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Preface

About ten years ago I became aware of the work of Jacob Wolfowitz
on minimum distance estimation of distributior. functions. The
minimum distance method is a simple, elegant application of the
analogy principle. It seemed to me that similar ideas could be applied
to the estimation of econometric models. Around 1980, my thinking
gelled and I developed the approach which I called ‘closest empirical
distribution’ (CED) estimation.

Working on CED estimation was exhilarating. For the first time, I
felt that I understood the essence of the instrumental variables
method introduced by Wright and Reiersol for estimation of linear
models. I could now motivate Amemiya’s methods for estimating
nonlinear simuitaneous equation models. And I realized that the
analogy principle is central to statistical estimation theory.

I committed myself to writing a book on analog estimation in the
spring of 1984 and began serious writing that fall. When I told my
colleague Arthur Goldberger of my intentions, he excused himself and
returned with his Topics in Regression Analysis, a book which I had
not read. He pointed proudly to his statement ‘the analogy principle of
estimation. .. proposes that population parameters be estimated by
sample statistics which have the same property in the sample as the
parameters do in the population’. I subsequently decided to adopt the
phrase ‘analogy principle’.

I have drawn from Goldberger many good ideas and much
historical perspective. Equally valuable have been frequent con-
ceptual and technical discussions with Gary Chamberlain and Jim
Powell. I have received useful comments from Chris Flinn, Jim
Heckman, Whitney Newey, Ariel Pakes, and John Rust. I am also
fortunate to have had Scott Thompson as a student. Scott has
witnessed the evolution of this project and has proved an excellent
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critic. Having commented on the entire manuscript, he knows, as I do,
that the book succeeds in some respects more than in others.

I am grateful to the Graduate School of The University of
Wisconsin for two semester grants of release time from teaching, in
1984 and 1987. These gave me blocks of time to think and write
without distraction. I am also grateful to the National Science
Foundation for its support through grants SES-8319335 and SES-

8605436.

Madison
November, 1987



Introduction

Estimation problems and methods

The starting point for a coherent discussion of estimation methods is
a clear statement of an estimation problem. Many estimation
problems have the following elements. One wants to learn some
property of a specified population. It is known that the population
has certain other properties. A sample of observations drawn at
random from the population is available. The problem is to use the
known properties of the population and the sample evidence to learn
the property of interest.

Once such an estimation problem is specified, consideration of
estimation methods becomes possible. The ‘analogy principle’ offers a
means for generating estimators. The analogy principle is instantly
recognized. Many authors routinely refer to sample statistics as the
‘sample analogs’ of corresponding population parameters. Neverthe-
less, the analogy principle is rarely stated explicitly. The essential idea
is expressed succinctly in the following quote:

the analogy principle of estimation...proposes that population
parameters be estimated by sample statistics which have the
same property in the sample as the parameters do in the
population (Goldberger, 1968, p. 4)

This statement needs to be augmented only in that it presumes the
existence of a sample statistic having the same property in the sample
as the parameter does in the population. More gererally, an analog
estimate is one chosen so that, in some well-defined sense, the known
property of the population holds as closely as possible in the sample.

Some applications

Applications of the analogy principle are ubiquitous. The sample
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average is an analog estimate for the population mean. Sample
quantiles are analog estimates for corresponding population quan-
tiles. The method of moments (Pearson, 1894) applies the analogy
principle, as does minimum chi-square estimation (Neyman, 1949).
Maximum likelihood, least squares, and least absolute deviations
estimation are analog methods. Econometric contribution to the
theory of analog estimation dates back to the development of
instrumental variables estimation (Wright, 1928; Reiersol, 1941,
1945).

Among more recent developments, Von Mises (1947) introduced
the notion of differentiable statistical functions and studied the local
asymptotic behavior of their analog estimates. Wolfowitz (1953, 1957)
proposed minimum distance estimation, which applies the analogy
principle to the problem of estimating distribution functions. Most of
the literature on robust estimation (Huber, 1981) presumes analog
estimation. For example, M-estimates (Huber, 1967) are analog
methods. In the recent econometric literature, Burguete, Gallant, and
Souza (1982), Hansen (1982), and Manski (1983) have independently
proposed analog estimation of nonlinear econometric models satisfy-
ing moment restrictions. These methods subsume the earlier instru-
mental variables work.

A framework for the study of estimation

The myriad applications of the analogy principle demonstrate its
usefulness as a tool for generating estimators. Consideration of
specific applications, however, may not convey the more general
value of the analogy principle as a framework for the study of
estimation.

I have found that the analogy principle offers an effective device for
teaching estimation. In analog estimation, one begins by asking what
one knows about the population. One then treats the sample as if it
were the population. Finally, one selects an estimate that makes the
known properties of the population hold as closely as possible in the
sample. What could be more intuitive?

I have found that the analogy principle disciplines econometric
research by focussing attention on estimation problems rather than
on methods. Much of the literature proposes scme new method and
then looks for problems to which it can be applied. It seems more
sensible to first specify an estimation problem and then seek to
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develop applicable estimation methods. The analogy principle forces
this mode of thought. One can define an analog estimator only after
one has stated the estimation problem of interest.

1 have also found that analog estimation enables more realistic
empirical research. The need to select from the limited menu of
estimation methods that happen to appear in the literature often
unduly influences the objectives, assumptions, and data of empirical
research. The analogy principle allows the empirical researcher to
derive an estimator that fits his problem. For each well-defined
estimation problem, there generally corresponds some obvious,
appropriate analog method. One can often find a multitude of useful
analog methods.

1 have, moreover, come to feel that the analogy principle has a
certain elegance. Esthetic appeal may not suffice to make a subject
worthy of study. It does help, though.

Plan of the book

This book presents elements of the theory of estimation by the
analogy principle, with an emphasis on estimation problems arising
in econometrics. It also offers some new contributions and calls
attention to unanswered questions. Thus, the volume is both a
textbook and a monograph.

The book is in three parts. Part I introduces the analogy principle
and demonstrates its breadth of application. Part II presents the
‘moment’ problems that dominate present-day econometrics. Then
Part I1I develops asymptotic theory for analog estimation of moment
problems.

As a textbook, the volume may be found useful in the graduate
econometric methods course that typically follows the student’s
introduction to statistics and linear models. An understanding of the
concepts of asymptotic distribution theory is assumed, as is some
familiarity with real analysis. At the University of Wisconsin, 1 have
for several years based a semester course in econoraetric methods on
this material.

As a monograph, the book offers some contributions to estimation
theory. First, it proposes what seems to be a useful language for the
study of analog estimation: a relevant st of corncepts, a tractable
system of notation, and a meaningful typology of estimation prob-
lems. Such infrastructure is essential to coherent treatment of a
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subject. Second, it reports resuits applying the analogy principle to
generate consistent nonparametric estimates of density and regres-
sion functions. Hitherto, it has been thought that these nonpara-
metric estimation problems are treatable only by non-analog
methods. Third, it provides parallel treatments of consistent estim-
ation in ‘continuous’ and ‘step’” moment problems. Whereas the
theory for continuous problems has long been available, that for step
problems has previously been developed only in the context of specific
applications.

A disclaimer

This book makes no claim to provide a comprehensive treatment of
present-day econometric methods. The scope of the book is limited in
the following respects.

First, most of the asymptotic theory presented herein assumes
random sampling. As an idealization, random sampling is central to
statistics, much as competitive behavior is to economics. The random
sampling idealization greatly simplifies the statement and proof of
asymptotic theorems. Random sampling is not essential to applic-
ation of the analogy principle. Brief discussions of estimation under
non-random sampling processes are scattered throughout the book.

Second, the entire text assumes the perspective of classical estim-
ation theory, to the exclusion of Bayesian analysis. The closest
approach to Bayesian thinking is in Chapter 4, where prediction is
posed as a decision problem under uncertainty. Even there, attention
is confined to the classical problem of estimation of best predictors.

It is not clear whether the analogy principle has a Bayesian
interpretation. Certainly, present-day Bayes theory does not hint at
any. As matters stand, the structure of Bayes theory presumes that
one faces a particular kind of estimation problem, a likelihood
problem as defined in Chapters 2 and 5. This theory simply does not
apply to the various non-likelihood problems treated in this book.

Third, the book rarely questions the researcher’s ability to pose a
well-defined, correctly specified estimation problem. To apply the
analogy principle, one must state explicitly what one knows and what
one wants to learn. These logically necessary requirements are
undeniably burdensome in practice. It is often difficult to elicit one’s
information set and to make one’s objectives explicit. Nevertheless,
we maintain the assumption that a coherent estimation problem has
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been specified. And we usually assume that the asserted prior
information is consistent with reality.

Finally, issues of measurability are ignored except in a few
contexts where attention is warranted. The readability of a statistics
book seems always to vary inversely with the rigorousness of its
treatment of measurability. I want this book to be read.

Notation conventions

Theorems and lemmas are numbered within chapters and referred to
by the shortest unambiguous descriptor. Consider Theorem 1 of
Chapter 7. Within Chapter 7, this result is referred to as Thecrem 1.
In the remainder of the book, it is referred to as Theorem 7.1.
Vectors are always defined in column form, transpose notation
being used for row form. Thus, if £ is a point in K-dimensional real
space, then £ is a K x 1 vector and & a 1 x K vector. Let f(*) be a
differentiable function mapping R¥ into R’. Let x index points in the
domain of f(x). The derivative function df(+)/dx" is a J x K matrix.
This derivative evaluated at a point £eRX is written 81(&)/0x’.
The ‘argmin’ operator is used to denote the set of argument values
that minimize a function. Let W(#), a function mapping a space B into
the real line, be minimized on the set B, — B. Then B, = argmin W(c).

ceB

We shall often write equations of the form b —argmin W(c)=0,
ceB

where b is an element of B. Such equations are to be interpreted as
saying that b is an element of the minimizing set B,.



PART 1

Estimation by the analogy
principle

The vast literature on analog estimation has evolved in piecemeal
fashion out of the efforts of numerous researchers to treat various
classes of estimation problems. As a consequence, a standard
language for study of estimation by the analogy principle has been
unavailable. Moreover, some unifying ideas have gone unrecognized.
Early in the writing of this book, it became clear that coherent
exposition would require careful choice of terminology and the
development of at least a few new concepts. Some of Part Lis taken up
with this task. The other objective of Part I is to survey some of the
major classes of estimation problems to which the analogy principle
has been applied.

Chapter 1 sets out basic concepts. We begin by posing an abstract
estimation problem and by defining identification. We then introduce
estimation by the analogy principle. We find that a given estimation
problem generally has many alternative representations to which the
analogy principle may be applied. In some problems, the derived
analog estimate depends on the chosen representation. We discuss
informally the consistency and efficiency of analog estimates. We also
consider application of the analogy principle to data generated by
non-random sampling processes.

Chapter 2 presents short case studies of five leading classes of
estimation problems. These are the moment problems, nonpara-
metric density problems, smooth statistical functions, index prob-
lems, and separable econometric models. In each case, we define the
estimation problem, develop alternative representations, and derive
well-known estimates by applying the analogy principle to these

representations.
Chapter 3 considers the estimation of regression functions. We first
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define regression and call attention to some subtleties in the
identification of regression functions. Following a brief discussion of
‘naive’ analog estimation, we describe the power and limitations of
the familiar method of moments approach to the estimation of
moment regressions. We then consider the problem of estimating
general regression functions. This leads to a new contribution, the
smallest neighborhood method for estimation of conditional proba-
bility measures.



CHAPTER 1

The analogy principle

1.1 The estimation problem

We are concerned with estimation problems of the following abstract
form. A probability measure P on a measurable sample space Z
characterizes a population. We know that P is an element of some
space II of probability measures on Z. We observe a sample of N
independent realizations of a random variable z distributed P.

A parameter b in a specified parameter space B solves an equation

T(P,b)=0 (1.1)

Here T(*,*) is a given function mapping Il x B into some vector
space Y. The problem is to combine the sample data with the
knowledge that beB, Pell, and T(P,b) =0 so as to estimate b.

Unless stated otherwise, we maintain the assumption that the
estimation problem is properly specified. That is, the data really are a
random sample from P, the space I1 does contain P, and there
actually exists a beB solving (1.1). Given that the specification is
proper, we can exclude infeasible probability measures and parameter
values from the spaces IT and B. A population probability measure Q
is infeasible if T(Q, ¢) # 0 for all ¢ in B. A parameter value ¢ is infeasible
if T(Q,c)#0 for all Q in IL

To introduce basic ideas it is simplest not to impose any structure
beyond what has already been stated. The quantities defined here will
be given content when we discuss applications. It should be under-
stood that the abstract equation T(P, b) = 0 does not really restrict the
relationship between P and b. For example, many of the estimation
problems we shall study assert that a parameter solves some
extremum problem involving P. We can express such problems by
saying that b solves an equation

b —argmin W(P,c)=0 (1.2)

ceB
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where W(*,+) is a given function mapping I1 x B into the real
line.

1.1.1 Identification

In examining a specified estimation problem, one should first ask
whether b could be learned if P were known. After all, knowledge of P
makes sampie data superfluous.

We say that b is identified relative to (P, B) if the function T(P, =),
defined on the domain B, takes the value zero when evaluated at b and
not elsewhere. We say that the parameter is uniformly identified
relative to (I, B) if for every Q in IT there exists one ¢ in B such that
T(Q,c) =0. The value ¢ may depend on Q. In practice we can be sure
that b is identified only if the parameter is uniformly identified. The
reason is that we do not know P and sample data cannot reveal P
with certainty.

If the parameter is uniformly identified with respect to (I1, B), then
the equation T(Q, ¢) = 0 can be inverted to express c as a function of Q.
That is, there exists a function t(*x) mapping IT onto B such that for all

(Q,c)ell x B,
T(Q,¢) =0<=c=1(Q) (1.3)

In particular, b = t(P). It is possible to think of #(*) as defining the
parameter as a function of the population probability measure.

1.1.2 Identification of a function of the parameter

It may be that b is not identified but that some interesting function of b
is identified. Let 8(x) map the parameter space B into a space ©. If 6(x)
is one-to-one, then 8(b) is identified if and only if b is. On the other
hand, if 6(*) is many-to-one, then 6(b) may be identified even though b
is not. To be precise, 8(b) is identified if 6(c) = () for all ¢ in B such
that T(P,c)=0.

1.2 Analog estimates

Let Py be the empirical measure of the sample of N draws from P.
That is, Py is the multinomial probability distribution that places
probability 1/N on each of the N observations of z. The analogy
principle suggests that to estimate b one should substitute the
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function T(Py,*) for T(P, *) and use

Equation (1.4) defines analog estimation for problems where Py, is
an element of I'1. In such problems T(Py, *) is well defined and has at
least one zero in B. So By is the (set-valued) analog estimate
of b.

Equation (1.4) does not explain how to apply the analogy principle
to problems in which the empirical measure and the population
measure are known to differ. We have so far defined T'(, *) only on the
space Il x B of feasible population distributions and parameter
values. The function T(Py,*) is as yet undefined for P, not
in II.

Let @ denote the space of all multinomial distributions on Z. To
define T(Py, *) for every sample size and all sample realizations, it
suffices to extend T'(», *) from IT x B to the domain (ITL®) x B. Two
very different approaches prove useful.

1.2.1 Mapping Py into I

One approach is to map Py into I1. Select a function n(*) with domain
IT v ®and range IT which maps every feasible population distribution
into itself. That is, let m(»*) be any function such that
Qellu®=r(Q)ell and Qell = n(Q) = Q. Now replace the equation
T(P,b) =0 with

T[x(P),b] =0 (1.5)

This substitution leaves the estimation problem unchanged as
T[n(Q),*] = T(Q,*)for all QIl. Moreover, n(Py)ell;so T[n(Py),*]
is defined and has a zero in B. The analogy principle applied to (1.5)
yields

By, =[ceB: T{n(Py),c} =0] (1.6)

When Py is in I1, this analog estimate is the same as the one defined
in(1.4). When Py, is not in I, the estimate (1.6) depends on the selected
function n(=); hence we write By, rather than By,

Two applications of the mapping approach will be presented later.
One is to nonparametric estimation of density functions; see Sec-
tion 2.2. The other is to nonparametric estimation of regression
functions; see Chapter 3.
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1.2.2 Direct extension

Sometimes there is a natural direct way to extend T(x,*). A leading
example is the class of moment equations. These are estimation
problems in which

T(Q,c)= jg(z, c)dQ (1.7)

for (Q,c)ell x B. Here g(*,c) is a given measurable function on Z.
When T(», *) has this form, it is natural to let

T(Py,c) = jg(z, c)dPy (1.8)

Assume now that T(Py,*) has been defined directly. Whenever
T(Py, *) has a zero in B, (1.4) gives the analog estimate. If Py is not in
IT, however, it may be that T(Py, ¢) # 0 for all ¢ in B. Then the analogy
principle suggests selection of an estimate that makes T(Py, *) as close
as possible to zero in some sense.

To put this idea into practice, select an origin-preserving function
r(*) which maps values of T(*, *) into the non-negative real half-line.
That is, let r(*) be any function from Y into [0, c0) such that
T=0<rT)=0. For example, if Y is a normed space, setting
nT)= | T| will do.

Now replace the equation T(P,b) =0 with

r[(T(P,b)]=0 (1.9)

This substitution leaves the estimation problem unchanged as
T(Q,c)=0<r[T(Q,c)]=0 for all (Q,c)ell x B. To estimate b,
minimize on B the sample analog of r[ T(P, #)]. Provided only that
r[ T(Py, #)] attains its minimum on B, the analog estimate is
By, = argminr[ T(Py, )] (1.10)
ceB
When Py is in I, this estimate is the same as the one defined in (1.4).
When P, is not in I1, T(P,, *) may nonetheless have a zero in B; if so,
the estimate remains as in (1.4). If T(Py, *) is everywhere non-zero, the
estimate {1.10) depends on the selected function r(*); hence we write
By, rather than B,.

1.2.3 Alternative representations of estimation problems

In deriving the analog estimates By, and By,, we observed that the
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equations T(P,b)=0, T[n(P),b]=0, and r[T(P,b)]=0 express
the same knowledge relating P to b. This fact illustrates a general
point: a given estimation problem may have many alternative
representations.

When P, is in I1, representation has no consequence for estimation
by the analogy principle. Whatever representation one chooses, the
analog estimate for b is By. When Py is not in II, alternative
representations typically yield distinct analog estimates. Recall that
the estimates By, and By, vary with the function 7n(*) or 7(*) that one
selects.

The representations introduced thus far do not exhaust the
possibilities. As we study specific estimation probleras, we shall note
some useful generalizations. We shall not, however, seek to develop
an exhaustive typology of representations.

1.2.-4 Cardinality of analog estimates

The literature on estimation focusses attention on point estimates of
parameters. We, on the other hand, have defined an analog estimate
to be the set of parameter values that solve the saraple analog of a
population problem. In many applications, analog estimates are
singletons. Where an estimate contains more than one element, one
may wish to extract a point estimate by applying some auxiliary
selection rule. We shall usually not do so. The analogy principle gives
no reason to isolate one point for special attention.

1.2.5 Estimation of a function of the parameter

An analog estimate of a function of b is obtained by evaluating the
function at an estimate of b. Let () mapping B into ® be the function
of interest. When Py is in I1, then @y = [6(c), ce By] is the estimate of
6(b). When Py is not in I1, estimates @y, and @y, may be obtained by

applying 6(x) to By, and By,.

1.3 Consistency and efficiency of analog estimates

1.3.1 Consistency

We have said that in examining an estimation problem, one should
first ask whether the parameter of interest is identified. Assume that
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identification has been shown and that one now contemplates
estimation. In evaluating a proposed estimation method, one should
first ask whether the method is consistent. That is, does the method
yield estimates that in some sense converge to the parameter as
sample data accumulates?

Analog estimates are consistent under quite general conditions.
The fundamental theorems that make this so are referred to
generically as laws of large numbers. These theorems show that the
empirical measure Py converges in various senses to the population
measure P. Of course laws of large numbers do not per se imply
consistency. The chosen representation of the estimation problem
must be appropriately smooth. A heuristic explanation follows.

Consider an estimation problem where all possible realizations of
Py arein I1. Provided that the function T(Py, *) varies smoothly with
Py, the laws of large numbers imply that T(Py,*) tends to behave
increasingly like T(P, *) as N — co0. In particular, the zeros on B of
T(Py, *) tend to occur increasingly near the zeros of T(P, *). Given
identification, T(P, *) is zerod at b alone. So the analog estimate B
converges to b.

Now consider a problem where not all realizations of Py are in I1.
Select a function n(+) and estimate b by By, defined in (1.6). Then we
are concerned with the behavior of T[n(Py), ¥] as N — cc. Provided
that n(Py) varies smoothly with Py, the argument of the preceding
paragraph implies that the estimate By, converges to b.

Alternatively, select a function r(x) and estimate b by By, defined in
(1.10). Then we are concerned with the behavior of r[T(Py,*)] as
N - oo. Provided that r[T(Py,*)] varies smoothly with P, the
minima on B of r[T(Py, *)] tend to occur increasingly near the
minima of r[ T(P, *)]. Given identification, r[ T(P, *)] is minimized at
b alone. So the estimate By, converges to b.

Rigorous demonstrations of consistency require that one specify
the desired sense of convergence of the estimate to b and give content
to the above provisos that T(Py,*), n(Py), and r[T(Py,*)] vary
smoothly with Py. It would be too much to expect one consistency
theorem to cover all the applications of interest. To the contrary, the
literature reports a multitude of consistency results covering various
classes of estimation problems.

We shall later give proofs of consistency for analog estimation of
two classes of estimation problems. A result reported in Chapter 3
proves pointwise weak consistency for an analog estimate of non-
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parametric regressions. A group of theorems developed in Chapter 7
prove strong consistency for method of moments estimates of
parameters in finite-dimensional moment problems.

One would like to know whether there exist identified estimation
problems for which there are no consistent analog estimators but
there are consistent non-analog estimators. (A non-analog estimator
is one that cannot be obtained by applying the analogy principle to
some representation of the estimation problem.) As it stands, I have
no example of such a problem.

1.3.2 Efficiency

Given an estimation problem for which there exist consistent analog
estimates, it is natural to ask whether there is an efficient such
estimate, some notion of efficient estimation having been specified.
The following comments are speculative but may be helpful.

One should not expect that there always is an efficient analog
estimate. After all, the analogy principle disregards two kinds of
information that may be relevant to estimation. First, it uses the
sample data only through the empirical measure, which does not
preserve information about the sample size. Second, it uses the
empirical measure only to replace P in the function T(P, *). That is,
the analogy principle ignores restrictions on P that are not expressed
by the equation T(P,b)=0.

To fully understand the efficiency properties of analog estimation,
it may be necessary to embed the problem of estimating b within the
larger problem of estimating the pair (P, b). First one would consider
the question of efficient estimation of (P, b). Then one would seek to
determine the circumstances in which using Py to estimate P suffices
to obtain an efficient estimate of b.

It seems reasonable to think that the analogy principle makes
efficient use of the available information whenever the empirical
measure is in TI. When Py is in I1, the hypothesis (P, b) = (Py, By) is
compatible with the available information. Given this, it is difficult to
imagine that one can do better than use (Py, By) to estimate
(P,b).

The efficiency of analog estimation seems more questionable in
those cases where Py is not in I1. Here a multitude of analog estimates
may exist, each derived from a different representation of the
estimation problem. The hypothesis Py = P is nort compatible with
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the available information. This suggests that one can improve on any
estimator of b that uses Py as an estimate for P.

Although suggestive, the reasoning of the last paragraph does not
imply that analog estimation is necessarily inefficient when Py, is not
in TL To the contrary, it is known that when efficiency is defined in
local asymptotic terms, efficient analog estimates often exist. A
cornerstone of classical statistics is the finding that the maximum
likelihood method is asymptotically efficient for estimation of a
population density function known to be a member of a smooth
finite-dimensional family of densities. And recent research proves the
existence of efficient method of moments estimates of parameters in
smooth moment problems. These results will be presented in
Chapters 8 and 9.

1.3.3 Non-random sampling

In posing the abstract estimation problem of Section 1.1, we assumed
that the sample data are drawn independently [rom one population. It
is important to understand that random sampling is no more than a
useful simplifying idealization; it is not essential to the success of
analog estimation. The analogy principle works whenever the
sampling process is such that relevant features of the empirical
measure converge to corresponding population features. Three
leading examples follow.

First consider stationary time series problems. Here the data are
observations at N dates from a single realization of a stationary
stochastic process whose marginal distribution is P. So we do not
have a random sample from P. Nevertheless, dependent sampling
versions of the laws of large numbers show that Py converges to P in
various senses as N — co.

Next consider independent sampling from a sequence of popul-
ations. Here the estimation problem assumes that a sequence of
probability measures P, i=1,..., 0 characterize the sequence of
populations. The data are independent realizations of random
variables z,i=1,..., N, where z' is distributed P".

Independent sampling problems assume that the measures {P}

' share some common feature. Perhaps they have the same mean or a
‘ common regression function. Let f(x) denote the common feature;
I'that is, f(*) is a function on the space of probability measures on Z
"with f(PY)=f(P),i=1,..., 0. The parameter bis known to solve an
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equation
T[f(P),b]=0 (1.11)

Subject to smoothness conditions, the analogy principle works
provided that f(Py) converges to f(P') as N — co. Independent
sampling versions of the laws of large numbers give conditions
implying such convergence.

A third example is stratified random sampling. Let the sample
space Z be partitioned into a finite set of mutually exclusive and
exhaustive subspaces (strata) Z,,s = 1,...,S. For each s, let P|s be the
population measure conditional on the event {zeZ,]. These con-
ditional measures are related to the population measure P by the

equation
P=Y P(Z)P|s (1.12)

where P(Z,) is the marginal probability of membership in stratum s.

For each s, let N, observations be drawn at random from P|s. Let
P|sy denote the resulting empirical measure. Define the stratum-
weighted empirical measure

Qn =Y P(Z,)P|sy, (1.13)

Provided that the stratum marginals P(Z,) are known, Qy is
computable. Provided that N, — co for all 5, Oy converges to P. Given
these two conditions, Q is a usable sample analog for P.



CHAPTER 2

Varieties of estimation problems

Five classes of estimation problems are described here. Each class is
defined by the structure it places on the equation T(P,b) = 0 relating
the parameter to the population. Each is special enough and
important enough to have spawned a distinct literature.

These five classes of estimation problems are not mutually
exclusive. Many familiar problems are in the intersection of several
classes. Such problems may be treated from the perspectives of
various branches of estimation theory.

2.1 Moment problems

Much of present-day econometrics is concerned with estimation of
the parameter b solving an extremum problem

b — argmin J hiz,c)dP =0 2.1)
ceB

where h(*, *) is a given function mapping Z x Binto the real line. The
space IT includes only probability measures @ for which the integrals
_[ h(z,c)dQ, ce B exist. Another important part of econometric work is
concerned with estimation of the parameter b solving an equation

I g(z,b)dP =0 (2.2)

Here g(*, *) is a given function mapping Z x Binto a real vector space.
Again IT includes only measures Q for which jg(z, c)dQ, ceB exist.

When the empirical measure Py, is in I1, application of the analogy
principle to (2.1) yields the estimate

By = argmin jh(z, ¢)dPy (2.3)

ceB
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The analogy principle applied to (2.2) yields

By = [ceB: J‘ g(z,c)dPy = 0] 2.4)

When P, is not in I, one might either map Py into I1 or extend the
domain of T'(x,*) directly. The latter approach is simplest; the natural
sample analogs of the expected values of the functions h{z,*) and
g(z, x) are the sample averages [h(z, *) dP and fg(z,*)dPy. So(2.3)and
(2.4) remain analog estimates of the parameters solving (2.1)
and (2.2).

It remains only to consider the possibility that the estimate (2.3) or
(24) is empty. In applications, fh(z, *) dPy generally has a minimum.
On the other hand, _[g(z, *)dPy often has no zero. In that case, one
may select an origin-preserving transformation r(x) and replace (2.2)
with r[{g(z,b)dP] =0, as in (1.9). Minimizing the sample analog
yields the estimate

By, = argminr[ jg(z, c) dPN] (2.5)
ceB
Estimation problems relating b to P by (2.1) or (2.2) will be called
moment problems. Use of the term ‘moment’ rather than the equally
descriptive ‘expectation’, ‘mean’, or ‘integral’ honors the early work of
K. Pearson on the ‘method of moments’.

2.1.1 The method of moments

Pearson (1894) studied the special case of (2.2) in which g{(=, *) has the
separable form

9(z,b) = ¥(b) — ¥2) (2.6)
Here the parameter space B is a subset of K-dimensional real space,
y(*)is a given function mapping B into RX, and y(*) is a given function
mapping Z into RX. Thus b solves the equation

nb) — j Nz)dP =0 2.7)

Let Y denote the convex hull of [y({),{eZ]. Assume that y(=)
maps B one-to-one and onto Y. Given that y(*)is integrable, the mean
value {y(z)dP exists and is in Y; hence the parameter is uniformly
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identified. In particular,

b=y‘1(jy(z)dP) (2.8)

The sample average { y(z)dPy is also an element of Y. So application
of the analogy principle yields the point estirnate

by=y"" [ J »2) dPN:] 2.9)

This is the method of moments estimate for b.

In the statistical literature, the method of moments is invariably
described as a sometimes simple but often inefficient approach to
estimation. Chronicling his late father’s research, E. S. Pearson (1936,
pp-219-20) says of K. Pearson (1894):

The paper is particularly noteworthy for its introduction of the
method of moments as a means of fitting a theoretical curve to
observational data. This method is not claimed to be the best, but
is advocated from the utilitarian standpoint on the grounds that
it appears to give excellent fits and provides algebraic solutions
for calculating the constants of the curve which are analytically
possible.

In his landmark text, Cramer (1946, p.498) states:

Under general conditions, the method of moments will thus yield
estimates such that the asymptotic efficiency...exists. As
pointed out by R.A. Fisher..., this quantity is, however, often
considerably less than 1, which implies that the estimates given
by the method of moments are not the ‘best’ possible from the
efficiency point of view, i.e. they do not have the smallest possible
variance in large samples. Nevertheless, on account of its
practical expediency the method will often render good service.

This assessment continues to prevail. In fact, with computation
decreasingly a concern in applied work, recent statistics texts tend to
treat the method of moments cursorily, if at all.

The conclusion that the method of moments is inefficient rests on
the unstated premise that the probability measure P is a member of 2
family of measures indexed by the elements of B. Let [t(c),ceB]} be a
family of distinct probability measures on Z and let IT=[t(c),ceB].
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That is, assume it known that P = t(b) for some b in B. Now select any
function y(*) and define

y(*) = Jﬂz) dz(*) (2.10)

as a function on B. Then (2.10) implies a moment equation of the form
(2.7). Provided that y(¥) is well-behaved, the resulting method of
moments estimate for b is consistent and asymptotically normal.

Not surprisingly, the estimate based on one given choice of y(x)
often has asymptotic variance that exceeds the best that can be
attained given the knowledge that P is in [7(c),ceB]. The heuristic
reason is that restriction of P to the finite-dimensional family of
distributions [(c), ce B] implies infinitely many moment restrictions
relating P to b. Any particular method of moments estimator utilizes
only K of these restrictions. So method of moments estimation does
not use all of the information presumed to be available.

It should be recognized that criticism of the method of moments for
using only a subset of the available information carries with it an
implicit recommendation: the method of moments retains useful
properties when the available information is, in fact, limited. The
probability measure P need not be in [(c), ce B]. All that is required
is that b solve (2.7). The ability to proceed with estimations based on
this limited knowledge is valuable when a researcher questions the
validity of stronger restrictions.

2.1.2 Varieties of moment problems

One hundred years after the introduction of the method of moments,
we find a vast literature on analog estimation of moment problems.
This book explores various major branches of this literature. Moment
regressions are introduced in Chapter 3. Prediction problems are
studied in Chapter 4. Likelihood problems are examined in Sec-
tion 2.4, in Chapter 5, and in Section 8.4. Moment problems implied
by econometric models are introduced in Section 2.5 and then studied
in depth in Chapter 6.

These varieties of moment problems encompass an astonishing
range of specifications. The population probability measure may be
known to be among a small set of feasible measures or may be entirely
unrestricted. The parameter of interest may be a best predictor
function or a construct of economic theory.
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What unifies the class of moment problems is a common formal
structure that makes available a common asymptotic estimation
theory. Chapters 7 and 8 develop this estimation theory for the
subclass of finite-dimensional moment problems. The qualifier ‘finite-
dimensional’ describes those problems in which the parameter space
B is a finite-dimensional real space and, in the case of moment
equations, in which the range space of g(x,*) is finite dimensional.
Sections 9.1 and 9.2 discuss the theory available for more general
moment problems.

2.2 Nonparametric density problems

Nonparametric density estimation is a problem which might seem to
defy treatment by the analogy principle. To set up the problem, let Z
be K-dimensional real space. Let II be the set of all probability
measures on RX that are absolutely continuous with respect to
Lebesgue measure, denoted p. For @ in II, let ¢, (* Q) denote the
density function of Q with respect to u. Thus, ¢, (*, Q) maps RX into
[0, c0) and

Q(4) = L @4z, Q)du 2.11)

for every measurable subset 4 of R¥. Let the parameter space B be the
space of all functions mapping R¥ into [0, c) whose Lebesgue
integral equals one. The true parameter b is the function solving the
equation

b(*) — @ (,P)=0 (2.12)

Being muitinomial, the empirical measure is not absolutely
continuous with respect to Lebesgue measure. So Py is not in I1. To
apply the analogy principle, we may either map Py into II or
somehow extend the definition of a Lebesgue density to multinomial
distributions. We shall choose the first approach. In particular, we
shall use the analogy principle to derive a version of the kernel
estimation method developed by Rosenblatt (1956) and Parzen
(1962).

To map Py into T, select a function o(+) that maps ITU® into
[0, o0) and satisfies the condition ¢(Q) = 0<>QellL Thus, o(*) distin-
guishes measures that are absolutely continuous from ones that are
not. Select an absolutely continuous measure G and let 6 be a random
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variable distributed G. Given any probability measure @ on RE let
z(Q) denote a random variable distributed Q, with 2(Q) independent of
5. Let Q@ o(Q)G denote the probability measure of the random

variable z(Q) + o(Q)d. Now define
Q) = QS a(Q)G (2.13)
and replace (2.12) with
b(*} — @ [*n(P)] =0 (2.14)

This substitution leaves the estimation problem unchanged.
Simply observe that for Q in IT, 6(Q) = 0. Hence, n(Q) = Q. So (2.12)
and (2.14) both state that b is the density of P.

Moreover, 7(Q) is absolutely continuous even when Q is not. To see
this, let g(*) denote the density of G. Let F(*, Q) denote the distribution
function of the random variable z(Q) + ¢(Q)6. When @ is not in I,
o(0) > 0. Hence, evaluated at any { in R¥,

(€ - 2(Q)/o(Q)

F({, Q)= Prob[z(Q)+0(Q)0 = (1= ” g(6)dodQ
(2.15)

This distribution function is differentiable. In particular,

O*F(L, Q)L .. .0k = 1/a(Q)" fg[{C —2(Q)}/o(@)]1dQ  (2.16)

Differentiability of a distribution function implies absolute continuity
of the underlying probability measure. The density equals the
derivative (2.16). So the density of n(Q) at { is

@[, n(@)] = 1/a(Q) Jg[{l — z(Q)}/0(Q)]1dQ (2.17)
The above shows that the probability measure Q@ o(Q)G is a
smoothed version of Q. So n(#) defined in (2.13) maps ITU® into ITin

the manner specified in Section 1.2. Applying the analogy principle to
(2.14), we now obtain as the estimated density at {

by({) = I/dPN)"jg[{C - Z(PN)}/G'(PN)] dPy

N
= YolPyF gy Y, 0L~ 20/o(Py)] @18
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where z,i = 1,..., N are the sample realizations of z. Estimates of the
form (2.18) are called kernel estimates. The density g(*) chosen by the
researcher is the kernel. o(*) is referred to as the smoothing
function.

In the literature on density estimation, the kernel method has not
been thought of as an application of the analogy principle. To the
contrary, the convention has been to think of o(*) as a function of the
sample size, not as one defined on the space of probability measures. If
our analogy principle version of kernel estimation is to be useful, we
need to provide guidance on the specification of o(+) as a function on
Hud.

Heuristically, we would like (Q) to be closer to zero, the less Q
deviates from an absolutely continuous measure. Given that the
elements of ITu ® are measures with no singuiar continuous compo-
nent, absolute continuity of an element of ITU® is equivalent to
continuity. So we would like 6(Q) to be closer to zero, the less Q
deviates from a continuous measure.

Perhaps the simplest reasonable index of a probability measure’s
deviation from continuity is the maximum of its point masses. Thus,

define

M@Q)= 121:3& o) (2.19)
and set
o(Q) = s[M(Q)] (2.20)

where s{#) is some strictly increasing function mapping [0, 1] into
[0, o) and satisfying the condition s(0) = 0.

Continuity of the population measure P implies that with proba-
bility one, no realization of z occurs in the sample more than once; so
all of the point masses of the empirical measure equal 1/N. Hence,

a(Py) = s(1/N) (2.21)

with probability one. This effectively translates o(*) into a smoothing
function which varies with sample size. We can therefore apply
available results (see Prakasa Rao, 1983; or Silverman, 1986) to
determine the conditions under which the estimate (2.18) is consistent.
It turns out that the kernel estimate is consistent if and only if the
chosen function s(*) satisfies the additional condition Ns(1/N)*— co
as N — co. Note that this result places no restrictions on the chosen
kernel density g(*).
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2.3 Smooth statistical functions

In Chapter 1, we noted that when b is uniformly identified, one can
think of the parameter as a function of the population probability
measure. That is, there is a t(+) mapping IT onto B such that

b—t(P)=0 (2.22)

Following Von Mises (1947), we refer to t(+) as a ‘statistical function’.

When Py is in IT, the analog estimate of t(P) is {(Py). When Py is not
in T1, let the domain of #(*) somehow be extended to the space ITU ®.
Then we may continue to say that #(Py) is the analog estimate.

Representation of an estimation problem by (2.22) and estimation
of b by t(Py)is particularly appealing when the statistical function z(*)
varies smoothly in a neighborhood of P. Smoothness of (x) makes it
easy to analyze the asymptotic behavior of ((Py). Moreover, smooth-
ness brings with it the desirable property of ‘robustness’.

2.3.1 Smoothness and asymptotic analysis

When t(+) is appropriately smooth, characterization of the asympto-
tic behavior of t(P,) is almost trivial. Perhaps the most striking
demonstration of this is proof of consistency by the well-known
‘continuous mapping’ theorem.

Theorem 1
Let t(*) be a given statistical function. Let 4 be a given metric on B.

Assume that there exists some metric p on I1U® such that:

(i) Pxconverges to P almost surely (or in probability) with respect to

(i) f(*) is continuou-s at P with respect to the topologies generated by
p and A

Then #(Py) converges to t(P) with respect to 4 almost surely (or in

probability). B

PROOF Let ¢ > 0. Continuity of #(*) implies that for every ¢ >0
there exists a 6 > 0 such that p(Q, P) < d=A[t(Q),1(P)] <.

Suppose that Py— P with respect to p almost surely. Then for
almost every sample sequence, there exists a finite sample size N,
(which may depend on the sample sequence and on ¢) such that
p(Py, P)< & for N > N,. Hence, for almost every sample sequence,
A[t(Py), t(P)] < € eventually.
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Suppose that P, — P with respect to p in probability. Continuity of
t(*) implies that Prob [A{t(Py),%(P)} < ] = Prob [p(Py, P) < J]. But
Prob[p(Py, P) <8]—1 as N-»c0. Hence Prob[A{e(Py),«(P)} <¢]
-1 Q.E.D.

Whereas continuity of ¢(*) simplifies proof of consistency, differen-
tiability eases derivation of limiting distributions. This topic will not
be pursued here. For a discussion, see Serfling (1980, Chapter 6).

2.3.2 Smoothness and robustness

A statistical function that varies smoothly is also said to be robust.
Use of the term ‘robust’ as a synonym for ‘smooth’ is motivated
readily by consideration of a contaminated sampling problem
studied by Huber (1981).

Suppose that one wishes to learn ¢(P) but Py is not obtained by
random sampling from P. Most observations are drawn from P but a
few are drawn from another probability measure Q. One does not
know which observations are proper and which are contaminated. In
this setting, t(Py) will generally not converge to t(P). Nevertheless, it is
still desirable that ¢(Py) converge to a point close to #(P). This will be
the case if t(+) is appropriately smooth at P and if the frequency of
contamination is sufficiently small. So analog estimates of smooth
statistical functions are robust against (that is, insensitive to) occa-
sional contamination in the sampling process.

2.3.3 Smooth statistical function theory and econometrics

The above brief discussion should suffice to indicate the power of the
theory that is available for examining the properties of analog
estimates of smooth statistical functions. To date, this theory has been
applied very fruitfully to the problem of estimating location para-
meters for probability measures on the real line. On the other hand,
there have been only a few applications to the kinds of estimation
problems faced in econometrics. One would like to know why.

A partial explanation is that in econometric estimation problems it
is often difficult to determine the smoothness properties of the
statistical function defining the parameter of interest. In moment
extremum problems, 1(*) is an argmin operator. In nonlinear moment
equations, t(*) is defined implicitly. It is not easy to determine in what
senses such statistical functions are and are not smooth.
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2.4 Index problems

The parameter space B is said to index the space IT of probability
measures if there is a known function t(x) that maps B onto I1. Thus,
I1 = [1(c), ce B] and b solves the equation

P—1(b)=0 (2.23)

When P, is in I, the analog estimate for b is
By =[ceB:Py=1(c)] (2.24)

When Py, is not in I1, the literature offers a number of approaches to
estimation of b. These are obtained by applying the analogy principle
to alternative representations of the estimation problem. In Sec-
tion 2.1, we noted that index problems imply moment equations
relating b to P; so the method of moments is one approach. Here we
call attention to two others.

2.4.1 Minimum distance estimation
Select a metric p on the space [IU® and replace (2.23) with
p[P,®(b)]=0 (2.25)

This substitution, which says that the distance between P and 7(b) is
zero, leaves the estimation problem unchanged. The analogy prin-
ciple now suggests that to estimate b, one might minimize the distance
between P, and 1(+) in the sense of p. The result is the ‘minimum
distance’ estimate

By, = argmin p[ Py, 1(c)] (2.26)
ceB
introduced by Wolfowitz (1953, 1957).

Minimum distance estimation is a class of analog estimation
methods whose members are distinguished by the chosen metric p.
Following the original work of Wolfowitz, it has been observed that
the theme of minimum distance estimation does not require that p be
a metric. In particular, (2.25) remains a valid representation of the
index problem if p is any function mapping (ITu®) x IT into [0, oc)
such that p(Q,,Q,)=0 if and only if @, =Q,. Analog estimates
obtained using such general p are termed ‘minimum discrepancy’
estimates. See Sahler (1970).
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24.2 The maximum likelihood method

Assume that ali the probability measures in Il are absolutely
continuous with respect to a common measure von Z. For Q in IT, let
¢.(*, Q) denote the density of @ with respect to v. Now replace (2.23)
with

(Dv(*a P) - (pv[*7 t(b)] =0 (2'27)

This substitution, which says that the density of P equals that of 7(b),
leaves the estimation problem unchanged.

Now assume that the expectation oflog ¢,[ z, 7(c)] with respect to P
exists for each cin B. Then b solves (2.27) if and only if b also solves the

‘likelihood’ problem

b — argmax J-log o,lz,1(¢)]dP =0 (2.28)
ceB

A version of this well-known result is proved in Chapter 5. See also

Rao (1973, p.58). Applying the analogy principle to this moment

extremum problem yields the maximum likelihood estimate

<€B

By = argmax flog o[z, t1(c)]dPy (2.29)

first studied by Fisher (1925).

It is of interest to compare the minimum distance and maximum
likelthood approaches to the estimation of index problems. Maxi-
mum likelihood is favored for its asymptotic efficiency properties and
for the relative simplicity of its moment extremum form. Minimum
distance has a larger domain of application; the measures in IT need
not be absolutely continuous with respect to any common measure.
Some recent literature has emphasized the superior robustness of
certain minimum distance estimates. See Parr and Schucany (1980).

2.5 Separable econometric models

The reader may have noted that we have yet made no mention of
unobservable random variables. The abstract equation T(P,b)=0
relates a parameter to a probability measure generating realizations
of an observable random variable.

Econometric models, on the other hand, typically posit restrictions
relating the realizations of observable and unobservable random
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variables. Suppose that one wishes to estimate a parameter of the
process generating these realizations. Analog estimation methods
may be applied if one is able to use the available information to
formulate an estimation problem relating the parameter of interest to
observables.

2.5.1 The estimation problem

To fix ideas, consider the following abstract econometric model. A
probability measure P,, on a measurable space Z x U characterizes a
population. We know that P,, is an element of some space II,, of
probability measures on Z x U. A sample of N independent realiz-
ations of a random variable (z, u) distributed P,, is drawn. We observe
the realizations of z but not of u.

A parameter b in a specified parameter space B solves an equation

f@z,u,b)=0 (2.30)

Here f(+,*,%) is a given function mapping Z x U x B into some
vector space. Equation (2.30) should be interpreted as saying that
almost every realization ({,n) of (z,u) satisfies the equation
fn,b)=0.

Knowledge of the function f(, *, ), the probability space I1_,, and
the parameter space B ostensibly derives from the findings of past
theoretical and empirical research. Lack of knowledge of the values of
P,, and b reflects the failure of past research to yield conclusive
evidence on aspects of the relationship between z and w. The
estimation problem is to combine the sample data on z with the
knowledge that P,.,€Il,,, beB, and f(z,u,b) = 0 so as to estimate b.

To apply the analogy principle, we need to translate the estimation
problem into a form that relates b to P, the probability measure of the
observable z. We show below that this is accomplished easily if
f(=, =, %) is separable in the unobserved variables. Models in which
f(*,+,#) does not enjoy such separability will be examined in
Chapter 6.

2.5.2 Models separable in the unobserved variables

Let (2.30) have the form
uy(z,b)~u=0 (2.31)
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where uy(*, *) is a given function mapping Z x B into U. Then
(z,u) = [z, u(z,b)] (2.32)

That is, (z, u) is a function of the observable z and of the parameter b.
Hence P,, is determined by P and b.

Let us make the dependence of P,, on (P, b) explicit. For QinITu @,
let z(Q) denote a random variable distributed Q. For c in B, let y(Q, ¢)
denote the probability measure of [2(Q)u{z(Q),c}]. Then (2.32)
implies that

P..=y(P,b) (2.33)

By (2.33), knowing that P_, is an element of IT,, is the same as
knowing that b satisfies the condition

(P, b)ell,, (2.34)

This condition avoids reference to unobserved random variables.
Thus, we have translated the original estimation problem into one
relating b to P. The parameter space remains B. The space I1 consists
of all measures Q on Z such that ¥(Q, c¢)ell,, for some ¢ in B. The
translated problem is to combine the sample data on z with the
knowledge that beB, Pell, and y(P, b)ell,, so as to estimate b.

We may now apply the analogy principle. When Py is in I, the
analog estimate for b is

By =[ceB:y(Py, c)ell,, ] (2.35)

When Py is not in I, the analogy principle suggests selection of an
estimate that makes the measure y/(Py, *) as close as possible to I,

in some sense.

To do this, choose a function r(,I1,,) that maps the space of
probability measures on Z x U into [0, 00) and satisfies r(y)=
O0<>yell,,. Thus, r(s,Il,,) distinguishes probability measures that
are in I1,, from ones that are not. Then condition (2.34) is equivalent
to saying that b solves the equation

The analogy principle applied to (2.36) yields the ‘closest empirical
distribution’ estimate

BNr = argmin r[‘l/(PN, C), nzu] (237)

ceB
studied in Manski (1983). In words, (2.37) selects an estimate that
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brings the empirical measure of [z(Py), uo{z(Py), *}1 as close as
possible to II.,. This estimate reduces to (2.35) when Py is in IL
Otherwise, it depends on the chosen r(x,IT,,); hence we write By,.

2.5.3 Instrumental variables

Closest empirical distribution estimation is a recent abstraction of the
method of instrumental variables, the earliest contribution of

econometrics to analog estimation theory.
Wright (1928) and Reiersol (1941, 1945) independently considered
the class of models in which (2.30) has the linear form

Wz) = x(zyb—u=0 (2.38)

Here y(x) maps Z into R, x(*) maps Z into R¥, and u is in R!. The
parameter space is R¥. The unobserved random variable u 1s known
to be orthogonal to each of the components of a given random
variable v(z), where v(+) maps Z into R¥. Thus, P,, is known to satisfy
the equation

J o2udP,, =0 (2.39)

Wright (1928) and Reiersol (1941) examined the problem of estimat-
ing b in the context of specific applications. A general treatment was
given in Reiersol (1945). Reiersol termed o(z) a set of ‘instrumental
variables’. He apparently thought of 1(2) as an instrument or tool used

to learn b.
To translate this problem into a form that relates b to P, use (2.32),

(2.33), and (2.38) to rewrite (2.39) as
jv(z)u dP,, = j v(z)u dy(P,b) = j (z)[¥(z) — x(z)b]dP =0
(2.40)

In his 1945 paper, Reiersol proposed analog estimation. Application
of the analogy principle to (2.40) yields the instrumental variables
estimate

By = [ceB: Jv(z)[y(z) —x{(z)c]dPy= 0:| (2.41)

Since it was first proposed, the method of instrumental variables
has been extended in some obvious and important respects. The
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modern literature does not require that f(*, *, *) be linear, only that
it be separable in u as in (2.31). The instrumental variable vector v(z)
need not be of the same length as the parameter vector b. And the
available information need not be that 1(z) is orthogonal to u; it
suffices that v(z) be orthogonal to a given function of u. See Chapter 6
for details and examples.



CHAPTER 3

Regressions

The estimation of regressions is a central theme of econometrics. Let
y(*) and x(*) be functions mapping the sample space Z into spaces Y
and X respectively. In common usage, the regression of y on x refers
to the expected value of y(z) conditional on the realization of x(z),
considered as a function on X. More generally, a regression of zon x is
some property of the probability measure of z conditional on the
realization of x(z), again considered as a function on X. This chapter
applies the analogy principle to the estimation of regressions.

3.1 The estimation problem

Recall the abstract estimation problem posed at the beginning of
Chapter 1. The population probability measure P is an element of a
space IT of measures on Z. We observe N independent realizations of
a random variable z distributed P. A parameter b in a parameter space
B solves an equation T(P, b) = 0. The problem is to estimate b.

Within this framework, regression problems have the following
structure. B is a space of functions mapping X into some space ©. That
is, for each ¢ in Band ¢ in X, ¢(£) is a point in ©. And T(P,b)=0isa
collection of equations

S[PIEbE)]=0, CfeX (3.1)

Here P|¢ is the probability measure P conditioned on the event
[x =£]. S(+,#) is a given function mapping the space [Ql¢ LeX,
Qell] x ® into some vector space.

3.1.1 Identification

One would like to say that the regression function b(x) is identified if
(3.1) has a unique zero on B. This statement is unexceptional if X 1s
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discrete with P,, the probability measure of the random variable x,
giving positive probability to every point in X. But it is problematic if,
asis usual in applications, X contains subsets having probability zero
under P.. Knowledge of P does not then imply a unique collection of
conditional measures [P{¢, e X].

To see this, let X, be a measurable subset of X with P (X ,) = 0. Let
[p:.£€X] be any collection of probability measures on Z such that
p:=P|¢ for £ in X — X, and p, # P|¢ for { in X,. Then for every
measurable set 4 in Z,

P(A) = J P(A|§)dP, = f P(A|8)dP,
X

X =Xo
- f p(A)dP, = f pe(4)dP, (3-2)
X-Xo X

Hence, knowledge of P does not distinguish [P|& ¢eX] from
[p§9 éEX]

Indeterminacy of conditional measures implies indeterminacy of
regression functions. Again let X, be a subset of X with P, (X,)=0.
Let c(*) by any element of B such that c(&) = b(£) for £ in X — X, and
c(8) # b(S) for £ in X, Let [p,, (€ X] be a collection of probability
measures on Z such that p,= P|¢ for { in X — X, and p, solves
S[psc(é)] =0 for & in X ;. Then c(*) solves

S(psc(f)]=0, (leX (3.3)

We cannot distinguish [P, {e X] from [p,, £€ X ]; hence we cannot
distinguish b(») from c(*). To summarize, b(*) is not identified relative
to any c(*) satisfying the condition P [¢(&) # b(&)] = 0.

The literature copes in two ways with the inherent indeterminacy of
a regression function whose domain contains sets of probability zero.
Often, the specification of the estimation problem excludes functions
whose values differ from b(*) only on sets of P_-probability zero. Then
b(*) may be identified in the usual manner.

An example is the linear regression model. Let X be K-dimensional
real space, let @ be the real line, and let B be the space of linear
functions on X. So b(¢) = ¢'B for some B in RX and all ¢ in X. Any
distinct function ¢(*) in B has the form ¢(&) = &'y for some y # B.In this
setting, b(+) is identified if for every y # B, P.(E'y # &'B) > 0. Thus, b(+)
is identified if and only if no proper subspace of X contains all the
mass of P,.
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Sometimes, the specification does not exclude functions which
differ from b() only on sets of P,-probability zero. Then it is the
practice to accept a weaker definition of identification than the one we
have used so far. In particular, b(*) is sometimes said to be identified if,

for all ¢(*) in B,
[S{P|&,c(&)} =0, ae P.J==[c({)=b(¢) ae. P,] (3.4)

An example is the Stone (1977) treatment of nonparametric
regression.

3.1.2 Hyperparameters

The largest possible parameter space for a given regression problem is
the space of all functions mapping X into ©. In practice, the
parameter space is usually restricted in some manner. The most
familiar case is that in which B is known to be indexed by a finite-
dimensional real hyperparameter.

Let T be a subset of RX let f(+,+) be a given function mapping
X x I' into ©, and let the parameter space have the form

B=[f(*7),vel] (3.5

Then there exists some f§ in I such that
b(*) = f(*, B) (3.6)
We say that I indexes B and that § is a hyperparameter determining

b(*).

In applied regression analysis, it is common to focus attention on
estimation of f rather than on estimation of b(*) per se. This practice
is easily justified if one is interested in pointwise estimation of b(+) and
if the functions f(&,*), éeX are appropriately smooth on B. In
particular, consistent estimation of § implies consistent estimation of
b(&), provided that f(Z, *) is continuous. Asymptotic normal estim-
ation of 8 implies asymptotic normal estimation of b(¢), provided that
£ (&, *) is continuously differentiable.

The relationship between estimation of f and uniform estimation
of b(*) is more subtle. Rust (1986) provides an analysis.

3.2 “Naive’ analog estimation

So-called ‘naive’ analog estimation attempts to apply the analogy
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principle to the collection of equations S[P|¢, b(£)] = 0, {e X. Extend
the domain of S(x,*) to ® x © and let Py|¢ denote the empirical
measure Py conditioned on the event [x = £]. The naive estimate of
b(#) is

By =[ceB:S{Pyl{,c(§)} =0,,eX] (3.7)
provided that By is non-empty. Otherwise, one selects an estimate
that makes [S{Py|¢, (&)}, £eX] as close as possible to zero, in some
sense.

Naive analog estimation works well if X is finite and P,(¢) > 0 for
all £eX. As N increases, [Py|&, £eX] converges to [P|E,£eX] in
various senses. So [S{Py|¢, *(£)}, e X] behaves well as an approxim-
ation to [S{P|¢&,#(&)}, Ee X], provided only that S(*, *) is smooth.

Naive estimation does not generally work when X contains subsets
having probability zero under P,. The empirical measure of x puts all
its mass on the finite set of observed values Xy =(x;i=1,...,N). For
¢ not in Xy, Py|¢ is arbitrary. For & in X, Py|¢ is determinate but
does not converge to P|¢ unless P,(&) > 0. Hence, wherever P (£) =0,
S[Py|&, ()] behaves poorly as an approximation to S[P|&,*(S)].

The generic failure of naive analog estimation makes it desirable to
find alternative approaches. A universally useful analog estimator
does not seem to exist. On the other hand, successful methods are
available for important classes of regression problems. The sections
that follow examine three such problems.

3.3 Method of moments estimation of moment regressions

With few exceptions, the regression problems studied in econometrics
have been ones in which the regression function solves a collection of
moment extremum problems or moment equations. In the former
case,

b(¢) — argmin fh(z, 6 dP|E=0, ae. P, (3.8)
0e®

where h(*,*) is a given function mapping Z x @ into the real line. In
the latter,

J. glz,b(&)]dP{E=0, ae. P, (3.9

where g(*, *) is a given function mapping Z x © into a real vector
space.
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Three classes of moment regressions will be examined in Part II.
Here we stay abstract and describe the prevailing method of moments
approach to estimation.

3.3.1 Moment extremum regressions

Regression problems of the moment extremum type have convenient
representations which avoid reference to the collection of conditional

measures [P|&, EeX].
The law of iterated expectations implies that for any function c(x)

mapping X into ©,

ﬂ: fh{z, c(x)} dPIx] dP, = Jh[z, c{x(z)}JdP (3.10)

It follows from (3.10) that b(+) solves (3.8) on B if and only if it solves
the moment extremum problem

b(*) — argmin Jh[z, c{x(z)}}dP=0 (3.11)
ceB

Application of the analogy principle to (3.11) yields a method of
moments estimate for b(x), namely

By = argmin j h(z,c{x(z)}]1dPy (3.12)
ceB

Variations on this estimate may be obtained by substituting for
(3.8) an equivalent collection of problems

b(¢) — ar%:gin w(¢) Jh(z, 6)dP|E=0, ae P, (3.13)

Here w(*) is a ‘weighting’ function mapping X into the real line with
w(&) >0, a.e. P,. Each choice of w(*) leads to a distinct estimate

By, = argmin fw{x(z)}h[z, c{x(2)}1dPy (3.14)

ceB

3.3.2 Moment equation regressions

We can similarly transform the collection of moment equations (3.9)
into a single moment equation relating b to P. Here, however, we must
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be careful. The derived moment equation may not preserve the
information available in the original regression problem.
By the law of iterated expectations,

J[ Jg{z,c(x)}dPlx]dPx= Jg[z,c{x(z)}]dP (3.15)

It follows that any solution to (3.9) solves the moment equation

f glz,b{x(z)}JdP=0 (3.16)

The converse may or may not hold. Solution of (3.16) does not always
imply solution of the collection of problems

fg[z, b(&)1dP|E=0, ae. P, (3.17)

It may rather be that averaged with respect to P,, positive and
negative values of the expression [g[z, b(£)]dP|& balance. If so, the
derived moment equation (3.16) fails to identify the regression
function.

Suppose that, in the problem of interest, (3.16) does identify the
regression function. Then one may contemplate application of the
analogy principle to (3.16). Selecting an origin-preserving transform-
ation r(*) and minimizing the sample analog of r[{g{z, *(x(z))} dP]
on B yields a method of moments estimate

By, = argmin r[fg{z, o(x(2))} dPN:I (3.18)
ceB

Again, variations may be obtained by introducing a weighting

function.

3.3.3 The parameter space

The estimates (3.12) and (3.18) are well defined whatever the
specification of the parameter space. Statistical properties, however,
vary with the parameter space. Method of moments estimation of
regression functions works well when B is a sufficiently small space of
functions but breaks down when B is too large. To see this, let us
consider the estimate (3.12) under two polar specifications.

First, let B be a space of functions indexed by a K-dimensional real
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hyperparameter. Thus, let I be a subset of RX, let f(*,*) be a given
function mapping X x I into ©, and let the parameter space be

B=[f(*7),yel] (G.19)
Then the method of moments estimate of b() is
By=[f(*,7),vel'y] (3.20)
where
Iy= arirz_lin J. h[z, f{x(z),y}]dPx (3.21)

Given modest regularity conditions, I'y and By are well-behaved
estimates of the hyperparameter and of b(*) respectively.

Second, let B the space of all functions mapping X into ©. That
is, let the parameter space be the Cartesian product

B=(x0,(eX) (3.22)

Let Py, denote the empirical measure of x and let X denote its
support. The method of moments estimate of b(#) is the Cartesian

product set

By = ( x By(§),£eX) (3.23)
where

Bp{(&) = argmin Jh(z, f)dPyl& for £in Xy  (3.24a)
0c@

and
By(§)=0© for in X — Xy (3.24b)

That is, By is the set of all functions solving (3.24a) at each £ in the
support and taking arbitrary values elsewhere. Except in the special
case where P.(&) > 0, By(£) does not generally converge to b(¢). Hence,
By, does not generally converge to b.

Does the method of moments work when the parameter space
restricts b(*) but cannot be indexed by a finite-dimensional hyper-
parameter? Our negative finding for B=(x ©,{cX) remains in
force whenever the available information restricts the behavior of b(*)
only locally.

We say that B restricts b(*) only locally if, given any finite set 4 in X
and any set (8, £€4) in O, there is some function c(*) in B such that
(&) = 0, for £ in A. An important class of specifications that restrict
b(*) only locally are those in which b(#) is known to be a smooth
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function, say a k-times differentiable function. Given any finite 4 and
(05 £ A), there always exists a k-times differentiable function that
passes through the points (£, 6;), (e A.

To see that the method of moments breaks down when B restricts
b(=) only locally, let Xy be the finite set A. For £ in Xy, let 8, be any
element of By(&), where By(£) was defined in (3.24a). Then B contains
some function that passes through the points (£, 8,), € X y. Any such
function minimizes {h[z, *{x(z)} JdPy on ( x ©, {€X), hence on B.

We may conclude that if method of moments estimation of
regressions is to succeed, the parameter space must, in general, restrict
b(*) more than locally. Finite-dimensional parameter spaces certainly
do this. The literature on ‘isotonic regression’ gives an example of a
non-finite dimensional restriction that suffices. Here, X is the real line
and B is the space of monotone functions on X. See Barlow et al.
(1972) and Robertson and Wright (1975).

It is important to understand that the failure of the method of
moments to be consistent when B is too large a space of functions does
not indicate that b(#) is unidentified. We have noted earlier that the
moment problem (3.11) inherits the identification properties of the
original regression problem (3.8). The difficulty with the method of
moments is rather that on a large domain, the function
[h[z,#{x(z)}]1dPy does not behave like [h[z, *{x(z)}]1dP, even as
N - .

3.4 Kernel estimation of conditional density functions

Section 2.2 applied the analogy principle to the problem of nonpara-
metric density estimation. The kernel method derived there can be
used to estimate conditional density functions as well.

As before, let Z be K-dimensional real space and let IT be the space
of all probability measures on RX that are absolutely continuous with
respect to Lebesgue measure. Let z = ( y, x), where y takes values in R”,
xin R’,and I + J = K. Let P,|¢ denote the probability measure of y
conditional on the event [x = £]. Let ¢ (, P,|{) denote the density of
y conditional on this event.

The problem is to estimate the conditional densities ¢, (, P,|{), a.e.
P, in the absence of restrictions. Thus, the parameter b is a function on
R! x R? solving the collection of equations

b(*,¢) — @, (+P,|{)=0, aeP, (3.25)
To estimate b(*, =), we first find an alternative representation of (3.25)
and then apply the analogy principle.



CONDITIONAL PROBABILITY MEASURES 35

It suffices to consider those ¢in X at which P, has positive density.
For each such ¢, the conditional density @,(*, P,| £) can be written as
the ratio of the density of (y, x) evaluated at (+, &) to the density of x
evaluated at &. That is,

0, [+, &), P]
(&P (3-26)

Let o(+) and o,(*) be chosen smoothing functions defined on the
spaces of probability measures on RX and R’. Let G and G, be chosen
absolutely continuous probability measures on RX and R’. Let g(*)
and g,(*) be the respective density functions. Then @, [(*, &), P]1=
0,[(*,8), P®c(P)G] and ¢,(, P.) = ¢,[5, Px® o,(P:)G,]. Hence,

0l P@API] _
b~ e P @ P IGT (3-27)

Application of the analogy principle to (3.27) yields the kernel
conditional density estimate

@ (= Pyl &)=

1 X
l/G(Pn)"—‘_;g[ {(%,8) = (yix)}/6(Py)]

bu(*,¢) = (3.28)

1 XN
1o P’y 3,006 — X0/ (Pi)]

Having an estimate of the conditional density @,(*, P &), one may
derive an estimate of functions of this density. For example, the kernel
conditional density estimate may be used to estimate the mean

regression of y on x. By definition,

E(yld)= J yo ¥, P,1&)dp (3.29)
The kernel estimate is

Exyl8) = j yba(y, &) du (3.30)

Prakasa Rao (1983, Section 4.2) collects findings from the literature
studying the asymptotic properties of the estimate (3.30).

35 Smallest neighborhood estimation of conditional probability
measures

Consider the problem of estimating the collection of conditional
probability measures P|¢ Ee X, in the absence of restrictions. That is,
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let b(*) map X into the space of all probability measures on Z and
solve the collection of equations

b —PlE=0, EeX (3.31)

The naive estimate Py|&, £€X can work only if X is discrete. The
kernel method may be applied if P is absolutely continuous but not
otherwise. Here we seek an estimator that works whether or not X is
discrete and whether or not P is absolutely continuous.

To obtain such a method, we introduce an alternative represent-
ation of (3.31). In short, we replace probability measures conditioning
on events of probability zero by ones that condition on neighbor-
hoods having vanishingly small positive probability. This done,
application of the analogy principle works. We term the resulting
analog method ‘smallest neighborhood’ estimation.

3.5.1 Representation of the problem

Select a metric p on the space X. Select a continuous, strictly
increasing function m(*) mapping [0, o) into [0, oo) with m(0) = 0 and
m{d) >d for d>0. For £ in X and d > 0, define

XCE.d)=[¢eX:p(§,¢)<d] (3.32)
di¢,P,)=infd:P [X(¢,d)]>0 (3.33)

and
A(E, P) = X[, m{d(S, P} ] (3-34)

That is, X (¢, d) is the closed ball of radius d centered at & and d(¢, P,)

is the infimum of 4 such that X (&, d) has positive probability under P, .

The set A(Z, P,) is the closed ball of radius m{d(¢, P,)} centered at £&.
Now replace the regression problem (3.31) with

Here, P|A(&, P,) is the probability measure P conditioned on the
event that x is within distance m{d(Z, P,)} of £. Substitution of (3.35)
for (3.31) leaves the estimation problem unchanged.
To see this, let X be the support of P,. That is,
X,=[¢eX:P,[X(¢,d)]>0,Vd>0] (3.36)
It follows from (3.32) through (3.34) that
feX;=d(, P)=0=m{d( P,)}=0
= A(E, Po) = {{} = PJA(, P,)= P|¢ (3.37)
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It remains to consider ¢ not in X,. In general, P|A(Z, P,) need not
equal P|¢ for such £ But the set of non-support points necessarily has
probability zero. See Chung (1974, p. 31). Therefore,

Pl A(&, P,) = Pl¢, a.e. P, (3.38)

In light of our discussion of identification, this means that (3.31) and
(3.35) are equivalent.

3.5.2 Smallest neighborhood estimates

A smallest neighborhood estimate is obtained by applying the
analogy principle to (3.35). Thus,

by(&) = Pyl A&, Pyy),  S€X (3.39)

The expression Py| A(£, Py,) has a simple interpretation. d(&, Py,) is
the distance from ¢ to its nearest neighbor among the N observations
of x. So X[¢,d(£, Pyy)] is the smallest closed neighborhood of ¢
having positive empirical probability. And A(E, Py,) is this neighbor-
hood ‘blown up’ to radius m{d(Z, Py,)}.

When ¢ is among the sample realizations of x(z), the distance from ¢
to its nearest sample neighbor is zero. Hence Py| A(, Py,) = Pyl&, as
in naive estimation. When ¢ is not among the sample realizations, this
distance is positive. Then Py|A(Z, Py,) is the empirical measure Py
conditioned on the event that x is within distance m{d(&, Py,)} of £.

3.5.3 Smallest neighborhood estimation of mean regressions

Given an estimate of P|¢, £€X, one may derive an estimate of any
regression function. For example, the smallest nei ghborhood method
may be used to estimate the mean regression of y on x. Let b(+) solve
the collection of equations

k&) - J}(z) dP|£ =0, teX (3.40)
Substitute for (3.40) the equivalent collection of equations
b(¢&) - J.Y(Z) dP|A¢ P,)=0, ZeX (341)

The smallest neighborhood estimate of the mean regression function
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N(, Py,) iet‘(y'E.N)Y(zl) (342
Here N(&, Py,) is the number of sample observations of z for which
x(z) is in A(&, Py,) and I(, N) indexes these observations.

An Appendix to this section proves that the estimate (3.42) is
pointwise consistent, provided that the function m(*) is chosen
appropriately and that P is minimally regular. Some m(#) that work
are the power functions

b(&) = fﬂZ) dPy|A(E, Py) =

m(d) = d + a,d* (343)

for0<o, <o and O<a, <1.

3.5.4 The nearest neighbor and histogram methods

Smailest neighborhood estimation is reminiscent of, but distinct from,
the nearest neighbor and histogram methods for estimating con-
ditional probability measures. All three approaches impose a metric
on X and estimate P|¢ by the empirical measure of z conditioned on
the event that x is within some neighborhood of &. They differ in the
way this neighborhood is determined.

In nearest neighbor estimation, a positive integer k(N), dependent
on the sample size N, is chosen by the researcher. Then P is
estimated by Py conditioned on the event that x is among the k
nearest sample neighbors to £. So the number of observations used to
estimate P|¢ is predetermined and the neighborhood of ¢ that
contains these observations is random.

In histogram estimation, a neighborhood radius (N), dependent
on N, is chosen. Then P|¢ is estimated by Py|X[&, 8(N)]. Here, the
number of observations used to estimate P|¢ is random and the
neighborhood that contains these observations is predetermined.

In smallest neighborhood estimation, a function m(+) is chosen.
When m(*) is evaluated at the random distance d(&, Py,) from & to its
nearest sample neighbor, a random neighborhood A(¢, Py,) resuits.
The number of observations within A(¢, Py,) is random but always
positive.

It would be of interest to know whether the nearest neighbor and
histogram methods can be derived as analog estimates. I am not
aware of representations of conditional probability measures that
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yield these methods. See Prakasa Rab (1983) for further details on
nearest neighbor and histogram estimation.

3.5.5 kth-smallest neighborhood estimation

Smallest neighborhood estimation has one mildly irritating feature
not shared by the nearest neighbor and histogram methods. Fix £ in
X. We pointed out earlier that if £ is among the sample realizations of
x, the smallest neighborhood estimate of P| £ is Py|&. This is desirable
if P,(&) > 0 but not otherwise.

The equivalence of the smallest neighborhood and naive estimates
on the sample realizations of x is innocuous for the pointwise
consistency of smallest neighborhood estimates. Given any ¢ with
P (&)= 0, there is probability zero that ¢ ever appears among the
observations of x. The irritant is, rather, that smallest neighborhood
estimates are not uniformly consistent on X.

A simple remedy is ‘kth-smallest neighborhood estimation’. Select a
positive integer k. Let dy,() be the distance from £ to its kth-nearest
neighbor among the N observations of x. Let Ay (&) = X[&,m{dp, ()} 1.
Now let Py| Ay, (&) define the kth-smallest neighborhood estimate of
P&

A kth-smallest neighborhood estimate of P|{ reduces to the naive
estimate only if k or more sample realizations of x have the value
¢. With probability one, there exists no ¢ with P ({) =0 such that
more than one observation of x has the value & Hence, with
probability one, kth-smallest neighborhood estimation does not
misbehave anywhere, provided that k is chosen to be larger than
one.

1 am not aware of a representation of P| £ for which P| Ay (&), k> 1
is the sample analog. The integer k refers to a number of sample
realizations of x. For k > 1, the distance to the kth-nearest neighbor
of £ is not determined by the empirical measure Py, alone. The case
k =1 is special. The distance to the nearest neighbor is the same as
the radius of the smallest neighborhood having positive empirical

probability.

Appendix to 3.5: Consistency of smallest neighborhood
estimates of mean regressions

The smallest neighborhood estimate of a mean regression function
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b(+), given in (3.42), is restated below:

1
bN(E)Ef}’(Z)dPN!A(f,PNme Y Hz)  (344)

iel(E.N)

The theorem that follows gives conditions that are sufficient for
pointwise weak consistency of this estimate. Three lemmas then show
that these conditions are satisfied if m(#) is selected appropriately,
provided only that P be minimally regular.

Consistency Theorem
Let y(+) map Z into the real line. Fix £e X. Assume that the following

conditions hold:

[1a] & —=E=E(y|£)— E(y(%)

[1b] 3d, >0 and 4> 0 s.t. Var (y|x =&)< A for {'e X(E, do).
[1c] As N =00, d(&, Py,)—0 in probability.

[1d] As N — co, N(&, Py}~ oo in probability.

Then as N — o0, [Y(z)dPy|A(, Px,)— E(y|{) in probability. W

prOOF Conditional on the empirical measure of x, the mean and
variance of by(£) are, provided that the relevant terms exist,

1
E[bp(E)|Py.] = NG. P saém b(x;) (3.45)

and

> Var(ylx=x)  (3.46)

1
Var [bN(é)lex] =Wiel(§ N)

where x; = x(z;).
Condition [ 1a] implies that given any n > 0, there exists d, > O such
that

x;€X(§,d,)=|b(x) — )| <7 (3.47)
Recall that A(E, Py,) = X[& m{d(&, Py,)}]. Hence,
E[bA(E) Py d(&, Py) <m™Y(d,)]e[b(E) —n,b(E) + 1] (3.48)

Condition [1b] implies that the variances Var(y|x = x,), ieI({, N) are
bounded by 4, provided that A(&, Py,) = X(&,d,). Hence,

A
Var [by(E)| Py, d(E, Py )<m™ 1 (do)] < m (3.49)
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Now let 0 < & <min[m™'(d,),m " (d,)] and let 0 <J < co. Con-
sider the mean and variance of b{¢) conditional on the sample size
and on the event that the empirical measure of x is a member of the set

of measures
C©,J)=[Q,:d(5, Q) <3N, Q) > J] (3.50)
Tt follows from (3.48) that for all feasible é and J,
Epss = E[by(8)| Pxx€C(8,J)1€[b(E) — 1, H(E) + nl  (3.51)
1t follows from (3.48) and (3.49) that
Vs = Var [bN(f)lpnxGC(é, N1
= Var [E[by(&)| Pyx» d(& Py} <m™ 1(8)]1 Pyx€ COO, Nl
+ E[Var [by(8)| Py, d(&, Py;) <m™(3)]| Py,€C(6, )]
<dn?+ i) (3.52)
Chebychev’s inequality and (3.52) imply that for any v> 0,
Prob [|by(&) — Exssl < v|Pnx€C(6, )] >1- Vel (3.53)
>1—(@dn? + AD)V? )
Hence, by (3.51)

Prob [|by(é) — HE)| <1+ v| Py,eC(6,7)] > 1 — (41" + MDYV
(3.54)

Finally, remove the conditioning on C(6,J). In general,
Prob [|by(&) — (&I <n+v]
= Prob[|by(&) — KOl <n+ v| Py.€C(5,J)]
x Prob[Py:€C(3,J)]

+ Prob[|by(&) — W)l <n+ V| Py $C(6,J)] x Prob [Py, ¢C(0.J )
(3.55)

Conditions [1c] and [1d] imply that as N — o0,
Prob[Py.€C(4,/)]—~ 1 (3.56)
This and (3.55) imply that
liminf Prob [|by(&) — B(&) <n+vl=1— (dn? + A/ DV (3.57)

N— o

Now let n—0 and J— 0. By (3.57), Prob [|bM<) — b&)l<v]—1
for every v>0. QE.D.
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The four conditions of this theorem are unsurprising. Smallest
neighborhood estimates, like histogram and nearest neighbor esti-
mates, approximate the conditional mean by a local average. For a
local average to be consistent, the population must be sufficiently
regular. Conditions [1a] and [1b] suffice. That is, it is enough that
E(y|*) be continuous at ¢ and that, for £ near £, the variances of the
measures P|& be bounded.

Given these regularity conditions on P, the local average converges
if conditions [1c] and [1d] hold. That is, as N — oo, the neighborhood
of ¢ on which the average is taken should shrink toward ¢ and, at
the same time, the average should be computed on increasingly many
observations.

Selection of m(*)

There is a tension between conditions [1c] and [1d]. To make the
consistency theorem operational, we need to show that it is possible
to select m(*) so that both [1c] and [1d] hold.

To do this, we work with the distribution G(*) of the distance of
the random variable x to the point £e X. That is, for d > 0, define

Gi(d)= P.[p(¢,x) <d] = P.[X({, d)] (3.58)

By the Lebesgue decomposition theorem, the probability measure
on [0, oc) generated by G, can be decomposed uniquely into the sum
of a discrete measure, a singular continuous measure, and a measure
that is absolutely continuous with respect to Lebesgue measure. See
Chung (1974, p. 12). Let g{*) denote the density of the absolutely

continuous component.
With this as background, we have the following results.

Lemma 1
Let & be in the support X, of P,. Let N — co. Then d({, Py,)—0 in

probability. W

PROOF d(, Py,) is the distance from & to its nearest neighbor
among the N observations of x. By (3.58) and the assumption of

random sampling,
Prob[d(£, Py < 8] =1—[1—G.(8)]" (3.59)
for § > 0. By the definition of X in (3.36), G,(6)> 0 for all 6> 0.
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Hence, for all 6 >0, Prob{d(¢, Py,)<d]—1 as N - . Q.E.D.

Lemma 2
Assume that P (£)>0. Let N—co. Then N(, Py,)— co almost

surely. B

PROOF By the strong law of large numbers, Py, (&)= P()>0
almost surely. Let 0 <7 < P,(£). Then with probability one, there
exists a finite N, such that N> Ng= Py ({)>n. But Py (&)>n=
d(&, Py,) = 0= A(L, Py.) = {&} = N(§, Pys} = NPxu(£)> N QE.D.

Lemma 3

Assume that for some d; >0, Gdd,)= ‘(’,‘ g:(6)dd. Moreover,
g, <g:0)<g, for o <d,, where 0<g, <g,<o0. Let m(x) be
differentiable with derivative m, (*) satisfying the conditions m,(0) = 1,
all 5, and m, (8) = co as 8 » 0. Then N(¢, Py,)— co in probability. W

PROOF Let J be any positive integer. The lemma states that as
N — 00, Prob[ N(¢, Py,) < J]—0. But

Prob[N(§, Py <J]= Jil Prob[N(&, Pus) =J]) (3.60)
=0

By construction, N(¢, Py,) > 1 always. Hence, it suffices to show that
as N — o0, Prob[N(&, Py,) =j]—0 for each positive integer J.
For any d > 0,

Prob[N(E, Py,) =]
= Prob[N(¢, Py,) =jnd(, Py < d]
+ Prob[N(, Py,) =jnd(é, Py > d]
< Prob[N(Z, Py,) = jnd(, Py, < d]}
+ Prob[d(&, Py,) > d] (3.61)
By assumption, g{*)>0ina neighborhood of zero. So e X . Hence,
by Lemma 1, Prob[d({, Py,) > d] —0. Therefore, we need only to

show that Prob[N(&, Py =jnd({, Py)<d]—0. In particular, it
suffices to choose d, =m~'(d,) and show that Prob[N(¢, Pyy) =
jnd(E, Py, <dy]1-0.
Observe that
d(&, Pyx) = mian(é, x;) (3.62)
i=1,..,
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Thatis, d(£, Py,)is the first order statistic in a random sample of size N
from G,. Also, N(¢, Py,) =j if and only if the jth order statistic is
less than or equal to m[d({, Py,)] and the (j + 1)st is greater than
m[d(¢, Py,)]- By assumption, the mass of G, in the interval [0,d,]
derives entirely from the absolutely continuous component of G,. It
follows that

Prob[N(Z, Pug) =j Ad(Z, Pag) < d;]

4 (N=1)!

= NagAd
Jo MG N

X [Gc[m(é)] - G,,;((S):Ij‘1 [1—-G,[m(6)]1]"7ds

(fd2

<, Moo ),(N 5 [Gs m@) 1~

JO

x [1- Gé[m(é) 117¥ fdé (3.63)
Thus, it suffices to show that as N — oo,
- (N J- ¥)
[ a0 =g Lo moY [ - G mo1] 2060
(3.64)

The integrand in (3.64) is closely related to the density of the jth
order statistic of a random sample of N observations drawn from the
distribution function G,[m(*) ]. Continuity and strict monotonicity of
m(+) imply that G, m(+}] is a legitimate distribution function.
Differentiability of m(x) implies that the absolutely continuous
component of G, [m(*) ] has density g.[m(+) Jm,(+). Hence, the density
at ¢ of the absolutely continuous component of the distribution of the
Jjth order statistic from G, [m(+)] is (sce Lehmann, 1983, p. 353).

(Pa:jN(é) = Ng:[m(é) Jm,(3)
o (N-1)
(j— 1N =)

[G[m(8)]1~[1~ G, [m(@&)1]™~»

(3.65)
It follows that (3.64) is equivalent to the condition
d
? gd9)
~(0) dé—-0 3.66
J o P9 ) I @) 369

By assumption, 0 < g; < g49) < g, < o« for é < d,. Hence, (3.66) is
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equivalent to

d2 . 1
L P8} s 45 =0 (3.67)

Also by assumption, m,(8) — oo as § —0. Hence, given any ¢ > 0, there
exists a §, > 0 such that 6 < 6,=m,(d) > &. Let d, = min(d,,é,). Then

42 1 % 1
L (ngN(é)m dé = J; (PéjN(é)mda

+ J zqoéjN(é)————dé
. ©
s%fobm(é)dm J ‘oen@ds (3.6

As N — oo, the jth order statistic of a sample of size N from G ,[m(x)]
approaches zero with probability one. Hence,

”dz
and
rd>
@ein(6)do -0 (3.70)
Jd,
It follows that the left-hand side of (3.68) is asymptotically bounded
above by 1/c. Letting ¢ — oo completes the proof. Q.E.D.

Lemma 1 states that condition [1c] holds if £ is in the support of P,.
Lemma 2 says that condition [1d] holds if P, places positive mass at
& Lemma 3 addresses a much more subtle question. Can m(x) be
chosen so that condition [1d] is satisfied when & is in the support of P,
but P, places zero mass at ¢?

We obtain a positive answer provided only that G/x) is well-
behaved in a neighborhood of zero. It suffices that in a neighborhood
of zero, the density g,(*) of the absolutely continuous component of
G¢*) be bounded away from zero and infinity. The lemma also
assumes that Gf+) has no singular continuous component in a
neighborhood of zero but this condition is inessential.

We find that condition [1d] is satisfied if m(*) is a function whose
derivative m,(8)— oo as 5 —»0. This property is essential. It can be
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shown that if m,(d) stays bounded as é —0, then N(¢, Py,) stays

bounded with positive probability.
One class of functions m(*) that work are the power functions

m(d) =d + o, d* (3.71)

for 0 <a, < o0 and 0 < a, < 1. Here, m;(d) =1+ o, ,d** " 1.

Given that all m(x) of the form (3.71) yield consistent estimates, one
would like guidance on the selection of the constants («;,a,). More
generally, one would like a criterion for selection of m(+) from the
space of all functions that satisfy the assumptions of Lemma 3. This
question, which will not be pursued here, resembles questions that
arise in nearest neighbor and histogram estimation. There, the analyst
must decide how to increase the number of neighbors or shrink the
window width as N — co. Here, the problem of selecting a function
whose argument is the sample size is replaced by one of selecting a
function whose argument is the distance to the nearest neighbor.



PART II

Moment problems

The three chapters of Part I describe estimation probiems prominent
in econometric research. Chapter 4 presents the problem of best
conditional prediction. Chapter 5 examines conditional likelihood
problems. Chapter 6 studies the estimation of econometric models.

The estimation problems treated here vary in substance but share
a common formal structure. Each can be represented as a moment
regression. So parameters of prediction problems, likelihood
problems, and econometric models are all estimable by a common
analog estimator, the method of moments.

The chapters of Part II specify estimation problems and derive
method of moments estimates. These chapters emphasize basic ideas
and, to the extent possible, avoid burdening the discussion with
technical detail. Part IIT will develop asymptotic theory for method
of moment estimation. There, we shali have to pay closer attention
to the specification of the parameter and sample spaces and to
regularity conditions.



CHAPTER 4

Conditional prediction problems

A conditional prediction problem presumes that one observes a
realization of a random variable x and wishes to predict the
realization of some other random variable y. A best predictor of y
conditional on x is a prediction that minimizes expected loss with
respect to a specified loss function.

The estimation of best predictors may be the most extensively
studied of all regression problems. One reason is, simply enough, that
prediction problems often arise in practice. Another, quite different,
reason is that best predictors are useful summary statistics character-
izing the location of a random variable.

Section 4.1 describes the generic properties of conditional predic-
tion problems. Section 4.2 characterizes the best predictors associated
with various loss functions.

Best prediction problems are moment extremum regressions.
Section 4.3 applies the method of moments to obtain analog esti-
mates of best predictors. A by-product is the finding that a best
predictor of y conditional on x solves a conceptually distinct ‘ex ante’
prediction problem. Section 4.4 discusses ex ante prediction.

4.1 Best predictors

Let x(*) be a given function mapping the sample space Z into a space
X. Let a realization of the random variable z be drawn but not
observed. Only the realization of x(z) is observed.

Let y() be a given function mapping Z into the real line. Suppose
that one is required to make a point prediction of the unobserved
realization of y(z). If 8 is the prediction, one suffers a random loss
L(y — 6), where L(*) is a specified loss function. That is, L(*) maps the
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real line into the non-negative half-line and

O<u<v=0=L0)< Lu) < L)
0=LO)<L(—uy<sL(—v 4.1

Let b(+) be a function mapping X into the real line that solves the
collection of problems

8eR?

b(£) — argmin JI'(y —0)dP,|E=0, {eX (4.2)

That is, for each ¢ in X, b(¢) minimizes on R! the expectation of the
random loss function conditional on the event [x = 7. The function
b(x) 1s termed a best predictor of y conditional on x.

4.1.1 Location functions

It is appealing to think of a best predictor as a summary measure
characterizing the location of y conditional on x. This idea may be
given formal expression. _

Let IT° denote the space of all probability measures on the real line.
Let /() be a function mapping I1° into the real line. Given any
measure Q in I1° let (Q) be a random variable distributed Q. Given
any real number 7, let D, be the probability measure placing all its
mass on 7. Let @@ D, denote the probability measure of 6(Q) + .
Then I(*) is said to be a location function if for all @ in IT1° and 7 in R,

KQ®D,)=UQ) +n (4.3)

A best predictor b(x) is a location function evaluated at the
collection of probability measures P, |£, £€X. To see this, fix ¢ and let
n be any real number. Suppose that instead of predicting the
realization of the random variable y, one is required to predict the
realization of y + . Observe that

LI(y+m—(@+mn]=Ly—0) (4.4)
It follows from this and from (4.2) that if 5(&) is a best predictor of y
conditional on the event [x = £], then b(&) + 7 is a best predictor of

y+n.

4.1.2 Estimation of best predictors

Much of the interest in the estimation of best predictors derives from
the fact that best predictors are location functions. One often would
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like to summarize succinctly the manner in which the mass of the
probability measure P,|¢ varies with £. Location functions do just
this. Location functions that solve best prediction problems are easily
interpreted. Being moment regressions, best predictor location
functions are readily estimated.

Interest in the estimation of best predictors may, of course, be
motivated by a need to make a real prediction. In this case, it is
important to recognize that the problem of making a best prediction
given sample data is not the same as that of estimating a best
predictor. The former question asks how one should predict y
conditional on x when the best predictor b(*) is not known but a
sample of observations of (y, x) is available. The latter, which is the
focus of this chapter, asks how one might estimate b(x) itself.

To accomplish the former objective, a possible approach is to
address the latter question; that is, to estimate b(x) and use the
estimate By(x) to predict y. This makes sense if By(*) is consistent and
if a large sample of observations of (y, x) is available. Then By(*) is
likely a good predictor of y, in the sense of yielding close to minimal
expected loss. One cannot, however, claim that using an estimate of
the best predictor to predict y offers an optimal solution to the
problem of best prediction given sample data.

In fact, the literature on statistical decision theory does not present
a consensus prescription for prediction when b(*) is unknown but
sample data are available. There is a longstanding debate between the
Bayesian and frequentist schools of thought, as well as sub-debates
within each school.

4.1.3 More general prediction problems

We have assumed that the random variable y is real valued and that
the loss associated with using @ to predict y is a function of the
difference y — 0. It is possible to define conditional prediction in far
more general terms.

One may let y(*) be a mapping from Z into some space Y and
let the loss function be a mapping from Y x Yinto the non-negative
half-line. Then a best predictor of y conditional on x solves

b(£) — argmin J L(y,0)dP,{ =0, teX 4.5}
BeY

Such abstract prediction problems are examined in Ferguson (1967)
and Lehmann (1983). They will not be considered here.



52 CONDITIONAL PREDICTION PROBLEMS

4.2 Best predictors under various loss functions

In general, a best predictor of y conditional on x depends on the
specified loss function. Two loss functions have dominated the
literature. These are square loss and absolute loss.

4.2.1 Square loss
Let L{*) be the square loss function
L(u) = u? 4.6)

Then a best predictor solves the collection of problems
b(§) — argmin J(y —~6)2dP,[E=0, teX 4.7)
feR?

The mean regression of y on x is the one function solving (4.7).
Thus,

b(g) = Jy dP,|§,  CeX (4.8)

To establish this well-known result, fix £ and abbreviate the notation
by letting v = P |{. Let u denote the mean of v and let @ be any real
number distinct from u. Then

o

f(y*f))zd"'—" [(y—m+ (- 6] dv

= (y—u?dv+(u—67+2u— 0)[J(y—-u)dv]

I

= [(y—pdv+(u—907

ol

> |(y—w’dv (4.9)

4.2.2 Absolute loss
Let L(*) be the absolute loss function
L(u) = |u| (4.10)
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Then a best predictor solves the problem
b(¢) — argmin jly—BIdPyM:O, teX 4.11)
feR!

The median regression of y on x solves (4.11). To show this, again fix
¢ and let v = P,|¢. By definition, the median of v is the real number

m=minf:v(— 00,8] > 1/2 4.12)

where v( — oo, 6] is the v-probability that y is in the interval ( — co, §].
To prove that the median is a best predictor under absolute loss,
compare the expected loss at m with that at any 6 <m. We find

ﬁy—Bldv—ﬁy—mldv=j[ly——91—ly—m!Jdv

=J (0—m)dv+f [2y——(9+m)]dv+J. (m—6)dv
(— 0,0} (6.m)

{m,0)
= (0 — mv(— o0,0] + (8 — m)W0, m) + (m — Byv[m, x0)
= — (m— 6)W(— o0, m) + (m~ B)v[m, o)
= (m — 6){v[m, o0} — v(— co,m)} 4.13)

By definition (4.12) of the median, v(— c0,8] < 1/2 for all 8 <m.
Hence, v(— co,m) < 1/2. So the final expression in (4.13) is non-

negative.
Now compare the expected loss at m with that at any 8 > m.

le-ﬂldv— f|y~ m|dv = I[Iy— 0] —|y—mildv

=J (0——m)dv+J‘ [(6 + m)—2y)dv + [' (m — 6)dv
(~ oo,m) (m,8)

J18,0)
= (8 — mp(— co,m] + (m — G)v(m, 6) + (m — B)v[ 0, 0)
= (8@ — m)W( — oo, m] — (6 — m)v(m, c0)
= (0 — m){v(— co,m] — v(m, 00}} 4.14)

By (4.12), (0, o0) < 1/2 for all 8 > m. Hence, v(m, 00) < 1/2. So the final
expression in (4.14) is non-negative.

4.2.3 Mean vs. median regression

The mean and median regressions of y on x both express the central
tendency of y conditional on x. It is important to recognize that these
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two regression functions generally do not coincide. For example, one
might be a linear function of x and the other not. Or both might be
linear but with different slope parameters. It is even possible that one
regression function increases with x while the other decreases. A
simple example suffices to show this.

Let x be a Bernoulli random variable. That is, let there be a subset
Z, of the sample space Z such that x(z) =0 for zin Z, and x(z) = 1 for
zin Z — Z,. Then the mean and median regressions of y on x can be
written as the linear functions

E(y|)=E(yl=0)+[E(yI{=1)—-E(yI=0)], =01

(4.19)
and
m(y|§)=m(y|E=0)+[m(y[{=1})—m(yl¢=0)]¢, ¢=0,1
(4.16)

where E( y|£) and m( y|£) denote the mean and median of y conditional
on the event [x =¢]. The slope parameters of the two regres-
sion functions are [E(y|{=1)—E(y|é=0)] and [m(y[é=1)—
m(y|& =0)]. These differences of means and medians need not be
equal nor even have the same sign.

Thus, prediction of y under square and absolute loss can yield
different qualitative conclusions about the central tendency of y as
a function of x. The need for care in specification of a loss function
disappears only if one somehow knows that the mean and median
regressions of y on x coincide in the application of interest. It is often
difficult to justify such knowledge. It is sometimes plausible that the
probability measures P,|¢, £eX all have symmetric distribution
functions. If so, the mean and median regressions do coincide.

4.2.4 Asymmetric absolute loss
The square and the absolute loss functions are both symmetric
around zero. That is, they satisfy the condition

L{ - u) = L(u), ueR! (4.17)
Sometimes one prefers to treat over- and under-predictions asym-
metrically. Among asymmetric loss functions, we shall discuss only

asymmetric absolute loss. Let « be a specified constant in the interval
(0, 1). The a-absolute loss function is

Luw)=(1 —o)ju] x 1[u<0] + aju] x 1[u>0] 4.18)
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Here 1[+] denotes the function that takes the value one if the logical
condition inside the brackets is satisfied and zero otherwise.

We have shown that the median regression of y on x is a best
predictor under 0.5-absolute loss. This result generalizes. The a-
quantile regression of y on x is a best predictor under a-absolute loss.
By definition, the a-quantile of a probability measure v is the real
number

g, =miné:v(— 0,0} 2« (4.19)

To prove that the a-quantile is a best predictor under a-absolute
loss, we generalize the argument of (4.13) and (4.14). Compare the
expected loss at g, with that at any 6 < q,. For L(*) given in (4.18),

J.L(y —6)dv— JL(y —q)dv= J[L(y —0)—L(y—q,)]dv
=(1—a)J (O—q,)dV+j [y—{af + (1 — o)q,}]dv
(- ©,6] 6.9,)

+ o J (g, — 6)dv
[4z0)

> (1 — a8 — gJv(— 0,6] + (1 — )b — q)v(6,9,)
+ (g, — OW[4, )
= — (1 —a)(g, — O)V(— 0, 44) + 2(q. — )[4, )
= (g, — 0){av[ga ) — (1 — ¥(— ©,q,)} (4.20)
By (4.19), v(— 0,60] < « for all § < g,. Hence, v(— 20, q,) < a. So the

final expression in (4.20) is non-negative.
Now compare the expected loss at g, with that at any 0>gq,

fuy —f)dv - JHY —q,)dv= j[ﬂy —6)— L(y—qJ]dv

=(1—a) (0 —g)dv+ [{(1 — )8 + ag,} — y1dv

(— %0.494) ()]

+ o J (g, — 6)dv
(6, =)

> (1 — 0)(8 — gIv(— 0, 4,] + (g, — O)v(q,, 0) + 2(d. — 6)v[6, o)
= (1 — a8 — g — 0,4,] — A8 — GG ©©)
= (6 — g H(1 — ¥ — 0, 4,] — ®v(gr0)} (4.21)
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By (4.19), 6,00) < 1 —a for all > g,. Hence, v(g,, 0) < 1 — a. So the
final expression in (4.21) is non-negative.

It is of interest to compare the best predictors of y under a-absolute
loss as a varies. As a increases, the loss function penalizes under-
predictions of y more heavily and over-predictions less heavily. The
result is that a higher quantile regression becomes the best predictor.

Let 0 <a; <a, < 1. For any probability measure v,

oy < az :QIH < qaz (4'22)

It follows that the a,-quantile regression of y on x lies everywhere on
or above the a,-quantile regression. These two quantile regressions
need not, however, be parallel. In fact, one may be increasing in x
where the other is decreasing. Thus, prediction of y under the «,- and
a,-absolute loss functions can yield different qualitative conclusions
about the location of y as a function of x.

4.2.5 Translation families

The quantile regressions of y on x are parallel to one another if the
conditional probability measures P |, £€X are a ‘translation family’.
Assume there is a function 5(+) mapping X into the real line such that,
for each £ in X, P,|{ is the measure of the random variable y + 5(¢).
Then P,|¢ is the same as P, up to location. We say that P |, £e X are

a translation family.
Let I,(») and I,(*) be any two location functions. The definition of a

location function implies that for all £ in X,

1,(Py &) — 1,(P, | &) = [1,(P,) + n(&)1 — [1,(P,) + ()]
= I(P,)— 1,(P,) (4.23)
Thus, considered as functions on X, I,(*) and /,(*) are parallel.

4.2.6 Best predictors of binary response

To conclude this discussion of loss functions, we briefly examine
prediction under square and absolute loss in the special case of binary
response. In binary response problems, the distribution of y con-
ditional on the event [x = {] is Bernoulli with unknown parameter p,.
That i1s, y=1 with probability p, and y=0 otherwise. Binary
response offers the simplest non-trivial setting for conditional
prediction.
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Fix £ The mean of y conditional on [x = £] is
E(y|&) =P, (4.24)

So the best predictor under square loss is p,. The a-quantile of y
conditional on [x= ] is

718 =1p;>1—«a] (4.25)

Hence, under a-absolute loss, 1[p; > 1 —a] is a best predictor.

Note that for all £ such that p, # 1 — «, the a-quantile 1[p; > 1 —a]
is the unique best predictor under a-absolute loss. For £ such that
p:=1—a, on the other hand, all predictors in the interval [0, 1] have
the same expected loss and so are best predictors.

4.3 Method of moments estimation of best predictors

Consider the problem of estimating a best predictor b(x). Thus, let a
conditional prediction problem be specified. Let a random sample
from P be drawn and the empirical measure Py observed. Let it be
known that b(=) is in a given space B of functions mapping X into the

real line.
The method of moments is the dominant approach to estimation.

In Section 3.3, we obtained method of moments estimates for general
moment extremum regressions. Applying those results here, let w(%)
be any function mapping X into the real line, with w({)>0 a.e. P,.
Then the problem

6eR?

b(&) — argmin J Ly —-6)dP,|¢=0, ae P, (4.26)
implies that b(*) solves

b(*) — argmin f w{x(z) }L[W(z) — c{x(z)} JdP =0 4.27)

Application of the analogy principle to (4.27) yields a method of
moments estimate, namely

ceB

By = argmin f w{x(z)} L[¥(z) — c{x(z)}]dPN (4.28)

Two especially prominent examples are the estimates obtained
under square and absolute loss, with w($) = 1 for all . These are the
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least squares and least absolute deviations estimates

By = argmin f [(2) — c{x(z)} 1*d Py

= argmin - 3" [, — (x)]" 429)
=1

ceB

and
By = argmin J]y(z) —c{x(z)}|dPy
ceB

1 N
=argmin = ¥ [y~ c(x)| (430)
i=1

ceB

Method of moments estimation under a-absolute loss has been
studied by Koenker and Bassett (1978).

4.3.1 The parameter space

In Chapter 3, we indicated that method of moments estimation of
regression functions works well when the parameter space is suffi-
ciently small but breaks down when it is too large. The cautionary
remarks made there obviously apply here. In fact, method of
moments estimation of best predictors breaks down in a particularly
drastic way.

Consider the common setting in which the empirical support of x,
thatis Xy =(x;,i=1,..., N), contains N distinct points. Let B restrict
b(*) only locally. Then the method of moments estimate of b(x) is

By(x)=y, i=1...,N (4.31a)
By&)=R', teX-X, (4.31b)

This holds for all loss functions and weighting functions.

It is important to understand that the failure of the method of
moments when B restricts b(*) only locally does not imply that
consistent estimation is impossible. The nonparametric estimation
methods described in Sections 3.4 and 3.5 remain available.

4.3.2 Method of moments estimation of mean regressions

The method of moments estimate (4.28) is well defined for any loss
function. For square loss, alternative method of moments estimates
exist.
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Under square loss, the best predictor of y conditional on x is the
mean regression of y on x. So the collection of moment extremum

problems
b{¢) — argmin J(y —0)*dpP,|E=0, teX 4.32)
BeR!
is equivalent to the collection of moment equations

f[y —b(§)]dP,|E=0, EeX (4.33)

Let () be any function mapping X into a real vector space. It
follows from (4.33) and from the law of iterated expectations that the
mean regression solves the moment equation

Ju{x(z)} [Wz)— b{x(z)}]1dP =0 4.34)

That is, the prediction error y — b(x) is orthogonal to any function of
x. Method of moments estimates for the mean regression may be
obtained by applying the analogy principle to (4.34).

4.3.3 Method of moments estimation of quantile regressions

A variation on the foregoing method for estimating mean regressions
can be used to estimate some quantile regressions. Recall that the
a~-quantile of a probability measure v is

g,=minf:v(—c0,0] 2« 4.35)

Let v be any continuous probability measure; that is, one without
mass points. Then

W—00,g)=1—-vg,0)=0a (4.36)
Hence,
(1 —)v(— 00,q9,) —av(g,, ©)=0 4.37)

Let & be a random variable distributed v. Then (4.37) may be restated
as the moment equation

J{(l-—-a)*l[5<q,_'|—at][6>qa]}dv=0 (4.38)

Now consider the a-quantile regression of y on x. Assume that for
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each £ in X, the probability measure P | is continuous. By (4.38), the
a-quantile regression solves the collection of moment equations

J{(l—cz)*l[y<b(§)]—az*l[y>b(£j)]}dPJ,[é=0, leX (439

As earlier, let v(*) be any function mapping X into a real vector space.
It follows from (4.39) and from the law of iterated expectations that
the a-quantile regression solves the moment equation

fv{x(z)} {(1 — a)*1[¥(z) < b(x(2))]
— ax1[¥(z) > b(x(2))]}dP =0 (4.40)

Method of moments estimates for the a-quantile regression may be

obtained by applying the analogy principle to (4.40).
Equation (4.40) simplifies in the case of median regression. There,

J v{x(z)} sgn[y(z) — b(x(z))]dP =0 (4.41)

where sgn(x) denotes the sign function. That is, u < 0<>sgn(u)= —1;
sgn(0)=0; and u > 0<>sgn(w) = 1. Thus, the best predictor under
symmetric absolute loss makes the sign of the prediction error
y — b(x) orthogonal to any function of x, provided that the measures -
P,|&, EeX are continuous.

44 Ex ante prediction

By definition, a best predictor of y conditional on x solves
b(&) — arege?lin J‘L(y —6)dP,[¢ =0, teX (4.42)

By the law of iterated expectations, a best predictor solves
b() — argrzlin fL[y(z) —c{x(z)}]dP=0 (4.43)
provided that the space B of predictor functions contains a solution to
(4.42). In the preceding section, we used (4.43) and weighted versions

thereof to obtain method of moments estimates for best predictors.
Here we call attention to the fact that (4.43) is itself a prediction

problem.
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Problems (4.42) and (4.43) are conceptually distinct. In (442), a
realization of (y, x) has been drawn and the event [ = £] has been
observed. The problem is to minimize over 8 in R* the expectation of
L(y — 6) with respect to the measure P,|¢. In (4.43), a realization of
(y, x) will be drawn and the realization of x then observed. Before
this occurs, a predictor function must be chosen. The problem is to
minimize over c¢(x) in B the expectation of L[y(z)—c{x(z)}]
with respect to the measure P.

The same function () solves both the ex post prediction problem
(4.42) and the ex ante problem (4.43). This fact is a simple but
remarkable consequence of the linearity of the expectation operator.

4.4.1 Best linear predictors

Consider the space B of predictor functions appearing in (4.43). Thus
far, we have assumed that B contains a solution to (4.42). Now drop
this assumption and permit B to be any space of functions mapping X
into the real line. Then problem (4.43) remains well defined, but is no
longer equivalent to problem (4.42).

By far the most extensively studied ex ante prediction problem is
that in which X is K-dimensional real space and B is the space of all
linear functions mapping RX into the real line. That is,

B=[({'7,¢eX), yeR¥] (4.44)

where ¢’ is the transpose of the column vector £. With this
specification of B, a function solving (4.43) is termed a best linear
predictor. The analog estimate of a best linear predictor is

By=[({'y.leX), yel'y] (4.45)
where

I'y = argmin J L[¥(z) — x(z)'y]d Py
reR®

I ,
=argmin i; L{y;— xiy) (4.46)

Best linear predictors are sometimes called linear regressions. We
shall not use this phrase. As defined in Chapter 3, a regression is a
function b(*) with domain X such that for each ¢ in X, the value b(£)
depends on P only through the conditional measure P|¢. Best linear
predictors have this property only if a linear function solves problem
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(4.42). Otherwise, a solution to problem (4.43) must trade off lower
expected loss for predictions at some realizations of x against higher
expected loss for predictions at others. The optimal tradeoff depends
on the set of conditional measures P}¢, £e X and on the marginal
measure P, as well.

It is worth noting that a best linear predictor does solve problem
(4.42) if the space X is sufficiently small. Assume that X contains L
points. Let b(*) solve problem (4.42). If L < K then there always exists
a y in R that solves the set of L linear equations b(¢) = £'y, é€X.
(In Section 4.2, we used this fact to write the mean and median
regressions of y on a Bernoulli random variable x as linear functions.)



CHAPTER 5

Conditional likelihood problems

Recall the definition of a likelihood problem given in Chapter 2.
Probability measure P on the sample space Z is known to be
absolutely continuous with respect to a given measure v on Z. That

is,
v(A) =0=P(4) =0, AcZ (5.1)

A given function (=) maps each element of the parameter space B
into a probability measure on Z. The measures [1(c),ceB] are all
absolutely continuous with respect to v. The parameter b solves the
index problem

P—1(0)=0 (5.2)

In Chapter 2 we stated that, in the context of (5.1), b solves (5.2) if
and only if b also solves the moment problem

b — argmax J.log o[z, t(c)]dP=0 (5.3)
ceB

where @,[*,1(c)] is the density of 7(c) with respect to v. This fact,
which underlies maximum likelihood estimation, will be proved here.

Actually, we shall consider a regression version of the likelihood
problem. It is rare in econometric work to assume that a parameter
of interest indexes the probability measure of the entire observable
random vector. It is relatively common, on the other hand, to assume
that a parameter indexes a collection of conditional probability
measures.

5.1 The estimation problem

Let y() and x(*) be given functions mapping Z into spaces Y and X
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respectively. Let it be known that for each ¢ in X, the conditional
probability measure P, |£ is absolutely continuous with respect to a
given measure v, on Y. Thus,

v(4)=0=>P,(A4]5) =0, AcY (54)

Henceforth, we say that v, dominates P,|{. In applications, the
dominating measures v;, € X usually coincide. We shall nevertheless
allow for the possibility that v, varies with ¢.

Let © be a given space. Let [1,(0),0c@®] be a given family of
probability measures on Y, all dominated by v,. Let the parameter
space B be a space of functions mapping X into ®. Let it be known
that b(#) solves the collection of index problems

Pylf - 1§[b(€)] = 09 EGX (5'5)

5.1.1 The likelihood inequality

In the context of (5.4), b(x) solves (5.5) if and only if b(*) also solves
the collection of moment problems

b(&) — ar%n;ax ~JAIog @:(y,0)dP,|E =0, teX (5.6)

Here ¢,(*,0), an abbreviated notation for @[ *,7,(6)], is the density
of 7,(6) with respect to v,. That is, ¢,(*,6) is a non-negative valued
function on Y such that

T0)(A) = J @(y, 6)dv,, AcY (5.7)

The key tool used to show the equivalence of (5.5) and (5.6) is
Jensen’s inequality:

Let Q be a probability measure on Y. Let h(*) be a function
mapping Y into the real line. Let f(*) be a concave function on
the real line. Then [f[h(»)]1dQ<f[fh(y)dQ]. Let f(») be
strictly concave. Then | f[h(y)1dQ =f[[h(y)dQ] if and only
if h(=) is constant a.e. Q.

For a proof, see Lehmann (1983) or Rao (1973).
Fix € and consider 8 in ©. The function log(+) is strictly concave.
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Hence, by Jensen’s inequality,

j log 04(, )P, ¢ — |log o[y, b(O]dP, ¢

_ @.:(y, 6)
= J log & T.mo1 41

(Pg(ys 0) 8
< 104 o571 9

By the absolute continuity of P |,

q’éj(y’ 9)
log f oD, 0] 1

— @:(y, 0)
IOEJ\ D)1 @ely, b(&)] dv,

= log[ J¢¢(y, G)dvg]

=0 (5.9)

So (5.5) implies (5.6).

The weak inequality (5.8) is an equality if and only if @,(y,0)=
@:[y, K&)] ae. P,|&. These densities agree almost everywhere if and
only if the probability measures 1,(8) and 7.[b(£)] coincide. So (3.6)

implies (5.5).

5.1.2 Identification

The above suggests that b(*) is identified if, for each c(*) # b(*), there
exists a £ in X such that t[c(£)] # P,|{. Recall, however, that any
regression problem is indeterminate up to sets of P.-measure zero.
Hence, (5.5) and (5.6) are really the same as

P, —1:[b({)]=0, ae P, (5.10)
and

b(&) — argmax j log @(y,8)dP,|E =0, ae. P, (5.11)
(=)

With this modification, a meaningful identification statement can be
made. For ¢ in B, let

X, =[feX:t{c(d)} # P,I¢] (5.12)
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Then b(+) is identified if and only if P.(X)>0 for every
c(*) # b(x).

5.1.3 - Dominating measures

Definition of a conditional likelihood problem presumes that for
each ¢ in X, one can specify a measure which dominates the
probability measure P |{. When the space Y is countable, this
requirement is innocuous. Let v, be counting measure, that is the
measure which assigns mass one to each element of Y. Then every
non-empty subset of Y has positive mass under v;. So (5.4) imposes
no restrictions on P, [

When Y is an uncountable set, specifying a dominating measure
generally implies some knowledge of P, | . That is, certain non-empty
subsets of Y are known to have probability zero. To make the point,
it suffices to consider the case in which Y is the real line. In parti-
cular, let us contrast three classes of problems, each prominent in
applications.

In a ‘continuous’ problem, it is known that P | is dominated by
Lebesgue measure u. Lebesgue measure assigns to each interval on
R! a mass equal to its length. Dominance by p implies that all
countable and some uncountable subsets of R have probability zero
under P |<.

In a “discrete’ problem, it is known that P, |£ is dominated by a
given discrete measure, denoted D. Measure D places positive mass
on each element of some countable set Y, of the line and assigns
zero mass elsewhere. (The set Y, may be finite. Binary response is
the case in which Y, has two elements.) Dominance by D implies
that every subset of R' whose intersection with Y, is null has
probability zero under P |¢.

In a ‘mixed’ problem, it is known that P,|¢ is dominated by the
sum of Lebesgue measure u and a given discrete measure D. Let
v=u+ D. Dominance by v implies that every subset of R! which
has both y-measure zero and D-measure zero has probability zero
under P,|¢.

Censoring generates a simple, empirically important example of a
mixed problem. Let h(*) be a function mapping Z into the real line.
Let it be known that P,|¢ is dominated by Lebesgue measure. For
¢ in Z, let y({) =max [0, ({)]. Then P,|¢ is dominated neither by
Lebesgue measure nor by any discrete measure. But P,|{ is domi-
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nated by the sum of Lebesgue measure and the discrete measure
placing all its mass on the point set {0}.

5.2 Maximum likelihood estimation

To obtain an estimator for b(x), we may apply the results of
Section 3.3. By the law of iterated expectations, the collection of

moment problems
b(£) — argmax flog @Ay, 8)dP,|E=0, ae. P, (5.13)
Gc®

is equivalent to the moment problem

b(x) — argn;ax J log [ @) [¥(2), c{x(z)}]1] dP =0 (5.14)
Application of the analogy principle to (5.14) yields the maximum
likelihood estimate

By = argmax flog [@e[¥2), c{x(z)} 1] dPw

ceB

N
~ argmax )" log g, [y, clx)]) (5.15)
=1

ceB i

Note that maximum likelihood estimation is well defined whether or
not, for {e(x; i = 1,..., N), the conditional empirical measure Py, | is
dominated by v,.

Maximum likelihood estimation is one among many analog
methods for estimation of a parameter solving a likelihood problem.
Other approaches include the classical method of moments and
minimum distance estimation, discussed in Sections 2.1 and 24.
Relative to alternative procedures, maximum likelihood estimation is
distinguished by its asymptotic efficiency, at least in suitably regular
problems. This topic will be covered in Section 8.4.

5.3 Likelihood representation of prediction problems

Specifying a conditional likelihood problem ordinarily presumes
belief in the specification. For each ¢ in X, one knows that v,
dominates P,|. Moreover, one knows that P,|¢ is a member of the

family [t46),0€@].
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Applied to a misspecified problem, maximum likelihood estim-
ation often lacks a natural interpretation. All that can be said is that
the parameter being estimated is the statistical function

b(+) = argmax f log [ @, [M2), ¢{x(z)}1] dP (5.16)

Some conditional likelihood problems, however, are interpretable
even if aspects of the specification are incorrect. A leading case is the
class of problems having a conditional prediction interpretation.
Let Y be the real line. Let L(*) be a specified loss function. Let b(*)
be a best predictor of y conditional on x. Thus, b(») solves the

collection of problems
b(&) — argmin JL(y —6)dP,|E =0, teX (5.17)
8R!

Let p and « be any positive numbers. Then for all ¢,

argmin JL( y—6)dP¢

feR!

= argmax — p JL(y —0)dP,|< +log (k)

#eR!

= argmax flog [x*xexp[ —pL(y—6)]1dP,i¢  (5.18)

OcR1

So (5.17) is equivalent to the collection of problems

b() — argmax Jlog [x*exp[ —pL(y — 6)11dP,|£ =0, feX
(5.19)

Equation (5.19) almost has the form of a conditional likelihood
problem. The only flaw is that the integrals [kxexp[— pL(y—6)]dv,,
6eR* need not equal one for arbitrary p, , v, and L(*). On the other
hand, these adding-up conditions may hold for particular choices
of p,x,v,, and L(#). We shall show that if L(#) is sufficiently regular,
the adding-up conditions are satisfied when v, is chosen to be
Lebesgue measure and x is made an appropriate function of p.

Let L(*) be any homogeneous loss function such that exp[ — L(v)]
is integrable with respect to Lebesgue measure p. Homogeneity
means that for some A > 0, pL(v) = L(p*v) for all real v and positive
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p. The integrability requirement is that fexp[ — L{v)] du be finite.
For such a loss function,

Jx* exp[ —pL(y—0)]du= K[exp [—pL(v)]du
=K fexp [ - Lp*v)]du
=kp* f exp[ — L{v)]du (5.20)

Thus, jx+exp [ — pL{y — 6)] duis finite for all p, k, and . The value of
this integral varies with p and with x but not with 6.
Now define

x(p)zp‘[ f exp { -L(v)}du]— (5.21)

Then for all real 6 and all positive p,
f k(plexp[ —-pL(y —6)}du=1 (5.22)

So wx(p)exp[— pL{y—6)] is a legitimate density with respect to
Lebesgue measure. Hence,

b(¢) — argmax j log [x(p)* exp[ — pL(y — 6)]]dP,|¢ =0,
EeX (5.23)

which is an alternative representation of the prediction problem
(5.17), has the form of a conditional likelihood problem.

5.3.1 Square and absolute loss

The square and absolute loss functions are homogeneous and satisfy
the integrability requirement. Let us determine the likelihood repre-
sentations of prediction under these loss functions.

Consider square loss L(v) = v%. Here pL(v) = L(p"*v) so A=1/2.
The value of [exp(— v?)dp is n*/2 It follows that

k(p)exp[ — pLly— O] =(p/m)'?exp[—p(y — 0)*] (5.29)
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This is the density of the normal distribution with mean 8 and
variance (2p) "

Now consider absolute loss L(v)=|v|. Here p|v| =|pv| so i=1.
The value of {exp(—|v|)du is 2. Hence,

x(p)exp[ — pL(y — 6)]1 = (p/2)exp (- ply —6)) (5-25)

This is the density of the Laplace distribution with mean & and
variance 2/p°.

5.3.2 Interpretation of the maximum likelihood estimate

The method of moments estimate derived from the prediction
problem (5.17) 1s

1 N
By = argminﬁ Lly; —o(x)] (5.26)
=1

ceB i

The maximum likelihood estimate derived from the conditional
likelihood problem (5.23) is

N

log [x(p)* exp [ — pL{y; — c(x)}]]

1
B, = argmax—
N r%eB xNi=

1 N
= argmaxﬁ_;1 — pL{y; —c(x)] + log [x(p)]

ceB

N
= argmini Y LLy; — e(x)] (5.27)
ceB N i=1

Thus, the estimates (5.26) and (5.27) are identical. Indeed, the
maximum likelihood estimate for b(+) remains By, if p i1s not fixed but
rather is treated as a parameter to be estimated. That is, maximization
of the sample likelihood over (c,p) in B x (0, o) yields the same
estimate for b(x) as does maximization over ¢ in B, with p fixed.

How then shouid one interpret the parameter estimated by B,?
Interpretation must depend on one’s state of knowledge. One may
know that, for some positive p and for each ¢ in X, P |¢ is domi-
nated by Lebesgue measure and has density in the family
k(pyexp[ —pL(y—6)], 8eR'. If so, By may be interpreted as
estimating a parameter that indexes P,|£, e X. This parameter is
also the best predictor of y under L{#).

One may know only that the space B contains a best predictor of y
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under L(x). If so, By may be interpreted as estimating a best predictor.
This best predictor cannot, however, be said to index Pl ¢eX.

It may be that one brings no knowledge. If so, By cannot be said to
estimate a best predictor. One may only interpret By as estimating a
best ex ante predictor among the set of predictor functions B.



CHAPTER 6

Moment problems implied by
econometric models

Let us restate the abstract econometric model introduced in
Chapter 2. A random pair (z, u) takes values in a sample space Z x U.
Realizations of z are observed but those of u are not. A parameter b in
a specified parameter space B solves an equation

fz,u,b)=0 (6.1)

where f(+,*,*) maps Z x U x B into a vector space.

Equation (6.1) has no content in the absence of information on the
probability measure P_, generating (z,u). A meaningful model
combines (6.1) with suitable distributional knowledge. The literature
has emphasized knowledge of the behavior of u conditional on
some function of z. Thus, let x(*) map Z into a space X. For £ in
X, let P,|¢ denote the probability measure of # conditional on the
event [x(z) = £]. Then a model may be defined by an equation
f(z,u,b)=0 and by a restriction on the coliection of conditional
measures [P,|¢, EeX].

Consider the problem of estimating b. Estimation by the analogy
principle requires representation of the model in a form that relates b
to the probability measure of z. Often, the derived representation
refers to unrestricted features of P,{x. These features must be
estimated with b. Our focus is estimation of b; hence we shall refer
to estimated features of P,|x as a nuisance parameter.

Econometric research has concentrated on models which imply
that b and the nuisance parameter (if there is one) solve a moment
problem. Two classes of models are especially prominent. One
combines restrictions on P, |x with a function f that is separable in the
unobserved variables. That is,

f(za u, b) = uo(za b) —u (6'2)
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where uy(*,*)maps Z x Binto U. The other combines restrictions on
P,|x with a ‘response’ function specification of f. Here,

f(z,u,b)= Yz) — yo[x(z), u, b] (6.3)

y(*) maps Z into a space Y, and yq(*, *,*) maps X x U x Binto Y.

Section 6.1 obtains moment problems implied by models with f
separable in u. Section 6.2 generates moment problems from response
models.

6.1 Models separable in the unobserved variables

Let realizations of (z, u) be related to b through an equation
uy(z,b) —u=0 (6.4)

In the absence of restrictions on P,,, (6.4) simply defines u; it carries no
information about b. Combining (6.4) with various distributional
restrictions implies that b and a nuisance parameter solve a type of
moment equation known as an orthogonality condition.

6.1.1 Orthogonality conditions

Let X be a real vector space. Let I' denote a space in which a nuisance
parameter y lives. Let e(*, ) be a given function mapping U x I'intoa
real vector space. Let e(*,*)' denote the transpose of the column
vector e(s,+). The random vectors x(z) and e(u,y) are said to be
orthogonal if

Jx(Z)e(u, ) dP,, =0 (6.5)

Let it be known that P_, satisfies (6.5). Then it follows from (6.4) that
(b, y) solves the moment equation

Ix(z)e[“o(Z, b)a Y:" dP=0 (6'6)

Equation (6.6) is an orthogonality condition.

Orthogonality conditions are not meant to be motivated directly.
They are rather to be seen as the consequence of other, more
interpretable distributional restrictions. Some leading cases follow.
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6.1.2 Mean independence

The literature on instrumental variables is concerned with models in
which x and u are known to be uncorrelated. Let y be the mean of w.

Zero covariance is the orthogonality condition
I x(z)[ug(z,b) —7]'dP =0 (6.7)

Most authors incorporate the nuisance parameter y into the specifi-
cation of uy(*, *) by giving that function a free intercept. This done,
u is declared to have mean zero and (6.7) is rewritten as

J x(2)[uo(z,b)] dP =0 (6.8)

To facilitate discussion of a variety of distributional restrictions, we
shail go against convention and leave y explicit.

Zero covariance is sometimes asserted directly, as an expression of
a belief that the random variables x and u are unrelated. It is usually
preferable to think of zero covariance as following from a stronger
form of unrelatedness. This is the mean-independence condition

ju dP,|=y, (&eX (6.9)

It is often difficult to motivate zero covariance in the absence of
mean independence. To see why, rewrite (6.7) as

Jx(z)[uo(z, b)—y])dP = Jxl: J\(u -y dP,,Ile dP, =0
(6.10)

This shows that mean independence implies zero covariance. It also
shows that x and u are uncorrelated if positive and negative
realizations of [(u —y)'dP,|x balance when weighted by the distri-
bution of x. But one rarely has information about P,, certainly not
information that would make one confident in (6.10) in the absence of
(6.9). Hence, an assertion of zero covariance suggests a belief that x
and u are unrelated in the sense of mean independence.

Mean independence implies orthogonality conditions beyond (6.7).
Let u(*) be any function mapping X into a real vector space. It follows
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from (6.4) and (6.9) that

jv[x(Z)] [uo(z,b) — v} dP = Jv(x) [ J(u —yydP, IXJ dP,=0
(6.11)

provided only that the integral in (6.11) exists. So the random
variables v[x(z)] and uq(z,b) are uncorrelated. In other words, all
functions of x are instrumental variables.

6.1.3 Median independence

~ The assertion that u is mean independent of x expresses a belief that u
has the same central tendency conditional on each realization of x.
Median independence offers another expression of such a belief.
Median independence per se does not imply an orthogonality
condition. Median independence does imply orthogonality when the
conditional measures P,|¢, £€X are componentwise continuous.

Let U be the real line. For each ¢ in X, let m, be the median of u
conditional on the event [x = £]. Let y be the unconditional median of
u. We say that u is median independent of x if

m€='y, CEX (6.12)

It was shown in Chapter 4 that if P,1{,{eX are continuous
probability measures, their medians solve the moment equations

jsgn(u—mg)dP,Jé:O, teX (6.13)
So median independence and continuity imply that
Jsgn(u-—y)dP,,lé=0, teX 6.14)
It follows from (6.4) and (6.14) that
jv[x(Z)] sgn [uo(z,b) —y]dP = JU(X)[ ngn (u— )’)dPuIX} dP,=0

(6.15)

for all o(*) such that the integral in (6.15) exists. Thus, all functions of x
are orthogonal to sgn [ug(z, b) — 7.
The above argument for real-valued u extends to models in which u
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is a real vector. Let u; denote the ith component of u and let y; be the
median of u; Assume that u; is median independent of x and
continuously distributed conditional on each realization of x. Then
all functions of x are orthogonal to sgn [u,(z,b) —y.].

6.1.4 Conditional symmetry

Mean and median independence both express a belief that the central
tendency of u does not vary with x. Yet they are different assertions
with distinct consequences for estimation of b. This fact may cause the
applied researcher some unavoidable discomfort. One often feels at
ease saying that the central tendency of u does not vary with x. But
only occasionally can one pinpoint the mathematical sense in which
the term ‘central tendency’ should be interpreted.

The need for care in defining central tendency disappears if the
conditional measures P,|¢, £€X are componentwise symmetric with
common center of symmetry. Assume that for all realizations of x, the
conditional distribution of the ith component of u is symmetric
around some point y; on the real line. That is,

P, ll=P,_,15 CeX (6.16)

Let h(*) be any odd function mapping the real line into a real vector
space; that is, h{n) = — h(—n) for n in R'. Conditional symmetry
implies

'fh(ui —7)dP,1¢=0, ZeX (6.17)

Equations (6.4) and (6.17) imply that (b, y) solves

IUEX(Z)]h[uo.-(Z, b)—y]dP= J U(X)[ fh(ue —7) dP,, IX] dP,=0
(6.18)

for all v(*) and h(*) such that the integral in (6.18) exists. So all
functions of x are orthogonal to all odd functions of u; — 7.

The functions h(u; — y;)=u; —y; and h(u; — y;) =sgn(u; — ;) are
odd. Thus, the orthogonality conditions (6.11) and (6.15) that follow
from mean and median independence are satisfied given conditional
symmetry.
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6.1.5 Variance independence

One may believe that u not only has the same central tendency for
each realization of x but also the same spread. The econometrics
literature has tended to express spread by variance. Variance
independence (homoskedasticity) is the condition

J'(u—-h)(u—}’l)' dP,Jl=7y,  {eX (6.19)

Here 7, is the common mean of the measures P,|&, EeX and y, is the
common variance matrix.

Let »(*) by any function on X. Let i and j denote any components of
the random vector w. It follows from (6.4) and (6.19) that b, 71,72)
solves the orthogonality condition

J. o[x(z)1* [ [uo (2, ) — ¥1[uo(2. b) = ¥1,] = 72, 1dP =0 (620)

Note that the assertion of variance independence imposes no
restrictions on the variance matrix y,. In some applications, inform-
ation about 7, is available. For example, it may be known that the
components of u are uncorrelated with one another. Then vy, is a
diagonal matrix. Such information may be expressed by restricting
the parameter space for the moment equation (6-20).

6.1.6 Statistical independence

It is sometimes known that u has the same distribution for each
realization of x. That is,

PJt=P, ({eX (6.21)

Statistical independence implies mean, median, and variance inde-
pendence. Moreover, itimplies that all functions of x are uncorrelated

with all functions of u.
Let g(+) map U into a real vector space. Let y be the unconditional

mean of g(u). It follows from (6.21) that

jg(u) dP,|E=y, {eX (6.22)
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It follows from (6.4) and (6.22) that (b, y) solves

f o[x(z)][g{uclz, b)} — 7} dP =0 (6.23)

for all (=) and g(*) such that the integral in (6.23) exists.

6.1.7 Method of moments estimation

Suppose that an econometric model implies an orthogonality con-
dition. Then one may select an origin-preserving transformation and
apply the analogy principle to this moment equation. The result is a
method of moments estimate for (b, y).

Method of moments estimation of separable econometric models is
readily understood and widely applicable. It is of historical interest to
note that the ideas presented in this section have taken considerable
time to evolve.

Wright (1928) and Reiersol (1941, 1945) developed the zero
covariance condition (6.7) in the case where U is the real line, X and B
are both K-dimensional real space, and uy(*, *) is linear in b. In this
setting, the sample analog of the orthogonality condition generally
has a solution.

For some time, the literature offered no clear prescription for
estimation when the vector x is longer than b; that is, when there are
more instruments than unknowns. The sample analog of the zero
covariance condition then usually has no solution. The idea of
selecting an estimate that makes the sample condition hold as closely
as possible took hold in the 1950s, particularly following the work of
Sargan (1958).

It was not until the 1970s that the estimation methods developed
for linear models were extended to models that are nonlinear in b. See
Amemiya (1974). And it was not until the late 1970s that systematic
attention was paid to distributional restrictions other than mean
independence. The work of Koenker and Bassett (1978) did much to
awaken interest in models assuming median independence.

The idea that orthogonality conditions should be thought of as a
special case of moment equations has taken hold only in the 1980s.
See Burguete, Gallant and Souza (1982), Hansen (1982), and Manski

(1983).
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6.2 Response models

Many econometric models assert that an observable random variable
y is a function of a random pair (x, u), where x is observable and u is
not. The mapping from (x, u) to y is known to be a member of a family
of functions indexed by a parameter b in a parameter space B. Thus,
realizations of z and u are related through an equation
Wz) — yolx(2),u,b] =0 (6.24)

where y(*) maps Z into a real vector space Y and yo(*, *, *) maps
X x U x B into Y. Equation (6.24) is meaningful only when accom-
panied by suitable distributional information. The literature empha-
sizes restrictions on the conditional probability measures P,|x.

The random variable y is referred to variously as the dependent,
endogenous, explained, or response variable. The pair (x,u) are
termed independent, exogenous, explanatory, or stimulus variables.
Yo(*, *,+) is sometimes called a response function. We shall use the
term ‘response model’ to refer to the class of econometric models
which combine an equation y — y(x,u,b) =0 with restrictions on
P,|x.

6.2.1 Index problem representation of response models

Every response model can be represented as a collection of index

problems. Equation (6.24) states that a realization of y is determined

by the realization of x and by the unobserved pair (b, u). It follows that

for each ¢ in X, the conditional probability measure P,[¢ is

determined by (b, P, |£). That is, the parameter (b, P,|{) indexes P,|¢.
Let us state this formally. Fix . For ceB and 4 c Y, define

U, c,A)=uelU st yof,uc)ed (6.25)

Let the available distributional information restrict P,|¢ to a family
I, of probability measures on U. For (¢, 7)in B x I'y, let 74c, ) be the
probability measure on Y defined by

e, A =y[U( c,4)), AcY (6.26)
By (6.24),
P, (A1Q)=P,[UEb AIE], AcY (6.27)

It follows that
P& =14b,P,|E) (6.28)
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Thus, P,J¢ is a member of the family of measures [tec, )
(c;p)eB x T'el.

6.2.2 Models implying conditional likelihood problems

The above suggests that the parameter (b, P,|£) may solve a likelihood
problem. This is so provided that the available information implies
knowledge of a measure dominating P, |£. That is, (b, P,|£) solves a
likelihood problem if there exists a measure v, on Y such that for all

(c,y)in Bx Ty
v{A) =0=14c,y)(4) =0, AcY (6.29)

If (6.29) holds for each ¢ in X, [b,(P,|&, £€X)] solves a conditional
likelihcod problem. .

Two simple special cases are prominent in applications. In discrete
response models, the space Y in which y and yo(x,#,+) live is
countable. So condition (6.29) is satisfied trivially by letting v, be
counting measure on Y. All discrete response models have con-
ditional likelihood representations.

In separable response models, Y is a finite-dimensional real space,
U =Y, and (6.24) has the form

Wz) — g[x(2),b] —u=0 (6.30)
where g(*, *) is a given function mapping X x Binto Y. It follows that
PlE=Puipenll  EeX (631)

Suppose that P,}&, £eX are dominated by Lebesgue measure on U.
Then P,, . ,I& eX are similarly dominated. So condition (6.29) is
satisfied by letting v, be Lebesgue measure on Y.

6.2.3 Maximum likelihood estimation

Having represented a response model as a conditional likelihood
problem, one may apply the analogy principle 2nd obtain a maximum
likelihood estimate of [b,(P,|&, (e X)].

Empirical studies estimating response models by maximum likeli-
hood have tended to impose strong restrictions on (P, |, € X). The
most common practice is to assert that a finite-dimensional para-
meter indexes all of these conditional measures. Let I' be a finite-
dimensional real space. Let y/(x, *) be a given function mapping X x I’
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into the space of probability measures on U. It is assumed that for
some yin T,

Pjé=y(ly,  {eX (6.32)

Chapters 7 and 8 will examine the asymptotic behavior of maximum
likelihood estimates in this setting.

Condition (6.32) is often accompanied by the assertion that u is
statistically independent of x; that is,  does not vary on X. Some
recent theoretical studies drop condition (6.32) but retain the assertion
that u is statistically independent of x. For example, Bickel (1982)
analyzes the asymptotic behavior of ‘adaptive’ maximum likelihood
estimates of a linear model. Cosslett (1983) studies maximum
likelihood estimation of a binary response model. Heckman and
Singer (1984) treat a survival model.

The need to either know or estimate (P, £, £€X) is a drawback to
maximum likelihood estimation of response models, at least in
applications where b is the parameter of interest. Unfortunately, it
appears that response models do not generally have representations
yielding less burdensome estimation methods. Alternative methods
are available for models in which the response function has special
characteristics. These models assume weak distributional inform-
ation, yet imply moment problems involving only simple nuisance
parameters. The remainder of this section presents three cases.

6.2.4 Invertible models

Some response models can be rewritten as models separable in the
unobserved variables. Where this is so, the results of Section 6.1
apply.

Let y and u be one-to-one. That is, for each (¢,¢) in X x B, let
yo(&, *,¢) be invertible as a mapping from U into Y. Let y, Y&, »,¢)
denote the inverse function mapping Y into U. Then an alternative
representation of (6.24) is

vo ' [x(2), W2),b] —u=0 (6.33)

The separable response models (6.30) are obviously invertible. Also
invertible are the simultaneous equations models prominent in the
econometrics literature. In simultaneous equations analysis, (6.33) is
referred to as the ‘structural’ model and (6.24) as the ‘reduced form’.
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6.2.5 Mean-independent linear models

Certain forms for the response function combine well with specific
distributional restrictions. Linear response functions pair nicely with

mean-independent unobservables.
Let Y and U be J-dimensional and K-dimensional real space. Let

(6.24) have the linear-in-u form
Mz) — g1[x(2), b] — g2[x(2), b]u =0 (6.34)

Here g,(*,*) maps X x B into R’. The function g,(+, *) maps X x B
into R’ *¥ and is written as a J x K matrix. Note that the response
function in (6.34) is not invertible unless J = K and the matrices

g.(¢,¢), (£,c)e X x B are non-singular.
Let it be known that u is mean independent of x. Let y denote the

mean of u. Equation (6.34) implies that for each ¢ in X,
fy dP,|¢ = J[gl(é, b) + g,(&, b)u]dP,|&

=9,(¢b) + g(5, b)y (6.35)

Thus, the mean regression of y on x is g,(*,b) + g,(*, b)y.
Various moment problems follow from (6.35). Orthogonality
conditions may be obtained by rewriting (6.35) as

f[y —9:(5,0) — g,(§, by1dP, | =0,  ceX (6.36)

Let v(*) be any function on X. Then (6.36) implies that (b,y) solves

f v[x(2)][ 1(2) — 9:[x(2), b] — g,[x(z),b]y J dP =0  (6.37)

Chapter 4 showed that for each component of y, the mean
regression of y; on x is the best predictor of y; conditional on x under
square loss. The results of Section 4.3 imply that for any function w(*)
mapping X into (0,c0) and for each j=1,...,J, (b,y) solves the
extremum problem

(b,y) — argmin I wlx(2)1[y,(2) ~ g,,[x(2), €] — g2,[x(2), <}6]* dP
{c.9)eBxT

=0 (6.38)

Here g, (x, ¢) denotes the jth row of the matrix g,(x, ¢).
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6.2.6 Median-independent monotone models

Whereas mean independence meshes well with linear response
functions, median independence combines nicely with real-valued
response functions that are monotone in a scalar u.

Let Y and U be the real line. Let it be known that u is median
independent of x. Let y denote the median of u. For each ¢ in X, let
yo(Z, *, ¢) be non-decreasing as a function on U and continuous at .
Then y,(*,7,b) is the median regression of y on x. A proof follows.

Fix & We first show that the median of P,|{ cannot exceed
yo(&,7,b). We next show that if yo(, ,b) is continuous at y, the
median cannot be smaller than y,(&, 7, b).

By monotonicity of yo(¢, *,b) and (6.24),

u <y=yo(&, 1 b) < yol¢, 1, b}y < yols, 7, b) (6.39)
By definition of the median 7,
P,[(— 0,7]1£] > 1/2 (6.40)
It follows from (6.39) and (6.40) that
P,[(~ 0, yo(&1.0)11¢]1=1/2 (6.41)

Hence, the median of P,|¢ cannot be larger than yol&, 7, b).
The above holds whether or not y(¢, », b) is continuous at y. Now
assume continuity. Let ¢ > 0. Then there exists an # > 0 such that

|u - ‘yl < 'I=>|J’o(f:u,b)“‘}’0(é, y'yb)I <&
<=ly—yo(& 1, b)I <& (6.42)

By (6.42) and the monotonicity of yo(&, *, b),

y<yol&rb)—e=u<y—n (6.43)
By definition of the median ¥,
P,[(—c0,y—nlIg] <1/2 (6.44)
It follows from (6.43) and (6.44) that
P,[(— 0, yo(& 7, b)—€]1€] < 1/2 (6.45)

Hence, yo(&, 7, b) — & cannot be the median of P,|&.
Chapter 4 showed that the median regression of y on x is a best
predictor of y conditional on x under absolute loss. The results of
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Section 4.3 imply that for any weighting function w(#), (b, y) solves the
moment extremum problem

(b,y) —argmin ‘[W[X(Z)] |¥(z) — yo[x(2),6,c]| dP =0 (6.46)

(c.0)eB xT
The median regression representation of median-independent
monotone response models has various interesting applications. Two
follow.

6.2.7 Censored response

Let Y= [0, 0) and X = B = R¥. Powell (1984) studies estimation of
the censored linear model asserting that y =0 if x'b+u<0 and
y = x'b + u otherwise. That is,

¥(z) — max [0, x(zYb +u] =0 (6.47)

for each ¢ in X, the function max(0,¢'b + *) is non-decreasing and
continuous on U. Hence, the median of P,|¢ is max (0, Eb+ 7).
Applying (6.46), (b, y) solves

(b,7) — argmin J‘ [W(z) — max [0, x(z)c + 6]|dP =0  (6.48)
(c,0)eBxT

Applying the analogy principle to (6.48) yields the censored least

absolute deviations estimate

1 N
(By,T'y) =argmin— 3 |y, —max [0, x/c + ]| (6.49)
(c,8)eB x I‘N i=1

6.2.8 Binary response

Let Y={0,1} and X=B= RX, Manski (1975, 1985) studies estim-
ation of the binary response model asserting that y=0if x'b+u < 0
and y = 1 otherwise. That is,

Wz)— L[x(zYb+u>0]=0 (6.50)

For each & in X, the response function 1[£'b+*> 0] is non-
decreasing on U. For each £ such that &b # —y, this function is
continuous at y. It is discontinuous at y whenever £'b = —7. Neverthe-
less, we can show that for all £, the median of PLis1[Eb+7y> 0].

Fix £. Conditional on the event [x = £], the median of the Bernoulli
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random variable y is zero if P (0}£) > 1/2 and one otherwise. By (6.50),
P01¢) = P,[(— o0, — £B]IE] (6.51)

It follows from the definition of the median y and from (6.51) that
~&b2y<eP[(— 0, ~&b]|E] 2 1/2P,(018) 2 172 (6.52)

Hence, the median of P, | is 1[£'b +y > 0].
Applying (6.46), (b,7) solves

(b,y) — argmin f[ Wz)— 1[x(z)c + 6 >0]|dP =0 (6.53)
(cl)eBxT

Applying the analogy principle to (6.53) yields the maximum score

estimate

(cO)eBxT 1Y i=

1 X
By, IT'y) = argmmﬁ |y; — 1[x{c + 6 > 0]| (6.54)
1

6.29 Restrictions on P_|u

To conclude this discussion, we call attention to an asymmetry in the
traditional treatment of observed and unobserved explanatory
variables in response models.

The vanables x and u play identical roles in the economic process
represented by the equation y — yy(x,u,b)=0. The fact that the
researcher happens to observe x in no way diminishes the status of u.
Structural parity suggests that distributional restrictions should be
symmetric in x and u. Statistical independence possesses such
symmetry. Mean and median independence do not. These conditions
operate on the conditional measures P,|x but not on P, |u.

One may question the practice of asserting conditional distribution
restrictions in one direction only. Consider mean independence. If it is
sometimes plausible to assert that u is mean independent of x, then it
may also sometimes be plausible to assert that x is mean independent
of u. The former and latter assertions are distinct; in a given
application, one may be prepared to assert either or both. Statistical
independence implies both kinds of mean independence. On the other
hand, the two mean-independence conditions do not together imply
statistical independence.



PART III

Asymptotic theory for
method of moments
estimation

Part [II develops asymptotic theory for method of moments
estimates. Chapter 7 presents a set of consistency theorems.
Chapter 8 gives conditions implying that appropriately normalized
estimates have limiting normal distributions. Chapter 9 provides
further results.

In Chapter 1, we argued informally that analog estimates behave
well asymptotically if two conditions are met. First, the sampling
process should be such that the empirical measure Py converges to
the population measure P as N — co. Second, the estimate should
vary smoothly with Py, at least when Py is close to P. We must
now make these notions precise.

The consistency and asymptotic normality theorems proved in
Chapters 7 and 8 maintain the assumption of random sampling.
These theorems concern parameter spaces that are subsets of
finite-dimensional real spaces. The parts of the analysis dealing with
moment equations treat finite-dimensional equations. Sections of
Chapter 9 cite, but do not prove, findings on the behavior of method
of moments estimates in more general settings.

At the risk of belaboring the well-appreciated, it seems worth
stating explicitly why we study asymptotic theory when the typical
econometric problem involves estimation from a sample of fixed size.
Asymptotic theorems may or may not be relevant to analysis from a
given sample. In general, these theorems have the form ‘there exists (or
almost surely exists) a finite sample size N such that property...
holds whenever N > N,,.” Usually, the threshold sample size N which



88 METHODS OF MOMENTS ESTIMATION

guarantees the property of interest depends on the unknowns (b, P)
and so is itself unknown. Thus, asymptotic results are relevant if the
sample at hand is ‘large enough’, but we cannot be certain how large is
large enough. This ambiguity is frustrating but seems unavoidable.

We live with the ambiguous relevance of asymptotics in part
because exact sampling analysis of estimates is impractical. The
impracticality is most evident when an analog estimate is obtained by
implicit solution of a set of equations or an optimization problem.
Then one must work very hard indeed to derive the exact sampling
distribution of the estimate from knowledge of the process generating
the data.

We also live with asymptotics because exact sample analysis is, in
some respects, logically impossible. The sampling distribution of an
analog estimate generally depends on unknown features of (b, P).
Wherever this is so, one can hope only to estimate this distribution.
But the sampling behavior of an estimate of the sampling distribution
itself depends on unknowns. To terminate the developing sequence
of estimation problems, one must resort to asymptotic arguments.



CHAPTER 7

Consistency

This chapter and the next are concerned with estimation of para-
meters solving finite-dimensional moment problems. The parameter
space B is a subset of K-dimensional real space. The parameter b
solves either a moment extremum problem

ceB

b — argmin jh(z, c)dP=0 {7.1)
or a moment equation
fg(z, b)dP =0 (7.2)

In the latter case, g(*, *) takes values in J-dimensional real space. Note
that the term ‘finite dimensional’ does not imply that the sample space
Z is necessarily finite dimensional. In fact, most of the results we
report do not require imposition of explicit structure on Z.

In this chapter, we are concerned with the consistency of estimates
obtained by applying the analogy principle to (7.1) or (7.2). If b solves
a moment extremum probiem, the method of moments estimate is

By =argmin | h(z,c)dPy (7.3)
ceB

In the case of a moment equation, one selects an origin-preserving

transformation r(*) mapping R’ into [0, c0). Then the estimate is

By, = argmin r[ Jg(z, C)dPN] (7.4)
ceB

Definitions (7.3) and (7.4) presume that the functions [h(z, *)dPy and

r( {g(z, *)dPy] attain their infima on B, so the estimates By and By,

are non-empty. In our analysis, the existence of these estimates will be
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implied by restrictions placed on the parameter space and on the
functions h(*, *) and g(, *).

We shall present consistency theorems for two kinds of finite-
dimensional problems. These are termed ‘continuous’ and ‘step’
problems.

Continuous and step moment problems are distinguished by the
behavior of h(+, *) and g(», *) as functions on B. A moment extremum
problem is continuous if, for each { in Z, h({, *) is continuous on B.
Similarly, a moment equation is continuous if g({,*), {eZ are
continuous functions.

An extremum problem is step if, for each { in Z, h(,*) is a step
function taking at most two non-zero values on B. Let vy(*) and v,(*)
be given functions mapping Z into the real line. Let s(x, *) be a given
function mapping Z x B into the real line. Then h(+, +) has the form

h(C, *) = vo(O1[S(C, #) < 01 + 0, (D1[s((.*) > 0],  (eZ (7.5)

A step moment equation is defined analogously, except that the
functions vy(+) and v,(+) take values in R’.

The class of continuous problems covers many applications of the
moment problems examined in Part II. Empirical studies of best
prediction under square loss typically assume that the best predictor
of y given x is a member of a family of functions [f(,¢), ceB]
mapping X into Y. Usually, the functions f(&, *), £€ X are continuous
on B. Then the parameter b solves the continuous moment extremum
problem

b— argcglin f [y(z) — Ax(z),c’dP =0 (7.6)

Analyses of the separable econometric model uy(z,b) — u =0 with
mean-independent u typically make the functions uy((,*), {€Z
continuous on B. Then the implied orthogonality condition (see

equation (6.11))
f v[x(2)][uo(z,b) — 7' dP =0 (7.7)

is a continuous moment equation.
Some moment problems are inherently not continuous. One such is

the orthogonality condition (equation (6.15))

J. v[x(z))sgn[uy(z,b) — y]dP =0 (7.8)
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implied by a separable econometric model with median-independent
u. This is a step problem with s[{,(b,7)]=uy((,0)— 7y, vo({)=
= o[x({}], and v,({) = v[x({)].

Another is the extremum problem (equation (6.53))

(b,y) — argmin j [Y(z) — 1{x(z)c+ 6 >0]|dP =0 (7.9)
(c,5)eBxT

implied by a binary response model with median-independent w.

This step problem has s{{,(c,d)]=x({)c+ J,v,({}=11{)|, and

v1() =) — 1.

7.1 Preliminary theorems

This section presents a set of abstract conditions implying the almost
sure (a.s.) convergence of estimates of parameters solving moment
equations. We then prove a similar result for moment extremum
problems. These preliminary theorems are ‘bare bones’ consistency
findings. They give conditions that imply consistency but do not state
how these conditions may be verified in applications. That task will be
addressed for continuous and step problems in Sections 7.2 and 7.3

respectively.
In what follows, the symbol | | is used generically to denote a
norm on a finite-dimensional real space. One may let | | be the

familiar Euclidean norm but this is not necessary to the analysis. For
4 >0, B(d) is the subset of B defined by B(d) = [ceB:|¢c ~ b| = §].

7.1.1 Moment equations

Let b solve a finite-dimensional moment equation. Conditions 1, 2,
and 3 imply the strong consistency of a method of moments estimate.

Theorem 1 states this resuit.
Condition 1 (Identification)

(a) There exists a unique beB s.t. fg(z,b)dP =0.
(b) For each 6 >0, cgg(g) Ifg(z,c)dP) > 0.

Condition 2 (Uniform law of large numbers)

fg(z, c)dPy — J‘g(z, c) dPl =0, as

lim sup
N~ ceB
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Condition 3 (Origin-preserving transformation)
(a) r(*) is continuous on R’ and r(0)=0.

(b) For each £ >0, inf r(T)>0.
iTi>e

Theorem 1 Assume that Conditions 1, 2, and 3 hold and that the
method of moments estimate By, is non-empty for all N. Then

lim sup|c—b|=0, as. B
N"wCEBNr

PROOF Fix 6 >0.Lete= inf |[g(z,c)dP|. By Condition 1b, &> 0.
ceB(J)
By Condition 2, there almost surely exists a finite N, such that

j g(z,c)dPy| > /2

N>N,= inf
ceB(8)

Let = inf #(T). By Condition 3b, n > 0. Hence,

IT|>¢/2

N>N,;= inf r[J‘g(z,c)dPN} >n>0

ceB(d)

Now consider r[jg(z, b)dP,]. By Conditions 1a, 2 and 3a, there
almost surely exists a finite N, such that

N>N, =>r[ fg(z, b)dPN] <n
Therefore,
Letting 6 — 0 completes the proof. Q.E.D.

7.1.2 Moment extremum problems

Now let b solve a finite-dimensional moment extremum problem.
Replacing Conditions 1 and 2 with parallel conditions applied to
h(*, ) yields a parallel strong consistency theorem.

Condition 1’ (Identification)
(a) 3 a umque beB s.t.

J h(z,b)dP = min J h(z,c)dP

ceB
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(b} For each 6 >0,

inf |h(z,c)dP > |h(z,b)dP
<¢EB(d)

Condition 2’ (Uniform law of large numbers)

f h(z,c)dPy — jh(z, c) dP, =0, as.

Iim sup
N—w ceB

Theorem 1I' Assume that Conditions 1’ and 2’ hold and that the
method of moments estimate By is non-empty for all N. Then

lim supjc—~b]=0, as. 1

N—+w ceBy

PROOF Fix > 0. Let H = [h(z,b)dP. Let ¢ = inf [h(z,c)dP — H.
ceB(d)

By Condition 1b’, ¢ > 0. By Condition 2/, there almost surely exists a
finite N, such that

N>N,= inf |h(z,c)dPy>H +¢/2
ceB(J)

Now consider (h(z, b)dPy. By Conditions 1a’ and 2’, there almost
surely exists a finite N, such that

N>N2=sz,b)dPN<H+a/2

Therefore,
Letting 4 — 0 completes the proof. Q.E.D.

7.1.3 The identification assumption

Theorems 1 and 1’ lay bare the essential requirements for an estimator
_ to be consistent. Let us consider the role played by each of the
conditions of Theorem 1. (Theorem 1’ can be interpreted in similar
fashion.)

Condition la states that the parameter b is identified. Clearly,
consistent estimation of b requires that the asserted noment equation
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have a unique solution. If no solution exists, the estimation problem
has been misspecified and b is not defined. If the equation has multiple
solutions, sample data cannot possibly distinguish between them.

There is no general approach to verification of Condition la. To
understand why, simply observe that the restriction fg(z,b)dP = Oisa
system of nonlinear equations. Applied mathematics provides no
general constructive methods for determining the number of so-
lutions to such systems. One must proceed more or less case by case.

Condition 1b is a uniformity requirement that strengthens the
sense in which b is distinguished from all other points in B.
Condition 1a implies that |{g(z,c)dP| > 0 for all ¢ # b but does not
forectose the possibility that for some & >0,

jg(z, c)dP|=0 (7.10)

inf

ceB(d)

That is, there may exist parameter values whose distances from b are
greater than §, yet which almost solve the moment equation.

This would not be a concern if we knew the true population
moment function [g(z,+}dP. In that ideal situation, any deviation of
fg(z,c)dP from zero, no matter how small, suffices to distinguish ¢
from b. In practice, however, we attempt to learn b from analysis of the
sample moment function (g(z, *)dPy. This function almost always
differs from {g(z, *) dP. If (7.10) holds, we cannot rely on fg(z,*)dPy to
appropriately distinguish b from every point in the disjoint set B(6),
even if {g(z,*) dPy is very close to {g(z,#)dP. So Condition 1b, which
disallows (7.10), seems necessary for consistent estimation. We shall
later prove lemmas showing that Condition 1b is satisfied in both
continuous and step moment equations, provided that certain
regularity conditions hold.

7.1.4 Laws of large numbers

Condition 2 formalizes the requirement that Py be an appropriate
sample analog for P. The condition requires that a uniform strong law
of large numbers hold. A ‘law of large numbers’ is a theorem showing
that {g(z, *) dPy converges to fg(z, +)dP, in some sense. Strong laws
show that the convergence holds in almost every infinite sample
sequence z;,i = 1,..., oo and thus yield strong consistency theorems.
An alternative form of Condition 2 would require only that
{g(z, *)dPy approach (g(z, *) dP weakly, that is in probability. In that
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case, we would obtain a weak consistency version of Theorem 1.

The classical versions of the strong law of large numbers (see, for
example, Rao, 1973, Chapter 2) imply only pointwise convergence of
{g(z,*)dPy to {g(z,*)dP. That is, they show that for each ¢ in B,
{g(z,c)dPy converges almost surely to {g(z,c)dP. Condition 2 im-
poses the stricter requirement that the convergence be uniform on B.

It is important to understand why pointwise convergence of
(g(z,#)dPy to fg(z,*)dP is not enough for consistent estimation.
Pointwise convergence means that for every n >0 and c in B, there
almost surely exists a finite sample size N, such that

-( g(z,c)dPy — J. g(é, cydP

forall N > N,.. Combined with Condition 1a, pointwise convergence
implies that for each ¢ # b, jg(z, ¢)dPy is almost surely further from
zero than is [g(z, b)dPy, provided that N is large enough. But the
sample size required to guarantee this may vary with ¢. Thus, it
remains possible that for some é > 0 and for all finite N,

inf

J‘g(z, c)dPy
¢eB(d)

In this event, sample data cannot distinguish b from the disjoint set
B(6), no matter how large N is.

Condition 2 disallows (7.11) by requiring that the convergence be
uniform on B. That is, it asserts the almost sure existence of a finite
sample size N, such that [{g(z,c)dPy — {g(z,c)dP]<nforal N> N,
and all ¢ in B. Combined with Condition 1b, uniform convergence
implies that for each & > 0, all the moment values fg(z, c)dPy, ce B(5)
are simultaneously further from zero than is [g(z, b)dPy, provided
that N is large enough. We shall later give lemmas showing that under
random sampling, both continuous and step moment problems
satisfy Condition 2, if certain regularity conditions hold.

<n

=0 (7.11)

7.1.5 Transformations

Condition 3 indicates that any reasonable transformation r(*) is
compatible with consistent estimation. Given Conditions 1 and 2,
Condition 3a implies that

Nlim r,: J g(z,b) dPN] = r[ fg(z, b} dP] =0, as. (7.12)
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Condition 3b has the same purpose as Condition 1b. Note that one
has freedom to select r(*), so one can always ensure that Condition 3

is satisfied.

7.1.6 Finite parameter spaces

It is of interest to observe that when the parameter space contains
finitely many points, the conditions for consistency simplify substan-
tially. In this case, Condition 1a implies 1b. Pointwise convergence in
Condition 2 implies uniform convergence. Condition 3b reduces to
the statement r(T) > 0 for T # 0. Thus, all of the uniformity require-
ments in Conditions 1-3 are safeguards against irregularities that can
occur only when B is infinite.. Of course B generally is infinite in
applications so these safeguards are necessary.

7.2 Continuous problems

Let us now apply Theorems 1 and 1’ to continuous moment
problems. It suffices to consider in detail the case of moment
equations. This done, parallel findings for extremum problems follow
immediately.

7.2.1 Moment equations

To apply Theorem 1, we need to show that the estimate By, exists and
to verify Conditions 1, 2, and 3. We have noted that Condition 1a can
only be checked case by case and that one can ensure Condition 3 by
suitable choice of r(). So the analysis will focus on the existence of
estimates and on verification of Conditions 1b and 2.

Four assumptions will be maintained. These are:

Condition 4 (Continuity)
For each {eZ, g({,*) is continuous on B.

Condition 5 (Boundedness)

There exists a function D(x) mapping Z into [0, co) such that
(i) The integral {D(z)dP exists and is finite.

(i) |g(¢, ) < D) for all ({,c) in Z x B.

Condition 6 (Compactness)
The parameter space B is compact.
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Condition 7 (Random sampling)
The observations z;, i=1,...,00 are independent realizations

from P.

Lemmas 1 through 3 and Theorems 2 and 2’ give the results.
Discussion of Conditions 4 through 7 then follows.

Lemma 1
Conditions 3a, 4, and 6 imply that the estimate By, exists. WM

PROOF By Condition 4, [g(z, +)dPy=(1/N)X g(z;, %) is the
sum of finitely many continuous functions and so is itself continuous
on B. By Condition 3a, r[fg(z,*)dPy] is continuous on B. By
Condition 6, B is compact. A real-valued continuous function on a
compact set attains its infimum. So By, is non-empty. Q.E.D.

Lemma 2

Conditions 4 and 5 imply that {g(z, *) dP is continuous on B. Given
continuity of [g(z,*)dP, Conditions 1a and 6 imply Condition
ib. B

PROOF Continuity of {g(z, *) dP is a consequence of the Lebesgue
bounded convergence theorem:

Let v be 2 measure on Z. Let f;(x), j=1,..., 0 be a sequence of
functions on Z converging pointwise to a limit f(*). Suppose that
there exists a function D(*) on Z such that

(i) the integral [D(z)dv exists and is finite;

(i) | £;(0l < D() for every integer j and each { in Z.

Then the integrals [ f(z)dv and | f;(z)dv, j=1,..., 0 exist and
lim,,  {f{z)dv = [f(z)dv.

See Kolmogorov and Fomin (1970, p. 303) for a proof.

To apply this fundamental result, let ¢ be any point in B and let
¢y j=1,..., 00 be any sequence of points in B converging to c. The
continuity assumed in Condition 4 implies that

j—’w:g(c’ Cj)_’g(é” C), CEZ

So the sequence g(=,c;), j=1,...,00 converges pointwise to the limit
g(*, ¢). The boundedness assumed in Condition 5 implies the existence
of a function D(+)such that {D(z) dP exists and |g(¢, ¢ )| < D({) for each
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j and {. Hence the bounded convergence theorem implies that

lim f g(z,c;)dP = J. g(z,c)dP

j— o

This holds for all points ¢ in Band for all sequences {c;} converging to
c. It follows that {g(z, #)dP is continuous on B.

We may now prove that Condition 1b holds. Norms are con-
tinuous functions; so continuity of fg(z, *)dP 1mplies continuity of
[{g(z, *)dP|. The set B(J) is a closed subset of the compact set B; so
B()is compact. Hence, | [ g(z, *)d P| attains its infimum on B(4). Let ¢,
minimize | [ g(z, *)dP| on B(d). By Condition la, |fg(z,co)dP|>0. It
follows that

min >0. Q.E.D.
ceB(5)

f g(z,c)dP

Lemma 3
Conditions 4, 5, 6, and 7 imply Condition2. W

PROOF Wefirst need to state some preliminary facts and introduce
notation.

The proof uses the fact that a continuous function on a compact set
is uniformly continuous. So the functions g({, *), {€ Z are all uniformly
continuous on B. This implies that for each { in Z and every n >0,
there exists a J,, > 0 such that

la—c|<d,=lg((,a)—g(l,c)l<n, (ac)eBxB (7.13)

Fix n. For 4 >0, define the set Z(n,4) = [{eZ: 1 < J,,]. It follows
from (7.13) that for each { in Z(xn, A),

la—cl<i=|g{,a)—g(l,d)i<n, (ac)eBxB (7.14)

The proof uses the fact that as A shrinks to zero, Z(n, ) expands to the
full sample space Z. This implies the existence of a 4, > 0 such that

As,l,,-_-:’J. D(z)dP < (7.15)
Z-Ziny)
where D(*) is the bounding function of Condition 5 and where
Z — Z(n, 4,) is the complement of the set Z(n, 4,). (Actually, Z(n, Ay
may not be measurable. If so, (7.15) is to be interpreted as stating
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that the upper integral of D(x) on Z — Z(n, 4,) is less than 7. We shall
ignore measurability considerations henceforth.)

With the above as background, observe that for all pairs (a,¢) in
B x B, application of the triangle inequality yields

lj‘g(z’ a)dPN - jg(z, a)dP‘ =

I[g(z, a)—g(z,c)]dPy
_ f[g(z, a)—g(z,c)]dP + [:jg(z, ¢)dPy — Jg(z, c)dP]I

< J]g(z’ a) - g(z, C)I dPN + J.|g(z, a) - g(Z, C)'dP

+Ug(z, c)dPy — J glz, C)dP' (7.16)
Now fix ceB and n>0. Let A= 4,. It follows from (7.14), (7.15),

the triangle inequality, and Condition 5 that for aeB such that
la—c|<4,,

J‘g(z’ a) - Q'(Za C)l dpP

= J lg(z,a) — g(z, ¢)| AP + j gz, a) — g(z, c)| AP
Z(m Ay) Z-ZinAy

Sj' ndP+2J- D(z)dP < 31 (7.17)
Zin dp) Z— 2.3y

By the same reasoning,

fl g(z,a) — g(z,¢)| dPy

= J lg(z,a) — g(z,c)| dPy + J |g(z,a) — g(z,c)| dPy
Zin. Ay Z-2ZnAp
sj ndPy+ 2"\ D(z)dPy
Zin Ay Z-Zindy
<n+ 2J D(z)dPy (7.18)
Z-2ZmnAy

The assumption of random sampling in Condition 7 implies, by the
strong law of large numbers, the almost sure existence of a finite
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sample size N;, such that

I D(z)dPy — j D(z)dP
z- 21, z-Z

Hence, by (7.15), (7.18), and (7.19),

N>N,,= <n (719

N>N,;,= fl g(z,a) —g(z,c)| dPy < 51 (7.20)

It now follows from (7.16) through (7.20) that for N > N, and for
aeB such that |a—c| <4,

~[g(z, a)dPy — jg(z, a) dP‘ <8+ [ j g(z,c)dPy — Jg(z, c) dPl
(7.21)

The space B, being compact, has a finite 4 -cover. That is, B has
a finite subset B, such that, given any acB, at least one element of
B, is within distance 4, of a. It follows from this and from (7.21)
that for N> N, and for all aeB,

J-Q(Z, c)dPy — J g(z, c)dPl
(7.22)

Condition 7 and the strong law of large numbers imply that there
almost surely exists a finite N,, such that

jg(z, c)dPy — J. g(z,c)dP

UQ(Z, a)dPy — jg(z, a)dPl < 87 + max

ceB,,

N > N,,=>max
ceB,

Equations (7.22) and (7.23) imply that for N > max(N,,, N,,) and all
aeB,

<7 (123

r‘g(z, a)dPy — {g(z,a)dP| <9y (7.24)

The bound (7.24) holds for all ae B; hence,
s‘:E J g(z,a)dPy — f g(z,a) dPI <9 (7.25)
Letting n — 0 proves the lemma. Q.E.D.

Theorem 2
Assume that Conditions la, 3, 4, 5, 6, and 7 hold. Then By, is
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non-empty for all N and

lim sup |c—b| =0, as. N

N0 ceBy,

PROOF T\his strong consistency theorem follows immediately from
Theorem 1 and from Lemmas 1 through 3. Q.E.D.

7.2.2 Moment extremum problems

A parallel consistency theoremn may be proved for moment extremum
problems. Replacing Conditions 4 and 5 by similar conditions
applied to h(*, =) yields results that parallel Lemmas 1, 2, and 3. We
omit the details.

Condition 4’ (Continuity)
For each (eZ, h({,*} is continuous on B.

Condition 5 (Boundedness)

There exists a function D{*) mapping Z into [0, co) such that
(i) the integral [D(z)dP exists and is finite.

(i) 1h(¢, o)l < D) for all ({,¢)in Z x B,

Theorem 2’
Assume that Conditions 1a’, 4, 5, 6, and 7 hold. Then B, is non-

empty for all N and
lim suplc—b[=0, as. W

N-cooceBy

7.2.3 The continuity and boundedness assumptions

Conditions 4 and 5 provide regularity that makes the population
moment function |g(z, *) dP continuous on B and makes the sample
moment function jjg(z, x)d Py behave like (g(z, x)dP as N grows. Itis
important to recognize that Condition 4 alone does not suffice.
Continuity of the functions ¢({,*), {eZ does not by itself imply
continuity of {g(z,*)dP. Nor does it imply a uniform law of large
numbers.

Although the combination of Conditions 4 and 5 is sufficient to
ensure well-behaved asymptotics, neither condition is essential. The
step moment problems to be examined in Section 7.3 are not
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continuous. The analysis of linear models in Chapter 8 covers a case
in which boundedness is violated.

Note that Conditions 4 and 6 imply part (i1) of Condition 5; a
continuous function on a compact set is always bounded. The non-
redundant part of Condition 5 is the assumption (i) that the bounding
function D(x) is integrable.

7.2.4 The compactness assumption

Lemmas 1, 2, and 3 all make use of the assumption that B is compact.
Consistency theorems specifying a compact parameter space are
useful provided that one has information bounding the location of b
within RX. Consistency theorems not requiring compactness of B can
be proved for moment problems imposing special structure on the
functions g(*, *) and h(*, ). For example, we shall show in Chapter 8
that Conditions 5 and 6 are both unnecessary if g(*,*) is a linear
function on B. Considering problems in which Bis the real line, Huber
(1981, Chapter 6) provides consistency theorems for moment equa-
tions in which g({, *), {€Z are monotone functions on B.

7.2.5 The random sampling assumption

Theorems 2 and 2’ rely on the assumption of random sampling
through Lemma 3. Jennrich (1969) stated a more general version
of this uniform law of large numbers. His Theorem 1 assumes that
the observations z;, i=1,...,00 are independent drawings from a
sequence of probability measures P;,i=1,..., cc. Random sampling
is the special case in which these measures coincide.

Uniform laws of large numbers have become basic tools of
econometric analysis. The literature now offers many versions.
Pollard (1984) covers the random sampling setting in great generality.
Amemiya (1985), Andrews (1987), and Gallant (1987) provide results
for independent sampling from a sequence of probability measures
and for various dependent sampling processes.

7.3 Step problems

This section applies Theorems 1 and 1’ to step moment problems. The
development parallels that of Section 7.2. Considering step equa-
tions, we present conditions implying lemmas analogous to Lem-
mas 1 through 3. These lemmas then imply a consistency theorem
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analogous to Theorem 2. The same arguments shovs consistency for
estimates in extremum problems.

Asymptotic analysis of step problem estimation is more subtle than
the corresponding analysis for continuous problems. The analysis of
Section 7.2 made critical use of the finding in Lemma 2 that the
population moment function {g(z, ¥)dP is continuous on B. But a step
function specification for g({, *), {€Z would seem to imply that
fg(z, »)dP is itself a step function.

In fact, step problems may have continuous population moment
functions. To grasp the idea, let ce B and let Z, denote the set of points
¢ in Z for which g((,*) is discontinuous at c. If the set Z, has
probability zero under P, it is plausible that {g(z, *)dP is continuous
at ¢. It turns out that the condition P(Z,) = 0 does not quite imply that
{g(z, *)dP is continuous at ¢; continuity requires that this assumption
be combined with others. Lemma 5 will show that if P and g(*, *) are
suitably regular, then {g(z, *) dP is continuous on B.

7.3.1 Moment equations

Our treatment of step equations maintains many of the conditions
imposed on continuous equations. As in Section 7.2, we assume that b
is identified (Condition l1a), that r(+) is well-behaved (Condition 3),
that B is compact (Condition 6), and that the data are a random
sample (Condition 7).

We replace the continuity and boundedness assumptions of
Conditions 4 and 5 with the following two assumptions.

Condition 8 (Step equicontinuity)

(@) gt *) = vo(O1[S(C, *) < 0] + v, (D[, ¥) > 0], {€Z where s(*, *)
maps Z x B into R* and v,(+) and v,(*) map Z into R’.

(b) The functions s({, *), (e Z are equicontinuous on B.

Condition 9 (Boundary)

lim supJ. |vg(z)| AP = lim sup J |v,(2)]dP =0
x—0 ceB u a=0 ceB J2z
where Z,,=[{eZ: —a<s({,c)<al.

These conditions warrant some explanation before we proceed to
use them. Part (a) of Condition 8 defines a step equation. Part (b)
requires that the functions s(, ), (eZ be appropriately smooth.
These functions are said to be equicontinuous on B if, for every « > 0,



104 CONSISTENCY

there exists a , > 0 such that
la—c|<é,=|s({,a)—s(l,c)l<a, ({,a,c)eZxBxB

Thus, equicontinuity on B is continuity on B that is uniform with
- respect to both arguments of s(x, ). In contrast, continuity without
such uniformity requires only that, for each ({,c)in Z x B and « >0,
there exist a d,,, > 0 such that

la —c| <0, =|s((,a)—s({,c)| <a,  aeB

Condition 9 formalizes the earlier heuristic remark that, for each ¢
in B, the set Z, of points for which ¢({, *) is discontinuous at ¢ should
have probability zero under P. The condition essentially requires that
there be probability zero of drawing a { such that s({, c) = 0 and only
small probability of drawing a { such that s({,c) is close to zero. The
reason for the precise form of Condition 9 will become apparent in the
- proofs of Lemmas 5 and 6.

Lemmas 4 through 6 and Theorems 3 and 3’ give the results.
Further discussion of Conditions 8 and 9 then follows.

Lemma 4
Condition 8a implies that the estimate By, exists.

PROOF For each i=1,...,N, the function g(z; #) can take only
three values on B, namely vo(z;), 0, and v,(z;). Hence {g(z, *)d Py can
take only finitely many values on B. It follows that r[ [g(z, x)dPy]
attains its infimum on B. Q.ED.

Lemma 5
Conditions 8 and 9 imply that [g(z, *)dP is continuous on B. Given
continuity of {g(z, *)d P, Conditions 1a and 6 imply Condition 1b. W

PROOF It suffices to prove the first statement. The second state-

ment has already been proved in Lemma 2.
To show continuity of | g(z, *)dP, observe that for each (a,c)e B x B,

Ug(z, a)dP — jg(z, c)dP '

Jvo(z) [1[s(z,a) < 0] — 1[s(z,¢) < 0]]}dP
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+ Jvl(z)[ 1{s(z,a)> 0] — 1{s(z,c) > 0]]dP
< J oo 1[s(z, @) < 0] — 1[s(z,¢) < 0] ]|dP
+ lel(Z)[l[S(z, a)>0] — 1[s(z,¢)>0]]|dP

< j I54(2)| AP + J |2,(2)|dP (7.26)
Z{a,c) Z(a,c)

where Z(a,c)=[{eZ: s({,a) <0< 5({,c)us({,a) 20=s((, )]
Fix ce B and let « > 0. Condition 8b implies the existence of a 6, > 0
such that

la—c|<é,=|s(l,a)—s(l,d)l<a, (eZ (7.27)
Hence, for all aeB such that |a —¢| < J, and for all {eZ,

s, c)>a=>s({,a)>0 and s({,¢)< —a=s({,a) <0
(7.28)

By (7.28) and the definition of Z(a, c),
la—c|<d,=>Z(a,c)cZ,, (7.29)

where Z_, = [{eZ: — a < s({,c) < «] as in Condition 9. Therefore, by
(7.26),
la—c| < d,=>

jg(z, a)dP — J 4z, c)d,Pl

éJ. Ivo(z)|dP+J |v,(2)|dP (7.30)
ZCG ‘zﬂ!

Now select an ¢ > 0. By Condition 9, there is an c(g) > 0 such that
aga(e):[ |uo(z)|dP+J |v,(2)|dP < ¢ (7.31)
Zm zcn

It follows from (7.30) and (7.31) that

<& (7.32)

la - CI < 5:1(5):!—[‘9(25 a)dP - fg(za C)dP
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This proves that {g(z, #+)dP is continuous at c. Recall that ¢ was any
point in B; hence [g(z, *)dP is continuous on B. Q.E.D.

Note that Lemma 5 does not require the uniformity part of Condition
9. It is enough that for each c in B,

lim f 6(2)|dP = lim f |v,(z)|dP =0
ZCG a—

a—+0 0Jz,

The uniformity condition will be used in the proof of Lemma 6.

Lemma 6
Conditions 6, 7, 8, and 9 imply Condition 2. B

PROOF Asin the proof of Lemma 3, the triangle inequality implies
that for all pairs (a,¢) in B x B,

f g(z,a)dPy — Jg(z, a)dP’

_ i f [g(z, @) — gz, ) JdPy — f [9(z,6) — g(z, ) J4P

+ [J'g(za C)dPN - J.g(za C)dP:”

< J\l g(Z, a) - g(z, C)‘dPN + jlg(z’ a) - g(za C)ldP

+ (7.33)

j g(z,c)dPy — Jg(z, c)dP

Fix ce Band let & > 0. The proof of Lemma 5 showed the existence of a
8, >0 such that (see (7.30))

la—c| < 6,=>Ug(z, a}dP — fg(z, c)dP'
< j |vo(2)IdP + J |v,(2)|dP (7.34)
ZCG ztd

The same inequality holds if Py replaces P. Therefore, by (7.33) and
(7.34),
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la—c|<d,=>

JQ(Z, a)dPy — fg(z, a)dPl
< j I0o(z)|dPy + J Iv,(2)|dPy
Zea 2.,

+J |vo(z)|dP+J |v,(z)|dP
ZCI ZCJ

; l j o(z, JAPy — f 9tz c)dP] (739)

The space B is compact. Hence B has a finite subset B, such that,
given any aeB, at least one element of B, is within distance J, of a.
It follows from this and from (7.35) that for all aeB,

Jg(z, a)dP, — ‘(g(z, a)dP

< maxj |vo(2)|dPy + maxf |v,(z) dPy
'ZCG zcd

ceB, ceB,

+ maxj |vo(2)|dP + maxf |v(2))dP
ZCG ZCG

ceB, ceB,
+ max J g(z,c)dPy — jg(z, c)dPl (7.36)
ceB,

The bound on the right-hand side of (7.36) holds for all aeB; so
proof of the lemma requires only that this bound be made arbitrarily
small. Let N — 0. Condition 7 and the strong law of large numbers
imply that

max
ceB,

J g(z,c)dPy — J glz, c)dPl -0, as. (7.37)

and also that

maxj [vo(z)|dPy +maxj. |v,(2)|dPy
th z“d

ceB, ceB,

— max f [vo(2)]dP + max f fv,(2)|dP, a.s. (7.38)
ch th

ceB, ceB,
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It follows that for every « > 0 and 5 > 0, there is a finite N, such that

N > N,,=sup

aeB

< Z[maxj |ve(2)|dP + maxf lul(z)ldP] +7n
ztl zl-‘l

ceB, ceB,

J g(z,a)dPy — Jg(z, a)dP

ceB ceB

< 2[supJ. lve(2)|dP + supJ. Ivl(z)IdP] +1 (7.39)
Zt.‘l ZC1

Letting (x,n)— 0 and applying Condition 9 completes the proof.
Q.E.D.

Theorem 3
Assume that Conditions 1a, 3, 6, 7, 8, and 9 hold. Then B,, is non-

empty for all N and
lim sup|c—b| =0, as. B

N-’w"EBNr
PROOF This strong consistency theorem follows immediately from
Theorem 1 and from Lemmas 4 through 6. Q.E.D.

7.3.2 Moment extremum problems

A parallel theorem may be proved for moment extremum problems.
Simply replace Condition 8 by the following.

Condition 8 (Step equicontinuity)

(a) M(*) = vo(OTS(C, *) < 0] + v,(O)1[s(C, *) > 0], (eZ where s(x,*)
maps Z x B into R! and v,y(*) and v,(*) map Z into R'.

(b) The functions s, *), (e Z are equicontinuous on B.

Theorem 3’
Assume that Conditions 1a’, 6, 7, 8, and 9 hold. Then By is non-empty

for all N and
lim sup|c — b| =0, as. B

N— o ceBy

7.3.3 The step function assumption

Lemma 4 calls attention to the fact that in a step moment equation,
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the sample moment function [g(z, *)}dPy can take on only finitely
many values on B. This implies that the method of moments estimate
B,, is generally set-valued. The same conclusion holds for the
estimate By in a step extremum probiem.

In Chapter 1, we noted that although the literature focusses on
point estimation, the analogy principle gives no reason to isolate one
element of a set-valued estimate for special attention. This observ-
ation warrants reiteration. The statements of Theorems 3 and 3’ make
no reference to the cardinality of the estimates By, and By, except that
they should be non-empty. Consistency requires only that these set-
valued estimates shrink almost surely towards the point b as N — 0.

7.3.4 The equicontinuity assumption

Theorems 3 and 3' are useful to the extent that step problems of
applied interest satisfy the equicontinuity and boundary assumptions
specified in Conditions 8b and 9.

The equicontinuity assumption need hold only for some sign-
equivalent version of s(*,). Observe that the step functions g(C, *),
{eZ are unchanged if s(*,*) is replaced by sgn[s(*,*)]. Hence
Condition 8b does not really require that s(+, ) be equicontinuous. It
is enough that there exist an equicontinuous, sign-preserving function
of s(x, *).

We shall use this fact in the proof of Lemma 7. Lernma 7 states three
easily checked conditions, any one of which implies Condition 8b.

Lemma 7
Let Condition 6 hold. Then Condition 8b is satisfied if

(a) Z x B is a compact metric space and s(+,+) is continuous on
Z x B; or

(b) there exists an open convex set C < R¥ such that B < C, s(+, *) is
bounded on Z x C, and s({, *), (e Z are convex functions on C; or

(©) s.c)=x({yc, ({,c)eZ x B,
where x(+) maps Z into RX.
PROOF (a) A continuous function on a compact metric space is

uniformly continuous. Uniform continuity on Z x Bimplies equicon-
tinuity on B.
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(b) This is Theorem 10.6 of Rockafellar (1970).

(c) This follows from part (b). Let C be any bounded, open, convex
set containing the convex hull of B. Let| | be the Euclidean norm. As
defined, s(*, *) is not necessarily bounded on Z x C. But consider the
sign-equivalent function

sol6, ) = [x(Cyc)/Ix@Q)l x>0
= 0 if x({) =0

By the Cauchy-Schwarz inequality, so((, ¢) < |c|. Boundedness of C
then implies that so(*, *) is bounded on Z x C. Foreach {€Z, sy((, #) is
linear on C, hence convex. QED

7.3.5 The boundary assumption

Lemma 8 shows that Condition 9 is satisfied if s(*, ) is linear on Band
if certain conditional probability measures have bounded Lebesgue
densities. This result suffices to cover the median-independent binary
response model cited at the beginning of the chapter. It also covers
linear versions of the median-independent separable model cited
there. Note that part (c) of Lemma 7 has already verified that
Condition 8b is satisfied for these models.

Lemma 8

Let x(*) map Z into X < RX. Let v(*) = [vo(*), v,(*)] and let V denote

the range space of v(x). Assume that

(i) Condition 8a holds with s({,c) = x({)c.

(i) For each c in B and each  in V, the probability measure of x'c
conditional on the event [v = w] is absolutely continuous with
respect to Lebesgue measure p. Moreover, there exists a 4 < oo
such that ¢, (1, P,.jw) < 4 for all neR' and weV.

(iii) The integrals [|vy(z)|dP and [|v,(z)|dP exist.

Then Condition 9 is satisfied. W

PROOF It is enough to prove that the condition involving ve(*)

holds.
For each ceB and o> 0,

J jvg(2)| AP = ‘[1[ —a<x(z)c<allvyz)|dP
zt‘l

= jlif dPx’clva‘volde
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T fa

= 0,1, P.l0) d#leolde

rI [«
< Ady]lvoldP,,

o Lo

=2a/1-[|vo|dP,,

Hence,

supJ. lve(2)| AP < 2a4 f{volde

ceB

Letting « — 0 completes the proof.
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Q.E.D.



CHAPTER 8

Limiting distributions in
differentiable problems

Letby, N = 1,..., oo be a sequence of point estimates of a parameter b
solving a moment problem. (Where the estimate is set-valued, by is
any element thereof.) This chapter gives conditions under which
\/ N(by — b) converges in distribution to a normal random variable.

The knowledge that normalized sequences of estimates have
limiting normal distributions has at least two applications. First, it
rationalizes use in large samples of the classical theory of hypothesis
tests and confidence regions for normally distributed random vari-
ables. Second, it suggests a criterion for assessing the relative
efficiency of alternative estimators, namely by comparison of the
variances of their limiting normal distributions.

Asymptotic normality theorems are sometimes used in a third way.
They are interpreted informally as making statements about the
sampling behavior of the estimate by. In particular, it is sometimes
said that in large samples, the sampling distribution of by is
approximately normal with mean b and variance V(1/N), where V' is
the variance of the limiting normal distribution of \/ N(by — b). See,
for example, Serfling (1980). This practice does not seem to have a
formal justification and will not be followed here.

The analysis of this chapter is restricted to ‘differentiable’ moment
problems. A moment equation is said to be differentiable if, for each {
in Z, g({, *) is continuously differentiable on B. A moment extremum
problem is called differentiable if the functions h({, *), {eZ are twice
continuously differentiable on B. Thus, differentiable moment prob-
lems are a subclass of the continuous problems treated in Chapter 7.
Limiting distributions for some non-differentiable moment problems
will receive attention in Chapter 9.
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8.1 Linear moment equations

We begin by proving asymptotic normality for estimates of the
parameter b solving a linear moment equation

f[go(Z) +91(2)b]dP =0 8.1)

Here go(*) and g,(+) map Z into R’ and R’*%; g,(#) is written as a
J x K matrix. The parameter space is B = RX. So b solves the system
of J linear equations in K unknowns

r+Qb=0 (8.2)

where I" = {g,(2) dP and Q = {g,(z) dP. It follows that b is identified if
and only if the J x K matrix Q has rank K.

We consider estimates obtained by letting the origin-preserving
transformation r(*) be a quadratic form

nT)=TAT (8.3)

where A is a given J x J symmetric positive definite matrix. Let
I'y = fgo(z)dPy and Qy = [g,(z)dPy. Then the method of moments
estimate 1s
By, =argmin(Ty + QucA[T y + Qxcl (8.4)
ceB
The estimate By, always exists. In particular, bye By, ifand only if b
solves the first-order condition

B, is point-valued if and only if ;A€ has rank X.

Quadratic form estimatation of parameters solving linear moment
equations is simple to analyze and has important applications. It is
also central to an understanding of more complex asymptotic
normality proofs. We shall see later that the key step in showing
asymptotic normality in more general settings is to prove that, in
large samples, the problem of interest can be well approximated by
one of the class considered here. This done, asymptotic normality
follows more or less immediately from the present analysis.

Theorem 1 gives conditions for the asymptotic normality of

N(by — b).

Theorem 1
Let b solve (8.1) with B = RX. Assume that Q has rank K. Assume that
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T = [[go(2) + 91(z)b][go(z) + 9:(z)bY AP exists and has rank J.
Assume that the observations z;, i = 1,..., o0 are independent realiz-
ationsfrom P. LetbyeBy,, N = 1,..., 0o, where By, isasin (8.4). Then

JN(by — b) = N[0, (QAQ)~H(YAZAQ)(AQ) ] (8.6)

L .
where — means ‘convergence in law’. W

pROOF The assumption that Q has rank K and the positive
definiteness of A imply that the K x K matrix Q'AQ is non-singular.
The random sampling assumption implies, by the strong law of large
numbers, that as N — o0,

Qy—-Q, as. (8.7)
It follows from (8.7) and the continuity of Q'AQ as a function of Q2 that
QuAQN 2> QAQ, as. (8.8)

It follows from (8.8) and the continuity of the matrix inverse
transformation that there almost surely exists a finite sample size N,
such that QyAQ, is non-singular for N > N, Therefore, for N > N,
(8.5) has the unique solution

bN == (Q;VAQN) N IQ;VATN (8-9)
For N > N, the identity
b= (QAQ) " (AQB (8.10)

holds. It follows from (8.9) and (8.10) that for N > N,
JNby—b) = — (QyAQy)~ ‘Q;,A[\/N(FN +Qub)]  (8.11)

The expression I'y + Qub is the sample average of go(z) + g,(z)b. By
(8.1), go(z) + g(2)b has mean zero. By assumption, go(z) + g,(z)b has
positive definite variance matrix X. Hence, the assumption of random
sampling implies, by the multivariate Lindberg—Levy central limit
theorem (see Rao, 1973, pp. 127-9),

JNITy + Qyb] —N(O, ) (8.12)

The theorem now follows from (8.7), (8.8), (8.11), and (8.12).
Q.E.D.
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8.1.1 Strong consistency of by

Theorem 1 implicitly proves that by is a weakly consistent estimate
for b. If \/N(by—b) has any limiting distribution, then by—b
necessarily converges in probability to zero.

In fact, by is strongly consistent. To see this, consider N > N By

(8.11),

by — b = — (QAQy) ™' QAT y + Qub) (8.13)
Now let N — co. By the strong law of large numbers,
(QUAQL) " 1OA - (XAQ)'QA, as. (8.14)
and
Fy+Qub->T+Qb=0, as. (8.15)

It follows that
by—b, as. (8.16)

Note that this consistency result does not require that the variance
matrix T exist. In contrast to the analysis of Chapter 7, the present
finding does not assume a compact parameter space.

8.1.2 The case J =K

When the number of moment equations J equals the number of
parameters K, the sample moment equation I'y + Quwy=01s a
system of K equations in K unknowns and so always has a solution.
Hence, the method of moments estimate is the same for all choices of
r(#). Let the assumptions of Theorem 1 hold. Then it follows from (8.9)

that
by=—()" II‘N (8.17)

for N > N,. The conclusion to Theorem 1 reduces to

N(by —b) —N(O,Q "' 2Q'7Y) (8.18)

When J > K, the method of moment estimate varies with r(x).
Within the class of quadratic form functions, the selected matrix A
affects the estimate’s value and the variance of its limiting normal
distribution. It is natural to ask how one should choose A. This
question will be treated in Section 8.2.

Note that in no case does the variance of the limiting distribution

depend on the value of T
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8.1.3 Instrumental variables models

Let us apply Theorem 1 to obtain the limiting distribution of the
Wright-Reiersol instrumental variables estimate, discussed in Sec-
tion 2.5. Here v(») and x(+) map Z into RX, y(*) maps Z into R',and b
solves the linear moment equation

f z)[Az) — x(z)b]dP =0 (8.19)

So go(*) = v(*)y(*), g:(*)= — v(*)x(+) and J = K. Equation (8.17)
implies that for N > N,

by= [ va' dPvi]_ l [ va d.Pva:I (8.20)

The limiting distribution of \/ N(by — b) is normal with mean zero

and variance
~ -1
vx’ dP,,,] [ f{ y—x'b}ov’ de:I

X "J‘xv’dP,x]_1 (8.21)

Consider the special case in which v(s) = x(»). Then by, is the least
squares estimate

by= [ fxx’ dPNx]_ 1[ fxy dPN,y:l (8.22)

The variance of the limiting distribution is

Q izt =I:J\xx'dP:|—1ljJ‘A(x)xx’dP,c][J‘xx’dP,c:l-1

(8.23)

Q“IZQ"1=[

where 4(&) = [(y — &b)*dP, ¢, EeX.

It is of interest to compare (8.23) with the familiar least squares
asymptotic variance expression ¢[[xx'dP,]™!, where o2 is the
unconditional variance of (y — xb). The variance expression in (8.23)
reduces to the familiar one if xb is the mean regression of y on x
and if y is variance independent of x. Then A({) = a2, éeX.
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8.2 Differentiable moment equations

Theorem 2 of Chapter 7 gave conditions which imply the consistency
of method of moments estimates in continuous moment equations.
We shall show here that such estimates are asymptotically normal,
provided that the regularity assumed in the consistency theorem is
strengthened. In what follows, the assumptions employed in Chap-
ter 7 are labeled Conditions 7.1 through 7.9 to distinguish them from
the new assumptions to be introduced below. The same convention is
applied to the theorems and lemmas of Chapter 7.

The theorem to be presented here retains the essential assumption
that the parameter b is identified (Condition 7.1a). It retains the
assumption of random sampling (Condition 7.7). It replaces the other
conditions of the consistency theorem with the following stronger
assumptions.

Condition 1 (Origin-preserving transformation)
(a) r(*) is twice continuously differentiable and r0)=0.
(b) For each ¢>0, inf r(T)>0.

IT>e

(c) The J x J matrix A = 0%10)/8TST’ is positive definite.

Condition 2 (Differentiability)
(a) For each {eZ, g({, *) is continuously differentiable on B.
(b) The J x K matrix Q = [[dg(z, b)/da’] dP exists and has rank K.

Condition 3 (Boundedness)

(a) There exists a function Dy(*) mapping Z into [0, o) such that
(i) The integral [Do(z)dP exists and is finite.
(ii) 19(Z, c)) € Do({) for all ({,c) in Z x B.

(b) There exists a function D,(*) mapping Z into [0, o0) such that

(i) The integral {D,(z)dP exists and is finite.
(i) |0¢(L, c)/da’} < D({) for all ({,c) in Z x B.

Condition 4 (Variance)
The J x J matrix £ = f g(z, b)g(z, b)Y dP exists and is positive definite.

Condition 5 (Parameter space)
(a) The parameter space B is compact.
(b) beB, = B for some open set By,
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We now prove Theorem 2. Discussion follows.

Theorem 2
Assume that Conditions 7.1a, 7.7, and 1, 2, 3, 4, and 5 above hold.
Then By, is non-empty for all N. Let byeBy,, N=1,...,00. Then

/N(by—b) = N[0,(@AQ) " (YAZAQYQAQ)™'] W (824)

PROOF The proof has three steps. First we show that the sequence
of estimates {by} exists and converges almost surely to b. Next we
prove that, in large samples, \/ N(by — b) behaves like a linear
function of \/ Njg(z, b)dPy. This step is the most lengthy. Third, we
cite the fact that \/ N{g(z,b)dPy has a limiting normal distribution.
The theorem then follows from the fact that linear functions of normal
random variables are normally distributed.

Step 1: By Conditions 1a, 2a, and 5a, r[[g(z, ¥) dPy] is a continuous
function on the compact set B and so attains its infimum. Hence By,
exists. Conditions 1, 2, 3, and 5 respectively imply Conditions 7.3, 7.4,
7.5, and 7.6. Hence By, is strongly consistent by Theorem 7.2.

Step 2: Given consistency, there almost surely exists an N, such that
byeB, for N > N,. Conditions 1a and 2a imply that for N > N, by
satisfies the first-order condition

6r[ J‘g(z,b )ydP ] , 6r|: jg(z,bN)dPN]
N N =|:J'59(Z,bN)dPN:|[ -0

da da’ oT
(8.25)
By Condition la and the mean value theorem, there are points

Ty;eR’,j=1,...,J, each on the linc segment connecting fg(z, by)dPy
and zero, such that for each j=1,...,J,

l:ar[Jg(z, bN)dPN]il_ar(O) . [azr(TN,-)][J‘g(z e J

oT; ~9T; | OT;oT"
(8.26)

J -
But dr{0)/dT = 0 by Condition 1. So (8.25) and (8.26) imply that

og(z, b 'Ta*n(T,
[J g(aza' ~) dPN:I [%ﬁg][jg(z,l)N)dPN]zo (8.27)
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where Ty = (Ty;j=1,...,J)and where we understand r(Ty) to mean
that the jth row of 8*(Ty)/dTST' is evaluated at Ty;.

By Condition 2a and a second application of the mean value
theorem, there exist points cheR", j=1,...,J, each on the line
segment connecting by and b, such that foreachj=1,...,J,

[Jgj(z, bN)dPN:} = [Jgj(z’ b)dPN]

+ [ j ___agl{;;f”f) dPN](bN —b)  (829)

Inserting (8.28) into (8.27) gives

4 2
[[o5an ][5 | Joeer]
69(z, by) ‘[ 9°r(Ty)
* H oa’ de] [6T6T’]

x [ Fg(;;f”) dPN](bN —b)=0 (8.29)

where cy=(cypi=1,...,J) and where we understand g(z,cy) to
mean that the jth row of dg(z, cy)/0a’ is evaluated at cy;.

Now let N — oo. Conditions 7.7, 2a, 3, and 5a imply, by the uniform
law of large numbers of Lemma 7.3, that

sup
ceB

J.Q(Z, c)dPy — J.g(z, c)dP l -0, as.

and

J~ [8g(z,c)/0a’}dPy — j[ag(z, c)/0a] dPI —0, a.s.

sup
ceB

It follows from this and from the consistency of by that

j %90 4p. L0 as. (8.30)
da

*r(Ty)

oA, as (8.31)

and

J ag(;;,c") dPy—Q, as. (8.32)



120 LIMITING DISTRIBUTIONS

By Conditions 1c and 2b, Q'AQ is non-singular. It follows from this
and from (8.29) that there almost surely exists a finite N; > N, such

that

_ [T [oateb p ][ 2T
Nty -b=-| | [Eoar ~][‘arar]

[ ag(Z9CN) - ag(zabN)'
<[ [otans | o5 e
[ 0°r(Ty)
X _aTaT,][JNJg(z,b)dPN] (8.33)

for N> N,. Given (8.30), (8.31), and (8.32), this shows that
JN(by — b) is asymptotically a linear function of \/N {g(z, b)dPy.

Step 3: By condition 7.1a and Condition 4, g(z,b) has mean zero
and positive definite variance X. Therefore, Condition 7.7 and the
Lindberg-Levy central limit theorem imply that

\/N[ f g(z,b) dPN] L.N(©,3) (8.34)

Combining (8.30) through (8.34) proves the theorem. QED.

8.2.1 Discussion

Of the conditions imposed by Theorem 2, some are basic. Identifi-
cation and the condition defining an origin-preserving transformation
(Condition 1a) are obviously essential. The assumption that b is
interior to B (Condition 5b) also seems necessary. If b were on the
boundary of B, the estimate by would always lie to one side of b, no
matter how large N is. Then \/N(by — b) could not have a limiting
normal distribution.

The critical function of the matrix rank Conditions 1c and 2b is to
ensure that Q'AQ is non-singular. Whatever the rank of {'AQ, (8.29),
(8.30), (8.31), (8.32), and (8.34) imply that as N — co,

QAQ[./N(by — b)] = N(0, (¥AZAQ) (8.35)

Thus, certain linear functions of \/N(by — b) have limiting normal
distributions even if Q'AQ is singular. But non-singularity is required
for \/N(by — b) itself to have a limiting distribution.
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Some of the conditions of Theorem 2 can be weakened or modified
without negating the theorem’s conclusion. Our treatment of linear
moment problems in Section 8.1 demonstrated that compactness of B
(Condition 5a) can be eliminated if g(+, *) is sufficiently well-behaved.
The differentiability Conditions 1a and 2a impose more smoothness
on r(*) and on g({,), {eZ than necessary. Assuming that the
consistency of by has somehow been shown, the remainder of the
proof of Theorem 2 remains valid if these conditions hold only in
neighborhoods of zero and b respectively.

Similarly, the random sampling assumption is convenient but not
essential. Versions of Theorem 2 can be proved for other sampling
processes regular enough to yield a law of large numbers and central
limit theorem. The one aspect of Theorem 2 that is specific to random
sampling is the result that ./N(g(z, b) dPy has asymptotic variance X.
For other sampling processes, the asymptotic variance may differ
from X.

The remainder of this section examines the manner in which one’s
choice of an origin-preserving transformation r(+) affects the limiting
distribution of \/N(by — b).

822 The case J =K

When the number of equations J equals the number of parameters K,
(8.33) reduces to

r—1
JN(by—b) = — [ J ag(az;f”) dPN:I [\/ N J g(z,b) dPN:I

(8.36)

Let r,(+) and r,(*) be any two functions satisfying Condition 1 and let
by, and by, be corresponding estimates of b. The value of c in (8.36)
depends on by, which may depend on r(+). So (8.36) does not imply
that the estimates by, and by, are the same. But it does follow from
(8.32), (8.34), and (8.36) that

Ny — by) —0 (8:37)

where —» means ‘convergence in probability’. Thus, all choices of
r(+) that satisfy Condition 1 yield estimates that are asymptotically

equivalent to order \/N.
The result (8.37) is an asymptotic version of the result reported in
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Section 8.1 for problems where (g(z, *) dPy is a linear function on
B = RX. There, J =K implied that the sample moment equation
always has a solution. So the analog estimate was the same for all
choices of r(+). If g(*, *) is nonlinear on B or if B is a proper subset of
RX, having J=K does not guarantee that the sample moment
equation has a solution. So the chosen r(*) may affect the value of
the estimate. What (8.37) shows is that to order /N, the effect of r(»)
on estimation is negligible.

When J = K, the variance of the common limiting distribution for
all r(=) satisfying Condition 1 reduces from the expression given in
(8.24) to a simpler one not involving A. The following corollary to
Theorem 2 states the result.

Corollary 1
Assume that the conditions of Theorem 2 hold and that J = K. Then

JN(by—b)—>NO,Q 'Z0"Y) = (8.38)

8.2.3 Asymptotic equivalence classes of r(*) when J > K

Now consider the case J>K. Let r(x) and r,(+) be any two functions
satisfying Condition 1 and the condition A, =d%r,(0)/0T3T =
8%r,(0)/0TAT = A,. Let by, and by, be corresponding estimates of
b. In general, equality of A, and A, does not imply equality of by, and
by,. But it does follows from (8.30) through (8.34) that

N(byy — byz) —0 (8.39)

Thus, all choices of r(#) that satisfy Condition 1 and have the same
second derivative evaluated at zero yield estimates that are asymptot-
ically equivalent to order /N.

This result provides a statistical rationale for a common practice.
For computational reasons, applied researchers often use a quadratic
form transformation of the moment equation, that is one where
HT)=T'AT for given A. Equation (8.39) shows that from the
perspective of first-order asymptotic theory, restriction of attention

to such r(*) is innocuous.
Simply observe that A is the second derivative matrix of T'AT. Let

r,(*) be any function satisfying Condition 1. It follows from (8.39)
that estimation using the quadratic form function 7,(7)=
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T'[6%r,(0)/dTAT']T is asymptotically equivalent to order JN to
estimation using r,(*).

8.2.4 Asymptotic best A when J > K

When J > K, the variance of the limiting distribution of \/N(by — b)is
(YAQ) ™ HYAZAQ)Q'AQ) ™. So functions r(+) with different values
of A generally imply limiting distributions with different variances.
The following result reported in Hansen (1982, Theorem 3.2) provides
the value of A that minimizes asymptotic variance in the matrix sense.

Corollary 2
Assume that the conditions of Theorem 2 hold. Then

JN(by —b) = N[0,(QZ7'Q)"! + DD'] (8.40)

where D = (YAQ) QAW —(QZ7'Q)'Q W' and where W is
any non-singular J x J matrix such that = WW. IfA=Z2"", then
D=0 N

PROOF Evaluation of the expression DD’ verifies that the variance
matrix in (8.40) is the same as that in (8.24). Evaluation of D for the
case A= X! yields the result D =0. Q.ED.

Thus, the variance of the limiting normal distribution of VN(by—b)
exceeds (YT 'Q)~! by a non-negative definite matrix that depends
on A. Setting A = £~ makes the variance attain the lower bound.

The matrix T is not known so the ideal estimate is not computable.
On the other hand, a multi-step procedure yields a computable
estimate that can be shown asymptotically equivalent to the ideal
(Hansen, 1982). Select some positive definite J x J matrix A, and

compute
Byo = argmin[ J g(z,¢) dPN:l Ao[ Ig(z, c) dPN:I (8.41)
ceB

Pick a point byy€By, and compute

Iy= jg(zs byo)g(z, bxoY dPy (8.42)
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Now re-estimate b by
By, = argmin[fg(z, c)dPN] o 1[ [g(z, c) dPN:I (8.43)
ceB o

The above derivation of By, applies the analogy principle recur-
sively, first to obtain by, then Zy, and finally By, . This recursion can
be rewritten, albeit somewhat clumsily, as a single application of the
analogy principle. By, minimizes on B the sample analog of the
following origin-preserving transformation of the moment equation:

[J‘g(z, b)dP]’w(P)' 1 [ j g(z, b)dP] =0 (8.44)

where w(P) = [[g{z,c(P)}1[g{z,c«(P)}] dP and where

c(P)eargerEin [ Jﬂz, ¢)dP ]'Ao[ j g(z,c) dP] (8.45)

Simply observe that ¢(Py) = by and o(Py) = Zy-

8.2.5 Asymptotic bound on precision of estimation

Corollary 2 says that the limiting distribution of \/N(by — b) can
have no smaller variance than (QZ™!Q)”!'. But this asymptotic
bound on precision applies only to method of moments estimates.
It leaves open the possibility that there exists some other procedure
which estimates b more precisely.

Chamberlain (1987) shows that if b is known to solve a differenti-
able moment equation and no other information about b is available,
then in a certain sense no estimate of b can be more precise than the
best method of moments estimate. In particular, an ‘asymptotic
minimax’ theorem of the Hajek (1972) type holds. Formal statement
of asymptotic minimax theorems is somewhat involved. We shall
suffice with a brief discussion.

Asymptotic minimax theorems interpret the task of choosing an
estimate of a parameter as a problem of selecting a best predictor. Let
b denote a finite-dimensional parameter solving a problem T(P,b) =0.
Let by be a point predictor (estimate) of b based on a sample of
size N. Let L(») be any symmetric loss function mapping values of
JN(by — b) into [0, o). Hajek began by seeking a predictor by that
minimizes asymptotic expected loss with respect to the sampling
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distribution of \/ N(by — b). The solution to this problem, however,
depends on the unknown value of b. So he reformulated the objective
to be selection of a minimax predictor, that is one that minimizes the
maximum expected loss over all the possible values of the parameter.

Chamberlain applies the Hajek approach to the problem of
choosing a predictor of a parameter solving a differentiable moment
equation. He shows that the asymptotic maximum expected loss
of any predictor is at least as large as the maximum expected loss
that occurs for a predictor with the limiting distribution
N[O, (= ~1Q)"1]. See Section 9.1 for details.

8.3 Differentiable moment extremum problems

Asymptotic normality of method of moments estimates in differenti-
able extremum problems is a direct consequence of Theorem 2.

Theorem 2’
Assume the conditions of Theorem 7.2'. Assume that

g(C, ¢) = 0h({, c)/0a, (¢, c)eZx B (8.46)

exists and satisfies Conditions 2, 3, and 4. Also assume Condition 5.
Let byeBy, N=1,..., 0. Then

JNiby —b) = N(0,Q™ 12} (8.47)
where
Q= J‘ [9g(z, b)/oa’}dP = f [62h(z, b)/dada’] dP (8.48)
and

= fg(z, b)g(z, bYdP
= j[a h(z,b)/éa) [Oh(z,b)/0a]dP W (8.49)

PROOF By assumption, b solves the extremum problem

b — argmin fh(z, c)dP =0 (8.50)

ceB
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and is an element of By, an open set within B. The Lebesgue bounded
convergence theorem implies that the moment function {h(z, *)dP is
differentiable on B, with

a[ J- h(z, *)dp] / da= j [Oh(z, +)/da]dP (8.51)

(The argument is the same as that applied in Lemma 7.2 to show that
_[g(z, ¥)dP is continuous on B.) It follows that b solves the first-order

condition
5[ Jh(z, b)dP] / da= J [ Oh(z,b)/0a]dP =0 (8.52)
This is a K-variate moment equation in a K-dimensional parameter.
Consider the method of moments estimate

ceB

By = argmin Jh(z, c)dPy (8.53)

Let bye By. Strong consistency of By (Theorem 7.2') implies that there
almost surely exists a finite sample size N, such that By < B, for
N> N,. It follows that for N> N,, by solves the first-order

condition
J‘[ah(z, by)/0a]ldPy =0 (8.54)

Equation (8.54) is the sample analog of the moment equation (8.52).
Hence, Steps 2 and 3 of the proof to Theorem 2 may be applied to
obtain the limiting distribution of ./ N(by — b). Corollary 1 shows
that the limiting normal distribution is as given in (8.47). Q.E.D.

8.3.1 An extremum problem and its first-order condition

The parameter b solves both the moment extremum problem (8.50)
and the moment equation (8.52). Let C < B denote the set of solutions
to (8.52). The proof to Theorem 2’ showed that b is an element of C.
This proof does not guarantee that C contains only the point b. It may
be that the extremum problem identifies b but that its first-order
condition does not.

The analogy principle may be applied either to (8.50) or to (8.52).
Let Cy be the method of moments estimate based on (8.52). The proof
to Theorem 2’ showed that By = Cyfor N > N,. The estimate Cy may
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contain points not in By; this will generally be the case if (8.52) does
not identify b. So estimation based on (8.50) is preferable to estimation
based on (8.52).

8.4 Differentiable conditional likelihood problems

The foregoing analysis of limiting distributions of method of mo-
ments estimates takes the specification of the finite-dimensional
moment problem as given. Often, the available information implies
that the parameter of interest solves infinitely many finite-
dimensional problems. Section 2.1 noted that a parameter solving an
index problem solves infinitely many moment equations. Section 4.3
showed that a best predictor solves infinitely many moment ex-
tremum problems. Section 6.1 showed that a mean-independent
separable econometric model implies infinitely many orthogonality
conditions.

One would like to characterize the best attainable precision of
estimation in these settings. One would also like to know whether
application of the analogy principle to some finite-dimensional
moment problem solved by the parameter yields an efficient estimate.
A major achievement of statistical theory has been to provide
asymptotically valid answers to these questions for the class of
differentiable, finite-dimensional likelihood problems. This section
describes the findings. Chapter 9 will discuss recent research on
efficient estimation of more general likelihood problems.

8.4.1 The information bound

Recall that in a likelihood problem, probability measure P is known

to be a member of a family of probability measures [(c), ce B], all of

which are absolutely continuous with respect to some measure v on Z.

A likelihood problem is finite dimensional if the parameter space B is

a subset of RX. A finite-dimensional likelihood problem is differenti-

able if the densities ¢, ((, *), (e Z are continuously differentiable on B.
Assume that the Fisher information matrix

1= j [0log ¢,(z, b)/da] [0log ¢,(2, b)/0a’] AP (8.55)

exists and is non-singular. Let a random sample from P be drawn and
let by, N=1,..., o0 be a sequence of estimates of b. The ‘information
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bound’ states, in various formal senses, that ./ N(by — b) cannot have
a limiting distribution more concentrated around zero than is the
N(0,:™ 1) distribution.

Classical versions of the information bound are given in Cramer
(1946) and Rao (1973). The Hajek (1972) asymptotic minimax
theorem alluded to in Section 8.2 is one of two modern statements of
the bound. The other is the Hajek (1970) ‘representation theorem’.
The representation theorem proves that if \/N(by — b) has limiting
distribution /(b) and if certain uniformity conditions hold, then I()
can be written as the distribution of the sum & + ¢, where & is an
NI[0,:” ] random variable and ¢ is independent of 8. For expositions
of the various information bound theorems, see Ibragimov and
Has’'minskii (1981).

The information bound holds not only for likelihood problems but
also for conditional likelihood problems. We shaill present an
information bound result for method of moments estimation based
on a differentiable finite-dimensional moment equation.

Let b solve a differentiable conditional likelihood problem satisfy-
ing Condition 6 below. Let b be estimated by application of the
analogy principle to an implied finite-dimensional moment equation
satisfying Condition 7. Theorem 3 shows that the limiting normal
distribution of ,/ N{by — b) has variance at least as large, in the matrix
sense, as a conditional likelihood version of Fisher information.

The statements of Conditions 6 and 7 use the conditional
likelihood notation developed in Chapter 5. Discussion of these
conditions follows presentation of Theorem 3.

Condition 6 (Differentiable conditional likelihood)
(@) For &eX, P,|& =tdb)e[tdc),ceB].
(b) For EeX, there exists a measure v, on Y such that t{c), ce B are

dominated by v.. ¢n,¢)>0, (n,{,c)eY x X x B.
(c) For (&,m)eX x Y, @gn, *) is continuously differentiable on B.

(d) The Fisher information matrix
1= j [0log ¢,(y, b)/da][dlog o,(y,b)/0a’]dP,,  (8.56)

is finite and non-singular.

Condition 7 (Moment problem)
(@) g(l,0) =gl {0 xD}.c]; (€, c)eZ x B.
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(b) Ig(y’ é’ C)(P§(y9 c)dvg = 0, (é, C)EX x B.
(c) For each ¢eX, there exists a Dg(+) mapping Y into [0, c0) such
that

(i) The integral [D{y)dv, exists.
(i) 100g(n, &, Yo dn, c)1/0a'| < Ddn),  (n,¢)eY x B.

Theorem 3
Assume the conditions of Theorem 2 and Conditions 6 and 7. Then

VN(by—b) =>N(©O,:7* + E) (8.57)

where E is a positive semidefinite K x K matrix. B

pROOF Fix ZeX. Condition 7b says that {g(v,&,*)e.(y,*)dv;
equals zero on B. Hence, j'g(y, & *)pe(y, #)dv, is differentiable on B
with derivative zero everywhere. By Condition 7¢ and the Lebesgue

bounded convergence theorem,

o = 190 &, Doy, b)dv,
oa’

(290, & bodn, b1,
oa’ ¢

(3g(y,&,b) G040, b)
= |02 g9, by + jg(y, £ p 2 ay,

fog(y, &, b dlo N
_ [958 4p ¢ 4 [gry,e, 7820 ap e (858)
J Oa da

(The argument is again the same as was applied in Lemma 7.2 to show

that fg(z, *)dP is continuous on B)
Taking the expectation of (8.58) with respect to P, we find that

Q= f ______69(;, % b) 4p

yx

a
b
= - f gy, X, b)ﬂ-?—g-(%’f(—y’—)dpyx (8.59)

where Q was defined in Condition 2. The equality (8.59) has
previously been applied for other purposes in Tauchen (1985) and
Newey (1985).
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By Corollary 2 to Theorem 2, the variance of the limiting
distribution of \/N(by — b) is bounded from below by (QZ~'Q)~".
But

@z 1Q) t=1"1+E (8.60)

where E is a positive semidefinite matrix. To see this, consider the
(K + J) x (K + J) matnx

o

j dlog @, (y, b) dlog . (v, b) aP,, J' dlog.(y,b) o, %,bY 4P,

da da’ da

f o 0) B2 gp f 40, %, b9, x,bYdP,.
8.61)

The matrix (8.61) is positive semidefinite; hence —QXZ7'Q is
positive semidefinite. It follows that (XZ Q)™ —1~' is positive
semidefinite. Q.ED.

8.4.2 The conditional likelihood assumption

Conditions 6a and 6b define a conditional likelihood problem. Note
that Condition 6b assumes everywhere positive densities. The proof
to Theorem 3 can be extended to allow regions of zero density,
provided that these regions do not vary on the parameter space. That
is, the theorem continues to hold if, for each (£,n7)eX x ¥, either
Lodn, c) >0, ceB] or [¢dn,c) =0, ceB].

Condition 6¢ defines a differentiable likelihood problem. Con-
dition 6d assumes that the Fisher information : is neither infinitely
large nor vanishingly small. If : is infinite, (8.60) does not effectively
bound QT Q. If 1 is singular, QT 'Q must be singular. So
singularity of : implies that \/N(by — b) does not have a limiting
distribution. Conversely, if the assumptions of Theorem 2 hold, then :
must be non-singular.

8.4.3 The moment problem assumption

Condition 7a assumes that the method of moments estimate being
evaluated uses observations of z only as filtered through the
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transformation [ y(x), x(x) 1. If g(*, *) depends on other features of z, the
moment equation (g(z, b}dP =0 may contain information about b
not expressed by the conditional likelihood problem defined in
Condition 6. There is then no reason to think that application of the
analogy principle to [g(z,b)JdP =0 must yield an estimate with
precision bounded by :~!. After all, 1~ depends on P only through
P,..

yCondition 7b strengthens the identification assumption of Con-
dition 7.1a. Condition 7.1a asserts that b solves

_[ g(y,x,b)dP,, = j [ J- 90y, x, b)o,(y, by dv, ]dPx =0 (8.62)

Condition 7b states that
fg(y, &by, b)dv, =0, {eX (8.63)

‘Thus, Condition 7b implies that b solves (8.62) whatever P, happens
to be.

The role of (8.63) in the information bound theorem is that it
prevents the moment equation (8.62) from containing information
relating b to P,. If (8.63) were not to hold, then the pair (b, P,) would
have to be such as to make positive values of f¢(y, ¢, by, bydv,
balance negative ones in (8.62). So knowledge of P, would be
informative regarding b. If P, is informative, the information bound
of Theorem 3 need not hold. This bound uses the information that b
solves a conditional likelihood problem; it does not express any
information relating b to P,.

Condition 7b states not only that (8.63) holds but also that

Jg(y, &gy, c)dv, =0, (eX, ceB (8.64)

Assume, contrariwise, that Condition 7b does not hold for a given c in
B. Then there exists a { in X such that [g(y, ¢, c)oy, c)dv, # 0. But
having assumed (8.63), we know that the true parameter value solves
J9(y, &, Yoy, b)dv, = 0. Hence, a failure of (8.64) implies that cis not a
feasible parameter value; that is, ¢ is not in B.

Condition 7c is a boundedness assumption. It is used in (8.58) to
reverse the order of differentiation and integration, via the bounded
convergence theorem.

Note that the proof of Theorem 3 does not use the full force of
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Conditions 6 and 7. These conditions assume that certain properties
hold on the full parameter space B. The proof remains valid if the
relevant properties hold only in a neighborhood of b. We have chosen
to impose Conditions 6 and 7 globally rather than locally because the
lesser restrictiveness of local assumptions is more apparent than real.
We do not know where b is within B. It follows that if we are to apply
Theorem 3, Conditions 6 and 7 must hold in a neighborhood of every
possible value of b. Hence, these conditions must hold on all of B.

8.4.4 Application to extremum problem estimates

Theorem 3 concerns application of the method of moments to a
moment equation. Theorem 2’ showed that the limiting distribution
of an extremum problem estimate is determined by its associated first-
order condition. So Theorem 3 applies to extremum problem esti-
mates. This fact is stated as Theorem 3'.

Theorem 3’
Assume the conditions of Theorem 2’ and Conditions 6 and 7. Then

JN(by—b) —>N[0,17} + E] (8.65)

where E is a positive semidefinite K x K matrix. #

8.4.5 Attaining the bound

Theorem 3 does not say whether there exists an asymptotically
efficient estimate, that is one whose limiting distribution is N(0,:7?).
The maximum likelihood method provides such an estimate, pro-
vided that the conditional density functions are somewhat smoother
than was assumed in Condition 6. Adding Condition 8 suffices.
Theorem 4 proves that the maximum likelihood estimate attains the

bound.

Condition 8 (Smooth densities)
(a) For(&neX x Y, @4n, *)is twice continuously differentiable on B.

(b) For £eX, there exists a D(*) mapping Y into [0, c0) such that

(i) The integral [ D (y)dv, exists and is finite.
(ii) |0@en, c)/dal < Dgn),(n.c)eY x B.
(iii} 10%@,(n,c)/0ada’| < Dy(n),(n,c)eY x B.
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Theorem 4

Assume Condition 6. For ceB, let X, =[{e X :1,(c) # Pyié] Assume
that [y dP, >0 for all ceB such that ¢ #b. Then b is the unique
solution to the moment extremum problem

ceB

b — argmax j log @, [{2),c]dP =0 (8.66)

Let problem (8.66) satisfy the conditions of Theorem 2'. Let Con-
dition 8 hold. Then

JNby—b)=N@O,™Y) = (8.67)

PROOF That b is the unique solution to (8.66) was shown in Section
5.1. By assumption, the conditions of Theorem 2’ hold; so the limiting
distribution of \/ N(by — b)is N(0,Q~'ZQ' ~!). We need to show that
Q- IZQ " =

The ﬁrst-order condition associated with (8.66) is

B IOg (px(z) [y(z) b]
da

=0 (8.68)
Hence,
= f g(z, b)g(z, by dP

_ f Olog os(y,b) Slog o1, b) |

da da’ Pp=1 (369

Assume tentatively that Condition 7 holds for

gls, 4 = 128 "”“a!‘;[—y th+] (8.70)

Then (8.59) implies that

dlogo(y.b
0 - oty xp 120D gp,

_ f dlog Ay, b) dlogv.(y,b) |

= s dPy= -1 (8.71)

It follows that Q~'XQ' "1 =1,
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It remains to show that Condition 7 holds. The definition (8.70)
shows that part (a) holds. Part (c) is assumed in Condition 8b, as

o[ [01og pdn, c)/0alpdn, )] 8.72)

0@ dn, c)/dada’ = ¥
To show part (b), observe that
J‘rp;(y, cdvs=1, ({,c)eX x B (8.73)
by Conditions 6a and 6b. Hence,
¢ J. oAy, c)dv,
3 =0, (,c)eX x B (8.74)

Conditions 6¢ and 8b imply, by the bounded convergence theorem,
that

0 ,c)dv
J‘pg{y ) ‘_J'acog(y,c)d
da

- Janga‘l;iy_,c_)%(y, odv,  (LeX x B (375)

It follows from (8.74) and (8.75) that

Oa
So Condition 7b holds. Q.ED.

F‘ig_‘wwé(y,c)d%:o, E)eXxB  (8.76)



CHAPTER 9

More on limiting distributions

This chapter describes recent contributions that generalize the
‘classical’ limiting distribution analysis of Chapter 8. Sections 9.1 and
9.2 report work on efficiency bounds. Section 9.3 summarizes findings
for non-differentiable moment problems.

9.1 An efficiency bound for moment equation regressions

Chapter 8 presented bounds on the asymptotic precision of
estimates of parameters solving two classes of moment problems.
Section 8.2 reported an asymptotic minimax bound for differen-
tiable, finite-dimensional moment equations. Section 8.4 proved a
version of the information bound for differentiable, finite-
dimensional likelihood problems. Recent research provides efficiency
bounds for estimates of parameters solving more general versions of
these problems. The present section reports an asymptotic minimax
bound for differentiable moment equation regressions. Section 9.2
will describe work on semiparametric likelihood problems.

9.1.1 The estimation problem and the bound

Let B be a subset of K-dimensional real space, with b interior to B. Let
Z=Yx X, where Y and X are subsets of finite-dimensional real
spaces. Assume that b solves the collection of moment equations

fg(y,é,b)dPlé=o, EeX 9.1)

where g(*, +, *) takes values in J-dimensional real space. Assume that
the conditional variance matrices

Z(@¢) = J‘g( y.&byg(y. g, bydP|E,  leX (9.2)
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exist and are non-singular. Assume that the J x K matrices
Qe = f [og(y,&,byoa’1dPIE,  CeX (93)
exist and that the K x K matrix

S= f Q(x)Z(x)~ 'Q(x) dP, (9.4)

is non-singular.

In this setting, consider the problem of estimating b when it is
known that b solves (9.1) and no other information is available. Let
{by} be a sequence of estimates. Chamberlain (1987) finds that, in the
asymptotic minimax sense of Hajek, the random variable \/N(by — b)
can be no more concentrated about zero than a random variable
distributed N(0,S1). It follows that if \/N(bN—-b) has a limiting
normal distribution, the variance of this limiting distribution exceeds
S~1 by a positive semidefinite matrix.

9.1.2 Sketch of the proof

The method of proof is innovative and warrants description.
Consider a hypothetical estimation problem in which it is known not
only that b solves (9.1) but also that P is multinomial. The support of P
is known but the probabilities on these points are not. Chamberlain
shows that this hypothetical problem can be represented as a
differentiable, finite-dimensional likelihood problem. So classical
information bound arguments provide an asymptotic bound for the
precision of an estimate of b. It turns out that, asymptotically,
\/N(by — b) can be no more concentrated about zero than a random
variable distributed N(0, S ?).

Now remove the hypothetical information that P is multinomial.
Chamberlain shows that, in all relevant respects, P can be approxi-
mated arbitrarily well by a sequence of multinomial measures. In
particular, there exists a sequence Q,,m=1,..., 0 of multinomial
measures on Z which satisfy the conditional moment equations

JQ(Yaf,b)de|f=O, fEX, m= 1,...,(1) (953)

fg(y,ﬁ,b)g(y,f,b)'delé=2(5), feX, m=1,..,0 (9.5b)
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f[ag(y, . b)/0a1d0,|1 =%,  leX, m=1,.., 0 (9.5¢)

and which, in a certain sense, converge to P. This implies an
asymptotic minimax result.

9.1.3 Application to linear mean regressions

The efficiency bound for differentiable moment equation regressions
has many important applications. Perhaps the most prominent is to
the problem of estimating the parameter b of a linear mean-regression
model. Let Y= R! and X = B = R¥. Let it be known that E(y|x) =
x'b; no other information is available. So the problem is to estimate
b given the knowledge that b solves the collection of conditional

moment equations
f(y—f’b)dPlé =0, ({eX (9.6)

For each ¢eX, let ¢*({) denote the unknown variance of y — &'b.
Then

Q) =-¢ 9.7)
(&) = o%(2) (9.8)

and
S= jaz(x)‘ xx'dP (9.9)

Observe that if the variance function () were known, the
weighted least squares estimate

B, = argmin J‘ 6%(x) Yy~ x"c)?dPy 9.10)
ceB

would be computable. The limiting distribution for this estimate is
N[0, {{o*(x)"*xx’dP}~*]. By assumption, o%(+) is not known so
(9.10)1s not computable. It is natural to ask whether the variances can
be estimated sufficiently well as to yield a feasible estimator that is
asymptotically equivalent to (9.10). Subject to regularity conditions,
Robinson (1987) answers this question positively.

Note that if o2(+) really were known, the collection of equations
(9.6) would not express all the available information. One would also
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know that the conditional moment equations
f(y—é’b)zdPlé—a2(é)=o, teX (9.11)

hold. Given the knowledge that b solves both (9.6) and (9.11), the
efficiency bound is no longer N[O, {fo*(x)”*xx'dP}~']. So the
weighted least squares estimate (9.10) is asymptotically efficient when
it is not computable, and inefficient when it is computabie.

9.1.4 Attaining the bound

An efficiency bound theorem proves that no estimator can outper-
form the bound; it does not indicate whether the bound is attainable.
To show that a bound is sharp, one must find an estimator whose
limiting distribution is the bound.

We have reported that Robinson (1987) provides such an estimator
for the case of linear mean regression. Earlier, Section 8.2 showed that
an estimator proposed by Hansen (1982) attains the bound when the
conditioning variable x has one point of support (then P| = P). Itis
easy to see that this estimator remains efficient when x has known
finite support. Then the collection of conditional moment equations
(9.1) is equivalent to the finite-dimensional moment equation

Jl[x=§Jg(y,x,b)dP=0, i=1,...,1 8.12)

where (£,i=1,...,I) are the mass points of x. So the results of
Chapter 8 apply.

It remains to consider the case in which x may have infinite
support. Newey (1986) reports an estimator that attains the bound
here. We may therefore conclude that Chamberlain’s efficiency bound
for differentiable moment equation regressions is sharp.

9.2 Efficiency bounds for semiparametric likelihood problems

An estimation problem is said to be semiparametric if the parameter
space has the form B x F, where B is a subset of a finite-dimensional
real space and F is a function space. Let Z=Y x X. A parameter
(b, /)eB % F solves a semiparametric conditional likelihood problem

if
PE=t4b.f), &eX 9.13)
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Here 14 %) is a given function mapping B x F into the space of
probability measures on Y. The family of measures [t/c, g), (c,9)e
B x F] are all absolutely continuous with respect to some measure
v;onY.

Recent research has sought to generalize the information bound for
finite-dimensional likelihood problems to the much larger class of
semiparametric likelihood problems. The discussion that follows
emphasizes findings obtained for semiparametric response models.
Recall that in a response model, the realization of an observable
random variable yis determined by the realization of an observable x,
that of an unobservable u, and by the value of a parameter b. Thus (see

(6.28)),
P =1db,P,JC), Le€X 9.14)

A response model is semiparametric if b is finite dimensional and the
collection of conditional probability measures f=(P,|¢ EeX) is
known to be in some function space F.

(Note: The term ‘semiparametric’ arises out of the practice of
reserving the word ‘parametric’ for estimation problems involving a
finite-dimensional parameter. Problems with a function-valued
parameter have long been referred to as ‘nonparametric’. So problems
having both a parametric and a nonparametric component have
come to be called semiparametric. These semantic distinctions are
unfortunate: what sense does it make to call a function-valued
parameter nonparametric?)

9.2.1 A bound on precision for the finite-dimensional component

Research to date has been concerned primarily with efficient estim-
ation of the finite-dimensional parameter component; the function-
valued component is treated as a nuisance parameter. Much of the
literature makes use of an idea of Stein (1956).

Stein posed a thought experiment in which the actual estimation
problem, having parameter space B x F, is compared with an
idealized subproblem in which the parameter space is B x F,, where
F, < F. The actual problem has available less information than does
the idealized one. Hence, the actual attainable precision of estimation
of b can be no better than the idealized attainable precision.

Suppose that an efficiency bound can be obtained for the ideal-
ized subproblem. Such a bound necessarily applies to the actual
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estimation problem, although it may not be sharp. Stein observed
that a bound for the subproblem can be computed whenever F, is a
differentiable, finite-dimensional family of functions. In this case, the
subproblem is a differentiable, finite-dimensional likelihood problem;
so the classical information bound holds.

Thus, let

Fo=[/o(d),0€l] (9.15)

where I is a subset of a finite-dimensional real space, f,(*) maps I'
into F, and f = f,(y) for some y in T, For this subproblem, the Fisher
information matrix is

o=l ]
where
A= :5 log wz[:’,(b,)f)] 0 logwgl;)”w(b,?)] P (9.17a)
4, = 0”5 log «pg[;a (b,7)] dlog wBESJ’A 9] 4p ©9.17b)
4 = 0log wz[;f,(b, )] ¢log (03%}”, (6,7)] P (9170

The information bound for estimation of b is the upper left K x K
part of the inverse of I, namely (4,, — 4,,4,,' 4;,) . It follows that
no actual estimate of b can have better asymptotic precision than this
bound. A fortiori, no actual estimate can have better asymptotic
precision than the infimum of the information bounds for all finite-
dimensional subproblems.

Stein did not indicate how the infimum of the bounds for the finite-
dimensional subproblems might be computed. Nor did he determine
whether this infimum is a sharp bound for the actual semiparametric
problem. Nevertheless, his thought experiment has proved useful in
analyzing two polar possibilities regarding the limiting behavior of
estimates of b. On the one hand, attainable precision in the actual
estimation problem may be the same as in the idealized one assuming
full knowledge of f. On the other hand, attainable precision in the
actual problem may be infinitely worse than in the subproblem
assuming /' known. Some findings follow.
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9.2.2 Adaptive estimation

An estimator for b is termed ‘adaptive’ if its asymptotic precision is the
same as the best attainable in the idealized problem in which f is
known. Suppose that one wishes to determine whether adaptive
estimation of b is possible. Stein’s work suggests a necessary
condition.

Consider the idealized problem in which f is known. The
information bound for estimation of b is A,,'. Now consider the
slightly less idealized subproblem in which I' is the real line and it is
known that f is contained in the space F, of (9.15). Here the
information bound is (4,, — As,4;,' 4;,) 1. This bound exceeds 4,,'
by a non-negative definite matrix. The bounds coincide if and only if

A,,=0 (5.18)

Thus, if F were the one-dimensional space F, adaptive estimation of
b would be possible if and only if (9.18) holds. In the actual estimation
problem, F,c F. Hence (9.18) is not sufficient for existence of an
adaptive estimator but remains necessary. Stein concluded that
adaptation is impossible if (9.18) fails for any one-dimensional set F,

Stein did not indicate how his necessary condition for adaptation
might be checked in practice. Bickel (1982) produces a verifiable form
of the condition. Bickel’s work concerns the class of semiparametric
response models in which u is statistically independent of x, P, is
dominated by Lebesgue measure, and convex combinations of
feasible densities are themselves feasible. These conditions imply that
the space of feasible values for (P, |, € X) is representable as a convex
space of Lebesgue density functions.

In this setting, Bickel shows that Stein’s condition is essentially
equivalent to the requirement that b solve each of the misspecified
likelihood problems

ceB

b — argmax j log ¢.[y,(c,g)]JdP =0, geF 9.19)
In general, b need only solve the correct likelihood problem

b — argmax j log ¢.[y,(c, /)]1dP =0 (9.20)

ceB

So the substance of the condition is that b should continue to solve
this problem when f is replaced by any g in F.
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Bickel finds that his condition is satisfied if the response model has
the linear form

y—xb—a—u=0 9.21)

where « is a free intercept and F is the space of all densities on U with
mean zero. This suggests that b is adaptively estimable. Going on, he
proves that an adaptive estimate does exist. Generalizing earlier work
of Stone (1975) on adaptive estimation of location parameters, he
shows that the following multi-step procedure works:

(1) Estimate (b, &) by least squares or any other method that yields an
estimate converging to (b, x) at rate ,/N. Let (boy, 2oy) denote the
estimate.

(11) Compute the residuals u;y = y; — xiboy — %on, i=1,..., N and
use them to estimate the unknown density function f; Bickel uses
a modified kernel estimate.

(iii) Now act as if the estimated density is f and re-estimate (b, @) by a
method that would be asymptotically efficient were f known.

Bickel also considers the model (9.21) with F the space of all densities
that are symmetric around zero. In this case, not only are the slope
parameters b adaptively estimabie but also the intercept a.
Manski (1984) extends Bickel’s analysis from the linear response
model to the class of invertible models. It turns out that b remains
adaptively estimable if (9.21) is replaced by the separable model

y—hx,b)—a—u=0 (9.22)

On the other hand, the necessary condition for adaptation fails to
hold in other invertible response models.

9.2.3 Zero Fisher information

Suppose that one wishes to learn whether there exists any estimator of
b such that ./N(by — b) has a limiting distribution. Stein’s thought
experiment provides a necessary condition.

Let F;, j=1,...,00 be a sequence of increasingly large finite-
dimensional subsets of F. Let I, j=1,..., 00 be the corresponding
sequence of information matrices. Suppose that I; »0as j— oc. Then
the efficiency bound for the actual estimation problem is zero. It
follows, by the Hajek representation theorem, that there exists po
estimator such that \/N(by — b) has a limiting distribution.
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Chamberlain (1986) uses this necessary condition to study the
attainable precision for estimation of the median-independent binary
response model (equation (6.50))

y—1[xb+u>0]=0 (9.23)

For this model,
P(y=1|§)=Jl[&f’b+u>0]dP,,|é, feX (9.24)

The space F of feasible values for (P,| EeX) is the set of all
collections of probability measures on U that share the same median.
Chamberlain finds a particular sequence of finite-dimensional subsets
of F for which the information bounds converge to zero.

It is important to understand that a finding of zero Fisher
information does not imply either that a parameter is unidentified or
that consistent estimation is impossible. In the case of the median-
independent binary response model, Manski (1985) proved identifi-
cation and showed that the estimator given in (6.54) is consistent.

9.24 An information bound for (b, f)

The work described so far takes the finite-dimensional parameter as
the object of interest and the function-valued one as a nuisance
parameter. Begun, Hall, Huang, and Wellner (1983) provide an
elegant analysis that treats b and f symmetrically.

These authors consider the class of problems in which F is a Hilbert
space of functions. The function t(*, *} mapping B x F into the space
of probability measures on Z is assumed differentiable in the sense of
Hellinger. (See their paper for the definition of Hellinger differentia-
bility.) In this setting, they examine the infinite-dimensional problem
of joint estimation of (b, f). Using projection arguments on Hilbert
spaces, they obtain infinite-dimensional generalizations of the Fisher
information matrix and of the Hajek representation theorem.

The Begun et al. analysis has been applied to obtain efficiency
bounds for response models in which u is known to be statistically
independent of x and P, is dominated by Lebesgue measure. In
particular, Cosslett (1987) computes the information bound for the
binary response model (9.23) and finds that it is positive definite.
Cosslett also gives the bound for the censored response model of

(6.47).
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Cosslett’s result for the binary response model is not at odds with
Chamberlain’s finding of zero Fisher information. Whereas Cosslett
assumes that u is known to be statistically independent of Xx,
Chamberlain assumes only median independence. Thus, strengthen-
ing the available information from median independence to statistical
independence appears to increase the attainable rate of convergence
for estimation of b.

93 Limiting distributions in non-differentiable problems

Chapter 8 showed that, in differentiable moment problems, normal-
ized method of moments estimates have limiting normal distri-
butions. As this book is written, asymptotic distribution theory for
non-differentiable problems is developing. Findings for specific
problems are accumulating. Moreover, progress is being made
towards understanding the critical features of a moment problem that
determine the rate of convergence and limiting distribution of a
method of moments estimate.

The emerging theory has not yet jelled sufficiently to permit a useful
synthesis. We shall suffice with a discussion of two strains of work.
One concerns method of moments estimation of quantile regression
functions. The other seeks general theorems enabling derivation of
limiting distributions for estimates in both differentiable and non-
differentiable problems.

9.3.1 Quantile regressions

It has long been known that, subject to regularity conditions, the
sample median has a limiting normal distribution. Let y(*) map Z into
the real line and consider the problem of best prediction of y under
absolute loss. The best predictor solves

b — argmin J IWz)—cldP =0 (9.25)
ceR!

The method of moments estimate is

By = argmin JI wz)—c|dPy (9.26)

ceR!

The median of P, solves (9.25); the median of Py, solves (9.26). The
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extremum problem (9.25) is non-differentiable; for each { in Z, the
derivative of h({,*) = |)({) — *| fails to exist at ¢ = ¥¢).

Assume that P, is dominated by Lebesgue measure and has
continuous, positive density ¢,(*,P,). Then results reported in
Section 4.2 imply that the median is the unique solution to (9.25).
For N = 1,...,, let byeBy. It can be shown that

L 1
V' N(by b)-—-»N[O, 40,0, P, 2] (9.27)
Alternative proofs are given by Cramer (1946, p. 369), Cox and
Hinckley (1974, p. 468), and Serfling (1980, p. 252).

This finding for method of moments estimation of a median
generalizes to estimation of a linear median regression. Let x(+) map
7 into RX. Let it be known that the median regressicn of y on x is a
linear function x'b for some b in B=RK. Apply the method of
moments to the implied extremum problem (see Section 4.3)

b — argmin Jl W(z) — x(z)c|dP =0 (9.28)
ceB
The analogy principle yields the least absolute deviations estimate

By = argmin j |¥(z) — x(z)c|dPy (9.29)
ceB

Problem (9.28) is non-differentiable; for each { in Z, the derivative

of | y(£) — x({) *| fails to exist at ¢ such that () = x({)'c.

Bassett and Koenker (1978) provide conditions under which the
Jeast absolute deviations estimate has a limiting normal distribution.
They assume that the conditional measures P& CeX are a
translation family and that the vector x contains a comstant
component. So we may write

wz) = x(z¥b +u (9.30)
where the random variable u is statistically independent of x(z) and

has median zero. They show that if P, is dominated by Lebesgue
measure and has continuous, positive density, then

JN(by—b) —E»N[O,WI—P—)—Z( J xx’ dPx)- 1] (9.31)

Observe that the variance matrix in (9.31) differs from that associated
with least squares estimation only in the scale factor multiplying the



146 MORE ON LIMITING DISTRIBUTIONS

matrix ({xx'dP,)” . Here the scale factor is [1/4¢,(0,P,)*]. In least
squares it is the variance of P,. (See Section 8.1.)
Powell (1984) generalizes the Bassett and Koenker result in two
“respects. Dropping the requirement that the conditional measures
P,|¢, £eX form a translation family, he assumes only that each
measure P,|£ has median {'b, is dominated by Lebesgue measure, and
has continuous, positive density. He also allows the observations of y
to be censored. Instead of observing realizations of (y, x), one observes
realizations of [max(d, y),x], where ¢ is a known constant. Note that
setting 6 = — co yields the case of no censoring.
Results of Section 6.2 imply that the median regression of max(d, y)
on x is max(é, x'b). So b solves the implied extremum problem

b— argminjl max[J, y(z)] — max[é, x(z)c]|dP =0 (9.32)

ceB

“The censored least absolute deviations estimate is

By = argmin J |max[é, W(z)] — max[6,x(z)c]|dPy  (9.33)

ceB

Powell shows that

JN(by—b) —"»N[O, [ f k()1 [x'b > 6]xx'dPx]_ 1

x [ J 1[x'b> a]xx'dpx][ f k() 1[x'b > 5]xx'dp,,] ) l] (9.34)

where (&) =2, (&b, P,|&), EeX. In the special case where P,[¢,
£eX are a translation family, x(¢)=2¢,(0,P,) for all £ in X. Then
(9.34) reduces to

JN(by—b) - N[O, 4—(;(%}-)—2( J 1[xb > 5]xx'dP,) i ]
e (9.35)

If P(x'b>6)=1, (9.34) reduces to

JN(by—b) = N[O, [ J K(x)xx’ dP,:I_ 1

X [jxx’dPx:I I: J. x(x)xx’dPx] - :] (9.36)

Here, censoring does not affect the limiting distribution.
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The above findings for method of moments estimation of linear
median regressions extend to linear quantile regressions. See Koenker
and Bassett (1978) and Powell (1986) for details. These findings do not
generalize to problems in which the random variable y is discrete.
Recall the median-independent binary response model. There the
median regression of y on x is 1[x’b > 0]. So b solves the extremum

problem

b— argminjl W2) — 1[x(z)c > 0]{dP =0 (9.37)

ceB

The least absolute deviations (maximum score) estimate is

By= argr:in Jl Wz) — 1[x(z)'c > 0]|dPy (9.38)
The zero information bound of Chamberlain (1986), noted in
Section 9.2, implies that /N(by—b) does not have a limiting
distribution.

9.3.2 General theorems

Most of the findings to date on limiting distributions in non-
differentiable moment problems have been proved using tailor-made
approaches, methods that apply only to problems with specific
features. One would like to have available general theorems, results
that enable derivation of limiting distributions for estimates in broad
classes of problems. A step in this direction was made by Huber
(1967).

Huber offers an asymptotic normality theorem for method of
moments estimates that covers differentiable moment equations and
some non-differentiable equations. Huber considers the class of
moment equations in which the length K of the parameter vector is
the same as the number J of equations. His theorem does not require
that the functions g((,*), {€Z be differentiable; it suffices that the
population moment function jg(z, +)dP be differentiable and satisfy
other regularity conditions. The result is as follows.

Theorem (Huber, 1967)
Assume that Conditions 7.1a, 7.7, 8.1, 8.4, and 8.5b hold and that

J = K. Also assume that the following three conditions hold:
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Condition 1 (Differentiability)
The K x K matrix Q = 0[ fg(z, b)dP]/0a’ exists and has rank K.

Condition 2 (Regularity)
There exist iy, ¥4, Y3, 00 > 0 such that

(@ lc=b|< b= =y, lc—b|, ceB

J-g(z, cdP

(b) |c—b|+ 6 <bg= |u(z,c, 5)dP < ¥,9, ceB

(¢} Ic—bl+6s50=>fu(z,c,5)2dP<t/135, ceB

where u(z,c,6)= sup |g(z,a) — g(z,¢c)|

la—cl<d

Condition 3 (Estimate)
by, N=1,...,c is a sequence of estimates such that

@) |by—b| —0

(b) /N f 9(z, by)dPy —0

Then
JNby—b)-5NO,Q =) W

The conclusion to this theorem is essentially the same as that in
Corollary 1 of Theorem 8.2. The two results differ only in the way Q is
defined. Condition 8.2b defined Q to be I[ag(z, b)/da’"]dP. Condition 1
in Huber’s theorem concerns 2[{g(z,b)dP]/da’. In differentiable
problems, these two matrices are equal. In non-differentiable prob-
lems, [0g(z, b)/0a’]dP is not well defined but [ fg(z, b)dP]/0a’ may
exist as the integral operator smooths g(z, ).

The primary differences between the assumptions of Theorem 8.2
and those of the present theorem is the restriction imposed on the
behavior of the set of functions g((, +),{€Z in a neighborhood of b.
Whereas Condition 8.2a required that these functions be con-
tinuously differentiable, Condition 2 here requires only that they
behave regularly when averaged with respect to P.
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Huber supposes that the sequence {by} satisfies Condition 3.
Condition 3a requires that the estimate be consistent. Condition 3b
requires that as N — oo, the estimate should, with probability
approaching one, come arbitrarily close to solving the sample
moment equations, normalized by multiplication by v

Application of Huber’s theorem has been limited by the difficulty of
verifying Conditions 1 through 3. The Powell (1984) proof of
asymptotic normality for the censored least absolute deviations
estimator is among the few econometric applications on record.
Recent work aims to develop general theorems with more easily
verifiable conditions. In particular, the approach of Pakes and
Pollard (1987) appears promising.
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Index

Absolute continuity see Probability
measures
Adaptive estimation 81, 141-2
Analog estimates 4-7
see also Analogy principle,
Consistency of analog estimates,
Efficiency of analog estimates
cardinality of 7
of functions of the parameter 7
Analogy principle
applied to
conditional probability
measures 35-46
index problems 21-22
moment problems 12-16
moment regressions 30-34
nonparametric density
problems 16-18, 34-5
separable econometric
models  22-6
smooth statistical functions
19-20
extended to infeasible empirical
measures
direct extension approach 6
mapping approach 5
introduced xi, 4-7
Asymptotic minimax theorem
128
Asymptotic normality 112
see also Limiting distributions
Asymptotic theory, motivation for
study of 87-8
Argmin operator xv

124-5,

Bayesian analysis xiv, 51
Best Predictors see Prediction problems
Binary Response

best predictors of 567

likelihood problems 66

median-independence monotone
model 84-5,91, 110
efficiency bound 143-4
maximum score g¢stimation 85,
147
statistical independence model
efficiency bound 143-4
maximum likelihood
estimation 81
Boundary condition in step moment
problems 103-104, 110-111
Bounded convergence theorem
applied 97-8, 98-100, 117-120,
129, 132-4
stated 97

Censored Response
likelihood problems 66-7
median independence monotone

model 84
censored least absolute deviations
estimation 84, 146
statistical independence model
efficiency bound 143
Central limit theorem, applied
120
Closest empirical distribution
estimation  ix, 24-5

Consistency of analog estimates
kernel density estimates 18
method of moments estimates

89-96
continuous problems 96-102
linear moment equations 115
step problems 102-111
smallest neighborhood
estimates 39--46
smooth statistical fiunctions
Continuous mapping theorem

114,

19-20
19-20
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Direct extension see Analogy principle,
Origin-preserving functions
Dominating measures 66-7

Econometric models see Response
models, Separable econometric
models

Efficiency bounds

binary response models 143-4
differentiable likelihood problems
finite dimensional 127-132

semiparametric 138-144
differentiable moment equations

finite dimensional 124-5
regressions 135-8
linear mean regression 137-8

see also Asymptotic minimax
theorem, Information bound,
Representation theorem
Efficiency of analog estimates 9-10
maximum likelihood 1324
method of moments 124-5
Empirical measure see Probability
measures
Equicontinuity
conditions implying
defined, 103-104
Estimation methods see under
individual methods
Estimation problems xi, xiv, 3-4
representations of 6
see also under individual problems
Extremum problems 3-4, 12
first order condition implied
by 126-7
see also Moment problems,
Likelihood problems, Prediction
problems

109-110

Fisher information matrix, see
Information bound

Histogram estimation 38-9
Homoskedasticity 77
Hyperparameters 29,33

Identification 4
likelihood problems 65-6
moment problems 13-14, 934, 131
of a function of the parameter 4
regressions 27-9
uniform 4, 19

Index problems 21-22
likelihood problems 22, 63

INDEX

representation of response
models 79-80
Information bound
finite dimensional 127-132
semiparametric 139-140, 143
zero inforration 142-3
Instrumental variables 25-6, 74, 116
see also Separable econometric
models

Jensen’s inequality 64

Kernel estimation
density functions 18
conditional density functions 34-5
Laws of large numbers 8, 94-5
uniform 91, 94-95, 102
continuous problems 98-100
step problems 106-108
Least absolute deviations estimation
best predictors under absolute
loss 58
median-independent monotone
response models 84-5
limiting distributions  144-7
Least squares estimation
best predictors under square loss 58
limiting distributions 116, 137-8
Lebesgue bounded convergence
theorem, see Bounded
convergence theorem
Likelihood inequality, stated and
proved 64-5
Likelihood problems 22
conditional 63-7, 127-134
continuous 66
differentiable 127-134
discrete 66
mixed 66
representation of prediction
problems 67-71
representation of response
models 80
semiparametric 138-144
see also Maximum likelihood
estimation
Limiting distributions
least absolute deviations
estimates 144-7
least squares estimates 116, 137-8
maximum likelihood estimates
132-4
method of moments estimates 112



INDEX

instrumental variables
models 116
linear equations
differentiable equations
differentiable extremum
problems 125-7
non-differentiable problems 144-9
statistical function estimates 20
Location functions 50
Loss functions 49-50, 51
square loss 52, 54, 69-70
absolute loss 52-53, 54, 70
asymmetric absolute loss 546
see also Prediction problems

113-116
117-125

Mapping approach see Analogy
principle
Maximum likelihood estimation 22,
67
adaptive 81, 141-2
efficiency 132-4
limiting distribution 132-4
response models 80-81
Maximum score estimation see Binary
response
Mean regression
best predictor under square loss 52
least squares estimation 58
linear 116, 137-8
mean-independent linear response
models 82
method of moments estimation
58-9
smallest neighborhood
estimation 37-8
versus median regression  53—-4
Median regression
best predictor under absolute
loss 53
least absolute deviations
estimation 58
linear 145-6
median-independent monotone
response models 83-5
method of moments estimation
59-60
versus mean regression 53-4
see also Quantile regression
Method of moments estimation
best predictors 57-60
consistency 89-111
history 13-14, 78
likelihood problems see Maximum

12-15

157

likelihood estimation

limiting distributions 112-127

moment regressions 30-34

separable econometric models 78

see also Moment problems
Minimum discrepancy estimation 21
Minimum distance estimation ix, 21
Moment problems 12-16

continuous 90, 96—-102

differentiable 112-134

finite dimensional 89

moment regressions 30-34

non-differentiable 144-9

step 90-91, 102-111

see also Method of moments estimation

Naive analog estimation 29-30, 36
Nearest neighbor estimation 38-9
Nonparametric density problems
16-18, 34-5
Nonparametric regression problems
absolutely continuous probability
measures 345
general probability measures 35-46
isotonic 34
Non-random sampling 10-11
see also Sampling

Origin-preserving functions 6
in closest empirical distribution
estimation 24-5
in method of moments
estimation 13, 89, 92, 95-6, 117
asymptotic best 1234
asymptotic equivalence
classes 121-123
in minimum distance estimation 21
Orthogonality conditions 73
see also Separable Econometric Models

Parameter Space 3
finite 96
in method of moments estimation of
moment regressions 32-34, 58
in regression problems 27
Prediction problems 49-51
best linear prediction 61-62
ex ante prediction 60-62, 71
likelihood representation 67-71
see also Loss functions
Probability Measures
absolutely continuous 22, 63-6,
127-134
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with respect to Lebesgue

measure 16-18, 34-5, 66

conditional, introduced 27-9

continuous 18, 59-60

empirical, introduced 4

population, introduced 3, 23

Quantile regression

best predictor under asymmetric
absolute loss 546

least absolute deviations
estimation 58, 147

method of moments estimation
59-60

Random sampling see Sampling
Regression problems 27-9
linear 54, 61-62
mean see Mean regression
median see Median regression
moment 30-34
nonparametric see Nonparametric
regression
quantile see Quantile regression
Representation theorem 128
semiparametric 143
Response Models 79-85
asymmetric treatment of observed
and unobserved variables 85
binary 84-5
censored 84
discrete 80
index problem representation 79
invertible 81
likelihood problem
representation 80
mean-independent linear 82

INDEX

median-independent monotone
83-5

semiparametric 139-144

separable 80

Robustness 20

Sampling xiv
dependent 10, 102
from a sequence of populations
10-11, 102
random 3, 97, 102, 121
stratified 11
Semiparametric estimation
problems 138-9
Separable Econometric Models 22—
26, 73-78
distributional restrictions
conditional symmetry 76
mean independence 74-5
median independence 75-6
statistical independence 77-8
variance independence 77
zero covariance 74
history 78
invertible models 81
see also Instrumental variables
Smallest neighborhood estimation
35-46
kth-smallest neighborhood
estimation 39
Smoothing functions 18
Statistical functions 19-20, 68

Translation families 56

Weighting functions 31





