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Feynman’s light microscope invites us to reconsider what we thought we knew about quantum
reality. Rather than invoking wavefunction collapse to predict the loss of fringes in a monitored
interferometer, Feynman analyzes the problem in terms of a disturbance. This approach raises the
question of whether the classical world, including its localized particles and definite measurement
outcomes, might emerge as the universe evolves smoothly according to Schrddinger’s equation.
Treating the particle and its environment as an entangled system, unmodified quantum mechanics
shows remarkable success toward this end. This is the purview of decoherence theory. The question
of wavefunction collapse then becomes one of what we want from the theory. Do we expect it
to describe microscopic reality, or do we consider it to be only a tool for predicting measurement
outcomes? Both options are uncomfortable. When applied to unmodified quantum mechanics,
the first implies that each moment in time branches into a vast number of divergent macroscopic
realities. While the second represents, for most practitioners, a weakened view of science. This
article is written to be accessible to anyone with an undergraduate course in quantum mechanics.

I. INTRODUCTION

The Copenhagen interpretation is dying. At least, that
is true for its variant most familiar to physicists. Mi-
croscopic reality was said to evolve smoothly according
to Schrodinger’s equation, but at an ill-defined macro-
scopic boundary the wavefunction collapsed. Physicists
had long expressed suspicion of this “shifty split” [I].
Nonetheless, until nearly the end of the 20th century,
the distinction between small and big things seemed clear
enough in practice, and the Copenhagen theory made re-
markably successful predictions.

Experimental and theoretical developments have grad-
ually changed the situation. Improving technologies al-
low investigation of quantum behavior of increasingly
large systems, calling into question any distinction be-
tween microscopic and macroscopic. Molecules with tens
of thousands of nuclei have created interference pat-
terns [2], mechanical oscillators on the 100 picogram scale
have been prepared in entangled states [3], and meso-
scopic fullerene molecules have been shown to decohere
smoothly and predictably in the presence of background
gas [4] or as they radiate thermal energy [5]. Meanwhile,
decoherence theory [6H8] has demonstrated that environ-
mental entanglement explains how many, if not all, fea-
tures of classical physics emerge naturally from unbiased
quantum mechanics.

Feynman’s light microscope thought experiment [9, [10]
can be viewed as a prelude to these developments. An
atom scatters a photon while traversing a two-slit in-
terferometer (Fig. ) and the photon goes undetected.
The Copenhagen theory says that fringe washout occurs
if the photon has sufficiently short wavelength to have
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made possible a which-path measurement, because the
atom wavefunction has collapsed into one of the clas-
sical single-path states. Feynman had the good sense
not to treat such measurement postulates as inscrutable.
Since the interaction is a quantum process, might we be
able to understand fringe washout without invoking col-
lapse? The light microscope provides a wonderful test-
ing grounds for examining what lies beneath quantum
measurement and how the classical world emerges from
quantum physics, both theoretically [ITTHI8] and exper-
imentally [T9H22]. It is remarkable that such a fruitful
idea originated from Feynman’s lectures [9] meant for
first-year undergraduate students!
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FIG. 1. Light microscope apparatus.

Feynman’s semiclassical explanation E| is that fringe
washout occurs because the atom is perturbed by recoil.

1 Feynman warns that his rough introduction will need revision.
Later, in a less well-known portion of the text, he explains fringe
washout using entangled states.
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His semiclassical analysis succeeds at showing the uncer-
tainty principle prevents a logical crisis; it is impossi-
ble to observe an atom traveling a single path while also
observing interference fringes indicating two-path traver-
sal. However, semiclassical reasoning fails to explain why
multiple photons scattered by the single-atom wave will
all originate from only one path or the other. It also fails
to explain, at a conceptual level, why evidence for clas-
sical single-path traversal is more easily obtained than is
evidence for non-classical (but equally legitimate) two-
path traversal.

By accounting for atom-photon entanglement, deco-
herence theory addresses both semiclassical shortcom-
ings. Acknowledging that we are usually ignorant of some
aspect of the entangled environment, we can predict the
emergence of tame classical states from the wildly free
quantum world. The wavefunction decoheres into non-
interfering classical storylines, each with a different set
of facts. As a result, the Copenhagen shifty split is elim-
inated. Using the Born rule to assign probabilities, we
can make predictions without ever imposing any distinc-
tion between between microscopic and macroscopic.

Those predictions have so far passed all experimen-
tal tests. However, post-Copenhagen quantum mechan-
ics leaves no comfortable option for interpreting reality.
Do the equations of physics describe some reality out-
side our minds? If so, then we are currently experiencing
only one of many parallel branches of reality, with most
of the other branches being very different from this one.
We could instead insist that the only real branch is that
corresponding to our experience. But that would necessi-
tate downgrading the wavefunction, from describing any
microscopic reality, to being merely a tool for predicting
“detector clicks.” Alternatively, we might be dissatisfied
with either option and suspect that quantum mechan-
ics needs some fundamental modification, which could
change the discussion entirely.

II. THE SETUP

The apparatus (Fig. [1)) has a wall in the z = 0 plane
and slits of width a, centered at :l:%a%. There is an atom
detector at Lz. The atom wavepacket approaches the
slits from below with central momentum p.Z, and pas-
sage through the slits does not change this longitudinal
momentum. The diffracted atoms do experience an in-
crease in transverse momentum p,, acquired from the
wall. Just as it leaves the slits, we can represent the
atom in the single-path basis

1
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where |L) and |R) describe wavepackets localized at ei-
ther slit.

Calculation of interference patterns is simpler if the

atom detector is in the far-field limit. But then the single-
slit diffraction patterns would be indistinguishable from
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FIG. 2. Normalized atom probability at z = L, without a
scattered photon. Green/red: single-slit traversal. Orange:
incoherent sum of single-slit sources. Blue: coherent two-slit
traversal. The right panel shows a zoomed-in view such that
fringes are resolved. Fringe minima are not generally at zero
because the atom detector is not in the far-field, so the two
slits contribute different amplitudes except at x = 0.

each other and also from the washed-out two-slit pat-
tern. It is worth the trouble to bring the atom detector
closer so that those three patterns are distinct, and we
use L = 10d. Atom patterns are shown in Fig.[2] with the
procedure for calculating them described in Appendix [A]

The region just above the slits is illuminated with light
with wavelength A\ and k = ki. For simplicity, we con-
sider only A > a, so that an atom passing through
one slit is approximately a point source for scattered
photons. The atom recoil from the elastic scattering is
Wi = hk — hl%}, where FLE{ is the momentum of the scat-
tered photon. Note that the light is not focused, so both
sites contribute an amplitude for each scattered photon.
(Whether or not those amplitudes are balanced for some
detected photon depends on the detection configuration
and photon wavelength.)

Pixelated photon detectors
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FIG. 3. Photon detection configurations. (a) No detector.
(b) Far-field detector. (c) Imaging detector.
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We wish to explore the short-wavelength case A =
d/10, while also keeping A > a. This leads our choice
a = d/100, which has the inconvenient feature that there
a large number of fringes (~ 100) within each single-slit
envelope (Fig. [2])

We either ignore the scattered photons, or detect them
in one of two configurations (Fig. [3]) The first has a
photon detector is in the far-field so that each pixel cor-
responds to a well-defined Ef. The second configuration
uses a lens to image each point (x,y) at z = 0 onto po-



sition (X = z,Y = y) on the detector plane; this is a
microscope configuration.

III. ANTICIPATING DECOHERENCE

Feynman offers a semiclassical explanation for why
fringe washout always accompanies which-path infor-
mation becoming available. “By trying to ‘watch’ the
[atoms] we have changed their motions. That is, the jolt
given to the [atom] when the photon is scattered by it
is such as to change the [atom’s] motion enough so that
if it might have gone to where [the probability] was at
a maximum it will instead land where [the probability]
was a minimum; that is why we no longer see the wavy
interference effects [9].”

However, it is not enough to know that atom deflection
is of order a fringe; we must also know the interferom-
eter phase after recoil. Feynman implies that for the
two-slit interferometer, an atom deflected to a new angle
somehow carries along its original interferometer phase.
We show in App. [B] that this is correct, so Feynman’s
semiclassical argument indeed predicts fringe washout
for A < d. (But for a counterexample, see a three-
grating-interferometer experiment where fringe contrast
remains high even when atoms are deflected by many
fringes [19] 22].)

Although it is less intuitive, there is a more straightfor-
ward way to obtain the same result. To describe the re-
coiling atom wavefunction, we increase each momentum
component of () by h&, such that ¢(7) = e (7).
Before recoil, the atom wavefunction leaving the left and
right slit shared a common phase. After recoil, these
phases differ by x,d, so the atom fringes locations depend
on photon scattering angle. Since 0 < Kk, < 2 X 27w/,
averaging over angles washes out fringes if A < d.

Both arguments successfully predict fringe washout
when short-wavelength photons are scattered. But by
neglecting entanglement, they are limited in two ways.
They suggest that decoherence can be blamed on pertur-
bations to the atom as it traverses both paths. If this
were the whole story, then with A < d and higher light
intensity, we should be able observe an atom scattering a
first photon from the left path and then a second photon
from the right path. The atom wavefunction would not
appear to collapse into a position eigenstate after a po-
sition measurement, thus contradicting the Copenhagen
prediction and experiments [22]. More generally, these
semiclassical arguments cannot begin from the underly-
ing quantum mechanics and explain what makes classical
behavior special. Why does environmental disturbance
seem to steer the atom toward behaving as if it takes a
single path, when quantum mechanics should also permit
a two-path description?

IV. INCLUDING ENTANGLEMENT

In our limit A > a, the momentum imparted by the
photon is much less than the spread imparted by the slit
confinement. We can then make the approximation that
the state of an atom passing through a single slit is not
changed by photon scattering. For instance, for left-slit
traversal

) = L)), (2)

where |x) is the post-recoil combined atom-photon state,
|L) is the pre-recoil atom state, |71,) is a photon scattered
from the left slit, and we have absorbed any phase factor
into |y1).

Above, |x) was a non-entangled product state. The
story is very different when we also allow passage through
the other slit. The light beam crosses both slits, so each
atom has an amplitude to scatter from both sites:

) = —
G

Now |x) is significantly entangled if A < d, because then
the photon resolves the slits, and |vy1,) % |yr). For single-
slit traversal, if we liked, we could speak separately of an
atom state and a scattered photon state. But for two-
slit traversal, we have no choice but to speak of a joint
atom-photon state.

We can now see how an entanglement treatment cor-
rectly predicts that a single atom is never observed to
scatter short-wavelength photons from both paths. If we
scatter two photons, then Eq. |3| becomes

(1L} ) + R} ) ) (3)
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Since (L, v, 7.|x2) # 0, we might see two photons com-
ing from the left path. But (L,yr,7.lx2) * {(YL|7R),
which vanishes for A < d [13]. So, we never see one pho-
ton obviously scattered from the left path and the other
from the right.

V. DIFFERENT PHOTON BASES

We also want to represent the scattered photons in
different bases. From Eq.

= S [fonha + a P ] ). @

The photon momentum basis allows us to analyze the
problem in terms of definite-recoil atoms, and it is also
the basis we need when considering photons striking the
far-field detector of Fig. [B[(b). In this basis, we have

1 —iked/2 ikged/2 NI
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where S (Ef) describes the scattering amplitude from an
atom located at the origin [I3][I5] 16]. The relative phase

kigd = (K — kt) - d& can be understood as expressing the

same local phase at each slit in terms of the ];f mode,
offset by the phase accumulated by the incoming photon
in traveling between the slits. This interferometer phase
shift k,d for each definite-recoil state was anticipated in
the semiclassical discussion.

The basis of Eq. [3|is always useful for thinking of pho-
tons as originating from definite locations. However, just
because the photon has a crisp origination position does
not mean it will arrive at a crisp position X on the imag-
ing detector of Fig. [3[(c). For considering these images,
we use

o= So[exhuiy + eI, @

Analytic expressions for the coefficients are given in [13],
but we already know from classical optics some of their
qualitative features. For A < d and a good lens, images
of scattering from the two slits will be well-resolved, and
(X |y) will be zero if (X|ygr) is non-zero. For A > d,
the images will be completely unresolved and (X|yy) =~

(X|rr)-

VI. DECOHERENCE BASICS

If the observed atom pattern matches that of two non-
interfering sources, as in Fig. b), then each individual
atom is said to have decohered. Classical interferome-
ters have various imperfections, such as noisy sources,
which can lead to fringe washout. But in the quantum
context, the term ‘decoherence’ is generally reserved for
that arising from entanglement. The first ingredient for
decoherence is environmental entanglement. In the light
microscope, the photons are the environment. As we
shall see, there are important aspects of (quantum) de-
coherence which have no classical analogy. The second
ingredient for decoherence is ignorance. Decoherence is
what happens when we have lost track of some parts an
entangled state.

One way for decoherence to occur in the light micro-
scope is for us to simply fail to set up a photon detector,
as in Fig. a). We then obtain the atom pattern by
summing probabilities over possible photon states. Us-
ing Eq. [3] the probability of detecting the atom at some
position 7 is given by

P(7) = (7 m ) * + 17 w0 (8)

= S + Sl + Re R (L) mlw)].

It is now clear that decoherence is intimately tied to en-
tanglement. If A < d, the scattered photon states are
quite different from one another and (yg|y.) ~ 0 [13]. In
this case, the atom and photon are maximally entangled
in Eq. Bl and Eq. [§] predicts complete fringe washout.
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If A > d, then (yr|yn) = 1, |x) is nearly factorizable
(non-entangled), and we predict survival of interference
fringes even though a photon was scattered. The progres-
sion of decoherence as the undetected photon wavelength
decreases can be seen in the left column of Fig. [

The Born rule by itself predicts that scattering of
an undetected short-wavelength photons leads to fringe
washout. These photons have potential to provide
which-path information to a properly configured detec-
tor. There is overlap here with a commonly taught ver-
sion of the Copenhagen interpretation, which says that
the wavefunction collapses if a which-path measurement
could potentially be performed, regardless of whether
such a measurement is actually performed. Eq. [§ shows
that decoherence theory reveals the physics underlying
the potentially /actually aspect of this Copenhagen pos-
tulate. In any case, there is no need for a macroscopic
photon detector for fringe washout to occur.

VII. IF WE DO DETECT PHOTONS

In fact, if we do have a photon detector, then the ‘igno-
rance’ criterion for decoherence can be compromised. By
recording atoms only corresponding to photons detected
in some state, we can recover the “partial interference
patterns” [I1], I3]. One set of these patterns drives home
the point that underlying coherence is never truly lost,
even under conditions where it would typically be hidden
by our ignorance.

Using the far-field photon detection setup of Fig. b),

atom patterns correlated with selected k¢ can be
recorded. Each of these patterns corresponds to one
term in the sum of Eq. [6] These terms represent phase-
shifted atom interferometers, and atom patterns for var-
ious photon scattering angles are shown in the middle
column of Fig. [l Scattering a A < d does not in itself
lead to decoherence, as demonstrated by atom patterns
for every Ef still having high-contrast fringes. In terms
of measurement, fringe contrast preservation is because
photons in each outgoing definite-momentum plane wave
originate from both slits, and detection of these photons
yields no which-path information. A three-grating ver-
sion of this experiment showed the expected fringe re-
covery from otherwise washed-out atom patterns [19] 22]
and is a demonstration of a “quantum eraser” [12]. Fi-
nally, we see in Fig. [d] that averaging atom patterns over
all photon angles results in atom fringe washout only if
A < d, consistent with the results we obtained using the
photon-origination basis in Eq.

On the other hand, if we use the imaging setup of
Fig. c)7 we expect that detection of photons will pro-
vide which-path information, but only if A < d. Atom
patterns are shown in the right column of Fig. [4 for
photon detection at X = d/2. For A > d, Eq. [7| shows
that the interferometer’s relative amplitude and phase
are not modified significantly by the photon overlap in-
tegrals, so the fringes remain unchanged. In terms of
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FIG. 4. Atom probability patterns for different photon detection configurations, with fringes unresolved in the left and right
columns. Left: no photon detection. Middle: far-field photon detection. Solid lines show the (arbitrarily scaled) joint atom-
photon probability for selected photon scattering angles, corresponding to photons detected at different locations on the detector.
Dashed lines show average over all photon angles. Right: imaging detection. Plots show the joint atom-photon probability for

photon detection at X = d/2 (orange) and at X = 0 (magenta).

measurement, this is because the slit images are unre-
solved, and each photon could equally likely have come
from either slit; there has been no which-path informa-
tion obtained by detecting these photons. In the regime
A2 d, (X =d/2]vr)| > (X =d/2|y)|. We still have
interference fringes, but the photon is beginning to dis-
tort the interferometer amplitudes, causing the atom pat-
tern to shift rightward. For A <« d, (X =d/2|y.) ~ 0.

This limit represents a full-resolution which-path mea-
surement, and the atom pattern corresponds to passage
through only the right slit. (Note that the residual
small bump at = < 0 is due to the single-slit diffrac-
tion pattern, rather than any passage through the left
slit.) Fig. @ also shows atom patterns for photons de-
tection at X = 0. Atoms correlated with these photons
always correspond to an undistorted interferometer with



high-contrast fringes. But as A/d becomes small and the
image becomes resolved, photon detection at X = 0 be-
comes extremely unlikely.

VIII. DECOHERENCE AND DISTURBANCE

Intuitively, it seems that we should also be able to
think of decoherence as resulting from some type of dis-
turbance. But disturbance to what? Following Feyn-
man, we might imagine that fringe washout occurs if the
photon environment sufficiently disturbs the atom. Al-
ternatively, with the commonly taught collapse postu-
late in mind, we might guess that the atom must disturb
the environment enough to allow a which-path measure-
ment. Understanding the centrality of entanglement in
decoherence reveals that these two directions of distur-
bance are always mutual [23] 24]. Before scattering, we
could speak separately of an atom state and a photon
state, but after scattering of a short-wavelength photon
we must speak of a single entangled atom-photon state.
For the atom, Eq. [3|shows that it still has equal parts |L)
and |R) character, but the new entangled Hilbert space
vector is fundamentally different from the original vector.
For the environment, the photon has received a momen-
tum change and also become entangled.

By evaluating (v,|yr) in Eq. |8} we are considering dis-
turbance the atom makes to the environment. This is
often the simplest way to calculate the degree of deco-
herence. However, we are usually interested in telling the
story of the atom, so we also want to understand how it
is disturbed by the photon environment. A feature of
quantum mechanics now makes a dramatic appearance.
Because of the entanglement, the picture of how exactly
the atom is disturbed varies wildly for different choices
of photon basis.

Consider the fully decohered case A < d. Using the
definite K basis of Eq. EI, the atom disturbance looks like

1
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This is a momentum kick disturbance. An atom associ-
ated with one of these photons is in a two-path state, and
we obtain the decohered pattern when we average over
the possible momentum kicks.

On the other hand, using the basis of Eq. [3] the pho-
tons originate from one slit or the other. For a photon

originating from the right slit, the atom disturbance looks
like

(v +vr() = e hi®) - (9)

P = o= (vul) +0r(@®) = vr()  (10)
V2
This is a localization disturbance, which has no classical
analogy! An atom associated with one of these photons
is in a single-path state, and we obtain the decohered
pattern when we average over possible localization sites.
(Notice that the localization disturbance we have pre-
dicted from entanglement is reminiscent of wavefunction
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collapse in a position measurement, but we have not used
a postulate collapse.)

Using semiclassical reasoning, Feynman’s only choice
was to describe fringe washout as arising from a recoil
disturbance to the atom. Neglecting entanglement, we
cannot not arrive at the localization-disturbance picture.
This limitation becomes particularly interesting for deco-
herence experiments in which a semiclassical recoil does
not exist [12], 20, 24]. We shall also see that the local-
ization picture of disturbance, with its associated single-
path states, is the relevant one for understanding emer-
gence of classical behavior.

IX. A SKETCH OF CLASSICAL EMERGENCE

Alice, Bob, and Carol are undergraduate researchers
in a lab with a light microscope apparatus. Alice has
not learned any quantum mechanics, and she thinks each
atom will go through one slit or the other. Bob has taken
an introduction to quantum mechanics, and he thinks
that each atom will go through both slits. Carol has com-
pleted a full quantum course, where she learned about
entangled spin pairs. She recognizes that the light mi-
croscope contains a more dramatic example of the same
concept, and she knows that the character of the atom
cannot be separated from the character of the photon.
Carol claims that an atom passes through one slit or the
other if it is correlated with a photon having a definite
origination position (Eq. ) while the same atom would
pass through both slits if it were instead correlated with
a photon with definite momentum (Eq. [])

They first perform an experiment with the light inten-
sity set to zero, and the atom ensemble forms an interfer-
ence pattern. Here, both Bob and Carol’s narratives are
viable, and Alice’s classical narrative is proven wrong.

Next, they use A < d light but leave the intensity low,
so that on average one photon is scattered. With no
photon detection, they see a decohered atom ensemble
pattern, which all three can explain. Alice explains it as
a sum of single-path patterns, Bob explains it as a sum of
two-path patterns with different recoil kicks, and Carol
thinks the two explanations are equally valid. When they
build atom patterns correlated with photons landing at
X = d/2 on the imaging detector, they see a right-shifted
atom pattern, and only Alice’s and Carol’s narratives are
viable. When they do similar with the far-field detector,
they construct a phase-shifted high-contrast atom fringe
pattern, and only Bob’s and Carol’s narratives are viable.

Finally, they turn up the intensity so that on average
two photons are scattered from each atom. Using the
single-path and definite-origin bases we have

) o (Ihw)be) + IR hm)bw)). (1)

Using the two-path and definite-momentum bases we



have
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where the subscripts denote the scattering directions of
the photons, and

[mn) o (IL) + e [R)) (13)

is a recoiling two-path atom state. If the detectors were
each 100% efficient, then the situation would be much the
same as when only one photon was scattered. In particu-
lar, Bob could use the far-field detector to determine the
net momentum kick, and once again construct a phase-
shifted high-contrast atom fringe pattern. However, in
practice the photon detectors do not cover the full area,
so each rarely collects both photons scattered from any
atom. With only one of two photons collected, we have

) o (len Pl + e dlm)), (14)

and
1) % 3 Grmnltmn) Pt 195, ) (15)

where the crossed-off terms belong to the undetected pho-
ton.

In the previous single-photon experiment, Alice’s clas-
sical narrative failed to explain some results. However,
in this experiment with imperfect detectors and a more
complicated environment, her classical narrative does ex-
plain all easily made observations. The imaging config-
uration allows Alice to detect only one of the two pho-
tons and then correctly predict whether the atom will
land toward the left or right. She literally “sees” atoms
going through one slit or the other, and the atom de-
tector tells a confirming story. In principle, Bob could
wait to accumulate enough rare two-photon strikes on
the far-field detector to once again construct a fringe pat-
tern. But even in this relatively tame two-photon envi-
ronment, proving two-path traversal is far more difficult
than proving single-path traversal. If the environment
were made yet slightly more complicated, for instance
increasing the mean photon number or sending photons
in from different directions, proving single-path traver-
sal would remain easy, while proving two-path traversal
would become increasingly difficult or impossible.

All observations in messy environments are consistent
with the classical notion that atoms go through one slit
or the other. Carol’s correct entanglement narrative has
no better predictive power than Alice’s incorrect but sim-
pler classical narrative. Alice’s part of Carol’s narrative
becomes the only useful one. Fig. |5 shows a conceptual
depiction.

X. POINTER STATES

One might ask, “What is all the fuss? We already
expected that atom interference fringes would be deli-
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FIG. 5. Two photons scatter from an atom exiting both slits.
On the right, thin lines represent photons scattered from one
site or the other, and thick lines represent definite-k¢ photons
scattered from both sites. (a) If both photons are kept in the
state description, then the single-path and two-path bases are
equally useful. In a laboratory, we could use either basis to
make predictions, provided we detected both photons in the
appropriate configuration. (b) If one photon is discarded from
the state description, then the single-path basis becomes su-
perior. In a laboratory where we only detect one photon,
the single-path basis is useful for making predictions, but the
two-path basis is not. With one photon lost, the atom is de-
scribed as having decohered into an incoherent superposition
of single-path states. (See Sec. [XI| for elaboration.)

cate, so that two-path traversal would be more difficult
to prove.” But that question cheats by embedding our
classical intuition. It is far from obvious that quantum
mechanics, which gives us freedom to represent states
in any basis we like, should pick out any set of favored
states, much less the classical ones. Why should Alice’s
incorrect single-path narrative be successful in complex
environments, while Bob’s incorrect two-path narrative
is not?

What Alice, Bob, and Carol stumbled upon are called
the “pointer states” of the environment. Their name is in
reference to their potential correspondence to a readout
pointer on a macroscopic detector. Decoherence theory
elucidates a formal way to find these states for differ-
ent physical conditions [8, 25H27]. The basis of pointer
states is the only one useful for making predictions when
we are ignorant of some aspects of the environment. The
wonderful thing is that these special states also turn out
to be the most classical ones. It is very important to
understand that we do not put in by hand our expecta-
tion for classical outcomes. The environmental pointer
states, and their associated classical storylines, emerge
naturally from unbiased and unmodified quantum me-
chanics. There are three ways in which pointer states



distinguish themselves.

First, pointer states are the most robust against envi-
ronmental perturbation. In our simple model of Eq.
the single-path states do not entangle with the photon en-
vironment, whereas two-path states do entangle. Pointer
states’ robustness against environmental perturbation
can also be described in terms of disturbance. Single-
path states experience no disturbance. In contrast, the
disturbance phase-scrambles two-path states into one an-
other if we are thinking in the definite-momentum pho-
ton basis, or it localizes two-path states into single-
path states if we are thinking in the definite-origination-
location photon basis.

Second, pointer states imprint their information on the
environment most redundantly and robustly [27] 28]. We
already encountered a closely related idea in the previous
section, but we say it differently here. An atom trav-
eling a single path imprints information about its state
onto each scattered photon independently. Collecting one
short-wavelength photon is sufficient to know which path
the atom took. But an atom traveling two paths imprints
path information distributed amongst all scattered pho-
tons. Collecting one photon is not sufficient to know the
coeflicients of the recoiling two-path state, or equivalently
the phase in Eq.

Third, pointer states do not appear to interfere with
one another after decoherence has set in. (As discussed in
Sec.[XT] the reduced density matrix is diagonal in the ba-
sis of pointer states.) A set of simple examples elucidate
how pointer states are special in this regard. Consider

the two-path states |+) oc (|[L) £|R)). We saw in Eq.

that |+) decoheres into non-interfering |L) and |R) states.
Now consider an atom starting in state |L). It is perfectly
legitimate to describe this state as |L) oc (|+) + |—))-
In this basis, localization around the left slit occurs be-
cause |+) and |—) have opposite-phased components at
the right slit which interfere to cancel each other. Now,
the interaction in Eq. 2] is such that the state |L) per-
sists through multiple scattering events. This means that
when viewed in the |+) basis, the stable localization of a
decohered |L) state can arise only because the |+) states
keep on interfering. Generalizing, it cannot be said that
any initial state decoheres into non-interfering two-path
states. But it can be said that any initial state decoheres
into non-interfering single-path states. Decoherence into
non-interfering pointer states is called “branching.”
Representing an atom state in a two-path basis, such
as |£), never becomes wrong. But it is simply not use-
ful in complex environments. Without full knowledge of
the environment, photon detection cannot be used to de-
duce that the atom traversed the slits in any of the non-
classical two-path states. In contrast, the pointer-state
basis is always useful. Even with environmental igno-
rance, photon detection can be used to deduce which of
the pointer states, |L) or |R), was used by the atom to
traverse the interferometer. Thus, we see the emergence
of some aspects of classical physics. Our environmental
ignorance limits us to making predictions and measure-

ments for the special set of pointer states, which evolve
in time following non-interfering trajectories.

XI. DECOHERENCE AND COLLAPSE

Decoherence succeeds in predicting that in complex en-
vironments the “menu” [8] of verifiable facts is the clas-
sical one. This is cause for hope that classical physics
might fully emerge from quantum mechanics, without
needing to put in a microscopic/macroscopic split as did
the Copenhagen theory. But there is still a gap. We have
not yet seen a mechanism for an atom which started in a
coherent left-right superposition to “choose” one or the
other for its decohered state, i.e. we have not yet seen a
mechanism for real or apparent wavefunction collapse.

Decoherence is not something that happens to the
atom. Rather, it happens to our description of the atom
when we have lost track of part of the underlying co-
herent entangled state. The standard tool to describe
a partially or fully decohered state is the density opera-
tor. For visualization purposes, it is often expressed as
the density matrix. The density operator expressing the
coherent state |x) in Eq. [3|is p, = |x)(x|. Its density
matrix is

1001

1{0000
PX_§ 0000 (16)

1001

in the [L)w), [L)19m), [R)7c), [R)lym) basis. The di-
agonal terms are the “populations,” and the off-diagonal
terms are the “coherences.” For our discussion, it is not
necessary to understand anything about the density ma-
trix other than two things. First, the populations always
add to 1, meaning that we have not lost atoms or pho-
tons. Second, the non-zero off-diagonal terms mean that
the atoms states of this basis (|L) and |R)) are capable
of exhibiting interference effects under the right circum-
stances. And Fig. [d] confirms this; if we have access to a
far-field photon detector, we can construct full-contrast
atom interference fringes, even for A < d.

Now, to describe the case that we do not collect pho-
tons, we can use p,, to calculate (by tracing out the pho-
ton states, i.e. summing over them) the corresponding
“reduced” density matrix for the atom. For A > d, we

obtain
1/11

in the |L), |R) basis. For A\ < d, we obtain

m=3(0 1) (18)

Again the populations add to 1, but whether or not there
are coherences depends on whether the photon can re-
solve the slit separation. The vanishing of off-diagonal



terms in Eq. [L8| says that, without a photon detector, we
cannot observe interference between |L) and |R) states if
A < d. Using the density matrix adds nothing new to
what we have already covered in Eq.[8|and the subsequent
discussion, but it does present the results concisely.

Now, here is a point of confusion which is important to
clarify. Density matrices can describe ensembles as well
as individual particles, and a diagonal density matrix like
Eq. [[§is often called a “mixed state.” That term makes
perfect sense if we are using it to describe a statistically
mixed ensemble of definite-state atoms. But here we are
talking about a single atom. Does a diagonal density
matrix mean that the atom wavefunction collapsed into
either |L) or |R), with us being ignorant about which one?
No, at least not in the “realist” view that the wavefunc-
tion describes the microscopic reality of the atom. The
original entangled state |x) had equal parts |L) and |R)
character, which we can verify by using detected photons
to reconstruct atom fringes (Fig. ) The atom does not
lose half its character just because we ignore the photon.

For wavefunction-realists, decoherence most certainly
does not mean collapse. Yet we cannot observe interfer-
ence. It could be said that our environmental ignorance
forces us to describe the atom as being in an “incoherent
superposition.” That is non-standard language, but it is
instructive. We can write the incoherent superposition
as

[} = SIL) A IR). (19)
That is also non-standard notation, and |¢} does not
refer to a vector in Hilbert space. But this shorthand
is helpful because it reminds us that the atom state has
decohered but not collapsed. Fig. [5| shows a graphical
depiction of decoherence arising from two photons being
scattered but only one detected.

That all sounds harmless enough when we are only
talking about microscopic atoms and photons. But con-
sider that unitary evolution of Schrodinger’s equation
continues to hold true when tested on much larger sys-
tems [2HB]. (And this is indeed needed for large-scale
quantum computation.) If all matter is governed by
plain quantum mechanics, then wavefunction-realists are
forced to accept the Many-Worlds interpretation (MWI)
of quantum mechanics, originally described in the 1957
doctoral thesis of Hugh Everett [29] [30].

Consider the light microscope, with multiple photons
scattered and only a fraction collected in the imaging
detector. Since we have lost photons, we must describe
the atom as having decohered, and we use Eq. Our
photon detector is engineered such that a mechanical
readout arrow swings either left or right when a pho-
ton is detected in the cluster of pixels near X = —d/2 or
X = +d/2. The detector apparatus is just a collection
of atoms following physical laws, so we can describe the
arrow states by |xJ) and |[A]). (Each of those kets is
understood to represent any one of a large number of mi-
croscopic configurations which are macroscopically indis-

tinguishable.) Photon detection results in atom-detector
entanglement, and the atom-detector state evolves into

xan} = SILIED) A RICE).  (20)

We can also say the macroscopic detector is in the in-
coherent superposition |¢p} = 3(|XJ) A |[21)). But it
is not in the coherent superposition |[¢p) = %ﬂ ) +

|CA1)), because that erroneous expression neglects en-
tanglement with the atom and many other degrees of
freedom.

A sentient observer, such as a cat, looking at the
detector would be carried along into an incoherent su-
perposition of having two different neurological expe-
riences. The decohered detector-cat system would be
Ixpc} = 3(IE0)|©&8)AIC2)| @) Reality now con-
tains two different versions of the cat, each experiencing
a definite measurement outcome. There has been no ac-
tual collapse, but each version of the cat thinks there has
been.

As we have seen, plain quantum mechanics predicts
that we should be incapable of verifying the actual ex-
istence of the incoherent superposition. We cannot even
see interference fringes of the decohered atoms, much less
of the decohered cats. Each evolving classical storyline of
the incoherent superposition is often called a “branch,”
but the term “world” can also be used. Contrary to a
popular misconception, these “worlds” are not put in by
hand; they emerge unavoidably from persistent unitary
evolution, decoherence, and a realist’s insistence that the
wavefunction describes microscopic reality. (See [31], 32]
for accessible discussion of other features of MWI, such as
apparent randomness, whether all branches are equally
real, and natural extension to quantum field theory.)

However, not everyone thinks that the realist inter-
pretation is best. Informational, or “epistemic,” inter-
pretations do not dispute that MWI makes correct pre-
dictions. Rather, they are motivated by a sense that
MWTI is too weird to be believable, or that it suffers from
other less obvious philosophical problems. Informational
approaches claim that instead of describing any micro-
scopic reality, wavefunctions are only tools for predicting
macroscopic detector clicks. These interpretations rep-
resent a departure from how most of us think science.
But perhaps most of us are wrong in general, or perhaps
quantum mechanics presents a special case where non-
realist thinking is required. In the QBism informational
interpretation [33], [34], each observer has their own per-
sonal version of the wavefunction describing some phys-
ical system, and this wavefunction is updated once new
information becomes available. Once the observer learns
which of the decohered branches predicted by unitary
evolution corresponds to their experience, their version
of the wavefunction collapses.

MWTI and informational approaches are pure interpre-
tations of plain quantum mechanics; with the help of
decoherence theory, they remove the nonsensical micro-
scopic/macroscopic split of the Copenhagen interpreta-



tion, without adding anything extra or modifying equa-
tions. But some physicists and philosophers find nei-
ther interpretation credible, and there are plenty of pro-
posed modifications to quantum theory. Some realist the-
ories include an objective collapse by adding non-linear
stochastic terms to Schrodinger’s equation [35]. Here,
unitary evolution is correct on short timescales, until the
new dynamics suddenly collapses the massively entan-
gled wavefunction. The de Broglie-Bohm pilot wave the-
ory [36] is another realist modification which removes col-
lapse entirely by adding to the theory non-local hidden
variables. These are definite positions for the particles,
which move deterministically in a potential given by the
differently-interpreted wavefunction.

XII. CONCLUSION

Decoherence is the penalty we pay for trying to sep-
arate out one part of a non-separable entangled state.
Wonderfully, this “illegal” separation accomplishes what
Copenhagen clumsily attempted by imposing its shifty
split. The quantum freedom to choose different bases
creates an ambiguity as to the facts of any unfolding
story. In Feynman’s light microscope, is the atom fol-
lowing a classical single-path trajectory or a non-classical
two-path trajectory? With full environmental informa-
tion, both narratives are legitimate and both make exper-
imentally verifiable predictions. But without ever impos-
ing a microscopic/macroscopic distinction, decoherence
causes plain quantum mechanics to pick out the classi-
cal single-path storyline as the only one which can be
recorded and used to make predictions in a complex en-
vironment. These decohered storylines each contain a set
of unambiguous and causally connected facts.

The other thing that the Copenhagen split accom-
plished was to predict a single outcome of any macro-
scopic measurement. We now understand the branching
of decoherence accomplishes this naturally, without im-
posing a split. Unitary evolution predicts a single de-
tector outcome on each decohered branch, with differ-
ent outcomes on different branches. But at this point it
is possible to say very different things about what this
means for macroscopic reality, depending on how we in-
terpret the microscopic wavefunction.

The traditional realist interpretation of science is that
solutions to physical equations describe physical reality.
For example, the trajectory of a projectile launched into
outer space continues to describe something real, even if
it is never again observed. When applied to the wavefunc-
tion of unmodified quantum mechanics, the unavoidable
realist conclusion is Everettian MWI, where each moment
in time is branching forward into parallel decohered re-
alities. Some branches include our existence while others
do not, but all predicted branches are real. Decoherence
also plays a second role here. We are unable to observe
interference between decohered branches, so we are inca-
pable of proving that branches other than ours actually
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exist. The wavefunction never actually collapses, but de-
coherence causes the illusion of collapse.

Alternatively, informational interpretations under-
stand the wavefunction to be only a tool for making pre-
dictions. If the wavefunction never described microscopic
reality, there is no basis for saying that any of the deco-
hered branches predicted by unitary evolution actually
exist, other than the one we are experiencing.

As a practical matter, MWI and informational ap-
proaches use identical equations, naturally include deco-
herence in identical ways, and make identical predictions
for experiments. Opinions differ on whether the distinc-
tion is therefore an unimportant matter of philosophical
preference [31, B7]. However, MWI and informational
theories are together testable. For instance, if interfer-
ence fringes of a big object were found to wash out for an
inexplicable reason, then the underpinning unitary evo-
lution would be falsified.

It is of course possible that quantum mechanics, and
its extension quantum field theory, need to be modified in
some fundamental way. Advocates point out that quan-
tum theory has not yet been reconciled with gravity, and
that there are still orders of magnitude between where it
has been tested and the scale of macroscopic detectors.
Alternate theories deserve to be tested when possible,
but we should keep in mind that unitary evolution of
Schrodinger’s equation has continued to prove success-
ful under increasingly stringent conditions [2H5]. Quan-
tum mechanics has no crisis which modifications would
address, other than our human crisis of being forced to
question cherished notions of reality or science.

Half a century ago, physicists could believe that the
wavefunction described the reality of small things and
that there was only one macroscopic reality. But after
the development of decoherence theory and experimental
scrutiny at relatively large mass scales, we can no longer
rely on wavefunction collapse to provide that comfort-
able scenario. We must either say that plain quantum
mechanics correctly predicts detector clicks but makes
no statements about microscopic reality, or that it pre-
dicts a vast number of macroscopic realities besides the
one we are currently experiencing.
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Appendix A: Calculation of Interference Patterns

We are interested in obtaining atom patterns for a de-
tector closer than the far-field limit, such that the single-
slit patterns are somewhat separated from one another.
To accommodate this requirement, we use a path inte-
gral approach. The phase acquired by an atom momen-



tum eigenstate traveling from a source position z’ to a
detector position x given by

®o(z,2") = pp(x — ") /h+ p.L/h — wt, (A1)
where w = (p2 + p?)/(2mh), and t is the propagation
time. If we use the classical expressions p,/p, = (x —
2')/L and t = mL/p,, then after subtracting off common
phase contributions, we arrive at

pz(fE o :L'/)2

QO(‘%?I'/) = QLFL

(A2)
Since p, is fixed, there is a unique classical trajectory and
phase for each pair of x and z’. The use of Eq. can
be easily justified for p, > p, [38] or more generally by
using path-integral theory [39].

The wavefunction ¢ (z) at some point on the detector
is found by integrating the contributions from all source
points z’. If there is no photon scattered, the wavefunc-
tion shares a common phase at all points on the apertures
and we have

w(x)u/hﬂdx’ei‘bo(z’m/) (A3)

where the subscript M denotes integration over the aper-
ture mask. If there is a photon scattered, then for the
atom state correlated with photon state |7, ), Eq. be-
comes

o) [ e, (A
M

where |7v,/) is a photon emitted from z’. We use the limit
A > a, so we treat the integral as a sum over the two
point-like apertures.

Expressions for the matrix elements to be used in
Eq. are derived in Ref. [I3]. We calculate atom
patterns for the case of a circularly polarized incoming
photon. For atom wavefunctions correlated with photon
imaging-configuration position X we use their Eq. 49 to
find (yx|yy). For atom wavefunctions correlated with
scattered photon direction, we have

(g, ) = S(k, Ret=*,

where S is the scattering amplitude.

Calculation of the atom patterns corresponding to no
photon detection can be done by averaging over either
photon basis. We use the |y; ) basis. After integrating
over the azimuthal angle about , the joint probability
density becomes [13]

(A5)

2
Por, X (2k% 4+ K2 — 2kky)

/ dxleimzz'eitbo(z,a:')
M
(AG)

Again, in our limit A > a, the integral can be treated
as a sum over point-like slits, and we do so for simplic-
ity. We numerically integrating over kg, to find the atom
distribution P,.
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Finally, far-field expressions used in App. [B|follow from
the above expressions. For a photon with definite k¢, we

use Eq. in Eq. If L > d, then p, =~ (p.)(z/L),
and the phase difference between the two sources is given

by

o = p.d/h — k,d. (A7)
If no photon is scattered, we have
g = pmd/ha (As)
and
ff pzd
by = h Z. (A9)

These are the well-known expressions for the far-field
phase of an unperturbed two-slit interferometer.

Appendix B: Semiclassical Pitfalls and Proper
Calculation of Recoil Phase Change

First, we outline a sometimes-used sloppy argument,
which arrives at the wrong result despite initial appear-
ances of success. Consider a detector in the far-field limit.
Since recoil takes p, — p, +hk,, we might be tempted to
modify the well-known Eq. by writing ¢ff — ¢ +k,.d.
From this expression, we could mistakenly conclude that
we have arrived at the anticipated result, that random-
izing recoil angles washes out atom fringes for A < d.
But it is the final momentum rather than the initial mo-
mentum which determines where the atom lands on the
detector. What we actually calculated with the above
transformations was simply how the original unperturbed
fringe pattern varies in phase as we vary p,, and with it
the corresponding detector position x. There is no pre-
dicted fringe washout.

Continuing to make the mistake of neglecting re-
coil phase, we can be less sloppy than above by using
Eq. [A9] We might wonder whether the longitudinal
component of recoil achieves the expected result. The
substitution p, — p, + Ak, predicts a phase smearing
A¢ = (x/L)(k,d). This can be understood as tran-
sit time broadening destroying the one-to-one correspon-
dence between p, and x. This longitudinal decoher-
ence is real, but it is not important for z/L < \/d.
If it were the whole story, there would still be of order
p./(hk) > 1 high-contrast fringes at small atom angles,
even for A < d.

Finally, we properly include recoil phase to find how
the post-recoil and pre-recoil interferometer phases are
related. For an atom with pre-recoil transverse momen-
tum p,,, the far-field pre-recoil interferometer phase is
#F = py,d/h. As discussed in Sec. recoil introduces
a phase difference between atom wavefunctions leaving
the two slits, and the post-recoil interferometer phase is
given in Eq. Recoil deflects the atom to a new angle,
and using p, = pa, + hkz, we find ¢f = ¢ff because the



Kz terms cancel. Thus for a two-slit interferometer, a de-
flected atom keeps its pre-recoil far-field interferometer
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phase, as Feynman implied. This result predicts fringe
washout for A < d, whereas the misguided approaches
neglecting recoil phase do not.
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