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Abstract: We design mechanisms that robustly implement any desired social choice function when
(i) agents must incur a cost to learn the state of the world, (ii) with small probability, agents’ pref-
erences can be arbitrarily different from some baseline known to the social planner, and (iii) the
planner does not know agents’ beliefs and higher-order beliefs about one another’s preferences.
The mechanisms we propose have a natural interpretation, and are robust to trembles in agents’
reporting strategies, to the introduction of a small amount of noise affecting agents’ signals about
the state, and to uncertainty concerning the state distribution and agents’ prior beliefs about the
state. We also establish impossibility results for stronger notions of robust implementation.
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1 Introduction

Theories of robust implementation study whether a state-contingent social choice function, such

as one aiming to convict guilty defendants and acquit innocent ones, can be implemented when

information about the state must be elicited from agents whose objective may be misaligned with

the social choice function, and the planner who designs the mechanism faces uncertainty about

agents’ preferences and their beliefs and higher-order beliefs about one another’s preferences.

Whether a social choice function can be robustly implemented depends on the notion of robust-

ness considered. When robustness is required to hold globally, in the sense that agents’ preferences

and beliefs may be arbitrary, Bergemann and Morris (2005) show that a social choice function

is robustly implementable only if it is ex post incentive compatible. Oury and Tercieux (2012)

consider a less demanding notion of robust implementation, which concerns local perturbations of

∗Department of Economics, Northwestern University. Email: harrydp@northwestern.edu
†Department of Economics, Northwestern University. Email: b-strulovici@northwestern.edu
‡We thank Gabriel Carroll, Yi-Chun Chen, Eddie Dekel, Nina Fluegel, Dana Foarta, Yingni Guo, Matt Jackson,

Navin Kartik, Takashi Kunimoto, Elliot Lipnowski, Meg Meyer, Stephen Morris, Kota Murayama, Kyohei Okumura,
David Rodina, Larry Samuelson, Takuo Sugaya, Satoru Takahashi, Olivier Tercieux, Takashi Ui, Siyang Xiong, and
Boli Xu for helpful comments. Pei thanks the NSF Grant SES-1947021 for financial support.

1



agents’ preferences and beliefs in an interim sense. They require that the desired social choice

function be approximately implemented for all profiles of agent types close to a given type profile.

They show that robustly implementable social choice functions must satisfy Maskin monotonicity

(Maskin 1999)—a demanding property that is violated in a number of settings.

1.1 An Ex Ante Notion of Robust Implementation

This paper proposes a new, ex ante notion of robust implementation, and examines whether a given

social choice function can be robustly implemented when agents need to incur a cost to learn the

state.1

Our notion of robust implementation builds on the concept of equilibrium robustness introduced

by Kajii and Morris (1997). According to this concept, a Nash equilibrium of a complete information

game is robust if it can be approximated by some equilibria in every incomplete information game

close to the complete information game in the sense that players’ payoffs match those of the complete

information game with probability close to one. In these incomplete information games, agents can

have arbitrary payoffs with small probability and arbitrary beliefs and higher-order beliefs about

one another’s payoffs as long as these beliefs are consistent with a common prior.

Building on this definition, we propose a local and ex ante notion of robust implementation.

First, we focus on perturbations in which agents’ payoffs differ from those of the unperturbed

environment with small probability. Second, we require that the desired social choice function

be implemented only with probability close to one rather than approximately implemented for all

nearby types. Our notion of robust implementation relaxes some restrictive requirements of the

global and interim notions and thus can potentially avoid some of the most stringent implications

of these notions, as we will show in this paper.

Our notion of robust implementation departs from Kajii and Morris (1997) by imposing a key

restriction on the set of perturbations considered by the planner: We focus on perturbations in

which agents’ payoffs do not directly depend on the messages that agents send to the mechanism.

Precisely, we assume that it is common knowledge that messages are cheap talk. This restriction

is motivated by our focus on mechanism design problems, in which agents’ actions amount to

messages designed by the planner, which do not have intrinsic value, and matter only through the

outcomes and transfers in which they result. We do allow perturbations to affect agents’ preferences

1Our mechanisms also work when agents’ costs of learning are zero. Even in this simpler case, we are unaware of
any existing result that solves the robust implementation problem for our notion, except when agents’ payoffs and
the social choice function satisfy a condition that is stronger than Maskin monotonicity (see Chen et al. (2021)).
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concerning the outcomes implemented as a result of their messages as well as their costs to learn

the state.

Our analysis focuses for simplicity on the case of two agents.2 There are n states of the world.

A planner knows the objective distribution of the state and wishes to implement a social choice

function that maps each state to a lottery over a set of outcomes. She commits to a mechanism

mapping agents’ messages to lotteries over outcomes and transfers without knowing the state as well

as how the environment is perturbed. Each agent observes the mechanism offered by the planner,

the realized perturbation, and his type under that perturbation. Agents then independently decide

whether to observe the state at some cost and then send messages to the planner.

1.2 Main Results

Our main contribution is to construct mechanisms that robustly implement the desired social choice

function when there exists a state whose ex ante probability of occurrence is strictly higher than

that of any other state,3 or when the planner is concerned only about perturbations in which agents’

costs of learning are uniformly bounded above by some commonly known bound. The mechanisms

we construct for generic state distributions have three noteworthy features.

First, each agent is given a message space with 2n− 1 messages. One of these messages corre-

sponds to the ex ante most likely state, and is called the status quo message. The remaining 2n−2

messages are divided into pairs that are associated with each of the n−1 remaining states. The two

messages corresponding to state θ have the following interpretations: One of them is a confident

message which means “I am confident that the state is θ”. The other one is a confession message

which means “I am uninformed but I would like to implement the desired outcome in state θ.”

Second, the desired outcome in the ex ante most likely state is treated as a status quo outcome.

This outcome is implemented whenever the messages sent by the two agents correspond to different

states. When agents’ messages correspond to the same state, the planner implements the desired

outcome in that state. Therefore, the confession message and the confident message corresponding

to the same state induce the same outcome for any message of the other agent.

2We construct mechanisms that robustly implement any given social choice function when there are at least two
agents who may have the ability to learn the state. These mechanisms can be easily modified to account for the
presence of more agents, e.g., by applying them to two of the agents and ignoring the reports of remaining agents.
Even when there are three or more agents, it is unclear whether using the majority rule can easily resolve the robust
implementation problem when agents’ learning costs are strictly positive. See footnote 13 on page 16 for details.

3This condition is satisfied for generic state distributions. In Online Appendix A, we extend our robust im-
plementation results to environments with a continuum of states without requiring any equivalent of the generic
condition.
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Third, if an agent sends any confession message or the status quo message, he receives a strictly

positive transfer as long as the other agent does not send any confident message. If an agent

sends any confident message, then he faces more risk in the sense that he receives a strictly positive

transfer if and only if the other agent sends the same confident message, but the transfer he receives

conditional on matching the other agent’s message is strictly greater than the maximal transfer he

can receive from sending any confession message or the status quo message.

We then address other robustness concerns. First, our mechanisms continue to implement

the desired social choice function when the planner faces uncertainty about the objective state

distribution or about agents’ prior beliefs about the state (Proposition 2 in Section 5.2). Such

uncertainty arises, for instance, when agents observe noisy private signals about the state before

deciding whether to fully learn it at some cost, and the planner does not know agents’ information

structures. Second, robust implementation survives the introduction of trembles when agents send

messages and of a small amount of noise in agents’ information about the state. This may capture

situations in which it is infinitely costly to learn the state perfectly.

1.3 Impossibility Results for Stronger Notions of Robust Implementation

We provide several results pertaining to stronger notions of robust implementation. First, we show

that even if we require only approximate implementation of a non-constant social choice function,

it is impossible to achieve such implementation when agents’ payoffs can differ from those of the

unperturbed environment with non-negligible probability.

Second, we examine the possibility of full implementation and virtual implementation. We

show that when agents’ costs of learning the state in the unperturbed environment are above some

cutoff, or when agents’ payoff functions in the unperturbed environment are independent of the

state, under every finite mechanism, there exists an equilibrium in which no agent learns the state.

This result implies that under each of these two conditions, no finite mechanism can virtually

implement any non-constant social choice function.4 We also provide a sufficient condition for full

implementation: When at least one agent’s preference and the social choice function satisfy a strict

version of Rochet (1987)’s cyclical monotonicity condition and this agent’s cost of learning is small

enough, the planner can robustly and fully implement that social choice function by ignoring the

report of the other agent.

4This result echoes Strulovici (2021), who shows in a sequential model of learning that when agents’ preferences
are state independent, implementation is impossible even in a partial sense when signals about the state of the world
are subject to an information attrition condition.
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Third, we examine the possibility of robust (partial) implementation in an interim sense. We

adapt the notion of robust interim implementation in Oury and Tercieux (2012) to our setting.5

We show that no finite mechanism can robustly implement any non-constant social choice function

when agents’ costs of learning the state in the unperturbed environment are above some cutoff,

even when the planner can use unbounded transfers.

1.4 The Cost of Implementation

We construct mechanisms that robustly implement desired social choice functions, but we do not

characterize the lowest transfer needed to achieve such robust implementation. Although it would

be valuable to determine the lowest cost of implementation, computing this cost seems challenging

because it would require precise knowledge of the set of robust equilibria under every mechanism.

However, to the best of our knowledge, there is no full characterization of the set of Kajii-Morris

robust equilibria in the existing literature.

We view our results showing that it is possible to robustly implement the desired outcome

via mechanisms with relatively few messages as an important first step for the study of robust

implementation in the ex ante sense.6 These results offer a new perspective on locally robust

implementation. They stand in contrast to impossibility results under interim notions of robust

implementation, such as Theorem 6 in the present paper and the results contained in Oury and

Tercieux (2012). While we do not compute the minimum cost required to robustly implement a

given social choice function in the ex ante sense, the mechanisms that we construct provide an

upper bound on this cost.

1.5 Outline

Section 2 presents an example to illustrate our results. First, mechanisms that (i) reward agents

a fixed amount when their reports match, and (ii) give agents no transfer and randomize across

outcomes when their reports mismatch, cannot robustly implement the desired outcome. Second,

we introduce new mechanisms and explain why they are robust against types that are biased in favor

of certain outcomes and types that have high costs of learning. The general model is introduced in

5Oury and Tercieux (2012) consider environments without costly learning and with bounded utilities, which stands
in contrast to our setting where agents need to learn the state at some cost and agents’ utilities are unbounded.

6This first step is, in spirit, similar to the results of Vickrey, Clarke, and Groves, who show that the socially efficient
outcome is dominant-strategy implementable but leave open the question of finding the lowest cost to implement the
socially efficient outcome. Similarly, in the dynamic mechanism design literature, one of Pavan, Segal and Toikka
(2014)’s main contributions is to provide a necessary condition for an allocation to be implementable.
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Section 3. Our main results appear in Section 4. Section 5 extends our results in several directions,

allowing for the possibilities that the planner faces uncertainty about the objective state distribution

and about agents’ beliefs about the state, that agents tremble with small probability, and that agents

can only observe noisy signals about the state after paying their learning costs. Section 6 presents

impossibility results for stronger notions of robust implementation. Section 7 reviews the related

literature. Extensions to a continuum of states and general information acquisition technologies

are given in an online appendix.

2 Example

Consider a planner facing a defendant who is either guilty or innocent of a crime. The state of the

world θ is binary: θ ∈ Θ = {innocent, guilty}. Let q = Pr(θ = guilty) ∈ (0, 1) denote the prior

probability of guilt.

The planner knows q but not θ.7 Her objective is to convict guilty defendants and to acquit

innocent ones. She commits to a mechanism M = {M1,M2, g, t1, t2} in order to elicit information

from two agents in charge of investigating the crime. Here, Mi is a finite set of messages for agent

i ∈ {1, 2}, g : M1×M2 → [0, 1] is a mapping from agents’ messages to the probability of conviction,

and ti : M1 ×M2 → R+ is the transfer to agent i. We assume that transfers are non-negative.

Importantly, t1 and t2 depend only on agents’ messages, not on the realized state.

Each agent can conduct an investigation at cost c and learn whether the defendant is guilty or

innocent. The decision made by an agent and the information that may result from his investigation

are private: they are observed neither by the planner nor by the other agent.

Agent i’s payoff is ti − cdi, where di ∈ {0, 1} denotes agent i’s decision of whether to conduct

investigation and c > 0 is the agent’s cost of conducting his investigation.

Partial Implementation without Robustness: When agents’ payoffs are common knowledge,

the planner can implement the desired social choice function (convict the guilty and acquit the

innocent) via a Maskin mechanism: Each agent is asked to report whether the defendant is guilty

or innocent (we use italics for messages). The outcome and the transfers are given by:

7Section 5.2 extends our main results when the planner does not know q precisely or agents prior beliefs about θ.
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outcome innocent guilty

innocent acquit convict with prob 1/2

guilty convict with prob 1/2 convict

transfers innocent guilty

innocent R,R 0, 0

guilty 0, 0 R,R

When the reward R > 0 is large relative to agents’ cost c, there is an equilibrium in which both

agents conduct investigations and report their findings truthfully.

Failure of Maskin Mechanisms with Biased Agents: Maskin mechanisms fail to implement

the desired social choice function—even approximately—when agents can have biases over outcomes

with small but positive probability.

We illustrate such failures with a class of perturbations inspired by Rubinstein (1989)’s email

game. Suppose that nature draws a random variable ω from a countable set Ω ≡ {ω0, ω1, ω2, ...}

according to the geometric distribution Pr(ω = ωt) = η(1 − η)t for every t ∈ N, where η > 0 is

a parameter close to 0. We assume that ω is independent of the state θ. Agent 1 observes which

element of the partition {ω0}, {ω1, ω2}, {ω3, ω4}, ... the realized ω belongs to before deciding whether

to conduct his investigation and what message to send. Likewise, agent 2 observes which element

of the partition {ω0, ω1}, {ω2, ω3}, {ω4, ω5}, ... the realized ω belongs to before deciding whether to

conduct his investigation and what message to send. An agent’s type is defined by the partition

cell that he observes. After observing his own type, each agent updates his belief about the other

agent’s type according to Bayes rule.8 The distribution of ω has the property that, whenever an

agent observes a cell {ωk, ωk+1} of his partition, this agent assigns strictly higher probability to

ω = ωk than to ω = ωk+1.

Agent 2’s payoff is t2 − cd2 at every ω ∈ Ω. Agent 1’s payoff is t1 − cd1 at every ω 6= ω0. When

ω = ω0, agent 1’s payoff is t1−cd1 +B ·1{defendant is acquitted}, i.e., he receives a benefit B > 0 if

the defendant is acquitted. This perturbation is small when η is close to 0 in the sense that agents’

payoffs coincide with those in the unperturbed environment when ω 6= ω0, and Pr(ω 6= ω0) = 1−η.

For large enough biases, Maskin mechanisms fail to implement the desired social choice function

even when η is arbitrarily close to 0: For any reward R ∈ R+, there exists a bias B > R such that

no matter how close η is to 0, the perturbed game has a unique equilibrium in which no agent

conducts any investigation and both agents report innocent regardless of the state.9 As a result,

8For example, the type of agent 2 who knows that ω ∈ {ω0, ω1} assigns probability 1
2−η to agent 1 being type

{ω0}, the type of agent 1 who knows that ω ∈ {ω1, ω2} assigns probability 1
2−η to agent 2 being type {ω0, ω1}, etc.

9For Maskin mechanisms to fail, we do not need type ω0’s bias B to be arbitrarily large. Our contagion argument
applies when agent 1’s payoff when ω = ω0 is −cd1 + b · 1{the defendant is acquitted}, i.e., type ω0 of agent 1 is
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the defendant is acquitted regardless of his guilt in the unique equilibrium.

This conclusion comes from the following contagion argument. When ω = ω0, agent 1 is biased

in favor of acquitting the defendant, so he has an incentive to report innocent regardless of θ if B is

large enough. When ω ∈ {ω0, ω1}, agent 2 is unbiased, but he believes that agent 1 is biased with

probability greater than 1
2 , so he believes that agent 1 will report innocent with probability greater

than 1
2 for every θ. Since agent 2 maximizes his expected transfer minus his cost of investigation,

he has a strict incentive to report innocent regardless of θ. By induction, all types of both agents

will report innocent regardless of θ in the unique equilibrium of the perturbed game.

In general, agents may be biased in either direction: some agent types may benefit from con-

victing the defendant while others may benefit from acquitting the defendant, and these biases may

have arbitrary magnitudes. The planner faces uncertainty about the direction and magnitude of

these biases as well as about agents’ beliefs and higher-order beliefs about each other’s biases. The

planner aims to design a mechanism that can approximately implement the desired social choice

function under every perturbation where agents are unbiased with probability close to 1, but may

have arbitrary biases with small probability and may entertain arbitrary beliefs and higher-order

beliefs about these biases, as long as those beliefs can be derived from a common prior.

Status Quo Rule with Ascending Transfers. We propose a mechanism that implements the

desired social choice function when the planner does not know the direction and magnitude of

agents’ biases. From now on, we assume that agents’ costs of learning are commonly known and

equal to some constant c. We later introduce mechanisms to address the case in which the planner

also faces uncertainty about the cost of learning.

Our mechanism asks each agent to report the state, i.e., whether the defendant is innocent or

guilty. The outcome and the transfers are given by:

outcome innocent guilty

innocent acquit acquit

guilty acquit convict

transfers innocent guilty

innocent R1, R1 0, 0

guilty 0, 0 R2, R2

where the magnitude of transfers R2 and R1 satisfy R2 −R1 > 2c
q and R1 > c

1−q .

This mechanism features a status quo outcome, acquit, which is implemented as long as one

purely outcome-driven in the sense that he does not care about the transfers, and receives a strictly positive benefit
b > 0 from acquitting the defendant. Maskin mechanisms fail even when b is arbitrarily small. Our Augmented Status
Quo Rule with Ascending Transfers can robustly implement the desired social choice function when perturbations
can also affect agents’ marginal utilities from transfers. The details are available upon request.
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agent reports innocent. The defendant is convicted if and only if both agents report guilty. Agents

receive strictly positive transfers only if their reports coincide. Moreover, they receive a larger

transfer when they both report guilty than when they both report innocent.

To see why this mechanism is robust to the existence of biased types, let us revisit the email game

perturbations introduced above: Nature draws a random variable ω from Ω = {ω0, ω1, ω2, ...} ac-

cording to distribution Π ∈ ∆(Ω) independently of θ. Agent 1’s information partition is {ω0}, {ω1, ω2},

{ω3, ω4}, ... Agent 2’s information partition is {ω0, ω1}, {ω2, ω3}, ... Agent 2’s payoff is t2 − cd2 at

every ω. Agent 1’s payoff is t1 − cd1 at every ω 6= ω0. Therefore, every email game perturbation is

characterized by the distribution Π and by agent 1’s payoff at ω0.

1. Suppose first that when ω = ω0, agent 1 receives a large benefit if the defendant is acquitted.

This type can guarantee outcome acquit by reporting innocent regardless of θ. Since R2−R1 >

2c
q , however, there exists λ ∈ (0, 1) such that Π(ω1) needs to be less than λΠ(ω0) in order for

type {ω0, ω1} of agent 2 to have an incentive to report innocent regardless of θ. Likewise,

Π(ω2) needs to be less than λΠ(ω1) in order for type {ω1, ω2} of agent 1 to have an incentive

to report innocent regardless of θ, and so on. The upper bounds on these probabilities form

a decaying geometric sequence, so the total probability of types that are infected by type ω0

is at most
∑+∞

t=0 λ
tΠ(ω0) = 1

1−λΠ(ω0). This expression vanishes to 0 as Π(ω0)→ 0.

2. Suppose now that when ω = ω0, agent 1 receives a large benefit if the defendant is convicted.

If Π(ωt) = η(1−η)t for every t ∈ N and type ω0 reports guilty regardless of the state, then all

types of both agents have a strict incentive to report guilty regardless of the state, because

R2 > R1 > 0.

However, according to the outcome function specified by the mechanism, the defendant is

convicted only if both agents report guilty. Therefore, an agent who is biased in favor of

convicting the defendant cannot impose a conviction when the defendant is innocent and

the other agent is truthful. In this case, paying the cost c of learning the defendant’s guilt,

and reporting innocent when the defendant is innocent, leads to a strictly positive transfer.

Moreover, the expected value of this transfer exceeds the cost of learning c when R1 > c
1−q .

Of course, the previous argument only shows why the mechanism we propose may be able to

avoid some type of contagion for some specific perturbations. To address the general case, we

show in the proof of Theorem 1 that under our mechanism, for every perturbation in which both

agents are unbiased with probability close to 1, which includes but is not limited to email game
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perturbations, there always exists an equilibrium in which (i) agents never report guilty when the

defendant is innocent, and (ii) both agents report the state truthfully with probability close to 1.

This equilibrium approximately implements the desired social choice function.

Uncertainty about Agents’ Costs of Learning: The planner may also face uncertainty about

agents’ costs of learning the state. For example, one of the agents may be “inept” in the sense of

being unable to conduct investigations.

We show that, as long as the prior probability of guilt q is not exactly equal 1
2 , there exists a

mechanism that approximately implements the desired social choice function when, with probability

close to 1, agents are unbiased and have cost of learning c, but with some small probability can

have arbitrary biases and costs of learning.

We start by explaining why the Status Quo Rule with Ascending Transfers, which was introduced

earlier to address agents’ biases, is unable to deal with inept types. For any 0 < R1 < R2, consider

an email game perturbation where agent 1’s payoff at ω0 is t1− c̃d1 +B ·1{defendant is convicted}.

We consider perturbations where his benefit from convicting the defendant B > 0 and his cost of

learning c̃ > 0 are large relative to the transfers promised by the mechanism.

When this high-cost biased type of agent 1 believes that agent 2 reports guilty when the defendant

is guilty, he prefers to report guilty when the defendant is guilty, since he receives a large benefit B

from convicting the defendant. If this type wants to report innocent when the defendant is innocent,

then he needs to conduct an investigation, but his cost of doing so c̃ outweighs the highest transfer

promised by the mechanism. Hence, this type prefers to report guilty regardless of θ even when he

believes that agent 2 reports truthfully. Since R2 > R1, this causes contagion when the distribution

of ω satisfies Π(ωt) = η(1− η)t for every t ∈ N, no matter how close η is to 0.

Augmented Status Quo Rule with Ascending Transfers: We propose another mechanism

called the Augmented Status Quo Rule with Ascending Transfers that solves the problem caused

by high-cost biased types. Without loss of generality, we focus on the case in which q < 1
2 . Under

this new mechanism, each agent has a third message, which we denote −guilty, and which we

interpret as the agent confessing that (i) he does not know the state and (ii) he prefers to convict

the defendant. Under this new mechanism, the outcome and transfers are given by:
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outcome −guilty innocent guilty

−guilty convict acquit convict

innocent acquit acquit acquit

guilty convict acquit convict

transfers −guilty innocent guilty

−guilty R0, R0 R0, R0 0, 0

innocent R0, R0 R1, R1 0, 0

guilty 0, 0 0, 0 R2, R2

where R0

R2 ≈ 1, and R2 −R1, R1 −R0, and R0 are bounded below by some affine function of c.

Notice that (i) the confession message −guilty implements the same outcome as message guilty

regardless of the other agent’s message; (ii) each agent can unilaterally implement the status quo

outcome acquit by reporting innocent ; and (iii) coordinating on the confession message leads to a

lower transfer R0 than coordinating on any other message, but reporting the confession message

leads to a positive transfer as long as the other agent does not report guilty. By contrast, reporting

guilty leads to a positive transfer if and only if the other agent also reports guilty.

We now explain why including the confession message makes the mechanism robust to high-cost

biased types. First, we note that if agent 1 believes that agent 2 will never send message guilty when

the defendant is innocent (but agent 2 may send −guilty and innocent), then regardless of agent

1’s preference over outcomes and his cost of learning, agent 1 prefers sending −guilty in both states

to sending guilty in both states. The reason is that (i) both strategies induce the same outcome

regardless of agent 2’s message, (ii) none of the two strategies requires any cost of learning, and

(iii) agent 1’s expected transfer for sending −guilty in both states equals R0 Pr(m2 6= guilty) and

agent 1’s expected transfer for sending guilty in both states equals R2 Pr(m2 = guilty). As long as

agent 2 does not send message guilty when the defendant is innocent, we have Pr(m2 6= guilty) ≥

Pr(θ = innocent) = 1 − q and Pr(m2 = guilty) ≤ Pr(θ = guilty) = q. Since q < 1
2 and R0

R2 ≈ 1,

reporting −guilty in both states leads to a higher expected transfer than reporting guilty in both

states. Hence, the high-cost biased type prefers sending −guilty in both states over sending guilty

in both states.

The second key observation is that when a type sends−guilty in both states, the total probability

of types that it can infect is bounded above by a linear function of the probability of this type. This

is because sending message −guilty leads to a transfer of at most R0, while coordinating on message

innocent or coordinating on message guilty results in strictly greater transfers R1 and R2. Every

type of agent i ∈ {1, 2} whose payoff is ti − cdi prefers to conduct his investigation and to report

innocent when the defendant is innocent and to report guilty when the defendant is guilty, as long

as he believes that (i) no type of the other agent reports guilty when the defendant is innocent, and

(ii) with probability at least 1
2 , the other agent reports innocent when the defendant is innocent
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and reports guilty when the defendant is guilty.

The proof of Theorem 2, which covers perturbations in which agents may have arbitrarily high

learning costs, generalizes the argument of the previous paragraph and shows that under every

perturbation in which, with probability close to 1, agents are unbiased and have costs of learning

equal to c, there is an equilibrium in which (i) agents never send guilty when the defendant is

innocent, and (ii) with probability close to 1, agents send guilty when the defendant is guilty and

send innocent when the defendant is innocent. Such an equilibrium implements the desired social

choice function with probability close to 1.

High-probability cost perturbations: Although we focus for simplicity on perturbations in

which agents’ costs of learning coincide with their costs in the unperturbed environment with

probability close to 1, our mechanisms are in fact also robust as long as agents’ costs of learning

are no more than c with probability close to 1. Even if the planner does not know agents’ exact

learning cost, knowing some upper bound that applies with probability close to 1 suffices to achieve

robust implementation. See Footnote 11 of Section 3 for details.

Cheap-talk messages: We assume throughout that it is common knowledge that messages are

cheap talk. In the example, this means that we rule out types who directly benefit, say, from sending

message guilty. If we allowed such types, and the benefit for sending guilty were large enough, then

sending guilty regardless of θ is these types’ dominant strategy, which would cause contagion since

R2 > R1 > R0 > 0.

3 Model

Unperturbed Environment: A planner wants to implement a social choice function f : Θ →

∆(Y ) where Θ is a finite set of states and Y is a set of outcomes.10 The typical elements in these

sets are θ ∈ Θ and y ∈ Y . Let n ≡ |Θ| be the number of states. Let q ∈ ∆(Θ) be the objective

distribution of θ, with q(θ) the probability of state θ. We assume that q(θ) > 0 for every θ ∈ Θ.

10In general, agents’ ability to learn the state of the world may be limited, creating a discrepancy between what
agents can learn and what the planner cares about. In this case, we interpret θ as what agents can learn, since it
is the only information that can be elicited from any mechanism. Moreover, our results extend when agents observe
noisy private signals about the state after paying their costs of learning, as shown in Proposition 1. Our main result
also holds when there is a continuum of states, as shown in Online Appendix A, under the assumption that the social
choice function f and agents’ payoff functions in the unperturbed environment (u1, u2) are continuous with respect
to θ.
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The planner knows q but does not know θ. She commits to a mechanismM≡ {M1,M2, t1, t2, g}

in order to elicit θ from two agents, where Mi is a finite set of messages for agent i, ti : M1×M2 →

R+ is the transfer to agent i, and g : M1×M2 → ∆(Y ) is the implemented outcome. Our restriction

to finite mechanisms makes our robust implementation results stronger. It is also motivated by the

fact that mechanisms with infinitely many messages have undesirable properties.

After observing M, agents simultaneously and independently decide whether to observe θ at

some cost. Let di ∈ {0, 1} be agent i’s decision to obtain information, where di = 1 represents

agent i obtaining information about θ and vice versa. Let ci ≥ 0 be agent i’s cost of learning.11 We

assume that learning is covert in the sense that neither agent −i nor the planner can observe di.

Agents then simultaneously send messages (m1,m2) ∈M1×M2 to the planner, after which the

planner makes transfers and implements an outcome according to M. Agent i’s payoff is:

ui(θ, y)− cidi + ti. (3.1)

Robust Implementation: We examine whether the planner can robustly implement f when

agents’ preferences over outcomes, their costs of learning the state, and their beliefs and higher-

order beliefs about each other’s payoffs can differ from those of the baseline setting.

Following Kajii and Morris (1997), a perturbation G ≡ {Ω,Π, Q1, Q2, ũ1, ũ2, c̃1, c̃2} consists of

a countable set of circumstances Ω, a distribution Π ∈ ∆(Ω) over the set of circumstances which

we assume is independent of θ, a partition Qi of Ω such that agent i ∈ {1, 2} knows which element

of the partition Qi the realized ω belongs to, as well as mappings ũi : Ω × Θ × Y → R, and

c̃i : Ω→ [0,+∞] for i ∈ {1, 2}, where c̃i(ω) = +∞ means that agent i does not have the ability to

learn θ at ω. Agent i’s payoff under perturbation G is

ũi(ω, θ, y)− c̃i(ω)di + ti. (3.2)

For given c > 0, we say that G is a c-bounded perturbation if c̃i(ω) ≤ c for every i and ω.

For every ω ∈ Ω, let Qi(ω) be the partition element of Qi that contains ω, which we call agent

i’s type. Type Qi(ω) is a normal type if ũi(ω
′, θ, y) = ui(θ, y) and c̃i(ω

′) = ci for every ω′ ∈ Qi(ω),

i.e., type Qi(ω) of agent i knows that his payoff in the perturbed environment coincides with his

11In our baseline model, each agent either fully learns the state or learns nothing. Proposition 1 in Section 5
generalizes the main result to situations where agents can only observe noisy signals about the state after paying
their learning costs. In Online Appendix B, we generalize our result by allowing agents to choose any partition of
the state space as their information structures, and different partitions may incur different costs.
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payoff in the unperturbed environment. We introduce our notion of small perturbations:

η-Perturbation. For every η ∈ (0, 1), we say that G is an η-perturbation if

Π
(

both agents are normal types
)
≥ 1− η. (3.3)

We say that G is a c-bounded η-perturbation if G is an η-perturbation and is c-bounded.

Intuitively, a perturbation is small if agents’ payoffs coincide with those in the unperturbed

environment with probability close to one, but their payoffs can be very different from the unper-

turbed environment with small but positive probability. Even though every normal-type agent’s

payoff coincides with his payoff in the unperturbed environment, he may believe that the other

agent is not normal, and may believe that the other agent thinks that he is not normal, and so on.

The email game perturbations considered in Section 2 are η-perturbations since both agents are

normal types when ω ∈ Ω\{ω0}, and the event Ω\{ω0} occurs with probability 1− η under Π.

The planner faces uncertainty about the perturbation G when she designs the mechanism. After

observing the perturbation G and the mechanism M, the two agents are playing an incomplete

information game, which we denote by (M,G). A typical strategy profile of this game is denoted

by σ. Let gσ(θ) ∈ ∆(Y ) be the implemented lottery over outcomes conditional on the state being

θ when the planner commits to outcome function g and agents behave according to σ.

Like Oury and Tercieux (2012), we focus on partial implementation: the planner requires only

that f be implemented in at least one equilibrium, not necessarily all equilibria. Our main results

in Section 4 examine whether the planner can design a mechanism that approximately implements

f for all small enough perturbations.12

1. We say thatM robustly implements f if for every ε > 0, there exists η > 0 such that for every

η-perturbation G, there exists an equilibrium σ(G) of the game induced by (M,G), such that

max
θ∈Θ
||gσ(G)(θ)− f(θ)||TV < ε, (3.4)

where || · ||TV is the total variation distance between two distributions.

12Theorems 1 and 2 extend to a larger class of perturbations in which ũi(ω
′, θ, y) = ui(θ, y) and c̃i(ω

′) ≤ ci with
probability close to 1, i.e., to settings in which the planner knows that agents’ costs of learning are (with probability
close to 1) no more than c1 and c2, but may not know agents’ exact learning costs. The proof uses similar ideas, but
the analysis is more cumbersome as one needs to redefine agents’ strategies as mappings from states and learning
costs to messages.
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2. We say thatM robustly implements f for all c-bounded perturbations if for every ε > 0, there

exists η > 0 such that for every c-bounded η-perturbation G, there exists an equilibrium σ(G)

of the incomplete information game induced by (M,G) such that inequality (3.4) holds.

We do not characterize the lowest expected transfer needed to robustly implement f . Doing so

would likely require knowing the set of games for which there exist robust equilibria that implement

f . However, to the best of our knowledge, there is no characterization of the set of games that have

Kajii-Morris robust equilibria. We do compute the expected aggregate transfer that is needed to

robustly implement f under the mechanisms we propose. This transfer may be viewed as an upper

bound on the cost needed to robustly implement f . Formally, say that mechanism M robustly

implements f with cost no more than T ∈ R+ if for every ε > 0 and ξ > 0, there exists η > 0 such

that for every η-perturbation G, there exists an equilibrium σ(G) of the game induced by (M,G)

such that inequality (3.4) is satisfied and, moreover, E
[
t1(m1,m2)+t2(m1,m2)

∣∣∣M,G, σ(G)
]
≤ T+ξ.

Relation to the Existing Literature: In our analysis, the planner cannot condition transfers

on the realized state. This assumption stands in contrast to existing works on contracting with

costly information acquisition, such as Zermeno (2011), Carroll (2019), and Clark and Reggiani

(2021), where transfers can depend on the realized state. Our model fits situations (and, in this

respect, is consistent with the large literature on implementation) where either the planner cannot

verify the state ex post, or additional information about the state takes a long time to arrive so

that rewarding agents based on such information is impractical.

We also restrict attention to perturbations in which agents’ payoffs are quasi-linear and do

not directly depend on their messages. These assumptions are commonly made in the mechanism

design literature, including Rochet (1987), Chung and Ely (2007), and Bergemann and Morris

(2009). Our assumption that messages are cheap talk stands in contrast to the literature on robust

prediction in games such as Kajii and Morris (1997) and Ui (2001), in which players’ actions can

directly affect their payoffs. Since, in our mechanism design setting, agents’ message spaces are

endogenously chosen by the planner, these messages have no meaning per se and we thus believe

that it is reasonable to view them as cheap talk.

Oury and Tercieux (2012), Chen, Kunimoto and Sun (2020), and Chen, Mueller-Frank and Pai

(2022) adopt an interim approach to study robust partial implementation. Similar to our paper,

these works all assume that agents’ messages are cheap talk. These papers examine whether there

exists a mechanism that partially implements a desired social choice function for all nearby interim
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types. By contrast, we take an ex ante approach and examine whether the planner can robustly

implement a desired social choice function with probability close to one when she knows that agents’

beliefs are derived from a common prior and that the agents’ payoff functions coincide with some

commonly known baseline with probability close to one.

Knowledge about the Realized Perturbation: We assume that the realized perturbation is

common knowledge among the agents but is unknown to the planner. This assumption is standard

in the robust mechanism design literature (e.g., Chung and Ely 2007). It fits applications in which

(i) the planner sets rules (the mechanism) in advance without knowing the specific circumstances

that the society will be facing (e.g., when designing laws, constitutions, or corporate rules) but (ii)

agents do know the particular circumstances they are facing when they decide on how to react to

the mechanism.

Since both agents can observe the perturbation G, one may wonder whether the planner could

ask both agents to report G, and punish both agents if their reports do not coincide (e.g., by

implementing a particular outcome or by giving them negative transfers).

Although this possibility would be worth exploring, we make two observations. First, our focus

on finite mechanisms precludes such a possibility, since there are infinitely many perturbations.

Soliciting information about the realized perturbation requires the use of infinite mechanisms.

Moreover, asking agents to report complicated objects such as the realized perturbation may be

difficult and intractable in practice. Second, when only two agents can learn the state, it is unclear

whether there exists a mechanism that can induce all agent types to report the realized perturbation

truthfully. The reason is that agents’ preferences in the perturbed environment can be arbitrary,

so it is impossible to design a punishment that deters all types from lying. For example, the

outcome that punishes some types may constitute an arbitrarily large reward for other types who

are strongly biased in favor of this outcome, and may encourage these latter types to lie about

the perturbation they observed just for the sake of getting this outcome implemented. Moreover,

agents’ coordination motives would then imply that a type’s incentive to lie about the perturbation

may encourage other types to lie as well.

The Case of Zero Learning Cost: While our mechanisms achieve robust implementation with

positive learning costs, we are unaware of similar results even when agents have zero learning cost.13

13When there are three or more agents and the planner is concerned about perturbations for which the learning
costs of all types are equal to zero, there is a trivial solution to the robust implementation problem. The solution
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If c1 = c2 = 0 and u1(θ, y) and u2(θ, y) are independent of θ, there is a trivial solution to

the robust implementation problem: The planner promises agent 1 a transfer of −u1(y) and agent

2 a transfer of −u2(y) whenever she implements outcome y. The normal type of each agent is

indifferent between all messages, so there exists an equilibrium where all normal types learn the

state and report it truthfully. However, this solution does not work when u1 or u2 depends on θ,

or when agents have positive costs of learning.

When c1 = c2 = 0, and (f, u1, u2) satisfies a Maskin monotonicity* condition, which is strictly

stronger than the Maskin monotonicity condition in Maskin (1999), Chen, Kunimoto, Sun, and

Xiong (2021) show that there exists a finite mechanism that fully implements f under the solution

concept of correlated rationalizability, which implies that their mechanism can fully implement f

under the solution concept of correlated equilibrium. According to Proposition 3.2 in Kajii and

Morris (1997), the mechanism in Chen et al (2021) can robustly implement f when (f, u1, u2)

satisfies Maskin monotonicity*. By contrast, our results in Section 4 construct a different class of

finite mechanisms that can robustly implement f without any restriction on (f, u1, u2).

4 Main Results

This section presents two main results. Theorem 1 shows that every f is robustly implementable

when agents’ costs of learning are uniformly bounded from above across all the perturbations

considered by the planner. Theorem 2 shows that even when arbitrarily large (or infinite) learning

costs are allowed, every f is robustly implementable, as long as the state’s prior distribution satisfies

a generic assumption.

4.1 Robust Implementation with Bounded Perturbations

Theorem 1. For every c > 0 and f : Θ → ∆(Y ), there exists a mechanism with n ≡ |Θ|

messages for each agent that robustly implements f for all c-bounded perturbations.

For simplicity, in the main text, we prove all our results under the assumptions that u1(θ, y) =

u2(θ, y) = 0 and c1 = c2 = c, i.e., that each normal type’s payoff is equal to his transfer minus

consists in using the majority rule and zero transfers. In this case, no agent is pivotal when other agents are truthful
and truthtelling is an equilibrium. However, such mechanisms can fail when some types have positive costs of learning
in the perturbed environment. To see this, note that When a type has a positive learning cost, he has no incentive to
learn the state if he believes that he is never pivotal. For example, suppose that there are three agents and that type
{ω0} of agent 1 and type {ω0, ω1} of agent 2 both have positive learning costs. These types’ messages do not depend
on the state when these types believe that they are not pivotal. This, in turn, affects agent 3’s incentive to make a
state-contingent report. The contagion process that ensues may lead to an undesirable implementation outcome.
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his cost of learning and the normal types of both agents face the same cost c. Types that are not

normal can have arbitrary ũi(ω, θ, y) and c̃i(ω). The proofs for general utility functions (u1, u2)

and heterogeneous costs of learning are in Appendix A and do not present additional conceptual

challenges.

Proof. We propose a mechanism called the Status Quo Rule with Ascending Transfers. Let Θ ≡

{θ1, ..., θn}. Each agent’s message space is given by M1 = M2 ≡ M ≡ {1, 2, ..., n}. The outcome

function is

g(m1,m2) =

 f(θm1) if m1 = m2

f(θ1) otherwise.
(4.1)

The transfer function for agent i ∈ {1, 2} is

ti(mi,m−i) =

 Rj if m1 = m2 = j

0 otherwise,
(4.2)

where R1 > c
q(θ1)

, Rj > R1 for every j ≥ 2, and
∑n

j=2(Rj −R1)q(θj) > 2c.14

In the unperturbed game induced by our mechanism, an agent’s pure strategy can be described

as an n-dimensional vector (m1, ...,mn), where mj ∈M is the message that the agent sends when

the state is θj . If agent 1 uses strategy (m1
1, ...,m

n
1 ) and agent 2 uses strategy (m1

2, ...,m
n
2 ), then

agent i’s expected payoff equals

n∑
j=1

q(θj)
{
ti(m

j
1,m

j
2) + ui(θ

j , g(mj
1,m

j
2))
}
−
(

1− 1{m1
i = ... = mn

i }
)
ci. (4.3)

When u1 = u2 = 0 and c1 = c2 = c—the case we focus on in the main text—agent i’s expected

payoff is equal to
n∑
j=1

q(θj)ti(m
j
1,m

j
2)−

(
1− 1{m1

i = ... = mn
i }
)
c. (4.4)

In the perturbed game induced by our mechanism and G = {Ω,Π, Q1, Q2, ũ1, ũ2, c̃1, c̃2}, a type’s

pure strategy is also given by (m1, ...,mn), where mj ∈ M is the message that this type sends

when the state is θj . A pure strategy profile {(m1
i (ω), ...,mn

i (ω))}i∈{1,2},ω∈Ω describes each agent i’s

message mj
i (ω) for each state θj and circumstance ω, and must satisfy the restriction that mj

i (ω)

be measurable with respect to Qi for every i ∈ {1, 2} and j ∈ {1, 2, ..., n}. For every i ∈ {1, 2} and

14The mechanism for general (u1, u2, c1, c2) has the same outcome function. The transfers satisfy (A.1) and (A.2).
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ω∗ ∈ Ω, the expected payoff for type Qi(ω
∗) of agent i’s is given by

n∑
j=1

q(θj)Eω
[
ti(m

j
1(ω),mj

2(ω)) + ũi

(
ω, θj , g(mj

1(ω),mj
2(ω))

)∣∣∣Qi(ω∗)]

−
(

1− 1{m1
i (ω
∗) = ... = mn

i (ω∗)}
)
Eω
[
c̃i(ω)

∣∣∣Qi(ω∗)]. (4.5)

Let Σ ≡ {1, 2, ..., n}n denote the set of pure strategies. Agent i ∈ {1, 2} is truthful if he uses

strategy (1, 2, ..., n), i.e., if he truthfully reports the index of the realized state. We define Σ∗ ⊂ Σ

as:

Σ∗ ≡
{

(m1, ...,mn) ∈ Σ such that mj ∈ {1, j} for every j ≥ 1
}
. (4.6)

If an agent’s strategy belongs to Σ∗, then in every state θj , this agent either sends the status

quo message 1 or reports the state truthfully by sending message j. For example, when n = 2,

Σ∗ = {(1, 1), (1, 2)} while Σ = {(1, 1), (1, 2), (2, 1), (2, 2)}. The rest of the proof consists of three

steps.

Step 1: The first step examines a restricted game without perturbation where both agents are

only allowed to use (mixed) strategies in ∆(Σ∗) and it is common knowledge that agents’ payoffs

are t1 − cd1 and t2 − cd2. For any given γ ∈ [0, 1], a γ-dominant equilibrium is a Nash equilibrium

where every agent finds it strictly optimal to play his equilibrium strategy when he believes that

the other agent will play their equilibrium with probability at least γ.

Lemma 1. In the restricted game without perturbation, there exists γ < 1
2 such that both agents

being truthful is a γ-dominant equilibrium.

Proof. In the restricted game without perturbation, agents can only send message 1 conditional on

θ = θ1 and, for every j ≥ 2, agents can only send message 1 or message j conditional on θ = θj .

• If agent 1 sends message j in state θj , his expected transfer equals Pr(m2 = j|θj)Rj .

• If agent 1 sends message 1 in state θj , his expected transfer equals Pr(m2 = 1|θj)R1.

Suppose agent 2 is truthful with probability at least 1
2 , Pr(m2 = j|θj) ≥ 1

2 and Pr(m2 = 1|θj) ≤
1
2 . Since Rj > R1 for every j ≥ 2, agent 1 strictly prefers strategy (1, 2, ..., n) to any other

strategy (m1, ...,mn) that belongs to Σ∗ but is neither (1, 2, ..., n) nor (1, 1, ..., 1). Since
∑n

j=2(Rj−

R1)q(θj) > 2c, agent 1’s expected payoff under (1, 2, ..., n) minus that under (1, 1, ..., 1) is at least
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∑n
j=2

1
2(Rj −R1)q(θj)− c, which is strictly positive. Since each agent strictly prefers (1, 2, ..., n) to

any other strategy in Σ∗ when he believes that the other agent is truthful with probability at least

1
2 , there exists γ < 1

2 such that both agents being truthful is a γ-dominant equilibrium.

Step 2: For any G, consider a restricted game with perturbation G where agent i ∈ {1, 2}’s payoff

is ũi(ω, θ, y) − c̃i(ω)di + ti, and agents are only allowed to use strategies in ∆(Σ∗). Since there

exists γ < 1
2 such that both agents being truthful is a γ-dominant equilibrium in the restricted

game without perturbation, the Critical Path Lemma in Kajii and Morris (1997) implies that:

Lemma 2. For every ε > 0, there exists η > 0, such that for every η-perturbation G, there

exists an equilibrium σ(G) in the restricted game with perturbation G, under which the probability

with which both agents being truthful is greater than 1− ε.

Since g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}, f is implemented when both agents are truthful,

which occurs with probability at least 1− ε when agents behave according to σ(G).

Step 3: We show that for every G, the equilibrium σ(G) constructed in the previous step remains

an equilibrium under perturbation G when agents can use any strategy in the set ∆(Σ).

Suppose by way of contradiction that there exists a typeQ1(ω) who strictly prefers (m1, ...,mn) /∈

Σ∗ to all strategies in Σ∗ when agent 2 behaves according to σ(G). Let us define a new strategy

(m1
∗, ...,m

n
∗ ) for agent 1 as follows:

mj
∗ ≡

 mj if mj ∈ {1, j}

1 if mj /∈ {1, j}
for every j ∈ {1, 2, ..., n}.

By construction, (m1
∗, ...,m

n
∗ ) ∈ Σ∗. We compare type Q1(ω)’s expected payoff from (m1, ...,mn)

to his expected payoff from (m1
∗, ...,m

n
∗ ).

1. First, (m1, ...,mn) and (m1
∗, ...,m

n
∗ ) lead to the same joint distribution of (θ, y) when agent 2’s

strategy belongs to ∆(Σ∗). This is because mj
∗ = mj when mj ∈ {1, j}; and when mj /∈ {1, j},

agent 2 sends either 1 or j when the realized state is θj . Given the outcome function (4.1),

the implemented outcome is f(θ1) whenever agent 1 sends a message other than j.

2. Second, conditional on each state, (m1
∗, ...,m

n
∗ ) gives a weakly greater transfer to agent 1

than does (m1, ...,mn). This is because when the state is θj and agent 2’s message belongs

to {1, j}, agent 1 receives zero transfer when he sends any message that is neither 1 nor j.
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3. Third, if (m1
∗, ...,m

n
∗ ) requires a strictly greater learning cost compared to (m1, ...,mn), then

m1 = ... = mn ≥ 2. Conditional on θ = θj , the transfer under m1
∗ is R1 and the transfer under

m1 is 0 when the other agent’s strategy belongs to ∆(Σ∗). Since q(θ1)R1 ≥ c, the expected

transfer from (m1
∗, ...,m

n
∗ ) is greater than c plus the expected transfer from (m1, ...,mn).

Since each agent’s learning cost is no more than c when G is a c-bounded perturbation, every

type prefers (m1
∗, ...,m

n
∗ ) to (m1, ...,mn). This contradicts the hypothesis that type Q1(ω) strictly

prefers (m1, ...,mn) to all strategies in Σ∗. Since σ(G) is an equilibrium in the restricted game with

perturbation when agents are only allowed to use strategies in ∆(Σ∗), σ(G) remains an equilibrium

in the unrestricted game with perturbation G in which agents can use any strategy in ∆(Σ).

Implementation Cost: We bound the expected cost to implement f focusing on the case where

u1 = u2 = 0 and c1 = c2 = c. The cost for the general case is in Appendix A. The expected cost

E[t1 + t2] under our mechanism equals 2
∑n

j=1 q(θ
j)Rj , which can be as low as 2c

maxθ∈Θ q(θ) + 4c.

This is because when θ1 maximizes q(θ), R1 can be as low as c
maxθ∈Θ q(θ) , and the requirement that∑n

j=2(Rj −R1)q(θj) > 2c implies that
∑n

j=2 q(θ
j)Rj can be as low as 2c+R1

∑n
j=2 q(θ

j).

4.2 Robust Implementation with an Ex Ante Most Likely State

We show that as long as the objective state distribution q ∈ ∆(Θ) satisfies a generic condition,

stated below, every f is robustly implementable even when some types have arbitrarily large biases

or learning costs, or when some types are inept in the sense that they do not have the ability to

learn the state.

Definition 1. q ∈ ∆(Θ) is generic if there exists θ∗ ∈ Θ such that q(θ∗) > q(θ′), ∀θ′ 6= θ∗.

When there are two states, for instance, this condition rules out the prior q that assigns prob-

ability 1
2 to each state, but allows any other full support distribution. In Online Appendix A, we

generalize our result to environments in which (i) there is a continuum of states, (ii) the objective

distribution q has no atom, and (iii) (f, u1, u2) are continuous with respect to the state. In that

environment, the generic condition is no longer required and our result holds for all full support

distributions.

Theorem 2. Suppose q is generic. For every social choice function f : Θ→ ∆(Y ), there exists

a mechanism with 2|Θ| − 1 messages for each agent that robustly implements f .
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Proof. We propose a mechanism called the Augmented Status Quo Rule with Ascending Transfers.

When q is generic, we can write Θ ≡ {θ1, ..., θn} such that q(θ1) > q(θ2) ≥ ... ≥ q(θn) > 0.

Consider a mechanism where each agent’s message space is given by M1 = M2 = M =

{−n, ...,−2} ∪ {1} ∪ {2, ..., n}. The outcome function is

g(m1,m2) =

 f(θ|m1|) if |m1| = |m2|

f(θ1) otherwise.
(4.7)

The transfer function for agent i ∈ {1, 2} is

ti(mi,m−i) =


Rj if m1 = m2 = j ≥ 1

R0 if m1,m2 ≤ 1 but (m1,m2) 6= (1, 1)

0 otherwise,

(4.8)

where Rn, ..., R0 satisfy min{Rn, ..., R2} > R1 > R0 > 0,

n∑
j=2

q(θj)(Rj −R1) > 2c, (4.9)

and
R0

Rj
>
q(θj)

q(θ1)
for every j ≥ 2. (4.10)

When q is generic, there exist Rn, ..., R0 that satisfy these inequalities. Our mechanism when there

are two states is presented in Section 2. When there are three states, our mechanism is given by:

g −3 −2 1 2 3

−3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

−2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

1 f(θ1) f(θ1) f(θ1) f(θ1) f(θ1)

2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

t1, t2 −3 −2 1 2 3

−3 R0, R0 R0, R0 R0, R0 0, 0 0, 0

−2 R0, R0 R0, R0 R0, R0 0, 0 0, 0

1 R0, R0 R0, R0 R1, R1 0, 0 0, 0

2 0, 0 0, 0 0, 0 R2, R2 0, 0

3 0, 0 0, 0 0, 0 0, 0 R3, R3

An agent’s (or an agent type’s) pure strategy is (m1, ...,mn), where mj ∈ M represents the

message he sends when the state is θj . He pays the cost of learning unless m1 = ... = mn. The

truthful strategy is (1, 2, ..., n), according to which the agent reports the index of the realized state.
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Let Σ ≡ {−n, ...,−2, 1, 2, ..., n}n be the set of pure strategies. Let

Σ∗ ≡
{

(m1, ...,mn) ∈ Σ such that mj ∈ {−n, ...,−2, 1} ∪ {j} for every j ≥ 1
}
. (4.11)

By definition, if an agent’s strategy belongs to Σ∗, then conditional on each state θj , he either sends

a negative message, or sends the status quo message 1, or sends message j. For example, when

n = 2, Σ∗ = {(−2,−2), (−2, 1), (−2, 2), (1,−2), (1, 1), (1, 2)} while Σ = Σ∗
⋃
{(2,−2), (2, 1), (2, 2)}.

Step 1: We examine a restricted game without perturbation in which it is common knowledge

that payoffs are t1−cd1 and t2−cd2,15 and both agents are only allowed to use strategies in ∆(Σ∗).

We show that there exists γ < 1
2 such that both agents being truthful is a γ-dominant equi-

librium in the restricted game without perturbation. Suppose agent 1 believes that agent 2 plays

(1, 2, ..., n) with probability at least 1
2 and that agent 2’s strategy belongs to ∆(Σ∗).

• For every j ≥ 2, conditional on θ = θj , agent 1’s expected transfer equals Pr(m2 = j|θj)Rj if

he sends message j, and is at most Pr(m2 ≤ 1|θj)R1 if he sends message 1 or any negative

message. If he believes that agent 2 is truthful with probability at least 1
2 , then Pr(m2 =

j|θj)Rj > Pr(m2 ≤ 1|θj)R1 given that Rj > R1.

• Conditional on θ = θ1, agent 1’s expected transfer equals Pr(m2 = 1|θ1)R1 + Pr(m2 ≤

−2|θ1)R0 if he sends message 1 and equals R0 if he sends any negative message. If he

believes that agent 2 is truthful with probability at least 1
2 , then Pr(m2 = 1|θ1)R1 + Pr(m2 ≤

−2|θ1)R0 > R0 given that R1 > R0.

The discussion above implies that agent 1 strictly prefers the truthful strategy to any other non-

constant strategy that belongs to Σ∗. Agent 1’s expected payoff from using a constant strategy

in Σ∗ is at most
∑n

j=1 q(θ
j)R1 Pr(m2 ≤ 1|θj), while his expected payoff from being truthful is at

least
∑n

j=1 q(θ
j)Rn Pr(m2 = j|θj). Inequality (4.9) implies that

∑n
j=1 q(θ

j)Rn Pr(m2 = j|θj) >∑n
j=1 q(θ

j)R1 Pr(m2 ≤ 1|θj) when agent 2 is truthful with probability at least 1
2 . Since agent 1

strictly prefers to be truthful when he believes that agent 2 is truthful with probability at least 1
2 ,

there exists γ < 1
2 such that agent 1 strictly prefers (1, 2, ..., n) to any other strategy in Σ∗ when

agent 2’s strategy belongs to ∆(Σ∗) and is truthful with probability at least γ.

15Recall that in the main text, our proof focuses on the case where u1 = u2 = 0 and c1 = c2 = c. We explain how
to generalize our proof to arbitrary u1(θ, y) and u2(θ, y), and to heterogeneous costs of learning in Appendix A.
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Step 2: For any perturbation G, consider a restricted game with perturbation G where agent i’s

payoff is ũi(ω, θ, y)− c̃i(ω)di + ti, and agents are only allowed to use strategies in ∆(Σ∗).

Since there exists γ < 1
2 such that both agents being truthful is a γ-dominant equilibrium in

the restricted game without perturbation, the Critical Path Lemma implies that for every ε > 0,

there exists η > 0, such that for every η-perturbation G, there exists an equilibrium σ(G) in the

restricted game perturbed by G in which both agents are truthful with probability more than 1−ε.

Since g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}, f is implemented when both agents are truthful,

which occurs with probability more than 1− ε when agents behave according to σ(G).

Step 3: We show that when q is generic and {Rn, ..., R1, R0} satisfy (4.9) and (4.10), the equi-

librium σ(G) in the restricted game with perturbation G remains an equilibrium in the unrestricted

game with perturbation G in which agents can use any strategy in ∆(Σ), not just those in ∆(Σ∗).

For this purpose, we only need to show that for every pure strategy that does not belong to Σ∗,

there exists a pure strategy that belongs to Σ∗ such that every type of agent 1 weakly prefers the

latter to the former when he believes that agent 2 plays according to σ(G). We consider two cases.

First, for every (m1, ...,mn) /∈ Σ∗ that is non-constant, let (m1
∗, ...,m

n
∗ ) be defined as

mj
∗ ≡

 mj if mj ∈ {−n, ...,−2} ∪ {1, j}

−mj if mj /∈ {−n, ...,−2} ∪ {1, j}
for every j ∈ {1, 2, ..., n}. (4.12)

By construction, (m1
∗, ...,m

n
∗ ) ∈ Σ∗. Since (m1, ...,mn) is non-constant, (m1

∗, ...,m
n
∗ ) does not

increase the cost of learning compared to (m1, ...,mn). The outcome function (4.7) ensures that,

regardless of whether agent 1 uses strategy (m1
∗, ...,m

n
∗ ) or strategy (m1, ...,mn), he will induce

the same joint distribution of (θ, y) regardless of agent 2’s strategy. When agent 1 believes that

agent 2’s strategy belongs to ∆(Σ∗), which is the case when agent 2 plays according to σ(G), agent

1 receives a weakly greater transfer from (m1
∗, ...,m

n
∗ ) compared to (m1, ...,mn). This is because

sending any message that does not belong to {−n, ...,−2} ∪ {1, j} leads to a transfer of 0 in state

θj when agent 2’s message in state θj belongs to {−n, ...,−2} ∪ {1, j}.

Second, for every (m1, ...,mn) /∈ Σ∗ that satisfies m1 = ... = mn, there exists k ∈ {2, 3, ..., n}

such that (m1, ...,mn) = (k, ..., k). Let us compare the expected payoff that any given type of agent

1 receives with strategies (k, ..., k) and (−k, ...,−k). The outcome function in (4.7) implies that

(k, ..., k) and (−k, ...,−k) lead to the same joint distribution over (θ, y). None of these strategies

requires agent 1 to learn θ. The expected transfer is Pr(m2 = k)Rk if agent 1 uses strategy (k, ..., k),
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and is Pr(m2 ≤ 1)R0 if he uses strategy (−k, ...,−k). When every type of agent 2’s strategy belongs

to ∆(Σ∗), we have Pr(m2 ≤ 1) ≥ q(θ1) and Pr(m2 = k) ≤ q(θk). Condition (4.10) then implies

that Pr(m2 = k)Rk ≤ q(θk)Rk < q(θ1)R0 ≤ Pr(m2 ≤ 1)R0. Hence, type Q1(ω)’s expected transfer

is weakly greater under (−k, ...,−k) compared to that under (k, ..., k).

Implementation Cost: In the case where u1 = u2 = 0 and c1 = c2 = c, the expected cost

E[t1 + t2] under our mechanism equals 2
∑n

j=1 q(θ
j)Rj . A tight lower bound for this is

4c∑n
j=2(q(θ1)− q(θj))

+ 4c. (4.13)

The calculations are in Appendix A, together with the implementation cost in the general case.

5 Trembles, Noisy Signals, & Unknown State Distributions

Section 5.1 modifies our mechanism so that it can robustly implement f when (i) agents tremble

with small probability, and (ii) agents observe noisy private signals about the state after paying

their costs of learning. This extension captures situations in which learning the state perfectly

is prohibitively costly and agents can only learn an imperfect signal about the state. Section 5.2

examines the robustness of our results when the planner does not know the state distribution q

or faces uncertainty about agents’ beliefs about the state (e.g., when agents receive noisy private

signals about the state before observing the mechanism and the planner does not know the agents’

information structures).

5.1 Robustness to Trembles and Noisy Information

In the proofs of Theorems 1 and 2, we construct equilibria in which no type uses any strategy that

does not belong to ∆(Σ∗). One may wonder whether our results are robust when agents tremble

with small probability or when agents cannot perfectly observe θ even after paying their costs of

learning, in which case agents may not know each others’ private beliefs. This section shows that

our results are robust when the trembling probabilities and the noise in agents’ private signals are

small.

Trembles: For any mechanism M, suppose for every i ∈ {1, 2}, when agent i intends to send

message mi ∈ Mi, the planner receives mi with probability 1 − τ and receives a message that is
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drawn according to Fi ∈ ∆(Mi) with probability τ , where τ ∈ (0, 1) is the probability with which

agents tremble. Throughout this section, we distinguish between an agent’s intended message and

his realized message. We suppress the dependence of Fi on M in order to simplify notation.

Imperfect Signals about the State: Suppose q ∈ ∆(Θ) is generic. Let Θ ≡ {θ1, ..., θn} such

that q(θ1) > q(θ2) ≥ ... ≥ q(θn) > 0. For every i ∈ {1, 2}, let Si ≡ {s1
i , ..., s

|Si|
i } be agent i’s signal

space. Note that |Si| can be any finite number, i.e., we do not impose any upper bound on the

number of signal realizations. Let π ∈ ∆(Θ × S1 × S2) be the joint distribution of the state and

agents’ private signals. For every τ > 0, we say that π is of size τ if

(a) The marginal distribution of π on Θ is q ∈ ∆(Θ).

(b) There exists a mapping hi : Si → {1, 2, ..., n} for every i ∈ {1, 2} such that

π
(
h−i(s−i) = hi(si)

∣∣∣si) ≥ 1− τ for every si ∈ Si, (5.1)

and
n∑
j=1

∑
si∈{hi(si)=j}

π(θj , si) ≥ 1− τ . (5.2)

Our first requirement is that the marginal distribution on θ be consistent with the objective

state distribution q. Our second requirement is reminiscent of Chung and Ely (2003), Aghion,

Fudenberg, Holden, Kunimoto and Tercieux (2012), and Sugaya and Takahashi (2013), in which

every signal that can be observed by agent i ∈ {1, 2} is linked to a particular state, given by the

mapping hi. One can think about hi as endowing each of agent i’s realized signal with a meaning,

where each meaning corresponds to a state. According to requirement (b), the mappings from

realized signal to their meanings satisfy (i) no matter which signal an agent observes, he believes

that the other agent receives a signal with the same meaning with probability close to 1, and (ii)

the meaning of each agent’s signal coincides with the state with probability close to 1.

The planner knows neither G nor {τ, F1, F2, π}. She would like to design a mechanism M that

can approximately implement f for all small enough perturbations, small enough trembles, and

small enough noise in agents’ private signals. Agent i knows the mechanism M, the perturbation

G, his information about ω under G, as well as {τ, F1, F2, π}. He decides whether to pay a cost ci

in order to learn si and, after this decision and possibly the observation of si, which message in Mi

he intends to send. The planner observes the realized messages but not the intended messages.
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Proposition 1. Suppose q is generic. For every f : Θ → ∆(Y ), there exists a mechanism

with 2|Θ| − 1 messages for each agent, such that for every ε > 0, there exist η > 0 and τ > 0

such that for every trembling probability τ < τ , every (F1, F2), every π that is of size τ , and every

η-perturbation G, there exists an equilibrium σ(G) such that maxθ∈Θ ||gσ(G)(θ)− f(θ)||TV < ε.

The proof is in Appendix F. When there are two states, our Augmented Status Quo Rule with

Ascending Transfers can robustly implement f when agents tremble with small probability and

there is a small amount of noise in their private signals about the state, and the proof is similar to

that of Theorem 2. When there are three or more states, we propose a new mechanism that has

the same outcome function as the mechanism in the proof of Theorem 2 but has a different transfer

function.

5.2 Uncertainty about the State Distribution

Our earlier proofs assume that the planner knows the objective state distribution and that this

prior distribution is equal to both agents’ prior belief before they take their actions—including

their decision of whether to learn the state. In some applications, the planner may face uncertainty

about the state distribution or about agents’ beliefs about the state. This situation may arise, for

instance, if the planner faces Knightian uncertainty about the state, or if each agent privately and

freely observes a noisy signal about the state before deciding whether to pay an additional cost to

learn θ and the planner does not know agents’ information structures.

To model this situation, suppose that agent i’s belief is qi ∈ ∆(Θ) when he decides whether

to pay cost ci in order to fully learn θ. We assume these beliefs are obtained as follows: agents

have a prior belief q about θ, and form their respective interim beliefs q1 and q2 after receiving

some informative signals. Intuitively, agent i ∈ {1, 2} privately observes a signal si for free and

his interim belief qi is derived according to Bayes rule. We allow q1 and q2 to have arbitrary

correlations as long as they satisfy the martingale condition E[q1] = E[q2] = q.

The planner knows neither q nor the realizations of q1 and q2. She only knows that q, q1, and q2

belong to a subset q ⊂ ∆(Θ). Our baseline model from earlier sections corresponds to the special

case in which q is a singleton. In the more general formulation, the planner need not know the

exact state distribution. Rather, she knows that this distribution belongs to some subset. This

formulation also allows agents to have more information about the state relative to the planner,

even before they decide whether to pay the cost and to learn the state. The planner does not

know the agents’ information structures but knows that their interim beliefs belong to a certain
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range. The planner’s objective is to design a mechanism M that can robustly implement f for all

(q1, q2) ∈ q× q and for all small enough (c-bounded) perturbations.

Whether the planner can achieve her objective depends on q, i.e., on the extent to which she

knows the agents’ interim beliefs. When q is larger, the robust implementation problem becomes

harder. We say that q is interior if there exists τ > 0 such that q(θ) > τ for every θ ∈ Θ and

q ∈ q. Let B(q, τ) ≡
{
q′ ∈ ∆(Θ)

∣∣∣||q′ − q||TV ≤ τ} denote the τ -neighbourhood of q.

Proposition 2. For any given social choice function f : Θ→ ∆(Y ):

1. Suppose q is interior. For every c > 0, there exists a mechanism with n messages for each

agent that robustly implements f for all c-bounded perturbations.

2. For every generic q ∈ ∆(Θ), there exists τ > 0 such that if q ⊂ B(q, τ), then there exists a

mechanism with 2n− 1 messages for each agent that robustly implements f .

The proof is in Online Appendix D. Proposition 2 implies that even when (i) the planner does

not know precisely what the objective state distribution is and (ii) agents may know more about

the state than the planner does even before they pay the cost of learning, the desired social choice

function is still robustly implementable as long as one of the two conditions is satisfied:

1. The planner is confident that agents’ interim beliefs are not arbitrarily precise (i.e., assign

probability close to 0 to some states) and agents’ costs of learning are bounded from above.

2. The planner knows what the ex ante most likely state is and is confident that the signals

freely received by the agents are sufficiently noisy.

Proposition 2 can be extended to the case in which q includes degenerate beliefs that assign

probability 1 to some particular state. Nevertheless, we do need to rule out situations such as the

following one: (i) Θ = {θ1, θ2, θ3}, (ii) the planner knows that the agents can rule out one state for

free before paying the information acquisition cost but, (iii) the planner does not know which state

the agents rule out.

6 Stronger Notions of Robust Implementation

This section considers the robust implementation of non-constant social choice functions, defined

as follows.
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Definition 2. Social choice function f is non-constant if there exist θ, θ′ such that f(θ) 6= f(θ′).

Section 6.1 shows that the planner cannot robustly implement any non-constant social choice

function when we allow for perturbations where agents’ payoffs do not coincide with those in the un-

perturbed environment with high probability. Sections 6.2 and 6.3 show that when agents’ costs of

learning in the unperturbed environment are above some cutoff, the planner cannot approximately

implement any non-constant social choice function in all equilibria, and she cannot robust-partially

implement any non-constant social choice function in an interim sense.

6.1 Impossibility of Global Implementation

First, suppose that perturbations for which c̃i(ω) is arbitrarily large are allowed, and that agents’

payoffs may differ from those in the unperturbed environment with probability bounded away from

zero. In this case, it is easy to see that no finite mechanism can approximately implement any non-

constant social choice function. To this end, fix any finite mechanism M. Clearly, no agent has

any incentive to learn the state when agents’ learning costs exceed the maximal transfer promised

by mechanism M plus their maximal benefit from implementing specific outcomes. This implies

that f cannot be implemented conditional on this event, which can occur with probability bounded

above 0.

Next, we show that even when we only consider c-bounded perturbations, or even when we only

consider perturbations where it is common knowledge that agents’ costs are c1 and c2, no finite

mechanism can approximately implement any non-constant social choice function if the probability

of normal types is not close to 1. To state the result formally, we will say that mechanism M

globally implements f for all c-bounded perturbations if for every ε > 0 and every c-bounded

perturbation G, there exists an equilibrium σ(G) of incomplete information game (M,G) such that

maxθ∈Θ ||gσ(G)(θ)− f(θ)||TV < ε.

Theorem 3. For every c > 0 and every f : Θ → ∆(Y ) that is non-constant, there exists no

finite mechanism that can globally implement f for all c-bounded perturbations.

The proof is in Appendix B. Here we provide some general intuition. For every f that is non-

constant, one can find θ ∈ Θ such that f(θ) does not belong to the convex hull of {f(θ′)}θ′ 6=θ. For

a mechanism M to implement f in a perturbation where all types of agent 1 dislike f(θ) and like

outcomes in {f(θ′)}θ′ 6=θ, there must exist a distribution of agent 2’s messages under which agent

1’s payoff cannot exceed his payoff from f(θ) no matter which message he sends. This implies that
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under another perturbation where all types of agent 2 like f(θ), agent 2 can guarantee his payoff

from f(θ) regardless of agent 1’s message, which means that mechanismM cannot implement any

outcome in {f(θ′)}θ′ 6=θ.

In fact, the proof of Theorem 3 implies the following corollary, which shows that even if one

focuses on virtual implementation, no mechanism can virtually implement f when payoff pertur-

bations have a probability that is bounded away from zero.

Corollary 1. For every f : Θ→ ∆(Y ) that is non-constant, there exists k(f) > 0 such that for

every finite mechanism M and every η > 0, there exists a c-bounded η-perturbation G, such that

for every equilibrium σ(G) of the game (M,G), we have maxθ∈Θ ||gσ(G)(θ)− f(θ)||TV ≥ ηk(f).

Corollary 1 shows that for every finite mechanismM, there exists a perturbation G under which

every equilibrium of the incomplete information game induced by (M,G) implements a social choice

function that is bounded away from f . This corollary shows that, even if one focuses on partial

and virtual implementation, robust implementation is possible only if the perturbed environment

is close to the unperturbed environment.

6.2 Full Implementation and Virtual Implementation

We now examine whether the planner can approximately implement f in all equilibria under all

small enough perturbations. Say that f is virtually implementable if for every ε > 0, there exists

a mechanism Mε, such that ||gσ(θ)− f(θ)||TV ≤ ε for every θ ∈ Θ and every equilibrium σ under

Mε.
16 Our first result provides two sufficient conditions under which every non-constant social

choice function is not virtually implementable, even with no robustness concern.

Theorem 4. Suppose f is non-constant.

1. If (u1, u2) do not depend on θ, then f is not virtually implementable.

2. For every (u1, u2), there exists c > 0 that depends only on (u1, u2) such that f is not virtually

implementable when c1, c2 > c.

The proof, in Appendix C, shows that as long as c1 and c2 are above some cutoff c > 0, even

when the planner can use arbitrarily large transfers, there always exists an equilibrium where no

16Our definition of virtual implementation is similar to that of Abreu and Matsushima (1992) except that we
require the desired outcome to be implemented in every Nash equilibrium while they require the desired outcome
to be implemented in every rationalizable strategy. Since our goal is to show a negative result—every non-constant
social choice function is not virtually implementable—using a stronger solution concept makes our result stronger.
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agent learns the state. Intuitively, suppose agent 1’s message does not depend on θ. Since agents’

transfers depend only on the messages, the only incentive for agent 2 to learn θ is to induce a more

favorable joint distribution of (θ, y) in order to increase u2(θ, y). Therefore, agent 2’s benefit from

learning the state depends only on u2. When agent 2’s cost of learning outweighs this benefit from

increasing u2(θ, y), he has no incentive to learn provided that agent 1’s message does not depend

on θ, no matter how large the promised transfers are. This logic gives rise to equilibria where no

agent learns the state and the implemented outcome is the same regardless of the state.

We also provide sufficient conditions under which the desired social choice function f can be

robustly implemented in all equilibria. Say that f is robust-fully implementable if there exists

a finite mechanism M such that (i) every equilibrium of M in the unperturbed environment

implements f , and (ii) for every ε > 0, there exists η > 0 such that for every η-perturbation G,

||gσ(G)(θ)− f(θ)||TV ≤ ε for every θ ∈ Θ and every equilibrium σ(G) of (M,G).

First, when c1 = c2 = 0 and (f, u1, u2) satisfies Maskin monotonicity∗, a condition that is

strictly stronger than Maskin monotonicity, Chen, Kunimoto, Sun, and Xiong (2021) construct a

finite mechanism that fully implements f under the solution concept of correlated rationalizability.

Since the unique correlated equilibrium is robust in the sense of Kajii and Morris (1997), the

mechanism in Chen, Kunimoto, Sun, and Xiong (2021) robust-fully implements f .

When c1, c2 > 0, f is robust-fully implementable when one of the agent’s payoff function satisfies

a strict version of Rochet (1987)’s cyclical monotonicity condition and that c1 and c2 are below some

cutoff. Formally, (ui, f) satisfies strict cyclical monotonicity if for every permutation ξ : Θ → Θ,

we have ∑
θ∈Θ

ui(θ, f(θ)) ≥
∑
θ∈Θ

ui

(
θ, f(ξ(θ))

)
, (6.1)

with strict inequality for every ξ that satisfies f(ξ(θ)) 6= f(θ) for some θ ∈ Θ. Condition (6.1) is

the cyclical monotonicity condition. The strict inequality condition has no bite when f is constant,

but can be violated when f is non-constant (e.g., when ui does not depend on θ).

Theorem 5. If (ui, f) satisfies strict cyclical monotonicity for some i ∈ {1, 2}, then there exists

c > 0 such that when ci ≤ c, there is a finite mechanism that robust-fully implements f .

The proof is in Appendix D.
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6.3 Interim Notion of Robust Implementation

Finally, we show that robust implementation in the interim sense is impossible when the costs of

learning c1 and c2 lie above some cutoff that depends only on the unperturbed preferences u1 and

u2, and which holds regardless of whether the planner can use arbitrarily large transfers.

We adapt the notion of interim robust implementation in Oury and Tercieux (2012) to our

setting. Agents need to pay a cost to learn the state θ ∈ Θ. The planner knows the objective

state distribution q ∈ ∆(Θ) but faces uncertainty about agents’ payoffs and costs of learning, and

can use transfers to motivate the agents. Let Y be the set of outcomes, with y ∈ Y . Let Ω be a

countable set of circumstances. Agent i’s payoff is ũi(ω, θ, y) − c̃i(ω)di + ti. Let ω∗ ∈ Ω be such

that ũi(ω
∗, θ, y) = ui(θ, y) and c̃i(ω

∗) = ci for every (θ, y) and i ∈ {1, 2}.

A model is denoted by Z ≡ (Z, κ) where Z ≡ Z1 × Z2 is a countable type space and κi(zi) ∈

∆(Ω×Z−i) is the belief associated with type zi ∈ Zi. For two models Z ≡ (Z, κ) and Z ′ ≡ (Z ′, κ′),

Z ′ ⊂ Z if Z ′ ⊂ Z and κ′i(z
′
i)[(Ω × Z ′−i) ∩ E] = κi(z

′
i)(E) for every z′i ∈ Z ′i and measurable event

E ⊂ Ω× Z−i. For each type zi, one can compute his first-order belief (i.e., his belief about ω), his

second-order belief (i.e., his belief about ω and the first-order belief of agent −i), and so on.17 Let

hki (zi) denote the kth-order belief of type zi. A sequence of types {zi[n]}+∞n=0 converges to type zi

(under the product topology) if for every k ∈ N, hki (zi[n]) converges to hki (zi) as n→ +∞.

The model that corresponds to our unperturbed environment is denoted by Z∗ = (Z∗, κ∗) where

Z∗ = {(z∗1 , z∗2)} and κ∗i (z
∗
i ) assigns probability 1 to ω = ω∗ and z−i = z∗−i. That is, ω = ω∗ is

common knowledge in this model. A mechanism M robustly implements f : Θ → ∆(Y ) in the

interim sense if for every model Z with Z∗ ⊂ Z, there is an equilibrium in the game induced by

(M,Z) such that (i) f is implemented when agents’ types are (z∗1 , z
∗
2), and (ii) for every sequence

of types in Z that converge to (z∗1 , z
∗
2), the implemented social choice function converges to f .

Theorem 6. For every (u1, u2) and non-constant f , there exists c > 0 that depends only on

(u1, u2) such that when c1, c2 > c, no finite mechanism robustly implements f in the interim sense.

The proof is in Appendix E.

17We omit the mathematical details of computing belief hierarchies. We refer readers to Weinstein and Yildiz
(2007) and Oury and Tercieux (2012) for rigorous treatments.
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7 Related Literature

Our paper contributes to the literature on robust implementation. We take an ex ante perspective

and show that all social choice functions are robustly implementable under generic state distri-

butions or under bounded costs of learning.18 We also show that no non-constant social choice

function is robustly implementable in the interim sense of Oury and Tercieux (2012) when agents’

costs of learning are above some threshold, even if the planner can use unbounded transfers.

We require the desired outcome to be implemented with probability close to 1. This is related to

the literature on virtual implementation such as Abreu and Matsushima (1992). They construct,

for each ε, a mechanism that fully implements the desired outcome with probability more than

1 − ε. The number of messages in their mechanisms goes to infinity as ε → 0. By contrast, we

construct for all ε, a mechanism that partially implements the desired outcome with probability

more than 1−ε when the perturbation on agents’ preferences and costs of learning is small enough.

The number of messages in our mechanism either equals the number of states n, or equals 2n− 1.

Kim (2021) proposes a monotonicity condition and shows that it is necessary for partial imple-

mentation in p-dominant strategies when the environment is quasi-linear. By contrast, we show

that every social choice function is robustly implementable. This is because 1
2 -dominance is only

sufficient but not necessary for equilibrium robustness in the sense of Kajii and Morris (1997).

Indeed, although the truthful equilibrium in our mechanism is robust to small perturbations, it is

not a 1
2 -dominant equilibrium in the game induced by our mechanism.

Our mechanisms can robustly elicit costly information when the planner (almost) knows agents’

learning technologies but faces uncertainty about their payoffs as well as their beliefs and higher-

order beliefs.19 Our research question stands in contrast to Carroll (2019)’s which examines robust

contracting when the planner faces uncertainty about the agent’s information acquisition technol-

ogy. The mechanisms we propose can robustly implement the desired social choice function when

agents can either perfectly observe the state or observe signals that are highly correlated with the

state. As explained in Propositions 1 and 2, our results do not require the planner to know the

18This echoes the findings in the literature on robust predictions in games. Weinstein and Yildiz (2007) show that
an equilibrium is robust in the interim sense if and only if it is strictly dominant. Kajii and Morris (1997) provide
sufficient conditions for an equilibrium to be robust in the ex ante sense, which are more permissible than the ones
in Weinstein and Yildiz (2007). Oyama and Tercieux (2010) drop the common prior assumption and show that the
two approaches become essentially equivalent in terms of the characterization of robust equilibrium outcomes.

19Our work is related to the literature on the optimal contracts for information acquisition. Zermeno (2011), Clark
and Reggiani (2021), and Larionov, Pham and Yamashita (2021) examine the optimal contracts for information
acquisition in fixed informational environments. By contrast, we examine whether it is possible to implement a
desired social choice function in all nearby informational environments.
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agents’ interim beliefs and are robust to small trembles in agents’ reporting strategies.20

Finally, our work is related to the literature on robust prediction in games (e.g., Rubinstein

1989, Kajii and Morris 1997, Weinstein and Yildiz 2007) and the literature on the robustness of

equilibrium refinements (e.g., Fudenberg, Kreps and Levine 1988). Our notion of robust imple-

mentation builds on the notion of robust equilibrium in Kajii and Morris (1997), which is broadly

applied to study the robustness of equilibria in potential games (Ui 2001, Morris and Ui 2005) and

supermodular games (Oyama and Takahashi 2020). The key difference is that in our model, agents’

payoffs do not directly depend on their messages, which are their actions in our mechanism design

setting.

A Proofs of Theorems 1 and 2: General Utility Functions

We generalize the proofs of Theorems 1 and 2 to arbitrary u1(θ, y), u2(θ, y), c1, and c2.

Proof of Theorem 1: The outcome function is the same as the Status Quo Rule with Ascending
Transfers in Section 4.1. Agents receive 0 transfer if their messages do not coincide. If both of
them report message j, then agent i receives Rji which satisfies R1

i ≥ c
q(θ1) ,

Rji + ui(θ
j , f(θj))−R1

i − ui(θj , f(θ1)) > 0 for every j ≥ 2 (A.1)

n∑
j=2

q(θj)
{
Rji + ui(θ

j , f(θj))−R1
i − ui(θj , f(θ1))

}
> 2ci. (A.2)

We modify the first step of our proof in which we show that both agents using their truthful
strategies is a γ-dominant equilibrium for some γ < 1

2 . The second and third steps remain the
same. Let Σ ≡ {1, 2, ..., n}n and let

Σ∗ ≡
{

(m1, ...,mn) ∈ Σ such that mj ∈ {1, j} for every j ≥ 1
}
.

In the restricted game without perturbation where agents can only use strategies in ∆(Σ∗), they
can only send message 1 conditional on θ = θ1, and for every j ∈ {2, 3, ..., n}, agents send either
message 1 or message j conditional on θ = θj

• If agent 1 sends message j in state θj , his expected transfer equals Pr(m2 = j|θj)Rj .

• If agent 1 sends message 1 in state θj , his expected transfer equals Pr(m2 = 1|θj)R1.

If agent 2 is truthful with probability at least 1
2 , then Pr(m2 = j|θj) ≥ 1

2 and Pr(m2 = 1|θj) ≤ 1
2 .

Hence, conditional on knowing that θ = θj , agent 1’s expected payoff from sending message j is:

Pr(m2 = j|θj)
(
u1(θj , f(θj)) +Rj

)
+ Pr(m2 = 1|θj)u1(θj , f(θ1)),

20Our results are also related to the results in Chung and Ely (2003) and Aghion, Fudenberg, Holden, Kunimoto
and Tercieux (2012), which examine the robustness of undominated strategy and subgame perfect implementation.
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and his expected payoff from sending message 1 is:

Pr(m2 = j|θj)u1(θj , f(θ1)) + Pr(m2 = 1|θj)
(
u1(θj , f(θ1)) +R1

)
.

The former is greater than the latter if (A.1) is satisfied. Inequality (A.2) implies that agent i
strictly prefers (1, 2, ..., n) to (1, 1, ..., 1) when he believes that agent −i uses the truthful strategy
with probability at least 1

2 . Hence, there exists γ < 1
2 such that agent 1 strictly prefers (1, 2, ..., n)

to any other strategy that belongs to Σ∗ when he believes that agent 2’s strategy belongs to ∆(Σ∗)
and agent 2 is truthful with probability at least γ. The second and third steps are not affected
by u1 and u2, which remain the same as in Section 4.1. The expected cost of implementation∑2

i=1

∑n
j=1 q(θ

j)Rji can be as low as

min
θ∗∈Θ

2∑
i=1

{ c

q(θ∗)
+ 2ci +

∑
θ∈Θ

q(θ)(ui(θ, f(θ∗))− ui(θ, f(θ)))
}

(A.3)

Hence, in order to lower the implementation cost, one needs to choose a status quo state θ∗ that
occurs with high ex ante probability but agents receive low utilities from outcome f(θ∗) when
θ 6= θ∗.

Proof of Theorem 2: Without loss of generality, let Θ = {θ1, ..., θn} with q(θ1) > q(θ2) ≥ ... ≥
q(θn) > 0. The outcome function remains the same as before. The transfers are similar although
we replace Rj with Rj1 and Rj2 for every j ∈ {0, 1, 2, ..., n} such that for every i ∈ {1, 2}

Di(j) ≡ Rji +ui(θ
j , f(θj))+min

τ
ui(θ

j , f(θτ ))−R1
i −2 max

τ
ui(θ

j , f(θτ )) > 0 for every j ≥ 2, (A.4)

Di(1) ≡ R1
i + ui(θ

1, f(θ1))−R0
i −max

τ
ui(θ

1, f(θτ )) > 0, (A.5)

n∑
j=2

q(θj)Di(j) > 2ci,
n∑
j=2

q(θj)
(
Di(j) +R1

i −R0
i

)
+ q(θ1)Di(1) > 2ci, (A.6)

and
R0
i

Rji
>
q(θj)

q(θ1)
for every j ≥ 2. (A.7)

We modify the first step of our proof in which we show that both agents being truthful is a γ-
dominant equilibrium for some γ < 1

2 . Consider a restricted game without perturbation where both
agents are only allowed to use strategies that belong to ∆(Σ∗) where Σ∗ is defined as

Σ∗ ≡
{

(m1, ...,mn) ∈ Σ such that mj ∈ {−n, ...,−2, 1} ∪ {j} for every j ≥ 1
}
.

We show that in the restricted game without perturbation, both agents using (1, 2, ..., n) is a γ-
dominant equilibrium for some γ < 1

2 . Suppose agent 2 is truthful with probability at least 1
2 ,

• Conditional on θ = θj for every j ∈ {2, 3, ..., n}. Agent 1’s payoff when he sends j is at
least 1

2(Rj1 + u1(θj , f(θj))) + 1
2 minτ u1(θj , f(θτ )). His payoff when he sends 1 is at most

u1(θj , f(θ1)) + 1
2R

1
1, and his payoff when he sends any negative message is at most 1

2R
0
1 +

maxτ u1(θj , f(θτ )). Inequality (A.4) implies that his expected payoff is strictly greater when
he sends message j.
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• Conditional on θ = θ1. Agent 1’s payoff when he sends 1 is at least u1(θ1, f(θ1)) + 1
2(R1

1 +
R0

1) and his payoff when he sends any negative message is at most R0
1 + 1

2u1(θ1, f(θ1)) +
1
2 maxτ u1(θ1, f(θτ )). Inequality (A.5) implies that his expected payoff is strictly greater
when he sends message 1.

The above discussion implies that agent 1 prefers to be truthful compared to any other non-constant
strategy that belongs to Σ∗. Inequality (A.6) implies that he prefers to be truthful to any constant
strategy that belongs to Σ∗. Since agent 1 has a strict incentive to be truthful when he believes
that agent 2 is truthful with probability at least 1

2 , there exists γ < 1
2 such that both agents being

truthful is a γ-dominant equilibrium in the restricted game without perturbation. The second and
third steps are not affected by u1 and u2, which remain the same as in Section 4.2.

We provide a tight lower bound on expected cost of implementation
∑2

i=1

∑n
j=1 q(θ

j)Rji given

constraints (A.4), (A.5), (A.6), and (A.7). First, we bound R1
i from below. Inequality (A.6) implies

that

2ci <
n∑
j=2

q(θj)
{
Rji −R

1
i + min

τ
ui(θ

j , f(θτ ))− 2 max
τ

ui(θ
j , f(θτ )) + ui(θ

j , f(θj))
}
.

Inequality (A.7) implies that R0
i q(θ

1) > Rji q(θ
j) for every j ≥ 2, and using plugging in inequality

(A.5) to substitute R0
i with R1

i , we obtain:

2ci <
n∑
j=2

(q(θ1)− q(θj))R1
i +

n∑
j=2

q(θj)
{

min
τ
ui(θ

j , f(θτ ))− 2 max
τ

ui(θ
j , f(θτ )) + ui(θ

j , f(θj))
}

−
n∑
j=2

q(θ1)
{

max
τ

ui(θ
1, f(θτ ))− ui(θ1, f(θ1))

}
. (A.8)

Inequality (A.8) leads to a tight bound onR1
i . Next, we compute a tight lower bound on

∑n
j=1 q(θ

j)Rji .

n∑
j=1

q(θj)Rji = R1
i +

n∑
j=2

q(θj)(Rji −R
1
i )

= R1
i +

n∑
j=2

q(θj)Di(j) +
n∑
j=2

q(θj)
{

2 max
τ

ui(θ
j , f(θj))−min

τ
ui(θ

j , f(θj))− ui(θj , f(θj))
}

> 2ci +R1
i +

n∑
j=2

q(θj)
{

2 max
τ

ui(θ
j , f(θj))−min

τ
ui(θ

j , f(θj))− ui(θj , f(θj))
}
.

Plugging in the tight lower bound on R1
i , we obtain a tight lower bound on the implementation

cost. In the special case where u1 = u2 = 0 and c1 = c2 = c, the lower bound is given by (4.13).

B Proof of Theorem 3

For any finite mechanism M≡ {M1,M2, g, t1, t2}, let

X(M) ≡ max
(i,m1,m2)∈{1,2}×M1×M2

∣∣∣ti(m1,m2)
∣∣∣
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be the highest transfer promised to any agent byM. By definition, X(M) exists. Recall that Y is
the set of outcomes, ∆(Y ) is the set of lotteries over outcomes, and f(θ) ∈ ∆(Y ). We use co(·) to
denote the convex hull of a set. Since f is non-constant, there exists θ∗ ∈ Θ such that

f(θ∗) /∈ co
(
{f(θ)}θ∈Θ\{f(θ∗)}

)
≡ Y.

According to the separating hyperplane theorem, there exists v : Y → R such that v(f(θ∗)) <

miny∈Y v(y).21 Hence, there exists C > 0 such that
(

miny∈Y v(y)− v(f(θ∗))
)
C > 4X(M).

First, consider a perturbation G+ in which ũ1(ω, θ, y) = Cv(y) for all (ω, θ) ∈ Ω × Θ. If M
implements f(θ∗) in state θ∗ under perturbation G+, there must exist m∗2 ∈ ∆(M2) such that

max
m1∈∆(M1)

{
Cv(g(m1,m

∗
2)) + t1(m1,m

∗
2)
}
≤ Cv(f(θ∗)) +X(M)︸ ︷︷ ︸

agent 1’s highest possible payoff if the planner implements f(θ∗)

.

(B.1)
This is because otherwise, agent 1 can secure himself a payoff strictly greater than the right-hand-
side of (B.1), in which case f(θ∗) cannot be implemented in any state under G+.

Next, consider another perturbation G− where ũ2(ω, θ, y) = −Cv(y) for all (ω, θ) ∈ Ω × Θ.
Agent 2’s payoff by playing m∗2 is at least

min
m1∈∆(M1)

{
− Cv(g(m1,m

∗
2)) + t2(m1,m

∗
2)
}
. (B.2)

Since we have chosen C > 0 in order to satisfy
(

miny∈Y v(y)−v(f(θ∗))
)
C > 4X(M) and moreover,

X(M) ≥ |ti(m1,m2)| for every i and (m1,m2), inequality (B.1) implies that

min
m1∈∆(M1)

{
− Cv(g(m1,m

∗
2)) + t2(m1,m

∗
2)
}
≥ −Cv(f(θ∗))− 3X(M) > −C min

y∈Y
{v(y)}+X(M)︸ ︷︷ ︸

since

(
miny∈Y v(y)−v(f(θ∗))

)
C>4X(M)

.

Therefore, agent 2 can secure a payoff strictly greater than −C miny∈Y{v(y)} + X(M), which
implies that no outcome in Y can be implemented under perturbation G−. Hence, every finite
mechanism M that can implement non-constant f under G+ cannot implement f under G−.

C Proof of Theorem 4

Suppose that u1 and u2 are independent of θ. Under any finite mechanism M, there always exists
an equilibrium in which both agents use state-independent strategies, since agents’ preferences
over messages are independent of the state regardless of the mechanism. In this equilibrium, the
implemented outcome does not depend on the state, which means that for every non-constant f ,
there exists a state θ ∈ Θ such that the implemented outcome is bounded away from f(θ).

Next, we show that f is not virtually implementable when c1 and c2 are above some cutoff c
that depends only on (u1, u2). For every (u1, u2), let

X(u1, u2) ≡ max
i∈{1,2}

{
max
θ,y

ui(θ, y)−min
θ,y

ui(θ, y)
}
.

21For every distribution over outcomes ỹ ∈ ∆(Y ), we let v(ỹ) denote the expected value of v(y) when y is distributed
according to ỹ.
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Fix any finite mechanismM and, for every m2 ∈ ∆(M2), let T (m2) ≡ maxm1∈M1 t1(m1,m2) be the
maximal transfer received by agent 1 when agent 2’s message is m2. Suppose that agent 1 believes
that agent 2’s message is m2 regardless of θ. Then, the difference between agent 1’s expected payoff
when he learns θ and when he does not learn θ is

E
[

max
m1∈M1

{u1(θ, g(m1,m2)) + t1(m1,m2)}
]
− max
m1∈M1

E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
. (C.1)

By definition, if m∗1 ∈ arg maxm1∈M1 E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
, then t1(m∗1,m2) ≥ T (m2)−

X(u1, u2). This implies that the value of (C.1) is no more than 2X(u1, u2), and therefore, agent 1
has no incentive to learn θ when c1 > 2X(u1, u2). In addition, when agent 1 believes that agent 2’s

message is m2, sending a message that belongs to arg maxm1∈M1 E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
regardless of the state is one of agent 1’s best replies.

Similarly, suppose c2 > 2X(u1, u2). For every m1 ∈ ∆(M2), when agent 2 believes that agent 1’s

message is m1, sending a message that belongs to arg maxm2∈M2 E
[
u2(θ, g(m1,m2)) + t2(m1,m2)

]
regardless of the state is one of agent 2’s best replies.

Fix any finite mechanism M and consider an auxiliary two-player normal-form game where

agent i ∈ {1, 2} has a finite set of pure strategies Mi and his payoff is Eθ
[
ui(θ, g(m1,m2)) +

ti(m1,m2)
]

when he uses strategy mi and his opponent uses strategy m−i. Since this auxiliary

game is finite, a Nash equilibrium (m1,m2) ∈ ∆(M1) × ∆(M2) exists. By construction, agent 1
sending m1 regardless of θ and agent 2 sending m2 regardless of θ is an equilibrium under mechanism
M. This equilibrium implements a constant social choice function. For every non-constant social
choice function f , there exists β > 0 such that for every constant social choice function g, there
exists θ ∈ Θ such that ||f(θ)− g(θ)||TV > β. This implies that f is not virtually implementable.

D Proof of Theorem 5

If f is constant, then robust-fully implementing f is straightforward. The rest of the proof focuses on
the case where f is non-constant. Consider a mechanism where Mi = Θ, M−i = {1}, g(mi,m−i) =
f(mi), ti(m1,m2) depends only on m1, and t−i(m1,m2) = 0. Since f and ui satisfy strict cyclical
monotonicity, there exists ti : Θ→ R such that

1. ti(θ) = ti(θ
′) for every θ, θ′ ∈ Θ such that f(θ) = f(θ′),

2. ui(θ, f(θ)) + ti(θ) > ui(θ, f(θ′)) + ti(θ
′) for every θ, θ′ ∈ Θ such that f(θ) 6= f(θ′).

Under such a mechanism, agent i chooses an outcome in {f(θ)}θ∈Θ and receives a transfer ti(θ)
for implementing f(θ). Under every η-perturbation G, every normal type of agent i has a strict
incentive to learn θ and to choose f(θ) in state θ for every θ ∈ Θ, provided that his cost of learning
ci is small enough. This implies that the above mechanism can robust-fully implement f .

E Proof of Theorem 6

As shown in the proof of Theorem 4, for every (u1, u2), there exists c > 0 such that for all finite
mechanisms (even when transfers can be arbitrarily large), when ci > c, agent i finds it strictly
suboptimal to learn θ when he believes that agent −i’s message does not depend on θ. Suppose

c1, c2 > c. For every finite mechanism M, let U ≡ 2 max{i,θ,y,m1,m2}

∣∣∣ui(θ, y) + ti(m1,m2)
∣∣∣. We
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construct a sequence of types that converge to (z∗1 , z
∗
2) under the product topology but for which

the implemented outcome is bounded away from f . Let z2[0] be a type that assigns probability 1
to ω′ where ũ1(ω′, ·, ·) = u1(·, ·), ũ2(ω′, ·, ·) = u2(·, ·), c̃1(ω′) = c1, and c̃2(ω′) > U . Let z1[0] be a
type that assigns probability β to player 2 being type z2[0] and probability 1− β to ω = ω∗, where
β is close enough to 1 such that it is strictly suboptimal for type z1[0] to learn the state, regardless
of his belief about type z2[0]’s message. For every j ≥ 1, let z2[j] be a type who knows that ω = ω∗

but assigns probability β to player 1 being type z1[j − 1] and probability β to player 1 being type
z1[j], and let z1[j] be a type who knows that ω = ω∗ but assigns probability β to player 2 being
type z2[j] and probability 1− β to player 2 being type z2[j + 1]. These sequence of types converge
to (z∗1 , z

∗
2) under the product topology. By construction, type z2[0] finds it strictly suboptimal to

learn θ, so his message is independent of θ. Type z1[j] finds it strictly suboptimal to learn θ since
type z2[j]’s message is independent of θ with probability at least β. Type z2[j] finds it strictly
suboptimal to learn θ since type z1[j − 1]’s message is independent of θ with probability at least
β. Therefore, the implemented outcome under this sequence of types is independent of θ, which is
bounded away from f since f is non-constant.

F Proof of Proposition 1

First, we prove Proposition 1 when u1 = u2 = 0 and c1 = c2. In Online Appendix C, we extend
our proof by allowing for arbitrary u1, u2, c1, c2. We rank the states according to their ex ante
probabilities, i.e., q(θ1) > q(θ2) ≥ ... ≥ q(θn) > 0, where the first strict inequality comes from
our generic assumption. Each agent has 2n − 1 messages with their message space given by M ≡
{−n, ...,−2} ∪ {1} ∪ {2, ..., n}. The outcome function is given by:

g(m1,m2) =

{
f(θ|m1|) if |m1| = |m2|
f(θ1) otherwise

(F.1)

The transfer functions when u1 = u2 = 0 and c1 = c2 = c are given by:

t1(m1,m2) =


Rj if m1 = m2 = j ≥ 1
R0 if m1 ≤ 1 but (m1,m2) 6= (1, 1)
R0 − x if m1 ≥ 2 and m2 ≤ 1
0 otherwise

(F.2)

t2(m1,m2) =


Rj if m1 = m2 = j ≥ 1
R0 if m2 ≤ 1 but (m1,m2) 6= (1, 1)
R0 − x if m2 ≥ 2 and m1 ≤ 1
0 otherwise

(F.3)

where Rn, ..., R0 > x > c
q(θn) satisfy

R1 −R0 >
2c

q(θ1)
, Rj −R1 − x > 2c

q(θj)
for every j ∈ {2, 3, ..., n}, (F.4)

and
x

Rj −R0
>

q(θj)

1− q(θj)
for every j ∈ {2, 3, ..., n}. (F.5)

When there are two states, our Augmented Status Quo Rule with Modified Transfers is given by:
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g −2 1 2

−2 f(θ2) f(θ1) f(θ2)

1 f(θ1) f(θ1) f(θ1)

2 f(θ2) f(θ1) f(θ2)

t1, t2 −2 1 2

−2 R0, R0 R0, R0 R0, R0−x
1 R0, R0 R1, R1 R0, R0−x
2 R0−x,R0 R0−x,R0 R2, R2

When there are three states, our Augmented Status Quo Rule with Modified Transfers is given by:

g −3 −2 1 2 3

−3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

−2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

1 f(θ1) f(θ1) f(θ1) f(θ1) f(θ1)

2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

t1, t2 −3 −2 1 2 3

−3 R0, R0 R0, R0 R0, R0 R0, R0−x R0, R0−x
−2 R0, R0 R0, R0 R0, R0 R0, R0−x R0, R0−x
1 R0, R0 R0, R0 R1, R1 R0, R0−x R0, R0−x
2 R0−x,R0 R0−x,R0 R0−x,R0 R2, R2 0, 0

3 R0−x,R0 R0−x,R0 R0−x,R0 0, 0 R3, R3

Since M ≡ {−n, ...,−2} ∪ {1} ∪ {2, 3, ..., n}, agent i’s pure strategy is an |Si|-dimensional vector
(m1, ...,m|Si|) where mk ∈ M represents agent i’s intended message when his private signal about
the state is ski . Hence, conditional on si = ski , agent i’s realized message is mk with probability
1− τ and is randomly drawn according to Fi ∈ ∆(Mi) with probability τ . This implies that agent
i prefers m to m′ as his intended message if and only if he receives a higher expected payoff when
m is his realized message compared to when m′ is his realized message. Let

Σ∗i ≡
{

(m1, ...,m|Si|) ∈ Σ such that for every k ∈ {1, ..., |Si|}, mk ∈ {−n, ...,−2, 1} ∪ {hi(ski )}
}
.

In words, Σ∗i is the set of pure strategies of agent i such that, conditional on each of agent i’s
private signal ski , agent i intends to send either a negative message, or the status quo message 1, or
message hi(s

k
i ) that matches the meaning of his private signal. Agent i intends to be truthful if his

strategy (m1, ...,m|Si|) satisfies mk = hi(s
k
i ) for every k ∈ {1, ..., |Si|}, i.e., agent i intends to send

the message that matches the meaning of his private signal for each of his private signals.
First, we show that there exists γ < 1

2 such that both agents intending to be truthful is a
γ-dominant equilibrium in the restricted unperturbed game where agents are only allowed to use
strategies in ∆(Σ∗1) and ∆(Σ∗2). Suppose agent 2 intends to be truthful with probability at least 1

2 .

• For every j ≥ 2, conditional on every s1 ∈ S1 with h1(s1) = j, if agent 1’s realized message
is j, then he receives an expected transfer of

Pr(m2 = j|s1)Rj + Pr(m2 ≤ 1|s1)(R0 − x),

and if agent 1’s realized message is no more than 1, then he receives an expected transfer of

Pr(m2 = 1|s1)R1 + Pr(m2 6= 1|s1)R0.

Since π(h2(s2) = h1(s1)|s1) ≥ 1 − τ when π is of size τ , and agent 2 intends to be truthful
with probability at least 1

2 , we know that Pr(m2 = j|s1) ≥ 1−τ
2 (1− τ) and Pr(m2 ≤ 1|s1) ≤

1− 1−τ
2 (1− τ). When Rj −R1 − x > 2c

q(θj)
, τ is close to 0, and τ ≤ τ , we have

q(θj)
{

Pr(m2 = j|s1)Rj+Pr(m2 ≤ 1|s1)(R0−x)
}
> q(θj)

{
Pr(m2 = 1|s1)R1+Pr(m2 6= 1|s1)R0

}
+c.
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Therefore, if agent 1 believes that agent 2’s strategy belongs to ∆(Σ∗2) and that agent 2 intends
to be truthful with probability at least 1

2 , then agent 1 strictly prefers sending message j over
sending the status quo message or any negative message whenever he receives a signal s1 that
satisfies h1(s1) = j. Moreover, this statement holds even after taking into account agent 1’s
cost of learning the state.

• Conditional on agent 1 receiving a signal s1 such that h1(s1) = 1, his expected transfer when
his realized message is 1 is Pr(m2 = 1|s1)R1 + Pr(m2 < 0|s1)R0 and his expected transfer
when his realized message is negative is R0. When R1 −R0 > 2c

q(θ1)
and τ is close enough to

0, Pr(m2 = 1|s1)R1 + Pr(m2 < 0|s1)R0 is at least R1+R0

2 given that agent 2 is truthful with

probability at least 1
2 . Since q(θ1)

(
R1+R0

2 −R0
)
> c, agent 1 strictly prefers to send message

1 to any negative message when agent 2’s strategy belongs to ∆(Σ∗2) and agent 2 intends to
be truthful with probability at least 1

2 , even taking into account his cost of learning c.

Since agent 1 strictly prefers to be truthful when agent 2’s strategy belongs to ∆(Σ∗2) and agent
2 intends to be truthful with probability at least 1

2 , there exists γ < 1
2 , such that both agents

intending to be truthful is a γ-dominant equilibrium in the restricted game without perturbation.
The second step uses the critical path lemma. We can show that for every ε > 0, there exists

η > 0 such that for every η-perturbation G, there exists an equilibrium σ(G) in the restricted game
with perturbation G where both agents intend to be truthful with probability more than 1 − ε

2 .
Under the outcome function g of our mechanism, if both agents behave according to σ(G) and τ is
small compared to ε, then for every θ, outcome f(θ) is implemented with probability at least 1− ε.

In the third step, we show that σ(G) remains an equilibrium in the game induced by our
mechanism and perturbation G where agents can use any strategy, not restricted to strategies in
∆(Σ∗1) and ∆(Σ∗2). We consider two cases.

First, for any of agent 1’s strategy (m1, ...,m|S1|) /∈ Σ∗1 that is non-constant, let us define a new

strategy (m1
∗, ...,m

|S1|
∗ ) that belongs to Σ∗1:

mk
∗ ≡

{
mk if mk ∈ {−n, ...,−2, 1} ∪ {h1(sk1)}
−mk if mk /∈ {−n, ...,−2, 1} ∪ {h1(sk1)} for every k ∈ {1, 2, ..., |S1|}.

Intuitively, for every signal realization sk1, mk
∗ = mk if mk is no more than 1 or mk coincides with

the meaning of sk1; otherwise, mk
∗ = −mk. According to the mechanism’s outcome function (F.1),

(m1, ...,m|S1|) and (m1
∗, ...,m

|S1|
∗ ) induce the same joint distribution of (θ, y). We compare agent 1’s

expected transfer from (m1, ...,m|S1|) and from (m1
∗, ...,m

|S1|
∗ ). When agent 1’s private signal s1 is

such that h1(s1) = j, his expected transfer when his realized message m /∈ {−n, ...,−2} ∪ {1, j} is:

Pr(m2 = m|s1)Rm + Pr(m2 ≤ 1|s1)(R0 − x). (F.6)

Agent 1’s expected transfer when his realized message is −m is R0. When agent 2’s strategy belongs
to ∆(Σ∗2), he intends to send message m only if the meaning of his signal is m. When π is of size
τ , we have Pr(m2 = m|s1) ≤ 2τ . If this is the case, the value of (F.6) is strictly less than R0 when

τ is close to 0. This implies that every type of agent 1 prefers (m1
∗, ...,m

|S1|
∗ ) to (m1, ...,m|S1|).

Second, for any strategy (m1, ...,m|S1|) /∈ Σ∗1 that is a constant vector, there exists k ∈
{2, 3, ..., n} such that (m1, ...,m|S1|) = (k, ..., k). Compare any given type of agent 1’s expected
payoff from strategies (k, ..., k) and (−k, ...,−k). These strategies induce the same joint distribution
over (θ, y) and neither of them requires any cost of learning. In terms of the transfers, when agent
1’s realized message is k, he receives an expected transfer of Pr(m2 = k)Rk + Pr(m2 ≤ 1)(R0 − x).
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When his realized message is −k, he receives an expected transfer of R0. When agent 2’s strategy
belongs to ∆(Σ∗2), agent 2 intends to send message k only when his signal has meaning k. Therefore,

Pr(m2 = k)Rk + Pr(m2 ≤ 1)(R0 − x)

≤
(
π(h2(s2) = k) +

(
1− π(h2(s2) = k)

)
τ
)
Rk +

(
1− π(h2(s2) = k)

)
(1− τ)(R0 − x) (F.7)

When π is of size τ and τ converges to zero, the right-hand-side of (F.7) converges to q(θk)Rk +
(1 − q(θk))(R0 − x), which is strictly smaller than R0 given our condition on the transfers (F.5).
Therefore, the right-hand-side of (F.7) is strictly smaller than R0 for all τ close enough to 0. This
implies that when agent 2 behaves according to σ(G), every type of agent 1 receives a strictly
greater transfer from strategy (−k, ...,−k) to strategy (k, k, ...k) for every k ≥ 2.
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