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1 Introduction

Whether it concerns financial bailouts, tax schemes, social security regulations, labor contracts,

debt refinancing, or international agreements, renegotiation of social and corporate agreements is

a pervasive aspect of economic activity. Modeling renegotiation is challenging, however, and many

economists have focused their analysis on renegotiation-proof contracts which are, loosely speaking,

contracts which cannot be Pareto improved following any history, and which are aimed to capture

the main effects of renegotiation.1

While they offer a parsimonious approach to capture renegotiation, renegotiation-proof con-

tracts raise conceptual issues, particularly when some parties hold private information. First,

renegotiation-proofness is generally not an intrinsic property of contracts.2 Instead, it depends on

the negotiating parties’ beliefs and on the set of contracts which the parties view as credible alter-

natives to the current contract. The expression “renegotiation-proof contract” is thus misleading,

because the qualification really concerns pairs of contracts and beliefs. To illustrate this point,

suppose that a principal, P, has signed a contract with an agent whose type, L or H, is private, and

that P is given an opportunity to renegotiate the contract. Also assume that the initial contract,

C, is efficient conditional on facing L, but inefficient if P is facing H. In this situation, P should

renegotiate the contract only if he assigns a high enough probability to facing H. In some cases
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(see, e.g., Hart and Tirole (1988)), the principal may prefer to abstain from completely learning

the agent’s type to avoid subsequent commitment problems, and some inefficient contracts can be

renegotiation-proof.

These observations raise another issue with renegotiation-proofness, which may be best under-

stood with three periods. Whether a contract is renegotiation-proof in the second period depends

on P’s belief in that period, as was just discussed. This belief, in turn, depends on the agent’s strat-

egy in period 1. For example, suppose that L and H both choose some contract C in period 1 with

positive probability. Whether C’s continuation in period 2 (and, hence, C itself) is renegotiation-

proof depends on P’s belief in period 2 which, by Bayesian updating, depends on the probabilities

with which each type of the agent have chosen C. Therefore, whether C is renegotiation-proof

depends not only on P’s initial belief about the agent, but also on the agent’s strategy in period

1, which itself depends on the continuation of C: renegotiation-proofness is an equilibrium concept,

even when the horizon is finite.

Offsetting this complexity, renegotiation-proofness also implies a form of interim efficiency that

can significantly simplify the concept. Indeed, because contracts that are efficient for some type of

the agent are typically inefficient for other types, renegotiation generates a separating force. When

this force is sufficiently strong, it can entirely resolve the issues mentioned earlier. Suppose, for

example, that contract efficiency in the last period guarantees that the agent’s types are always

separated in that period. Viewed from the penultimate period, regardless of the agent’s strategy

and the principal’s current belief, the agent’s types will be separated in the next period even,

for that matter, if his type is persistent. This property reduces the set of contracts that need

to be considered in the penultimate period, and may be used to show that the efficient contracts

among those must also be separating in that period. In many cases, analyzed in later sections,

an induction argument may be used that renegotiation-proof must always be separating. Thus, by

pushing towards efficiency at all periods, renegotiation-proofness can force the principal to learn

the type of the agent. This is the separating power of renegotiation.

With more periods, characterizing the set of renegotiation-proof contracts can be particularly

challenging. To be renegotiation-proof, a contract must be interim efficient, i.e., sustain the com-

parison with alternative contracts whose current-period specification and continuations may both

differ from the current contract and, crucially, whose continuations have to be renegotiation-proof.

When assessing the interim efficiency of a given contract, the principal must thus consider per-

turbations of the contract that preserve renegotiation-proofness of the continuation contract. To

address this difficulty, the paper introduces a concept of RP-preserving perturbations. The paper

will provide a general specification in which these perturbations constitute a group, in the algebraic

sense of the term. If one can characterize this group through its multiplication, as in the several
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examples described here, then can exploit interim efficiency to show that RP contracts must be

separating.

2 Setting: Contracting with Persistent Private Information

We consider a dynamic principal-agent contracting model between a risk neutral principal and a

risk-averse agent. There are T < ∞ periods.3 The private type θt of the agent lies in some type

space Θ ⊂ R and evolves according to some Markov process.

Given a stochastic consumption stream {yt}t≤T , the agent receives an expected utility

U(y) = E

[
T∑
t=1

u(θt, yt)

]

where the period utility u is defined on Θ×Y and Y is an interval of R. For expositional simplicity,

the discount rate is set to zero for both parties.4

The agent receives his consumption stream from the principal, whose objective is to minimize

the expected cost

Q(y) = E

[
T∑
t=1

yt

]
,

subject to providing the agent with a lifetime expected utility greater than or equal to

U(y) ≥ w.

The principal’s marginal cost is thus assumed to be constant across periods and normalized to 1.5

A contract is defined recursively as follows: in period T , a contract is simply a transfer yT ∈ Y.

Let CT denote the set of such contracts. In period t < T , a contract consists of a transfer yt for

that period and of a finite menu Mt+1 ⊂ Ct+1 of continuation contracts at period t+ 1. The set of

period-t contracts is denoted Ct.
The timing of the game is as follows:

• In period 1, the principal proposes an initial menu M1 of contracts in C1.

• The agent learns his type θ1 and picks a contract C1 = (y1,M2) from M1.

• The principal gives y1 to the agent, and the game moves to period 2.

3Focusing on a finite horizon gets rid of conceptual difficulties that arise with the definition of renegotiation-proof

contracts.
4The analysis easily extends to a common positive discount rate for the principal and the agent.
5The analysis can be extended to the case of arbitrary deterministic time-varying cost functions. Furthermore,

Atkeson and Lucas (1992) observe that the general equilibrium price process obtained to decentralize the central

planner’s problem is typically constant for the simple parametric specifications used in the present paper.
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• The agent learns his type θ2 for that period, and picks an item C2 = (y2,M3) from M2

• y2 is paid, etc.

The distinction between the terms “menu” and “contract” is for expositional clarity. A “menu”

really corresponds to a contract at the beginning of some period, whereas the term “contract” is

reserved for end-of-period contracts, after the agent has made his choice.

For simplicity, both the agent and the principal use pure strategies. This restriction is without

loss of generality for the examples considered in this paper.6

A menu M1 is feasible if there is a choice strategy for the agent that yields an expected utility

greater than or equal to the promised utility w, given the principal’s prior over the agent’s initial

type θ1.

A menu M1 induces a sequence of choices by the agent. Let Ht(M1) denote the set of possible

choices induced M1 until period t − 1, and denote by ht a typical element (“history”) of Ht(M1).

Regardless of the agent’s types in those periods, a given history ht implies a menu Mt in period t,

as specified by M1.

A menu M1 is separating if there exists an optimal strategy for the agent such that i) for any

period t and choice history ht, each type θt chooses a distinct item from the menu Mt implied by

ht, resulting in a transfer yt that depends on the agent’s type.

That is, given the menu and the agent’s best response, with probability one the payment that

the agent receives in any period t < T always depends on his current type.7

Let ∆(Θ) denote the set of probability distributions over Θ. For any t ≤ T and contract C ∈ Ct,
let Qδ(C) and Uθ(C) denote the expected cost and expected utility corresponding to C from period

t to period T , when the principal’s belief about θt is δ ∈ ∆(Θ) and the type of the agent is θ.

Because of persistence, the expected cost of a particular contract typically depends on the

current type of the agent. Indeed, the agent’s current type affect the distribution of his future

type, which determines which contracts he will choose from future menus, and hence how costly a

given menu will turn out to be for the principal. This point is developed in detail in later sections.

6In these examples, renegotiation-proof contracts are shown to be either fully separating or fully pooling. The

definitions below easily extend to allow mixing by the agent. When the agent’s utility is multiplicatively separable in

θ and y, as in this paper, ruling out randomization by the principal is without loss because the principal can always

reduce his cost by replacing lotteries by certainty equivalents without affecting incentives.
7This definition allows the agent to be indifferent between different items in the menu, but requires him to play a

separating strategy in equilibrium. When indifferent between several strategies, the agent is assumed to choose the

one that minimizes the principal’s cost.
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2.1 Renegotiation-Proof Contracts

We now define the concept of renegotiation-proof contracts. Whether a contract is renegotiation-

proof generally depends on the principal’s belief about the current type of the agent. It is intuitive,

for example, that a contract that is efficient for some type θ but not for some other type θ̂ should

be renegotiation-proof if the principal assigns probability 1 to θ, but not if he assigns probability 1

to θ̂. For each t, Rt ⊂ Ct ×∆ will denote the set of period-t contract-belief pairs (C, δ) such that

C is renegotiation-proof given belief δ.

Because the horizon is finite, renegotiation-proof contracts can be defined by backward induction

on t. In period T , all contracts yT ∈ Y are declared renegotiation-proof, for any belief δ. Intuitively,

there is nothing to renegotiate in period T , since any transfer yT is Pareto efficient. Thus, RT =

CT ×∆. Similarly, all menus M ⊂ Y in period T are declared renegotiation-proof for any belief δ.

If δ denotes the distribution of θt, let δ̂ denote the distribution of θt+1, obtained by the transition

probabilities of the stochastic process {θt}Tt=1.

A period-t contract C = (yt,Mt+1) is said to have an RP-continuation given δ if the menu Mt+1

is renegotiation proof given δ̂.

The definition of renegotiation-proof contracts for periods t < T involves two components. First,

the continuation menu of a contract must be renegotiation-proof, given posterior beliefs. Second,

the contract should not be improvable by a menu of contracts whose continuations are themselves

renegotiation-proof.

Definition 1 For t < T , a period-t contract C ∈ Ct is renegotiation-proof given belief δ ∈ ∆(Θ)

if there does not exist a partition (Θ1, . . . ,Θm) of Θ(δ) and contracts {Ci ∈ Ct}mi=1 such that

i) Each θ ∈ Θi weakly prefers Ci to C and to Cj for all j:

Uθ(Ci) ≥ max{Uθ(C),max
j
{Uθ(Cj)}}.

ii) The principal’s expected cost is reduced by this proposal:

m∑
i=1

δ(Θi)Qδi(Ci) < Qδ(C), (1)

where δi is the conditional distribution δ(·|Θi) = δ(·)/δ(Θi) defined over Θi.

iii) For each i, Ci has an RP continuation given δi.

To close this inductive definition of renegotiation-proofness, we need to define renegotiation-

proof menus.
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Definition 2 A period-t menu Mt = {Ci} is renegotiation-proof if there is an optimal choice

strategy σA for the agent over {t, . . . , T} given Mt such that the belief δi generated under that

strategy by the choice Ci is such that Ci is renegotiation-proof given δi, for all Ci’s that are chosen

with positive probability under σA.8

While the formal definition of renegotiation-proofness is somewhat complicated, there are two

situations in which a contract is easily shown not to be renegotiation-proof.

Definition 3 Given a period t, contract C ∈ Ct, and belief δ, say that Ĉ is a Pareto improve-

ment over C given δ, if for each θ ∈ Θ(δ),

Uθ(Ĉ) ≥ Uθ(C) and Qδ(Ĉ) < Qδ(C).

The following result immediately follows from the definition of renegotiation-proofness.

Proposition 1 Given a period t, contract C ∈ Ct, and belief δ, suppose that there exists Ĉ ∈ Ct
that is a Pareto improvement of C such that Ĉ is has an RP continuation given δ. Then C is not

renegotiation-proof given δ.

Proof. To contradict renegotiation-proofness of C, take the partition with a single element

Θ1 = Θ(δ) and associated contract C1 = Ĉ. Notice that the LHS of (1) corresponds to Qδ(Ĉ). �

Another important case is when there exist separating contracts, one for each type θ in Θ(δ)

that are incentive compatible and reduce the cost of the principal. Abusing notation, let Qθ(C)

denote the expected cost to the principal when the belief is degenerate, putting all mass on type θ.

Proposition 2 Given a period t, contract C ∈ Ct, and belief δ, suppose that there exist contracts

{Cθ}θ∈Θ(δ) in Ct such that, for all θ ∈ ∆(θ),

• Uθ(Cθ) ≥ max{Uθ(C), Uθ(Cθ′)}

• Qθ(Cθ) ≤ Qθ(C)

• Cθ has renegotiation-proof continuations given δθ

with at least one strict inequality among the cost inequalities. Then, C is not renegotiation-proof

given δ.

Proof. Take the partition {Θθ = {θ}}θ∈Θ(δ). To show (1), notice that each term of the LHS

is weakly smaller than the corresponding term entering the computation of Qδ, with at least one

strict inequality. �

8This definition concerns only in-equilibrium choices.
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Finally, a simple case in which a contract is renegotiation-proof is when the principal knows the

type of the agent, and the contract is Pareto efficient. Precisely, given a type θ and period t. For

any θ, let δθ denote the degenerate (Dirac) distribution on Θ such that δθ(θ) = 1 and δθ(θ
′) = 0

for all θ′ 6= θ.

Say that C ∈ Ct is θ-efficient if it has an RP continuation given δθ and there there does not

exist any contract Ĉ ∈ Ct that has an RP continuation given δθ and is such that

• Uθ(Ĉ) ≥ Uθ(C), and

• Qθ(Ĉ) < Qθ(C).

Proposition 3 A period-t contract C ∈ Ct is renegotiation-proof given δθ if and only if it is θ-

efficient.

Proof. With δ = δθ, the only feasible partition of Θ(δ) in Definition 1 is the partition with a single

element, equal to θ. Therefore, the definitions of renegotiation-proofness given δθ and θ-efficiency

coincide. �

3 Renegotiation Proofness of Continuation Contracts for Para-

metric Utility Functions

When trading off the cost of the current subsidy with future ones, the principal must take into

account the renegotiation proofness constraint for continuation contracts. This section specializes

the analysis to a class of parametric utility functions, for which the analysis of renegotiation-proof

contracts is more tractable.

An affine transformation group of Y is a map υ : Y × I → Y for some open interval I of R
such that υ(y, ρ) = υ1(ρ)y + υ2(ρ), where υ1 is strictly positive, υ1 and υ2 are strictly increasing

and differentiable, there exists ρ̄ such that υ(y, ρ̄) = y for all y, and for any ρ ∈ I, there exists ρ̃

(denoted ρ−1, the “inverse” of ρ) such that υ(υ(y, ρ), ρ̃) = y.

Condition 1 (Affine Transformation Group) There exist increasing functions a : R++ →
R++ and b : R++ × Θ → R and a transformation group υ : Y × I → Y such that, for each θ ∈ Θ,

y ∈ Y, and ρ ∈ I,

u(θ, υ(y, ρ)) = a(ρ)u(θ, y) + b(ρ, θ).

Condition 1 is satisfied by the logarithmic, power, and exponential utility specifications:

• If u(θ, y) = θy1−γ/(1− γ) for γ 6= 1, then u(θ, ρy) = ρ1−γu(θ, y),
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• If u(θ, y) = θ log(y), then u(θ, ρy) = u(θ, y) + θ log(ρ),

• If u(θ, y) = − exp(−(θ + y)), then u(θ, y + ρ) = exp(−ρ)u(θ, y).

For any period t and continuation contract C, let C(ρ) denote the contract which has the same

menu structure as C, but provides the subsidy yτ (ρ) = υ(yτ , ρ) in period τ ≥ t whenever C provides

the subsidy yτ at that period. The transformation M(ρ) is defined analogously.

Theorem 1 (“Clockwork” Principle) Suppose that u satisfies Condition 1. Then, for any t,

a period t contract C is renegotiation-proof if and only if the contract C(ρ) is renegotiation-proof,

and a period t menu M is renegotiation-proof if and only if M(ρ) is.

Theorem 1 provides a way of building credible perturbations of a given continuation contract,

and thus of analyzing meaningful tradeoffs between current and future subsidies. See Section 7.1

for a proof.

4 T Periods and Binary Types: Taste Shock Example and Cost-

Weighted Euler Equation

This section focuses on the case of binary types: Θ = {L,H} with L < H. The type of the agent

is persistent and mean-reverting: for any t ∈ {1, . . . , T − 1},

0 < Pr(θt+1 = H|θt = L) < Pr(θt+1 = H|θt = H) < 1.

For tractability, the environment is further narrowed down to a taste shock model with constant

relative risk aversion:

u(θ, y) = θ
y1−γ

1− γ
or

u(θ, y) = θ log y

which corresponds to γ = 1.

The properties of renegotiation-proof contracts are summarized here. For any history ht and

type θ, let yt(θ|ht) denote the transfer received by type θ in period t after history ht.

Theorem 2 Any renegotiation-proof menu M is separating and has the following properties after

any history ht:

• Ordered Allocation

yt(L, ht) < yt(H,ht).
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• Ordered Marginal Utility For any hist

uy(L, yt(L, ht)) < uy(H, yt(H,ht)).

• Cost-Weighted Euler Equation For all t̃ > t,

uy(θt, yt(θt, ht)) = Eα̂[uy(θt̃, yt̃)|θt, ht]

for some transition probability distribution α̂ that assigns more weight, relative to the true

distribution α, to type realizations that entail higher costs to the principal.9

• Gradual Reward/Punishment

yt+2(θt+1 = θt+2 = L, ht) > yt+1(θt+1 = L, ht)

yt+2(θt+1 = θt+2 = H,ht) < yt+1(θt+1 = H,ht)

4.1 Two Periods

To gain some intuition about the result, we start by considering the case of 2 periods. With T = 2,

C1 reduces to Y2: a contract in period 1 simply consists of an immediate y1 and of a promised

transfer y2 in the second and last period.

Renegotiation-proof menus are separating

With two periods, the cost of a contract C is simply Q(C) = y1+y2 and is therefore independent

of the agent’s type. Moreover, the definition of renegotiation-proofness for that case reduces to i)

and ii) of Definition 1: iii) is always satisfied. Now consider any non-degenerate belief δ on Θ.

The problem can be visualized in the contract space Y2 with y1 and y2 as coordinates. Isocost

curves of the principal are straight lines, and isolutility curves of the agent, where the utility is given

by Uθ(y1, y2) = u(θ1, y1) + Eθ1u(θ2, y2), define convex upper level sets. For C to be renegotiation-

proof the isocost curve of the principal must be tangent to the isoutility curve of both types of the

agent. Otherwise, there must be a new contract that strictly reduces the cost of the principal and

is accepted by at least one type of the agent, contradicting Definition 1.

However, the single-crossing property assumed on the agent’s utility guarantees that such situ-

ation can never occur. Indeed, ex post efficiency of the low type implies that

uy(L, y1) = E[uy(θ2, y2)|L]. (2)

Because θ2 ≥ L and uy is increasing in θ and decreasing in y, this is only possible if y1 < y2. By

a similar argument, ex post efficiency of the high type implies that y1 > y2, showing the claimed

impossibility.

9See Equations (9) and (10) for the definition of α̂.
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If, for example, y1 > y2, the principal can propose a new allocation (y′1, y
′
2) with y′1 < y′2

which provides the high type with the same expected utility at an efficient level, and reduces the

cost of the principal. This shows that shows that (y1, y2) is not renegotiation-proof. Thus, any

renegotiation-proof contract is separating.

This shows that any renegotiation-proof contract must put all weight on a single type of the

agent. As a result, any renegotiation-proof menu must be separating.

Now consider the allocations yH = (yH1 , y
H
2 ) and yL = (yL1 , y

L
2 ) provided to each type of the

agent (one may assume without loss of generality, in light of the separation, that each type picks a

single contract). Renegotiation-proofness implies that these allocations must be ex post efficient, by

Proposition 3. As argued above, this implies that yH1 > yH2 and that yL1 < yL2 . Moreover, incentive

compatibility requires that either yH1 ≤ yL1 and yH2 ≥ yL2 or vice versa, with both inequalities strict

if one is strict. Combining these observations proves that yH1 > yL1 and that yH2 < yL2 . To rank

marginal utilities, observe that

uy(y
H
1 , H) = EHuy(y

H
2 , θ2) (3)

> EHuy(y
L
2 , θ2) (4)

≥ ELuy(y
L
2 , θ2) (5)

= uy(y
L
1 , L) (6)

where the equalities come from ex post efficiency, and the strict inequality comes from the fact that

yH2 < yL2 and that u is strictly concave in y.

Because the marginal utility of H is greater than for L, the IC constraint of the low type must

be binding for the optimal renegotiation-proof contract. Otherwise, the principal could reduce his

cost by increasing the consumption of H and reduce that of L.

This is intuitive: if he could abstract from incentive compatibility constraints, the principal

would always want to give more to the high type in all periods, because a high type values the good

more today and, by persistence, is more likely to value it more in the future. The only reason why

such allocation is infeasible is that it violates the IC constraint of the low type.

For CRRA utility, the set of contracts Cθ that are efficient for θ form on a straight line charac-

terized by (2), and the IC constraint for L defines another, downward sloping, curve line linking the

two contracts. As the promised utility w varies, the allocation (yH1 , y
H
2 , y

L
1 , y

L
2 ) is scaled accordingly.

In particular, the prior δ about the agent’s type, and the promised utility w do not affect the

shape of the optimal renegotiation-proof menu. They only affect the scaling factor of that menu.
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4.2 Induction for T Periods

The proof works by induction on number T of remaining period, for T ≥ 2. Precisely, we consider

the following induction hypothesis:

Induction Hypothesis Any renegotiation-proof menu M with T remaining periods has the

following properties.

i) The menu is separating and the contracts CH and CL chosen by each type of the agent satisfy

yH1 > yL1 in period 1.

ii) The marginal utilities satisfy uy(H, y
H
1 ) > uy(L, y

L
1 ) and

uy(θ, y
θ
1)

U2
ρ (θ, ρθ)

=
1

C2
ρ(θ, ρθ)

for θ = {H,L}, where C2(θ, ρ) and U2(θ, ρ) respectively denote the expected cost and utility

from Period 2 onwards when the agent’s type in Period 1 is θ, as a function of the scaling

factor ρ for continuation contracts at period 2, and ρθ is the scaling factor for the period 2

continuation menu contained in Cθ.

iii) There exists a two-contract menu MT such that any optimal renegotiation-proof menu M is

proportional to MT : for any prior δ about θ1 and any promised utility w, there exists ρ ≥ 0

such that M = MT (ρ).

The hypothesis holds for T = 2. Consider now the case of T + 1 ≥ 3 periods, appending a

period “0” to T periods indexed by 1, . . . , T (this notation simplifies the application of the induction

hypothesis). Any renegotiation-proof contract consists of a quantity y0 for the current period and

a pair of contracts CH , CL ∈ C1 such that Cθ is renegotiation-proof given δθ, and which satisfy

properties i) and ii) of the hypothesis.

Ruling out Pooling Contracts

Suppose that in period 0, some contract C = (ȳ0,M1 = {CH , CL}) is renegotiation-proof given

some non-degenerate belief δ. This implies that in period 1, the agent will, irrespective of his type

in period 0, choose CH in period 1 if θ1 = H, and CL otherwise, by the induction hypothesis. In

particular, the agent will not engage in multiple deviations: by the induction hypothesis, whatever

his type turns out to be in period 1, will be revealed in that period. Moreover, Theorem 1 implies

that the same will hold if the continuation menu M1 is replaced by its scaled version M1(ρ) for any

factor ρ > 0.10

The argument for ruling out pooling contracts, provided in the appendix (Section 7.2), is based

on trading off small perturbations of ρ around ρ̄ = 1 with perturbations of y0 around ȳ0.

10More precisely, υ1(ρ) = ρ, υ2(ρ) = 0, a(ρ) = ρ1−γ and b(ρ, θ) = θ log ρ1γ=1.
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Properties of Renegotiation-Proof Contracts

Because any renegotiation-proof menu is separating in period 0, it must consist of two contracts

(yH0 ,M
H
1 ) and (yL0 ,M

L
1 ), respectively chosen by θ0 = H and θ0 = L. We now derive some properties

of those contracts and verify that the induction hypothesis is satisfied with the additional period

t = 0.

First, notice that, conditional on facing type θ in period 0, the menu M θ
1 must be the cheapest

way of providing type θ with a given continuation utility (otherwise, the contract is not renegotiation

proof). From iii) of the induction hypothesis, this implies that MH
1 and ML

1 are scalings of the same

contract MT = (CHT , C
L
T ), regardless of the particular continuation utilities that these contracts

provide, and regardless of the probability distribution for θ1 that each of the two types in period 0

generate. Therefore, M θ
1 = MT (ρθ) for some ρH , ρL ≥ 0. Let cHT = QH(CHT ) and cLT = QL(CLT )

denote the expected cost implied by menu MT conditional on facing types H and L, respectively,

in period 1.

From Proposition 3, efficiency requires that the marginal utility ratio for each type of the agent

be equal to corresponding marginal cost ratio of the principal, in the (y0, ρ) space. Otherwise, the

principal can strictly reduce his cost and preserve the utility of the agent by perturbing the scaling

factor ρθ and yθ0 of the type who violates this inequality. Replicating a computation of Section 7.2

for allocations of each type, this implies that

uy(H, y
H
0 ) = α̂Huy(H, y

HH
1 ) + (1− α̂H)uy(L, y

HL
1 ) (7)

and

uy(L, y
L
0 ) = α̂Luy(H, y

LH
1 ) + (1− α̂L)uy(L, y

LL
1 ) (8)

where, in the right-hand side, the first (second) superscript indicates the type of the agent in

period 0 (period 1), and

α̂H =
αHc

H
T

αHcHT + (1− αH)cLT
. (9)

and

α̂L =
αLc

H
T

αLcHT + (1− αL)cLT
. (10)

Also notice that α̂H > α̂L because the function α 7→ αc1/(αc1 + (1 − α)c2) is increasing in α

for all c1, c2 > 0.

By the induction hypothesis, we have yHH1 > yHL1 , yLH1 > yLL1 , uy(H, y
HH
1 ) > uy(L, y

HL
1 )

and uy(H, y
LH
1 ) > uy(L, y

LL
1 ). Equation (7) then implies that uy(H, y

H
0 ) < uy(H, y

HH
1 ) and, by

concavity of u, that

yH0 > yHH1 > yHL1 .

12



Similarly, we have

yL0 < yLL1 < yLH1 .

This, along with incentive compatibility in period 0, implies that yLH1 > yHH1 (otherwise the high

type’s allocation would Pareto dominate the low type’s, since continuation contracts are all scalings

of one another) and that yH0 > yL0 .

Finally, notice that

uy(y
H
0 , H) = α̂Huy(y

HH
1 , H) + (1− α̂H)uy(y

HL
1 , L)

> α̂Luy(y
HH
1 , H) + (1− α̂L)uy(y

HL
1 , L)

> α̂Luy(y
LH
1 , H) + (1− α̂L)uy(y

LL
1 , L)

= uy(y
L
0 , L),

where the equalities come from (7) and (8), the first inequality comes from the fact that α̂H > α̂L

and uy(y
HH
1 , H) > uy(y

HL
1 , L), and the second inequality comes from the fact that yLL1 > yHL1

and yLH1 > yHH1 (as observed earlier, these last two inequalities are equivalent, since continuation

contracts are scalings of one another, and must both hold for incentive compatibility).

Renegotiation-proofness implies that the menu M0 = ((yH0 , ρ
H), (yL0 , ρ

L)) satisfies efficiency

conditions for H and L . For the menu to be optimal, the IC constraint of the low type must

be binding: since H’s marginal utility is higher than L’s, the principal could gain by transferring

resources from L to H, if it were not for L’s IC constraint. Taken together, these three conditions

imply that the optimal renegotiation-proof menu is pinned down in the (y0, ρ) space, up to a single

parameter, which is determined by the promised expected utility w.

This shows that the shape of M0 is completely independent of the principal’s prior δ about θ0

and of the promised utility w. Those parameters only affect the scaling level of M0, and concludes

the verification of the induction hypothesis for T + 1 periods.

5 Income Shock with Constant Absolute Risk Aversion (Arbitrary

Number of Types and Periods)

When u(θ, y) = − exp(−θ − y) (the CARA coefficient is set to 1 for simplicity, the analysis is

identical for other values of that coefficient), the relevant transformation υ(y, ρ) is the translation

υ(y, ρ) = y + ρ, with ρ ∈ R. To interpret θ as the income of the agent, we must reverse the

convention of earlier sections that marginal utility is increasing in the type of the agent. In this

section, a higher income agent has a lower marginal utility for additional consumption.

The agent’s utility is still multiplicatively separable in θ and y. To fix ideas and to cover

common specifications of the income process, we assume that the type space Θ is equal to R. The

13



analysis can be easily adapted to the case of finite or bounded intervals type spaces in R. Mean

reversion is generalized as follows:

Definition 4 (Mean Reversion) The type of the agent is mean-reverting if exp(−θ)
E[exp(−θ2)|θ1=θ] is

increasing in θ.

As is easily checked, when there are only two types, this definition reduces to the fact that the type

of the agent can switch to the other type with positive probability.

The analysis still works by backward induction. With two periods, renegotiation-proof menus

must be separating, and the agent’s bundle (yθ1, y
θ
2) is such that yθ1 (resp. yθ2) is decreasing (increas-

ing) in the agent’s first-period income θ, the marginal utility uy(θ, y
θ
1) still satisfies

uy(θ, y
θ
1) = E[uy(θ2, y

θ
2)|θ1 = θ],

and this marginal utility is decreasing in θ.

Intuitively, this means that individuals with a low income in the first period receive more from

the principal in that period, but not so much that their total consumption in that period exceeds

the total consumption of individuals with high incomes. This intuition continues to hold with more

periods, as established by Theorem 3 below.

Moreover, the optimal renegotiation-proof contract is entirely pinned down up to a single trans-

lation parameter, which is then adjusted to match the promised utility w, given the principal’s prior

about the agent’s type. The argument for this is proved more generally in the induction hypothesis

below and is thus omitted.

The analysis for more periods is simpler than in the CRRA case, because the marginal cost

Cρ(θ, ρ) of increasing future consumption by the translation amount ρ is now independent of the

type of the agent and of the contract considered, as it is simply equal to the number of remaining

periods (the translation amount, ρ, being added to all yt’s, regardless of the preceding histories).

The induction hypothesis is modified as follows:

Induction Hypothesis

With T periods to go, indexed by 1, . . . , T , the following holds:

i) Any period-1 renegotiation-proof menu is separating and yθ1 is decreasing in θ.

ii) The marginal utilities uy(θ, y
θ
1) are decreasing in θ and define martingale processes:

uy(θ, y
θ
1) = E[uy(θt, yt)|θ1 = θ]

iii) There exists a menu MT such that any optimal renegotiation-proof menu M is a translation

of MT : for any prior δ about θ1 and any promised utility w, there exists ρ ∈ R such that

M = MT + ρ.

14



Suppose that the hypothesis holds for T , and append a period 0. The first step is to show

that renegotiation proof menus are separating in period 0. We make the following assumption

(Monotone Likelihood Ratio Property, “MLRP”) on the transition probability.

Definition 5 (MLRP) i) For any state θ0 = θ, the distribution of θ1 conditional on θ0 has full

support on Θ and has a density αθ(·). ii) for any θ′ < θ′′, the ratio αθ
′′
(θ)/αθ

′
(θ) is increasing in θ.

Now consider a contract (y0,M1) that is renegotiation proof given some belief δ, and suppose

by contradiction that δ is non-degenerate. By the induction hypothesis, M1 is associated with a

translation parameter ρ̄ of the reference menu MT . For all types θ choosing the same item, the

equality by the utility and cost marginal rates of substitution

qθU =
uy(θ, y0)

Vρ(θ, ρ̄)
=

1

T
= qC

becomes

gθf0 =

∫
Θ
αθ(θ′)gθ′fθ′dθ

′,

where gθ = exp(−θ) is decreasing in θ, f0 = − exp(−y0), fθ′ = − exp(−yθ′1 ) is increasing in θ′, by

the induction hypothesis. This implies that

βθf0 =

∫
Θ
λθ(θ′)f(θ′)dθ′ (11)

where βθ = gθ/Dθ, λ
θ(θ′) = αθ(θ′)gθ′/Dθ, and Dθ =

∫
Θ α

θ(θ′)gθ′ . Notice that λθ(·) is positive and

sums up to one, for each θ: it forms a family of probability distributions on Θ.

For any θ′′ > θ′,
λθ
′′
(θ)

λθ′(θ)
=
αθ
′′
(θ)

αθ′(θ)

Dθ′

Dθ′′
.

Therefore, the family {λθ}θ of density functions inherits the MLRP from the family {αθ}θ.11

Since βθ is decreasing in θ (by the definition of mean reversion) and
∫

Θ λ
θ(θ′)f(θ′)dθ′ is in-

creasing in θ by the MLRP and the fact that f is increasing in its argument, one θ can satisfy

Equation (11), showing that any renegotiation-proof contract must be separating.

This means that each type θ receives a distinct contract (yθ0, ρ
θ), where ρθ is the translation

level compared to MT . Moreover, the fact that qθU = 1/T and the induction hypothesis immediately

implies that martingale property for the marginal utility and, hence, for the period-utility of the

agent.

11It is easy to show by counter examples that the distributions λθ are not FOSD ordered even if αθ are FOSD

ordered. Assuming first-order stochastic dominance for the transition probability distributions therefore seems insuf-

ficient for the results of this section.
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Now consider two types θ′ < θ′′. We will show that for any RP menu, we have yθ
′

0 > yθ
′′

0 . For

the contracts to be incentive compatible, we must have either A) yθ
′

0 > yθ
′′

0 and ρθ
′
< ρθ

′′
, or B)

yθ
′

0 ≤ yθ
′′

0 and ρθ
′ ≥ ρθ′′ .

Repeating the previous computations we get the equations

βθ′f
θ′
0 =

∫
Θ
λθ
′
(θ)fθ

′
θ dθ (12)

and

βθ′′f
θ′′
0 =

∫
Θ
λθ
′′
(θ)fθ

′′
θ dθ (13)

where fθ
′

0 = − exp(−yθ′0 ) and fθ
′
θ = − exp(−yθ′θ ), with similar notations for θ′′.

Since continuation contracts are translations of each other, we have fθ
′
θ = exp(ρθ

′′ − ρθ′)fθ′′θ
for all θ. Suppose by contradiction that we are in case B). In that case, exp(ρθ

′′ − ρθ
′
) < 1,

and the RHS of (12) is less than
∫

Θ λ
θ′(θ)fθ

′′
θ dθ. Moreover, because fθ

′′
θ is increasing in θ and

λθ
′ ≺MLRP λ

θ′′ we conclude that the RHS of (12) is less than the RHS of (13). However, yθ
′′

0 ≥ yθ
′

0

and θ′′ > θ′ imply that the LHS of (12) is strictly greater than the LHS of (13), showing that one

the equations must be violated.

Therefore, yθ0 is decreasing in θ and, by incentive compatibility, ρθ is increasing in θ.

We now turn to the ranking of marginal utilities. Let y1(θ) denote the period 1 subsidy of type

θ under the reference contract MT , of which all continuation contracts are translations. We have

uy

(
θ′′, yθ

′′
0

)
=

∫
Θ
αθ
′′
(θ)uy

(
θ, y1(θ) + ρθ

′′
)
dθ

= exp(ρθ
′′ − ρθ′)

∫
Θ
αθ
′′
(θ)uy

(
θ, y1(θ) + ρθ

′
)
dθ

<

∫
Θ
αθ
′′
(θ)uy

(
θ, y1(θ) + ρθ

′
)
dθ

≤
∫

Θ
αθ
′
(θ)uy

(
θ, y1(θ) + ρθ

′
)
dθ

= uy

(
θ′, yθ

′
0

)
The first and last equalities come from the Euler equation. The second equality comes from

the translation property of continuation contracts. The strict inequality comes from the fact,

established earlier, that ρθ
′′
> ρθ

′
, and the weak inequality comes from the MLRP property for the

distributions αθ and the fact that the induction hypothesis, which implies that that uy(θ, y1(θ)) is

decreasing in θ.

There remains to show that optimal renegotiation-proof contracts are entirely pinned down, up

to a single parameter. This is shown by exploiting the efficiency condition and incentive compat-

ibility of the contracts to derive an ordinary differential equation for the contract. This is left for

the appendix.
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Theorem 3 With exponential utility, mean reversion, and the MLRP property, the following holds

• Any renegotiation-proof contract is separating,

• The standard Euler equation is satisfied,

• After any common history ht, y
θ
t and uy(θ, y

θ
t ) are both decreasing in θ,

• The optimal renegotiation-proof menu is entirely pinned down up to a translation parameter.

The mean reversion and MLRP conditions are trivially satisfied when the agent’s type is i.i.d.

over time, so the agent’s utility is a martingale. This immediately implies the following result.

Corollary 1 When the agent’s type is i.i.d., renegotiation-proof contracts do not cause immiser-

ization.

More generally, the mean reversion Definition 4 is satisfied for any mean revertingAR(1) process:

if

θt+1 = κθt + (1− κ)θ̄ + εt+1

with κ ∈ (0, 1) and the shocks εt are independently distributed, then

exp(−θt)
E exp(−θt+1)

= ct exp(−(1− κ)θt),

where ct = 1/E(exp((1− κ)θ̄ + εt+1)). The ratio is therefore decreasing in θt.

It is also easy to check that the MLRP condition is also satisfied when the shocks εt’s are

normally distributed.

Thus, Theorem 3 shows that renegotiation-proof contracts are separating for CARA utility

when θ follows an AR(1) process with Gaussian noise.

Corollary 2 If εt’s are normally distributed, RP contracts are separating.

6 General Utility Functions and Type Space

In Progress

This section considers more general utility functions and any finite, totally ordered type space

Θ, restricting the analysis to two periods. Following the income shock convention of Section 6, the

utiltiy function u is assume to be submodular uy(θ, y) is decreasing in θ. For simplicity, attention

is restricted to lottery-free contracts.12

As before, renegotiation-proofness implies the following result.

12Lotteries are suboptimal for multiplicatively separable utilities. It is conjectured that they are also suboptimal

in the income shock case when ū exhibits decreasing absolute risk aversion.
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Proposition 4 Any outcome (δ, y) of the renegotiation stage satisfies the following property: for

all θ ∈ Θ(δ),
uy(θ1, y1)

Eθ1uy(θ2, y2)
= 1.

The intuition for Proposition 4 is the following: if the equality were violated, the principal could

always reduce his cost by propose a small perturbation of the bundle. The following single crossing

property reflects the intuition, present in earlier sections, that strong enough mean reversion implies

that renegotiation proof contracts are separating:

Condition 2 (Single Crossing) The utility function u and type process {θt}t=1,2 satisfy the sin-

gle crossing property if for any (y1, y2) ∈ Y2, the normalized marginal rate of substitution function

θ 7→ ρ(θ) = Eθ[uy(θ2, y2)]/uy(θ, y1)− 1

has the following single crossing property: there exists a threshold θ(y1, y2) such that ρ(θ) ≥ (>)0

if and only if θ ≥ (>)θ(y1, y2).

While Condition 2 is readily checked, it mixes properties of the type process with properties of

the utility function. Simple distinct conditions on the type process and the agent’s utility function

implying Condition 2 are provided later in the section.

Theorem 4 If u and θ satisfy the single crossing property, then any renegotiation-proof contract

is separating. Moreover, y1(θ) is decreasing in θ, and y2(θ) is increasing in θ.

Proof. Following any message m1 and bundle (y1, y2), Condition 2 implies that at most one type

can satisfy ex post efficiency, by Proposition 4. To show monotonicity, consider two types θ < θ′,

with respective bundles (y1, y2) and (y′1, y
′
2). Condition 2 implies that

uy(θ
′, y1) < Eθ

′
uy(θ

′
2, y2)

If y′1 ≥ y1, incentive compatibility implies that y′2 < y2. This implies, by concavity of u, that

uy(θ
′, y′1) ≤ uy(θ′, y1) < Eθ

′
uy(θ

′
2, y2) ≤ uy(θ′, y′2)

which violate ex post efficiency for θ′, by Proposition 4.

To obtain an ordering of marginal utilities, the following persistence condition is assumed.

Definition 6 (Persistence) The type of the agent is persistent if the distribution of θ2 given θ

is increasing in the sense of first order stochastic dominance, i.e., for any θ̃ ∈ Θ,

Pr(θ2 ≥ θ̃|θ1 = θ)

is increasing in θ.
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Theorem 5 If u and θ satisfy the single crossing and θ is persistent, then uy(y1(θ), θ) is decreasing

in θ.

Proof. For any θ < θ′,uy(θ
′, y′1) = Eθ

′
uy(θ2, y

′
2) < Eθuy(θ2, y2) = uy(θ, y1), where the inequality

comes from the fact that y2 < y′2, submodularity of u, and FOSD of the distributions for θ2. �

6.1 An income-shock example with an AR(1) process

Suppose that θt is the income of the agent at time t and that yt is a subsidy (or a tax, depending

on its sign) from the principal to the agent. Also suppose that u(y, θ) = log(y + θ) or that

u(y, θ) = (y+θ)1−γ

1−γ .

The agent’s income follows an AR(1) process: θ2 = (1−κ)+κθ1 +ε2, for κ ∈ (0, 1), where ε2 is a

random variable independently distributed from θ1, and which is bounded below (this boundedness

assumption is necessary to guarantee the expected utility is finite for y high enough). The following

result is proved in the appendix.

Proposition 5 u and θ satisfy the single-crossing condition (Condition 2).

6.2 Multiplicatively Separable Utility

Suppose now that

u(θ, y) = g(θ)ū(y),

where g is a positive and strictly decreasing in θ for the order on Θ, so that u is strictly submodular.

In the taste shock application, g(θ) = θ and the order on Θ is the opposite of the usual order on R
(i.e, θ ≺Θ θ′ ⇔ θ′ < θ). In the income shock application with constant absolute risk aversion,

u(θ, y) = − exp(−(θ + y)), so g(θ) = exp(−θ) and ū(y) = − exp(−y). The order on Θ is the usual

order on R.

For each θ ∈ Θ, let β(θ) = E[g(θ2)|θ1 = θ]. By persistence (Definition 6), β(θ) is decreasing in

θ if g is decreasing.

Definition 7 (Mean Reversion) {θt}t=1,2 is mean reverting if β(θ)/g(θ) is increasing in θ

To understand this definition, recall that a higher type is associated with a lower value of g. Mean-

reversion means that the expected value of g(θ2) conditional on θ1, while decreasing in θ1, does not

decrease as fast at g(θ1) itself.

Proposition 6 (Single Crossing) u and θ satisfy single crossing.
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Proof. Fix any y1 and y2. We have

Eθuy(y2, θ2)/uy(y1, θ)− 1 =
ū′(y2)

ū′(y1)

β(θ)

θ
− 1.

This ratio is strictly increasing in θ, by mean reversion, and the single-crossing property is satisfied.

7 Appendix

7.1 Proof of Theorem 1

It suffices to show that, when Condition 1 holds, comparisons between any two continuation con-

tracts C,C ′ from the agent and the principal’s perspective are equivalent to comparisons between

their transformations C(ρ) and C ′(ρ), and strategy comparisons for the agent and the principal

under contract C are the same as under contract C(ρ). The expected utility of an agent under con-

tract C following a given strategy σA for the entire game, and taking the principal’s renegotiation

strategy as given, is equal to

UσAθ (C) = Eθ,σA

[
T∑
τ=t

u(yτ , θτ )

]
,

while it is equal to

UσAθ (C(ρ)) = Eθ,σA

[
T∑
τ=t

u(υ(yτ , ρ)θτ )

]
= a(ρ)UσAθ (C) + Eθ

[
T∑
τ=t

b(ρ, θτ )

]
,

under the contract C(ρ) and the same strategies. Since the second term of the right-hand side

is independent of the contract, and a(ρ) > 0, this shows that any strategy of the agent that is

optimal for C is optimal for C(ρ), and that any comparison of contracts C,C ′ is equivalent to the

comparison of contracts C(ρ) and C ′(ρ). Similarly, the principal expected cost under C and given

a renegotiation strategy σP and belief δ, taking the agent’s strategy as given, is equal to

QσPδ (C) = Eδ,σP

[
T∑
τ=t

yτ

]
,

while it is equal to

QσPδ (C(ρ)) = Eδ,σP

[
T∑
τ=t

υ(yτ , ρ)

]
= υ1(ρ)QσPδ (C)− (T − t+ 1)υ2(ρ)

under the contract C(ρ) and the same strategies, which shows the result.
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7.2 Proof of Theorem 2

Let qθU denote the marginal utility ratio for type θ between changes in y0 and changes in ρ, evaluated

at the initial contract. Similarly, let qθC denote the marginal cost ratio for the principal between

similar changes. The proof that pooling contracts are not renegotiation-proof works by comparing

these different ratios.

Step 1 We start by showing that the inequality qLU < qHU holds, which is the single crossing

property in the (y0, ρ) space. Equivalently,

uy(L, ȳ0)

Vρ(L, ρ̄)
<
uy(H, ȳ0)

Vρ(H, ρ̄)
, (14)

where V (θ, ρ) = E[
∑T

t=1 u(θt, ρyt)|θ0 = θ] is the expected continuation utility of the agent when

his period-0 type is θ. We have

Vρ(θ, ρ̄) = Eθ0=θ
T∑
t=1

ytuy(θt, yt).

Since uy(θ, y) = θy−γ , (14) is equivalent to

EL

[
T∑
t=1

θt
L
y1−γ
t

]
> EH

[
T∑
t=1

θt
H
y1−γ
t

]
(15)

Suppose first that γ = 1. We have L ≤ θt ≤ H for all t, and these inequalities are strict with positive

probability. Therefore, the left-hand side of (15) is strictly greater than 1, while its right-hand side

is strictly less than 1, proving the inequality.

For γ < 1, (15) is equivalent, dividing by (1− γ) > 0, to

W (L)

L
>
W (H)

H
,

where W (θ) = V (θ, 1) is the expected utility of type θ from period 1 onwards under his optimal

strategy. One possible strategy for L is to mimic the strategy of H. In that case his expected

utility is equal to

W (L; z) = EL
T∑
t=1

θt
z1−γ
t

1− γ

where {zt} denotes the subsidy stream generated by mimicking the strategy of H. Starting from

θ0 = L, the type process {θt}t satisfies θtH/L ≥ H for all t, and with a strict inequality with

positive probability. Because y1−γ
t /(1− γ) > 0, we obtain

H

L
W (θL; z) > EH

T∑
t=1

θt
z1−γ
t

1− γ
= W (H).
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This shows that H/LW (L) > W (H).

For γ > 1, dividing (15) by (1− γ) < 0 yields

W (L)

L
<
W (H)

H
.

Repeating the previous argument, but this time having H mimic L, yields the desired inequality.

Step 2 We now show that if qHC < qHU or qLC > qLU , there is a Pareto improvement to the initial

contract. Consider the first case, qHC < qHU . Then, the principal can reduce his cost and improve

H’s utility by increasing y0 and reducing ρ, towards a contract that is strictly suboptimal for the

L. In the second case, the principal can improve L’s utility and strictly reduce his cost by reducing

y0 and increasing ρ, without attracting the high type. In either case, the principal strictly reduces

his cost, preserving incentive compatibility and keeping renegotiation-proof continuations.

Step 3 The remaining case is that qHC ≥ qHU and qLC ≤ qLU . We will show that this case is ruled

out by the induction hypothesis. Let wθ denotes the expected utility of an agent with type θ in

period 1 under the menu M1.

For γ 6= 1, the continuation utility in period 1 of an agent of type θ1 = H is given as a function

of ρ by

wHρ1−γ = u(H, yH1 ρ) + U2(H, ρ),

where we recall from the statement of the induction hypothesis that U2(θ, ρ) denotes the expected

utility from Period 2 onwards when the agent’s type in Period 1 is θ, as a function of the scaling

factor ρ for continuation contracts at period 2. Similarly, if θ1 = L,

wLρ1−γ = u(L, yL1 ρ) + U2(L, ρ).

For γ > 1, wH , wL are strictly negative (since u(θ, y) = θy1−γ/(1− γ) < 0).

Differentiating these inequalities with respect to ρ and evaluating the result at ρ = ρ̄ = 1, one

obtains

(1− γ)wθ = yθ1uy(H, y
θ
1) + U2

ρ (θ, ρ̄).

By the induction hypothesis, this implies that

(1− γ)wθ = (yθ1 + C2
ρ(θ, 1))uy(θ, y

θ
1),

where we recall that C2(ρ, θ) denotes the expected cost from period 2 onwards when the agent’s

type in period 1 is θ, as a function of the scaling factor ρ for continuation contracts at period 2.

Moreover, because V (θ, ρ) = αθρ
1−γwH + (1− αθ)ρ1−γwL, we obtain the following formula for

qθU :

qθU =
uy(θ, ȳ0)

αθuy(H, y
H
1 )(yH1 + C2

ρ(H, 1)) + (1− αθ)uy(L, yL1 )(yL1 + C2
ρ(L, 1))
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Similarly, the expected cost for the principal as a function of the agent’s type θ in period 1 is

given by cθρ = ρyθ1 + C2(ρ, θ). Differentiating with respect to ρ and evaluating the derivative at

ρ = 1 yields cθ = yθ1 + C2
ρ(ρ̄, θ).

Now consider the case in which qHU ≤ qHC and qLU ≥ qLC . Combining the previous results, we get

uy(ȳ0, θ
L) ≥ α̂Luy(yL1 , L) + (1− α̂L)uy(y

H
1 , H) (16)

and

uy(ȳ0, θ
H) ≤ α̂Huy(yL1 , H) + (1− α̂H)uy(y

H
1 , H), (17)

where

α̂H =
αH
(
yH1 + C2

ρ(H, ρ̄)
)

αH
(
yH1 + C2

ρ(H, ρ̄)
)

+ (1− αH)
(
yL1 + C2

ρ(L, ρ̄)
) =

αHc
H

αHcH + (1− αH)cL
. (18)

and

α̂L =
αL
(
yH1 + C2

ρ(H, ρ̄)
)

αL
(
yH1 + C2

ρ(H, ρ̄)
)

+ (1− αL)
(
yL1 + C2

ρ(L, ρ̄)
) =

αLc
H

αLcH + (1− αL)cL
. (19)

Since uy(y
L
1 , L) < uy(y

H
1 , H) (by the induction hypothesis), (16) implies that uy(ȳ0, L) > uy(y

L
1 , L)

and, hence, that ȳ0 < yL1 < yH1 . However, (17) also implies that uy(ȳ0, H) < uy(y
H
1 , H) and thus

that ȳ0 > yH1 > yL1 , a contradiction.

It is easily checked that the same computations obtain for the logarithmic case γ = 1.

7.3 Almost Uniqueness of Renegotiation-Proof Contracts for CARA utility

functions

To fully verify the induction hypothesis for Section 5, there remains to verify that optimal renegotiation-

proof menus are pinned down up to a single parameter. We have already established that any

renegotiation proof menu is separating, and characterized by a family {(yθ0, ρθ)}θ∈R with yθ0 (resp.

ρθ) decreasing (increasing) in θ. Let U(θ) denote the continuation utility of a type θ0 = θ under

the reference continuation menu MT .

By incentive compatibility, we must have

θ ∈ arg max
θ′

{
− exp(−θ) exp(−yθ′0 ) + exp(−ρθ′)U(θ)

}
.

Local incentive compatibility is characterized by the first-order condition13

exp(−θ) exp(−yθ0)
dyθ

′
0

dθ′
(θ)− exp(−ρθ)U(θ)

dρθ
′

dθ′
(θ) = 0 (20)

13By monotonicity, y0 and ρ are a.e. differentiable in θ. Incentive compatibility also implies that y0 and ρ are

continuous in θ.
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Moreover, because the agent’s isoutility curves satisfy the single crossing property in the (y0, ρ)

space (as established in the main text when showing that pooling contracts are impossible), the

local IC constraint is sufficient for global incentive compatibility.

Equation (20) defines a parametric equation for (yθ0, ρ
θ) in the (y0, ρ) space.

In addition, we know that renegotiation-proof contracts must be efficient, which means that

any point (y0, ρ) of the curve covered by the renegotiation-proof contract is associated with the

efficiency line of exactly one type θ = τ(y0, ρ).

Plugging this efficiency relation into (20), and using the parametric relation dρ/dy0 = (dρ/dθ)/(dy0/dθ),

we get the ordinary differential equation14

dρ

dy0
=

exp(ρ− y0) exp(−τ(y0, ρ))

U(τ(y0, ρ))
. (21)

This pins down the renegotiation-proof contract up to a single parameter, which is a translation co-

efficient. Indeed, it is easy to check that if the parametric curve (y0(θ), ρ(θ)) satisfies Equation (20),

then so does the curve (y0(θ) + ρ̂, ρ(θ) + ρ̂) for any ρ̂ ∈ R, and that the set of efficient allocations

(y0, ρ) for any given type θ forms a 45 degree line. Equivalently, if any function y0 7→ ρ(y0) satisfies

the ODE (21), then so does the function ρρ̂ : y0 7→ ρ(y0 − ρ̂) + ρ̂, for ρ̂ ∈ R.

Proof of Corollary 2

For any θ0, the density of θ1’s distribution is given by

αθ0(θ1) = φ(θ1 − (κθ0 + (1− κ)θ̄)),

where φ is the density of a standard Gaussian distribution. This implies that

αθ
′′
(θ)

αθ′(θ)
= exp

{
1

2

[
(θ − (κθ′ + (1− κ)θ̄))2 − (θ − (κθ′′ + (1− κ)θ̄))2

]}
.

Therefore, it suffices to show that (θ− (κθ′+ (1− κ)θ̄))2− (θ− (κθ′′+ (1− κ)θ̄))2 is nondecreasing

in θ, for θ′ < θ′′. That expression is equal to

(θ − κθ′)2 − (θ − κθ′′)2 + 2(1− κ)κθ̄(θ′′ − θ′)

The second term is independent of θ, while the first term is equal to 2θκ(θ′′ − θ′) + κ2(θ′2 − θ′′2),

and is therefore increasing in θ for θ′ < θ′′, proving the claim. �

14The RHS is negative, since U is. The solution y0 7→ ρ(y0) of the ODE is therefore downward sloping.
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