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Abstract: A common practice in evidence-based decision-making uses estimates of conditional 

probabilities P(y|x) obtained from research studies to predict outcomes y on the basis of observed 

covariates x. Given this information, decisions are then based on the predicted outcomes. Researchers 

commonly assume that the predictors used in the generation of the evidence are the same as those used in 

applying the evidence: i.e., the meaning of x in the two circumstances is the same. This may not be the 

case in real-world settings. Across a wide-range of settings, ranging from clinical practice or education 

policy, demographic attributes (e.g., age, race, ethnicity) are often classified differently in research studies 

than in decision settings. This paper studies identification in such settings. We propose a formal 

framework for prediction with what we term differential covariate classification (DCC). Using this 

framework, we analyze partial identification of probabilistic predictions and assess how various 

assumptions influence the identification regions. We apply the findings to a range of settings, focusing 

mainly on differential classification of individuals' race and ethnicity in clinical medicine. We find that 

bounds on P(y|x) can be wide, and the information needed to narrow them available only in special cases. 

These findings highlight an important problem in using evidence in decision making, a problem that has 

not yet been fully appreciated in debates on classification in public policy and medicine. 
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What signifies knowing the Names, if you know not the Natures of Things. 

         Benjamin Franklin, Poor Richard Improved, 1750 

 

1. Introduction 

  

 We consider a decision maker who recommends treatments for members of a heterogeneous 

population. The decision maker observes certain covariates for each person and wants to make decisions 

informed by probabilistic predictions of personal outcomes conditional on the observed covariates. The 

problem is that the available research does not yield the desired conditional predictions. Instead, it yields 

predictions that condition on covariates whose nature and/or meaning may differ from the covariate 

information available to the decision maker. The decision maker wants to use the research findings to the 

extent possible.  

 This abstract problem has many practical manifestations. A common context is one of a clinician 

who wants to use the findings of research on medical risk assessment and treatment response to 

personalize patient care. However, patient covariates are often classified differently in research studies 

than in clinical practice. Hence, clinicians reading research findings may be uncertain how to interpret 

them for the patients in their care. Analogous problems exist in education (teachers seeking to personalize 

instruction for groups of students), management (managers seeking to deploy skill-building interventions 

among employees), and social policy (a policymaker wishing to tailor interventions to segments of the 

population to address high rates of poor outcomes such as unemployment).1  

 
1 These and other related programs are subjects of a small recent body of economic research, performed 
more or less contemporaneously with our work. Millimet (2024) studies the implications of different units 
of geographic classification (e.g., counties and congressional districts) for the estimation of relevant 
spatial statistics. Closer to the setting we  examine, Finlay et al (2024) and Baron et al (2024) investigate 
implications of differential classification of race and ethnicity in estimating disparities in incarceration 
rates and foster care placement, respectively. 
  This paper's focus on differential covariate classification has commonalities with what is known in 
some fields (medical informatics, computer science, etc.) as semantic interoperability. One 
characterization of semantic interoperability is:  

“Semantic interoperability is the ability of computer systems to exchange data, with unambiguous 
meaning. It is a requirement not only for health data be shared between different systems or 
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 In medical contexts — the setting we use to fix ideas — the problem of differential classification can 

manifest in several different ways. One issue may be different classification of patient health status. 

Research studies and clinical practice may differ in the procedures and technology used to measure health 

in physical examinations and in screening or diagnostic tests. Even if there is uniformity in the way data 

are collected, researchers and clinicians may use different criteria to summarize or categorize patient 

status. For example, they may use different thresholds to assign patients to risk categories: studies may 

identify patients with high blood pressure using different cutoffs that may have been standard at different 

points in time.  

 Another issue may be different classification of patient demographic attributes. For example, 

research and practice may differ in their classifications of patient race/ethnicity, where there presently 

exists no consensus approach. Classification may be based on patient responses to questions asking for 

self-identification, collection of data on patient ancestry, or by assignments made by an external observer 

(e.g., by skin tone). Even if there is uniformity in data collection, researchers and clinicians may use 

different criteria to aggregate the data into racial/ethnic classes, for example using broad descriptors (e.g., 

“Asian”) versus sub-categories (e.g., “Asian Indian,” “Filipino”). Classification may vary between 

research and clinical settings for a variety of reasons, including differing incentives, constraints, and 

norms. The literature sometimes refers to this phenomenon as the fluidity of classification. See Antman 

and Duncan (2015), Charles and Guryan (2011), Davenport, 2020, Penner and Saperstein (2008), Salhi et 

al., (2024), and Saperstein and Penner (2012), for various perspectives from social science and clinical 

research.2 

 
applications, but for them to be understood. Semantic interoperability refers to the transmission of 
the meaning of data.” (PAHO, 2021) (italics added) 

That the meaning of or the names attached to a particular phenomenon may vary across circumstances is 
fundamental to this paper's inquiries. 
2 Beyond racial/ethnic classification, the paper's main ideas extend to a variety of covariate classification 
contexts that include gender, disability status, and family history of illness. 
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 Whatever the source of differential covariate classification (DCC), a consequence is that a clinician 

who wants to predict patient outcomes conditional on clinically observed patient covariates faces an 

identification problem. Let y denote a patient’s health outcome that has been studied in research and that 

is of clinical concern. Suppose that a research study measured patient covariates w, enabling researchers 

to learn and report the conditional probability distribution P(y|w). 

 Now consider a clinician who treats patients drawn from a population assumed to have the same 

composition as the one studied in the research. We maintain this assumption to focus attention on the 

DCC problem. In reality, a clinician may face a further problem of extrapolation (external validity3) that 

arises if the population studied in research differs from the one treated in clinical practice. Suppose that 

clinical practice classifies patients by covariates x rather than w. Hence, the clinician wants to learn P(y|x) 

rather than P(y|w). Then the clinical identification problem is to draw conclusions about P(y|x) by 

combining knowledge of P(y|w) with other information that may be available.4  

 The identification problem arising because of DCC is too broad to study effectively in generality, but 

progress is possible if one considers specific settings, which are common and consequential in the real 

world. We focus on differential racial/ethnic classification, for two reasons. Racial/ethnic classification is 

of great current concern in the medical community. Two prominent controversies are whether race and 

ethnicity should be conceptualized in ancestral or genetic terms, as a social construct, or in some hybrid 

manner, and whether clinical decision making should consider patients' race and ethnicity however they 

may be classified (Manski et al., 2023). Classification of race and ethnicity in federal data systems is also 

a topic of current policy interest, with the White House Office of Management and Budget (OMB) 

recently publishing a set of revisions to prior classification guidelines known as Statistical Policy 

 
3 See Manski, 2019 (chap. 2), on external validity. External validity concerns are sometimes subclassified 
as concerns about generalizability and concerns about transportability (see Degtiar and Rose, 2023). We 
are not aware of these literatures addressing this paper's main concerns. 
4 One should not conflate the DCC problem with out-of-sample prediction. In the latter case, one observes 
a distribution P0(y|x) but wants to know a different distribution P1(y|x). The variables (y, x) are measured 
the same way in both populations. What differs is their distribution in each population. Out-of-sample 
prediction is an issue of external validity. 
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Directive 15, or SPD-15.5 Moreover, classification of racial and ethnic groups varies considerably in 

research and practice. 

 We emphasize at the outset that the problems we consider in this paper are distinct from familiar 

problems of covariate measurement error (e.g. Dong and Millimet 2025) and covariate misclassification 

(e.g. Bollinger 1996, and Molinari 2008). A key distinction is that we do not assume that there are true 

measures of the covariates of interest. Instead, we allow for the classification of covariates to differ across 

circumstances with no need for recourse to a "true" measure.  We also emphasize here that the paper is 

concerned primarily with how to use covariate information in predictions, less so with the nature of 

covariate classification per se, although these are intertwined to some degree. 

 Section 2 develops our terminology and documents the variation in racial/ethnic classification. 

Section 3 studies the identification problem, showing how the identifiability of P(y|x) depends on what is 

known about the relationship between y, w, and x. Our analysis reveals that DCC may result in wide 

bounds on P(y|x). These wide bounds underscore the significance of the DCC identification problem and 

the difficulty in solving it: narrowing these bounds requires information that currently may only be 

available in rare settings but can be collected prospectively alongside classification changes. For example, 

when OMB revises its race/ethnicity classification, it could implement both the old and new scheme in a 

bridging period, so that the joint distribution of (w, x, y) is known at least during this period. Section 4  

illustrates the breadth of applicability of our main findings. This section includes an empirical example 

illustrating the wide bounds obtained in a straightforward setting: estimating P(y|x) when x represents 

subgroups of a larger group w.  

 

 
5 The OMB directives have vast influence on the manner in which race and ethnicity data are collected in 
federal and other data systems. Changes to Census and other survey questions are not made lightly but are 
instead based on in-depth empirical study. Interested readers might consult the U.S. Census Bureau's 
report on the 2015 National Content Test (U.S. Census Bureau, 2017) for further details. 
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2. Variation in Racial/Ethnic Classification 

 

Here, we describe how classification of one set of attributes – race and ethnicity – varies across 

research studies, official statistics, clinical settings, and over time. In doing so, we highlight the 

importance of DCC in common, policy-relevant settings.  

We first outline a general framework to contextualize this and other variation, as prelude to our 

analysis of the identification problem occurring when one seeks to learn health outcome probabilities 

conditional on covariates x, but research evidence provides estimates of outcome probabilities conditional 

on w – the DCC problem. We then provide examples of differential classification of race/ethnicity in 

research studies, official statistics, and in clinician practice environments.   

 

2.1. Attributes, Circumstances, and Labels 

2.1.1. Circumstances 

 Consider person n in population N. Let C denote a set of circumstances that n could potentially 

experience. A circumstance c could be a time period, a geographic location, an institutional setting, or a 

cultural norm. This paper considers circumstances designating patient participation as a subject in a 

research study or presentation for diagnosis and treatment in a clinic. 

 

2.1.2. Attributes 

 We suppose that person n can be described by a set of potential attribute vectors. An(c), c ∈ C, is the 

attribute vector that would be realized for person n in circumstance c. The components of An(c) may or 

may not be observable and they may or may not vary over c. For example, person n's genome or sex 

assigned at birth are invariant over c while their age and BMI are not. 

 A potential attribute vector is akin to a potential outcome vector in familiar analysis of treatment 

response. In the present context, An(c) is realized when person n experiences circumstance c. In principle, 
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person n could be observed in multiple circumstances (e.g., in different clinics, administrative settings, or 

over time), so that multiple attribute vectors could be realized for this person. This is negligibly likely in 

the setting we study so the potential outcome analogy is appropriate. In our setting, the relevant 

circumstances are denoted c = 1 for participation in a research study and c = 2 for presentation at a clinic 

for treatment. As such we assume that potential attribute vectors An(c'), c' ≠ c, are not realized. 

 

2.1.3. Labels 

 Labels are fundamental to our analysis. Labels are the numerical or nominal values that are attached 

to attributes and that define the covariate values used in empirical studies. How labels are attached to 

attributes will vary from one circumstance to another, depending in part on the prevailing incentives and 

constraints that influence labelers at each c ∈ C. However accomplished, attaching labels to attributes is 

what we call classification. 

 Let Lm(c) be the set of labels that could be placed on attribute m in circumstance c for each n. The 

components of label sets may be numerical or nominal. For our main focus, the attribute m of interest is 

race/ethnicity and the relevant label sets are nominal. For example, it may be that Lm(1) = {White, 

Nonwhite, missing data} and Lm(2) = {White, Black, Asian, Other, missing data}, in which case the 

clinician observes a more refined classification than was used in the research study. In terms of the (w, x) 

notation introduced earlier, wn = lm,n(1) and xn = lm,n(2). where lm,n(c) ∈ Lm(c) is the attribute-m label 

observed for person n in circumstance c. 

 Since our focus is mainly on a single attribute and a representative individual, we henceforth drop 

the m and n subscripts. We assume that the label sets L(c) do not vary with n, i.e. the L(c) are defined by 

some standards or protocols. Thus, for each n the assigned labels l(c) must be elements of L(c). Central in 

what follows is the joint distribution across c of labels, P(l(1), …, l(c*)), l(c) ∈ L(c), where c* is the 

number of circumstances of interest (c* = 2 for our purposes). Note that commonality of labels across 

circumstances does not imply commonality of attributes. For example, we may have L(1) = L(2) = 
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{White, Nonwhite, missing data}, indicating that the clinician has available the same label set as the 

research study. However, the data collection process may differ in the two circumstances. If n could 

experience both c = 1 and c = 2, nothing would preclude l(1) = "White" and l(2) = "Nonwhite" or 

preclude l(1) = "missing" and l(2) = "Nonwhite". Conversely it may hold that L(1) ≠ L(2) but that  l(1) = 

l(2) = "Asian" if both L(1) and L(2) include "Asian" as a category. 

 Without knowledge of the relationship of labels across circumstances observation of person n’s label 

in one circumstance implies nothing about this n’s label in others. Even if an attribute is given the same 

label across circumstances, that label need not have the same meaning. In general, observation of w = l(1) 

reveals nothing about x even if the L(1) and L(2) label sets are identical. If label sets vary across 

circumstances, the potential lack of shared meaning is an obvious concern but perhaps less appreciated is 

that identical labels observed across circumstance-invariant label sets may also lack shared meaning. 

 Formally, assumptions with identifying power may take the form of cross-circumstance restrictions 

on the population distribution P[y, A(c), c ∈ C], where y is an outcome of prediction interest. Many such 

assumptions may be asserted, and their implications studied. An important class of assumptions that may 

sometimes be credible in racial/ethnic classification is cross-circumstance aggregation of attributes. One 

might assume that each label in L(1) has the same meaning as the union of labels in a non-singleton 

proper subset of L(2). If so, then label set L(1) would be an informative aggregation or coarsening of 

L(2). Equivalently, L(2) would be a disaggregation or refinement of L(1). 

 In the example where L(1) = {White, Nonwhite, missing data} and L(2) = {White, Black, Asian, 

Other, missing data}, L(1) would be an informative aggregation of L(2) if "White" is assumed to have the 

same meaning in both circumstances, "Nonwhite" in c = 1 is assumed to have the same meaning as 

"Black or Asian or Other" in c = 2, and missingness occurs in the same cases in both circumstances. Such 

assumptions about labels having the same meaning across circumstances imply a type of nominal cross-

circumstance aggregation that is sometimes assumed or implied in empirical work. Yet there may be no 
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solid empirical foundation for such aggregation.6 

 

2.2. Racial/Ethnic Classifications in Official Statistics 

 Having introduced basic ideas abstractly, we now discuss racial/ethnic classification schemes that 

have been used in practice. We consider three important settings:  government statistics, medical research 

studies, and clinical practice contexts. 

 The U.S. Office of Management and Budget (OMB) has recently revised its longstanding Statistical 

Policy Directive 15 (SPD-15) that specifies standards for the collection of race and ethnicity information 

in federal data systems, including the decennial Census, the annual American Community Survey, and 

others (U.S. OMB, 2024). The new standards eliminate the previous two-question structure in which race 

and Hispanic ethnicity questions were administered separately. They add "Hispanic or Latino" and 

“Middle Eastern or North African” response options to the new single question "What is your race and/or 

ethnicity?" It is reasonable to anticipate that non-federal data systems (e.g. state administrative data systems; 

health systems' electronic medical records; etc.) will begin to adopt the new category nomenclature. We 

discuss some implications of these proposed changes in section 4. 

 

2.3. Racial/Ethnic Classifications in Research Studies 

 In January 2024 the U.S. Food and Drug Administration (FDA) published a Draft Guidance 

recommending that specific race and ethnicity classifications be used in clinical trials and other clinical 

studies (U.S. FDA, 2024). Pages 5-6 of the Draft Guidance state: 

“For ethnicity, we recommend the following minimum choices be offered: Hispanic or Latino, Not 

Hispanic or Latino.” 

 
6 It may sometimes be credible to make assumptions like P(l(2) = "White" | l(1) = "White") ≥ P(l(2) = 
"White"), i.e. various forms of positive dependence (Lehmann 1966). While dependence assumptions like 
this may have identifying power in some instances, an examination of such possibilities is beyond the 
scope of this paper. 
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“For race, we recommend the following minimum choices be offered: American Indian or Alaska 

Native, Asian, Black or African American, Native Hawaiian or Other Pacific Islander, White.” 

The guidance goes on to say that in other situations greater granularity may be preferred and FDA 

recommends doing so. Anticipating revisions to the U.S. Office of Management and Budget race and 

ethnicity categories discussed above, the FDA guidance notes plans to revise its recommendations 

accordingly.  

 Reflecting changing guidance, classification of patient race and ethnicity in research studies has 

varied over time and across contemporaneous studies. A review by Turner and colleagues (2022) 

examines over 20,000 U.S. clinical trials published between 2000 and 2020. Less than a quarter of trials 

over this period reported all five groups recommended in the FDA draft guidance. The proportion 

increased from under 20% prior to 2007, when the trials database clinicaltrials.gov was launched, to over 

40% by 2020. Among the studies reporting any race/ethnicity information, the proportion of trials 

reporting all five groups was 46%.  

The difference in race/ethnicity categories across research studies is also manifest in large survey 

datasets used for observational research. For example, in 2022, the Behavioral Risk Factor Surveillance 

Survey (BRFSS) allowed participants to self-identify multiple racial categories -- including White, Black, 

American Indian or Alaska Native, seven different subgroups of Asian, and four different subgroups of 

Pacific Islander – and Hispanic ethnicity. In contrast, the National Health and Nutrition Examination 

Surveys (NHANES) included only five mutually exclusive options, combining race and ethnicity 

(Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian, 

and other).  

 

2.4. Racial/Ethnic Classifications in Clinical Practice 

 The bulk of clinical documentation in the U.S. occurs within electronic medical record (EMR) 

systems. Race and ethnicity categories used for U.S. electronic medical records are based on those 

specified by a standards-setting body called HL7. Health system customers of major EMR vendors (e.g. 

https://clinicaltrials.gov/
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Epic Systems) can use the HL7 categories in ways that suit their purposes, which may vary across health 

systems.7 

Considering how race and ethnicity are recorded within EMR systems reveals heterogeneity across 

space and over time. In a study conducted during the COVID-19 pandemic examining EMR data from 56 

health care institutions, attempts to harmonize data across the ten different reporting schema used across 

institutions revealed a large number of non-conforming categories (Cook et al 2022). Missingness of 

race/ethnicity information was high, particularly for Hispanic patients. High rates of missingness and 

time-varying classification, as inferred from changes in recorded classification within a single patient, 

have been demonstrated in other studies (Agawu et al 2023). 

 

3. Identification Analysis 

  

 We now investigate the DCC identification problem: drawing conclusions about P(y|x) by combining 

knowledge of P(y|w) and P(x) with other information that may be available, through some combination of 

data collection and credible assumptions. Knowing P(y|w) and P(x) allows one to bound P(y, w, x) or 

P(y|w, x) which then yield bounds on P(y|x). In what follows, we suppose that w and x have finite 

domains W and X, with P(w = ω) > 0 and P(x = ξ) > 0 for all ω ∈ W and ξ ∈ X. The outcome y is real-

valued. In the notation of section 2.1, W and X correspond to the label sets L(1) and L(2). 

 The analysis in this section is mostly abstract. To add concreteness, we sometimes mention the 

problem of a clinician seeking to predict (and treat) disease y given observed covariates x, but where only 

 
7 The current HL7 categories for race and ethnicity are found, respectively, at: 

https://terminology.hl7.org/2.0.0/CodeSystem-v3-Race.html 

and 

https://build.fhir.org/ig/HL7/UTG/ValueSet-v3-Ethnicity.html 

We thank our colleague Hanns Kuttner for pointing this out to us. 

https://terminology.hl7.org/2.0.0/CodeSystem-v3-Race.html
https://build.fhir.org/ig/HL7/UTG/ValueSet-v3-Ethnicity.html
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evidence on P(y|w) is available in clinical studies. In Section 4, we will show how the DCC problem 

applies to a range of other settings as well.  

 An obvious extension is to settings where predictions of y from multiple research studies are 

available, each study conditioning on different covariates or conditioning on covariates that are nominally 

identical but that were obtained under different circumstances. Another possibility are research studies 

that provide information on P(y1|x), where y1 is an outcome that is related to the outcome of interest y0, 

either by sharing a common set of underlying drivers (e.g., high-blood pressure or diabetes) or precedes it 

through some causal mechanism (e.g., diabetes and chronic kidney disease). Then a clinician or other 

decision maker may wish to learn P(y|x) by combining knowledge obtained from these studies. We do not 

study such scenarios here, but we think it important to do so as extensions of our analysis.  

 Observation of P(y|w) alone reveals nothing about P(y|x = ξ) for a specified ξ ∈ X. Among the types 

of further information that may be available for identification, we consider restrictions on the distribution 

P(w, x) in Section 3.1. We consider restrictions that directly relate P(y|w) and P(y|x) in Section 3.2. 

 

3.1. Identification with Restrictions on P(w, x) 

 The central tool when studying identification with restrictions on P(w, x) is to combine two forms of 

the Law of Total Probability. These are 

 

(1)  P(y|w = ω)  =  ∑ P(y|w = ω, x = ξ)P(x = ξ|w = ω),    ω ∈ W, 
                               ξ 
 

(2)  P(y|x = ξ)  =  ∑ P(y|w = ω, x = ξ)P(w = ω|x = ξ),    ξ ∈ X. 
                             ω 
 

Our core analysis considers the most informative setting, in which P(w, x) is completely known. 

Following this, we show how to study settings in which P(w, x) is partially known. 

 With knowledge of P(w, x), equation (1) poses a mixture decomposition problem that has been 

studied in multiple literatures, including those on ecological inference and on contaminated sampling. 
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Manski (2007, Chapter 5) exposits the problem. We paraphrase here. We also show how equation (2) 

comes into play. 

 

3.1.1. Identification in Abstraction 

 Given knowledge of P(y|w) and P(w, x), the problem in equation (1) is to learn about P(y|w, x). For 

each ω ∈ W, this equation restricts [P(y|w = ω, x = ξ), ξ ∈ X] to vectors of distributions that solve the 

equation. There is no information that relates these vectors of distributions across values of w. Hence, the 

joint identification region for P(y|w, x) is 

 

(3)   Η[P(y|w, x)]  =  [γωξ ∈ ΓY, ω ∈ W, ξ ∈ X: P(y|w = ω)  =     ∑ γωξ P(x = ξ|w = ω)], 
                                                                                                   ξ ∈ X 

 

where ΓY is the space of all distributions on Y. This identification region is always non-empty. In 

particular, letting P(y|w = ω, x = ξ) = P(y|w = ω) for all ξ ∈ X solves (1).  

 Given the identification region for P(y|w, x) and the assumed knowledge of P(w|x), equation (2) 

yields the identification region for P(y|x). The feasible values for these conditional distributions are 

obtained by inserting all feasible collections of distributions [P(y|w = ω, x = ξ), ω ∈ W, ξ ∈ X] into (2). 

 In general, P(y|x) is partially identified. An important exception with point identification occurs 

when x aggregates w (see section 2.1.3). Then there exists a many-to-one function x(∙): W → X mapping 

w into a single value of x. When x aggregates w, P[x = x(ω)|w = ω] = 1, ω ∈ W. Then equations (1) and 

(2) reduce to 

 

(1’)  P(y|w = ω)  =  P(y|w = ω), ω ∈ W, 
 
 

(2’)  P(y|x = ξ)  =  ∑ P(y|w = ω)P(w = ω|x = ξ),    ξ ∈ X. 
                              ω 
 

Thus, (1’) is an identity and (2’) point-identifies P(y|x). 



 
 

 13 

 An important case of partial identification of P(y|x) occurs when w aggregates x. Then there exists a 

many-to-one function w(∙): X → W mapping x into a single value of w. When w aggregates x, P[w = 

w(ξ)|x = ξ] = 1, ξ ∈ X. Then equations (1) and (2) reduce to 

 

(1’’)  P(y|w = ω)  =  ∑ P(y|x = ξ)P(x = ξ|w = ω),    ω ∈ W, 
                                 ξ 
 

(2’’)  P(y|x = ξ)  =  P(y|x = ξ),    ξ ∈ X. 

 

Now (2’’) is an identity and (1’’) partially identifies P(y|x). 

 The structure of the identification region (3) is generally complex when the dimension of x is greater 

than two. Cross and Manski (2002) characterized the region for the collection of conditional means E(y|w, 

x). It is shown that the identification region for [E(y|w = ω, x = ξ), ξ ∈ X] is a bounded convex set whose 

extreme points are the expectations of certain |X|-tuples of what they call stacked distributions. 

 

3.1.2. Identification with Binary x 

 The above characterization of identification simplifies considerably when the observed covariate x is 

binary, say taking the values 0 and 1. We do not need to restrict the domain of w. This case covers settings 

with a rudimentary clinical racial/ethnic classification of patients into two categories (e.g., White and 

non-White).  

 To simplify the notation, we let pω ≡ P(x = 0|w = ω). Then the Law of Total Probability (1) becomes 

 

(4)                                 P(y|w = ω)  =  pωP(y|w = ω, x = 0)  +  (1 − pω)P(y|w = ω, x = 1). 

 

For each value of w, the identification region for [P(y|w = ω, x = 0), P(y|w = ω, x = 1)] is 

 



 
 

 14 

(5)    Η[P(y|w = ω, x = 0), P(y|w = ω, x = 1)]  =  {(γω0, γω1) ∈ ΓY ⤫ ΓY: P(y|w = ω) = pωγω0 + (1 − pω)γω1}. 

 

 Result (5) is simple, but still abstract. The first step in developing its practical implications is to 

observe that it is enough to study identification of one of the two distributions P(y|w = ω, x = 0) or P(y|w 

= ω, x = 1). This is so because, by (4), specification of one of these distributions implies a unique value 

for the other. Hence, determination of either Η[P(y|w = ω, x = 0)] or Η[P(y|w = ω, x = 1)] suffices to 

determine the joint identification region Η[P(y|w = ω, x = 0), P(y|w = ω, x = 1)]. 

 For specificity, consider P(y|w = ω, x = 1). Manipulation of (4) yields: 

 

(6)          P(y|w = ω, x = 1)  =  [P(y|w = ω) − pωP(y|w = ω, x = 0)]/(1 − pω). 

 

Letting P(y|w = ω, x = 0) range over all elements of ΓY yields the identification region: 

 

(7)       Η[P(y|w = ω, x = 1)]  =  ΓY  ∩  {[P(y|w = ω) − pωγω0]/(1 − pω),  γω0 ∈ ΓY}. 

 

Identification of Event Probabilities 

 For further simplification, let B be any subset of Y and consider the event probability P(y ∈ B|w = ω, 

x = 1). The identification region for P(y ∈ B|w = ω, x = 1) is the interval 

 

(8)     Η[P(y ∈ B|w = ω, x = 1)]  =  [0, 1]  ∩  [[P(y ∈ B|w = ω) − pω]/(1 − pω), P(y ∈ B|w = ω)/(1 − pω)]. 

 

The lower bound is greater than zero, hence informative, when pω < P(y ∈ B|w = ω). The upper bound is 

less than one, hence informative, when pω < 1 − P(y ∈ B|w = ω). When both conditions hold, which 

requires that pω be less than ½, the interval has width pω/(1 − pω). 
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 The finding in (8) cautions that combination of observation of P(y|w) with knowledge of P(w, x) may 

not reveal much about P(y|x), indeed sometimes nothing at all. To demonstrate, it suffices to consider the 

simple case where y, w, and x are all binary, taking the values 0 and 1. We consider identification of P(y = 

1|x = 1) for specificity. We continue to use the shorthand pω ≡ P(x = 0|w = ω). 

 Knowledge of P(y|w) and P(w, x) is completely uninformative about P(y = 1|x = 1) if pω ≥ max[P(y 

= 0|w = ω), P(y = 1|w = ω)], ω ∈ {0, 1}. Then the joint identification region for [P(y = 1|w = 0, x = 1), P(y 

= 1|w = 1, x = 1)] is the unit square [0, 1]2. It follows from (2) that the identification region for P(y = 1|x = 

1) is [0, 1]. 

 Knowledge of P(y|w) and P(w, x) is informative in other cases, but the implied bound on P(y = 1|x = 

1) may be wide. Suppose that pω < min[P(y = 0|w = ω), P(y = 1|w = ω)], ω ∈ {0, 1}. Then the joint 

identification region for [P(y = 1|w = 0, x = 1), P(y = 1|w = 1, x = 1)] is 

 

 [P(y = 1|w = 0) − p0]/(1 − p0), P(y = 1|w = 0)/(1 − p0)] 

                                                                 ⤬  [P(y = 1|w = 1) − p1]/(1 − p1), P(y = 1|w = 1)/(1 − p1)]. 

 

It now follows from (2) that the identification region for P(y = 1|x = 1) is 

 

[P(w = 0|x = 1)[P(y = 1|w = 0) − p0]/(1 − p0) + P(w = 1|x = 1)[P(y = 1|w = 1) − p1]/(1 − p1)], 

                            P(w = 0|x = 1)[P(y = 1|w = 0)/(1 − p0)] + P(w = 1|x = 1)[P(y = 1|w = 1)/(1 − p1)]. 

 

This interval has width P(w = 0|x = 1)p0/(1 − p0) + P(w = 1|x = 1)p1/(1 − p1). 

 To obtain further insight into the identification problem, suppose that w and x are alternative ways to 

classify persons into non-White (0) and White (1) categories. Suppose that the definition of “White” is 

broader in the research study than in the clinical context. Thus, every patient classified as White in the 

clinic would be classified as White in the research study. Then P(w = 1|x = 1) = 1, P(w = 0|x = 1) = 0, and 
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the width of the bound on P(y = 1|x = 1) is p1/(1 − p1). The quantity p1 ≡ P(x = 0|w = 1) is the fraction of 

persons classified non-white in the clinic, among those classified white in the research study. 

 

Identification of Means and Quantiles 

 Considering features of P(y|x) beyond event probabilities, Horowitz and Manski (1995) derived 

sharp bounds on the conditional mean E(y|w = ω, x = 1) and α-quantiles Qα(y|w = ω, x = 1), where α ∈ (0, 

1). Identification of these parameters can be addressed directly, but it is easier to prove a general result for 

the class of parameters that respect stochastic dominance and then apply this result to the mean and 

quantiles. Appendix A of this paper summarizes the analysis.  

 

3.1.3. Identification with Partial Knowledge of P(w, x) 

 Complete knowledge of P(w, x) may sometimes be available through auxiliary data collection that 

measures patient attributes in multiple ways, or such knowledge may be asserted by posing assumptions. 

However, it may be that P(w, x) is only partially known. If so, the identification region for P(y|x) is 

necessarily a superset of the one derived above.  

 Abstractly, one may know that P(w, x) lies in some set H[P(w, x)] of bivariate distributions with 

domain W ⤬ X. A specific salient case is that in which a research study reports P(w) and clinical practice 

reveals P(x). Then data collection only yields knowledge of the marginals of P(w, x). Research on Boole-

Frechét-Hoeffding bounds has characterized the resulting identification region for P(w, x) in the absence 

of assumptions restricting this distribution. 

 Whatever form the set H[P(w, x)] takes, the identification region for P(y|x) can be derived abstractly 

by extension of the analysis in Section 3.1.1. We explain in Appendix B.  
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3.2. Identification with Assumptions Relating P(y|w) and P(y|x) 

 The main lesson of the analysis in Section 3.1 is that knowledge of P(y|w) and P(w, x) often does not 

suffice to reveal much about P(y|x). Narrower bounds may be obtained by adding assumptions that 

directly relate P(y|w) and P(y|x). 

 Particularly simple are bounded-variation assumptions, which constrain the distance between the 

two distributions. In settings that differ substantively from DCC but are mathematically similar, such 

assumptions have been applied by Manski (2018), Manski and Pepper (2018), Li, Litvin, and Manski 

(2023), and elsewhere. When y, w, and x are all binary, a leading example of a bounded-variation 

assumption is to assert that |P(y = 1|w = 0) – P(y = 1|x = 0)| < δ0 and |P(y = 1|w = 1) – P(y = 1|x = 1)| < δ1, 

where δ0 and δ1 are specified positive constants. 

 Identification analysis with bounded-variation assumptions is generally straightforward. The tighter 

the constraint on the distance between P(y|w) and P(y|x), the greater is the identifying power. However, 

assessment of the credibility of such an assumption may not be straightforward. Credibility necessarily is 

context-specific. 

 

4. Applications 

  

 While we examined a clinical decision problem to fix ideas around identification challenges given 

DCC in section 3, our analysis generalizes to many different applications. We discuss two such policy 

relevant examples in this section: harmonization and bridging across different classifications of race and 

ethnicity and assessing racial disparities. We also provide an empirical illustration, focusing on partial 

identification of race/ethnicity specific disease risks for policy and clinically relevant subcategories in 

situations where P(y|x) is only available for the larger category comprising these subgroups. 
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4.1. Harmonization and Bridging 

 The recent update of OMB's SPD-15 (U.S. OMB, 2024) specifies new race and ethnicity data 

collection standards to be used across federal census and survey systems. Most prominent in the revision 

is the replacement of the earlier two-question race (five categories) and ethnicity (two categories) 

structure with a single-question, seven-category structure whose simplest form uses: American Indian or 

Alaska Native; Asian; Black or African American; Hispanic or Latino; Middle Eastern or North African; 

Native Hawaiian or Pacific Islander; and White (allowing for multiple-category responses). 

 One concern is how to reconcile or harmonize statistical findings that were based on the pre-revision 

categories with those now to be obtained with the new categories. OMB refers to such harmonization as 

"bridging" (U.S. OMB, n.d.). In this paper's terminology the pre- and post-revision periods can be viewed 

as two distinct circumstances in which covariates w and x are available, respectively. Having learned 

P(y|w) over a time series of pre-revision data, how can these probabilities be compared with post-revision 

findings when only y and x are available? U.S. OMB, n.d., describes various bridging strategies that 

federal agencies might use. None of these strategies appears to appreciate the partial-identification nature 

of the fundamental problem these agencies confront.   

 

4.2. Assessing Racial Disparities 

 Consider a setting where a decision maker wishes to understand how racial disparities in some 

socially important outcome—e.g. wealth, schooling attainment, health—differ across circumstances. Let 

y be the binary outcome of interest and define a disparity in circumstance c as ∆(c) = P(y = 1|w(c) = w1) – 

P(y = 1|w(c) = w0), e.g. P(y = 1|w(c) = Black) – P(y = 1|w(c) = White). Natural circumstances to consider 

include time periods and geographical units. For simplicity suppose there are two geographical places of 

interest, R and S, and two time periods, 1 and 2. A decision maker may want to know: 

(a) how disparities change over time for place j, j in {R, S} 

(b) how disparities differ between places at time t, t in {1, 2} 

(c) how disparity differences between R and S change over time 
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There are thus 4 circumstances that might be considered c1 = (j = R, t = 1), c2 = (j = S, t = 1), c3 = (j =R, t 

= 2), and c4 = (j = S, t = 2). 

 For reasons discussed above the label designations of Black and White may differ across 

circumstances. If so, identifying these changes or differences in disparities ∆(cj) – ∆(ck) necessarily 

confronts DCC issues if it cannot be guaranteed that Black and White have the same meaning across 

circumstances.  

 

4.3. Empirical Application: Diabetes Risk Within Asian Subgroups 

 An ongoing controversy in clinical medicine is the lack of research data on disease risks and 

treatment outcomes among subgroups of individuals categorized as Asian. This group comprises of a 

range of individuals who originate or descend from a range of countries, e.g., China, India, Japan, the 

Philippines, and may thus be expected to have differing disease risks. Early evidence of heterogeneity 

across these groups (e.g., Cheng et al 2019; Lui et al 2024) has prompted calls for updated race/ethnicity 

classification that disaggregates the Asian group into these relevant subgroups (Yi 2024). 

 In the absence of widespread data collection of this nature, one may apply the methods developed in 

Section 3.1.2. To do so, the researcher or clinician needs information on P(y|w), where w represents the 

aggregated Asian category, and the probability that a patient classified as Asian belongs to the particular 

subgroup of interest. We conduct this exercise using data from the 1999-2018 National Health Interview 

Surveys (NHIS), which includes information for 25,500 adult Asian respondents classified into four 

mutually exclusive subgroups: Chinese, Filipino, Asian Indian, and Other Asian.8 To connect with the 

clinical literature on this topic (Chang et al 2019), we focus on the outcome of whether the respondent has 

diabetes (y). In our sample, P(y = 1|w) = 0.0898. Among the Asian respondents, the proportion Chinese is 

 
8 Specifically, we regress a binary indicator denoting whether the respondent had ever been diagnosed 
with diabetes on a vector of fixed effects for racial group and age-gender fixed effects. We exclude 
individuals denoting Hispanic ethnicity from the sample for simplicity, though the results are similar 
when we include this group. We account for complex survey design by weighting using the NHIS 
sampling weight. Our regression allows us to recover age and gender-adjusted prevalences of diabetes for 
each racial group.  
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0.2284; the proportion Filipino 0.1975; the proportion Asian Indian 0.2208; the proportion reporting 

another subgroup 0.3603.  

 Using these quantities and applying Equation (8), we can obtain the following bounds for reporting a 

diabetes diagnosis conditional each Asian subgroup: 

 

P(y = 1|x = Chinese)  ∈  [0, 1]   ∩  [(0.0898 - 0.7786)/0.2284,  0.0898/0.2284]  =   [0,  0.3932] 

P(y = 1|x = Filipino)  ∈  [0, 1]   ∩  [(0.0898 - 0.8025)/0.1975,   0.0898/0.1975]   =  [0, 0.4547] 

P(y = 1|x = Asian Indian)  ∈  [0, 1]   ∩  [(0.0898 - 0.7792)/0.2208,   0.0898/0.2208]  =  [0, 0.4067] 

P(y = 1|x = other Asian)  ∈  [0, 1]   ∩  [(0.0898 - 0.6397)/0.3603,  0.0898/0.3603]  =   [0,  0.2492] 

 

Since the Asian subgroups are known in our sample, we can compare these bounds to the point estimates: 

 

P(y = 1|x = Chinese)  = 0.0638 

P(y = 1|x = Filipino)  = 0.1003 

P(y = 1|x = Asian Indian)  = 0.1118 

P(y = 1|x = other Asian)  = 0.0842 

 

 The wide bounds, derived making no assumptions about the distribution of diabetes across Asian 

subgroups, underscore the potential gravity of the differential classification problem. The upper bound for 

each subgroup holds if all diabetes is concentrated in this subgroup. Accordingly, the diabetes rate in the 

other subgroups are all zero, their lower bounds. 

 One may narrow the bounds by making bounded variation assumptions that restrict the risks of 

diabetes. For example, one might assume that the risk in each Asian subgroup must lie between the lowest 

and highest rates of diabetes estimated in epidemiologic studies of other racial and ethnic subgroups. 

Even with this assumption, one may not be able to do much to discern the magnitude of differential risks 

across groups. For example, one may not be able to discern whether Asian Indians have a two-fold higher 
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prevalence of diagnosed diabetes than Chinese or half the Chinese prevalence. Clinicians would like to 

have refined knowledge of diabetes risks to accurately guide diagnostic testing and treatment. 

 

5. Discussion 

  

 Data collection involves making choices on what to measure and how to measure it. Changes in how 

particular attributes are classified have long come with changes in social norms, demographic patterns, 

and policy goals. While the reasons behind these shifts may be laudable, differential covariate 

classification introduces a difficult identification problem for researchers examining differences in 

outcomes across groups (over time or space) and decision-makers seeking to intervene or allocate 

resources on the basis of risk of some outcome, which varies by demographic characteristics, using 

existing evidence-based research findings. This identification problem has not received much attention to 

date. However, it is consequential and relevant. Our analysis reveals that bounds on the object of interest, 

p(y|x), given knowledge of p(y|w) and p(w, x), may be quite wide. This is in a simple setting where 

challenges to external validity are assumed away. Narrowing these bounds requires information that is not 

typically available or potentially untenable assumptions.  

 One way to address this challenge is to prospectively collect data using both classification schemes 

w and x for a period of time, before switching to a sole use of a single one of these schemes. Another way 

is to identify other related outcomes for which p(y|w) and p(x|w) are both known and use that knowledge 

to narrow bounds. The returns to all these strategies will need to be evaluated against costs on a case-by-

case basis. If evidence-based decision-making is to be conducted rigorously and taken seriously (see 

Baicker and Chandra, 2017) such evaluation is essential. Our analysis in this paper provides a framework 

for such discussions. 
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Appendix A: Identification of Parameters that Respect Stochastic Dominance with Knowledge of P(w, x) 

  

 Horowitz and Manski (1995) showed that the identification region Η[P(y|w = ω, x = 1)] contains a 

“smallest” member Lpω that is stochastically dominated by all feasible values of P(y|w = ω, x = 1) and a 

“largest” member Upω that stochastically dominates all feasible values of P(y|w = ω, x = 1). These 

smallest and largest distributions are truncated versions of the distribution P(y|w = ω): Lpω right-truncates 

P(y|w = ω) at its (1 − pω)−quantile and Upω left-truncates P(y|w = ω) at its pω−quantile.  

 With this as background, it follows immediately that if D(∙) is a parameter that respects stochastic 

dominance, the smallest feasible value of D[P(y|w = ω, x = 1)] is D(Lpω) and the largest feasible value is 

D(Upω). Thus, sharp bounds on E(y|w = ω, x = 1) are the means of Lpω and Upω.  Sharp bounds on Qα(y|w 

= ω, x = 1) are the α−quantiles of Lpω and Upω. 

 The above result determines sharp lower and upper bounds on D[P(y|w = ω, x = 1)], but it does not 

assert that the identification region is the entire interval connecting these bounds. The identification 

region is the entire interval if D(∙) is the expectation parameter. However, the interior of the interval may 

contain non-feasible values if D(∙) is a different parameter that respects stochastic dominance. Suppose, 

for example, that y is discrete and D(∙) is a quantile. Quantiles must be elements of the set Y of logically 

possible values of y. Hence, the identification region for D[P(y|w = ω, x = 1)] can only include the 

elements of the interval [D(Lpω), D(Upω)] that belong to Y. 
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Appendix B: Identification with Partial Knowledge of P(w, x) 

  

 Let us relabel the identification region for P(y|w, x) given in equation (3) by making explicit its 

dependence on P(w, x). Thus, let region (3) now be denoted ΗP(w, x)[P(y|w, x)]. Knowing only that P(w, x) 

∈ Η[P(w, x)], it follows immediately that  

 

         P(y|w, x)  ∈     ⋃    Ηγ[P(y|w, x)]. 
                              γ ∈ Η[P(w, x)]      
 

The right-hand side is the identification region for P(y|w, x) with partial knowledge of P(w, x), 

specifically with partial knowledge of P(x|w). 

 Given the above, application of equation (2) across the jointly feasible values of P(y|w, x) and P(w|x) 

yields the identification region for P(y|x). The simplicity of this abstract statement conceals the possible 

difficulty of computing the region. The possible difficulty is indicated in the words “jointly feasible 

values of P(y|w, x) and P(w|x).” A value of P(y|w, x) can be feasible only if it is compatible with some 

feasible value of P(w|x). The joint identification region for P(y|w, x) and P(w|x) may be a proper subset of 

the Cartesian Product of their separate identification regions, the specifics depending on the setting. 

Determination of this joint identification region is necessary to use equation (2) to determine H[P(y|x)].  

 


