knapp and Mollen commissions in New York City. Most countries exhibit significantly more corruption. See, e.g., Transparency International: https://www.transparency.org/en/cpi.
If M_1 announces that he found nothing, the game ends. Otherwise, it moves to round 2, and another agent, M_2, is tasked to investigate M_1’s claim that M_0 committed a crime.

Round 2: M_2 decides between investigating M_1 at cost c and shirking. If M_1 accused M_0 without proof and M_2 investigates him, M_2 discovers M_1’s wrongdoing with probability λ.

Agent M_2 then makes a public announcement: M_2 can either claim that he discovered that M_1 wrongfully accused M_0 or announce that he discovered nothing against M_1. If M_2 made no discovery (which can arise if M_1 is innocent, M_2 was unlucky, or M_2 shirked), M_2 can still accuse M_1 of making an unsubstantiated claim.

If M_2 announces that he has found nothing against M_1, the game ends. Otherwise, the game moves to round 3. Another agent, M_3, is tasked with investigating M_2’s claim, and so on.

Collusion: If M_n discovers wrongdoing by M_{n-1}, he can offer to hide his discovery in exchange for a transfer τ_n from M_{n-1}. This possibility captures a local form of collusion between M_n and M_{n-1}. While we focus on a take-it-or-leave-it offer by M_n, other efficient bargaining protocols, in which M_{n-1} has some bargaining power, would yield similar results.

B. Payoffs

If M_n claims to have discovered that M_{n-1} has made a wrongful accusation, he receives a monetary reward $R_n \geq 0$ for his discovery, and M_{n-1} receives a punishment $P_{n-1} \geq 0$. By making this claim, M_n exposes himself to the risk of being accused (rightly or not) of wrongful behavior.

Players are assumed to be risk neutral, and all payoffs (investigation costs, rewards, punishments, and transfers) are additively separable. A monitor’s payoff if the game ends before his round is normalized to 0.

It is simplest to think of the punishment P_{n-1} as a fine, but P_{n-1} could alternatively represent a nonmonetary, additively separable punishment. In principle, we could allow M_{n-1} to be exonerated if M_n’s accusation is claimed (rightly or not) to be unsubstantiated by M_{n+1}, punished again if M_n’s accuser is found to have lied, and so on. We rule this out for simplicity and assume that M_{n-1} is punished whenever he is accused.

We start with the following observation. Let α_{n+1} denote the probability that M_{n+1} wrongfully accuses M_n conditional on reaching round $n + 1$.

Lemma 1: Suppose that M_n discovers that M_{n-1} made a wrongful claim. Then, M_n surely hides his discovery unless

$$R_n - \alpha_{n+1} P_n \geq P_{n-1}. \quad (1)$$

Proof:

Suppose that M_n discovers that M_{n-1} has made a wrongful claim. If M_n makes his (rightful) discovery public, his payoff increases by an immediate reward R_n, less an expected fine if he is wrongfully accused by M_{n+1}, which happens with probability α_{n+1} and carries an expected cost of P_n whenever it occurs, while M_{n-1} receives the fine P_{n-1}. Therefore, revealing the discovery results in a joint surplus to M_n and M_{n-1} of $R_n - \alpha_{n+1} P_n - P_{n-1}$ relative to the pair’s surplus if M_n hides the discovery, thereby ending the game. Since transfers allow M_n and M_{n-1} to maximize their joint surplus, M_n produces the evidence in equilibrium only if $R_n - \alpha_{n+1} P_n - P_{n-1} \geq 0$. Otherwise, M_n hides the evidence in exchange for a transfer $\tau_n \in [R_n - \alpha_{n+1} P_n, P_{n-1}]$. Under a take-it-or-leave-it offer protocol, M_n gets a transfer $\tau_n = P_{n-1}$ if he gets to make the offer and a transfer $\tau_n = R_n - \alpha_{n+1} P_n$ if M_{n-1} gets to make the offer. When both players have bargaining power, any transfer τ_n between these bounds can be microfounded by an efficient bargaining protocol.

3This assumption drastically simplifies the analysis, as it implies that there is only one public history at the beginning of any round that is reached (see Section II). The analysis can be extended to the case in which a monitor who finds nothing can also be investigated. Theorem 1 continues to hold under the additional assumption that $\lambda < 1/2$. See Section III.

4If two of more agents were used at each level of the monitoring chain, this may make collusion harder, although it would also create a collective decision problem for the findings.

5A simple interpretation of this is that each agent lives for two periods: monitoring in the first period and dying in the second one.
Thus, collusion can be prevented only if \(R_n \geq P_{n-1} + \alpha_{n+1} P_n \). When this condition is violated, any public accusation made by \(M_n \) must be a lie, because true discoveries by \(M_n \) are always hidden. To avoid this, we focus on the case in which \(R_n \geq P_{n-1} + \alpha_{n+1} P_n \) and assume that agents do not collude (alternatively, we could assume a strict inequality, which implies that collusion does not occur). We call such an equilibrium a \textit{collusion-free} equilibrium. Focusing on collusion-free equilibria simplifies the analysis since monitors’ choices are reduced to four possible strategies, described in the next section.

II. Main Result

In this game, there is a unique relevant \textit{public} history: conditional on reaching round \(n \), all monitors have claimed (rightly or not) that past monitors were lying.

In particular, there is a unique sequence of rewards \(\{R_n\}_{n \geq 1} \) along this history.

Let \(\beta_n \in [0, 1] \) denote the probability that \(M_n \) investigates \(M_{n-1} \) and truthfully announces his finding, conditional on reaching round \(n \). If \(\beta_n = 0 \), this means that \(M_n \) either ends the sequence without performing an investigation or that he accuses \(M_{n-1} \) regardless of \(M_{n-1}'s \) actual guilt. Either way, \(M_n \)'s announcement is uninformative about \(M_{n-1}'s \) actions whenever \(\beta_n = 0 \).

THEOREM 1: Suppose that \(\lambda < 1 \) (imperfect signal). If the sequence \(\{R_n\}_{n \geq 1} \) is bounded above, then \(\beta_n = 0 \) for all \(n \) in all collusion-free equilibria.

Theorem 1 shows that truthful investigations are impossible unless an unbounded amount of resources can be devoted to monitoring: regardless of the budget available for monitoring, there is a path of observations, which has positive probability, that will exceed this budget. In particular, sequential monitoring that withstands a local form of collusion is impossible in any society with bounded resources.

To prove this result, we begin by expressing \(M_n \)'s payoffs for each possible strategy.

Let \(\gamma_{n-1} \) denote the probability that \(M_{n-1} \) has made a wrongful claim, conditional on round \(n \) being reached, and \(\delta_{n+1} \) denote the probability that \(M_{n+1} \) accuses \(M_n \) with probability 1 regardless of \(M_n \)'s guilt, conditional on round \(n+1 \) being reached.\(^7\)

Agent \(M_n \) has four pure strategies (which he may, and typically will, randomize over).

Truthful Investigation.—\(M_n \) investigates \(M_{n-1} \) and reports his finding truthfully. The expected payoff of this strategy is

\[
\lambda \gamma_{n-1}(R_n - \delta_{n+1}P_n) - c.
\]

Indeed, \(M_n \) incurs the investigation cost \(c \) and, with probability \(\lambda \gamma_{n-1} \), discovers that \(M_{n-1} \) made a wrongful claim, resulting in expected reward \(R_n \). However, with probability \(\delta_{n+1} \), \(M_n \) is falsely accused by \(M_{n+1} \) of making a wrongful claim.\(^7\)

Blind Accusation.—\(M_n \) shirks and accuses \(M_{n-1} \). The resulting expected payoff is

\[
R_n - (\lambda \beta_{n+1} + \delta_{n+1})P_n.
\]

Indeed, with probability \(\lambda \beta_{n+1} \), \(M_{n+1} \) investigates truthfully \(M_n \) and discovers his wrongful behavior, and with probability \(\delta_{n+1} \), \(M_{n+1} \) accuses \(M_n \) with probability 1 (possibly after shirking or after investigating \(M_n \)).

“Switching.”—\(M_n \) investigates \(M_{n-1} \) but accuses \(M_{n-1} \) even if he doesn’t find anything. The resulting payoff is

\[
\lambda \gamma_{n-1}(R_n - \delta_{n+1}P_n) - c
\]

\[
+ (1 - \lambda \gamma_{n-1})(R_n - (\lambda \beta_{n+1} + \delta_{n+1})P_n).
\]

Indeed, with probability \(\lambda \gamma_{n-1} \), \(M_n \) discovers that \(M_{n-1} \) lied and rightfully accuses him. With probability \(1 - \lambda \gamma_{n-1} \), \(M_n \) discovers nothing but makes up an accusation, at the risk of getting himself accused (rightfully or not).

\(^6\)Note that \(\alpha_n \) is smaller than \(\gamma_n \) because the former is ex ante at round \(n \) and the latter is conditional on round \(n+1 \) being reached.

\(^7\)Since \(M_n \) was truthful, he will be falsely accused if \(M_{n+1} \) uses either the “switching” or the “blind accusation” strategy, which has probability \(\delta_{n+1} \).
Closing. — M_n can save the cost of an investigation and simply end the game by announcing that he found nothing, in which case the payoff is 0.

Remark: δ_n is the probability that M_n chooses either the “blind accusation” or the “switching strategy.” β_n is the probability that M_n chooses the truthful investigation strategy, and $1 - \beta_n - \delta_n$ is the probability that M_n chooses the “closing” strategy.

LEMMA 2: If $R_n - (\lambda \beta_{n+1} + \delta_{n+1}) P_n > 0$, M_n always accuses M_{n-1}, i.e., $\delta_n = 1$ and $\beta_n = 0$.

PROOF: From payoff equations (2)–(4) and the zero payoff from closing the case, the lemma’s inequality implies that blindly accusing M_{n-1} dominates closing the case and that switching dominates truthfully investigating M_{n-1}, which proves the lemma.

LEMMA 3: If $\beta_n = 0$, then $\beta_k = 0$ for all $k \in \{1, \ldots, n-1\}$.

PROOF: If $\beta_n = 0$, it is optimal for M_{n-1} to end the game or to blindly accuse M_{n-2} at no cost: if M_{n-1} makes an accusation, M_n will either close the investigation or accuse M_{n-1} regardless of the veracity of M_{n-1}’s claim. Either way, $\delta_{n-1} = 0$. The result follows by backward induction.

LEMMA 4: If $\beta_{n+1} < c / P_n$, then $\beta_n = 0$.

PROOF: From payoff equations (2) and (3), M_n strictly prefers blindly accusing M_{n-1} over investigating M_{n-1} truthfully unless

$$\lambda \gamma_{n-1}(R_n - \delta_{n+1} P_n) - c$$

$$\geq R_n - (\lambda \beta_{n+1} + \delta_{n+1}) P_n,$$

which is possible only if

$$\beta_{n+1} \lambda P_n \geq c + (1 - \lambda \gamma_{n-1})(R_n - \delta_{n+1} P_n).$$

The last term is nonnegative, and $\lambda \leq 1$. The claim follows.

PROOF OF THEOREM 1:

From Lemmas 2 and 3, either there exists a round N_1 beyond which $R_n - (\lambda \beta_{n+1} + \delta_{n+1}) P_n > 0$ for all $n > N$ or $\beta_n = 0$ for all $n \geq 1$. From (1), $R_{n+1} \geq P_n$ for all n. This implies that truthful investigation is possible only if for all $n \geq N_1$,

$$R_n \leq (\lambda \beta_{n+1} + \delta_{n+1}) R_{n+1}.$$

Likewise, from Lemmas 3 and 4, either there exists a round N_2 beyond which $\beta_{n+1} \geq c / P_n$ for all $n \geq N_2$ or $\beta_n = 0$ for all $n \geq 1$. From (1), $R_{n+1} \geq P_n$ for all n. Therefore, truthful investigation is possible only if

$$\beta_{n+1} \geq c / P_n$$

for all $n \geq N_2$. In particular, this implies that $R_n \geq c$ for all $n \geq N_2 + 1$.

Now suppose that $\{R_n\}$ is bounded above by some constant \bar{R} (which, as noted, must exceed c). Combining previous observations and letting $N = \max\{N_1, N_2\} + 1$, truthful investigation is possible only if

- $\beta_n \geq c / \bar{R}$,
- $\frac{1}{1 - \lambda} R_n \leq R_{n+1}$,

for all $n \geq N$. Since $\delta_{n+1} \leq 1 - \beta_{n+1}$ and the function $x \mapsto \lambda x + (1 - x)$ is decreasing on $[0, 1]$ for $\lambda \leq 1$, this implies that

$$R_{n+1} \geq GR_n$$

for all $n \geq N$, where $G = 1 / (\lambda(c / \bar{R}) + (1 - c / \bar{R}))$ is strictly greater than 1 because $\lambda < 1$. Iterating (5) from N to $N + T - 1$, we get

$$R_{N+T} \geq G^T R_N,$$

and hence R_{N+T} diverges to $+\infty$ as $T \to +\infty$, which contradicts the assumption that $\{R_n\}$ was bounded above.

This shows that either $\{R_n\}_{n \geq 1}$ is unbounded or $\beta_n = 0$ for all $n \geq 1$, as claimed by the theorem.
III. Extension

This section sketches a simple extension of the analysis, in which \(M_n \) is investigated even if he does not accuse \(M_{n-1} \). Monitors no longer have the ability to end the game, and a public history now consists of a sequence of declarations, one for each round \(n \), in which \(M_n \) either accuses \(M_{n-1} \) (denoted “\(a \)”) or doesn’t (denoted “\(d \)”).

The rewards, punishment, and strategies can depend arbitrarily on past history. To capture this, we modify earlier notation as follows. Fixing a history up to round \(n \), let \(P_n^a \) denote \(M_n \)’s punishment in round \(n + 1 \) if he accused \(M_{n-1} \) in round \(n \) and \(M_{n+1} \) claims that this accusation was wrongful and \(P_n^d \) denote \(M_n \)’s punishment if he did not accuse \(M_{n-1} \) and \(M_{n+1} \) claims that \(M_n \) was either shirking or corrupt. For simplicity, we do not distinguish between these two wrongful behaviors when \(M_a \) made no accusation. Let \(\beta_{n+1}^a \) denote the probability that \(M_{n+1} \) truthfully investigates \(M_n \) conditional on \(M_n \) accusing \(M_{n-1} \) and \(\beta_{n+1}^d \) denote the same probability conditional on \(M_n \) not accusing \(M_{n-1} \). Let \(\delta_{n+1}^a \) denote the probability that \(M_{n+1} \) surely accuses \(M_n \) without investigating him conditional on \(M_n \) accusing \(M_{n-1} \) and \(\delta_{n+1}^d \) denote the same probability conditional on \(M_n \) not accusing \(M_{n-1} \). Finally, let \(\lambda^a \) denote the probability that \(M_{n+1} \) discovers \(M_n \) wrongdoing if he investigates \(M_n \) and \(\lambda^d \) denote the probability that \(M_{n+1} \) discovers wrongdoing by \(M_n \) if he investigates \(M_n \) and \(M_a \) shirked or hid evidence against \(M_{n-1} \).

The collusion-free condition in round \(n \) becomes

\[
R_n - \delta_{n+1}^a P_n^a - P_{n-1} = -\left(\delta_{n+1}^d + \lambda^a \beta_{n+1}^d \right) P_n^d,
\]

and \(M_n \) now prefers truthfully investigating \(M_{n-1} \) over the “switching” strategy (defined previously) if

\[
R_n - \left(\delta_{n+1}^a + \lambda^a \beta_{n+1}^a \right) P_n^a \leq -\delta_{n+1}^d P_n^d.
\]

Isolating \(x = R_n + \delta_{n+1}^d P_n^d - \delta_{n+1}^a P_n^a \) in the last two inequalities yields

\[
P_{n-1} - \lambda^d \beta_{n+1}^d P_n^d \leq x \leq \lambda^a \beta_{n+1}^a P_n^a,
\]

which implies that

\[
P_{n-1} \leq \lambda^d \beta_{n+1}^d P_n^d + \lambda^a \beta_{n+1}^a P_n^a.
\]

It follows that if \(\lambda^d + \lambda^a < 1 \), there must exist a path along which the punishment sequence is unbounded.

REFERENCES

