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Abstract 
 

 
Incomplete observability of data generates an identification problem. What one can learn about a population 
parameter depends on the assumptions one finds credible. Rubin has promoted random multiple imputation 
(RMI) as a general way to deal with missing values. The recommendation has been influential to researchers 
who seek a simple fix to the nuisance of missing data. This paper provides a transparent assessment of the 
mix of Bayesian and frequentist thinking used by Rubin to argue for RMI. It evaluates random imputation 
to replace missing outcome or covariate data when the objective is to learn a conditional expectation. 
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1. Introduction 

 

A classic concern of statistics is to use sample data to infer features of a conditional probability 

distribution. Consider a population characterized by a joint distribution P(y, x), where y is a real outcome 

and x is a covariate vector. The objective is to learn about P(y|x). One observes (yi, xi, i = 1, . . , N) in a 

random sample of N persons drawn from a study population that has distribution P(y, x). One uses the 

sample data to estimate features of P(y|x), often the conditional mean E(y|x). For example, a labor 

economist may want to learn the distribution of income or wages in households with specified covariates. 

It is well-understood that incomplete observability of sample data generates an identification problem. 

Inference without assumptions requires contemplation of all logically possible distributions of the missing 

data. Doing so yields the set of all possible values of P(y|x), its identification region. The practical challenge 

is to characterize this set in a tractable way. Manski (1989, 1994) showed that identification analysis for 

E(y|x) and conditional quantiles is simple when only outcome data are missing. Analysis is more complex 

when the objective is to learn a spread parameter such as V(y|x); see Blundell et al. (2007) and Stoye (2010). 

Analysis is also more complex when some sample members have missing covariate data. Horowitz and 

Manski (1998, 2000) study these settings, with focus on E(y|x). 

It is well-understood that assumptions about the distribution of missing data have identifying power. 

Relatively weak assumptions may shrink the identification region for P(y|x). Sufficiently strong 

assumptions may yield point identification. Manski (2003) assembles findings on identification using a 

spectrum of assumptions. A basic lesson is that there is no panacea for missing data. What one can learn 

about a population parameter depends on the assumptions one finds credible to maintain. The credibility of 

assumptions varies with the empirical setting under study. No specific assumptions can provide a realistic 

general solution to the problem of inference with missing data. 

A common approach to coping with missing data is to impute them: the word “imputation” means 

using artificially constructed values, sometimes called “synthetic data,” to take the place of missing data. 
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Whether explicitly or implicitly, every imputation method uses assumptions about the distribution of 

missing data to generate the constructed values. The results depend critically on the assumptions made. 

 

Illustration: The U.S. Census Bureau has applied hot-deck imputation to the Current Population Survey 

(CPS), describing the method this way (U. S. Census Bureau, 2006, p. 9-2): 

"This method assigns a missing value from a record with similar characteristics, which is the hot 

deck. Hot decks are defined by variables such as age, race, and sex. Other characteristics used in 

hot decks vary depending on the nature of the unanswered question. For instance, most labor force 

questions use age, race, sex, and occasionally another correlated labor force item such as full- or 

part-time status." 

Thus, agency staff select a vector of covariates for which response is complete and compute the empirical 

distribution of the outcome of interest among sample members who have this covariate value and who 

report their outcomes. A hot-deck outcome is imputed to a person with missing data by drawing a realization 

at random from the available empirical distribution. 

 The CPS documentation of hot-deck imputation offers no evidence that the method yields an outcome 

distribution for missing data that is close to the actual distribution of such outcomes. The method used to 

generate imputations matters greatly when missing data is common. Consider, for example, the use of CPS 

data on income to estimate the U.S. family poverty rate. Table 1 of Manski (2016) shows that item 

nonresponse to income questions is substantial. Table 1 here is an excerpt from that table, presenting 

interval estimates of the poverty rate that make no assumption about the distribution of missing income 

data and point estimates using Census Bureau hot-deck imputations. 

 
Table 1: Family Poverty Rate: Excerpt from Table 1 of Manski (2016)  

Year Interviewed 
Families  

Fraction with 
Missing Data 

Interval Estimate Point Estimate 
with Imputations 

2001 89063 0.436 [0.110, 0.315] 0.146 
2011 86038 0.384 [0.139, 0.339] 0.176 
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The point estimates necessarily lie within the intervals because the imputations are logically possible values 

of the missing data. The point estimates could potentially lie anywhere within the intervals, depending on 

the imputation method used.    □ 

 

While no single imputation method has been used universally, random multiple imputation (RMI) has 

been promoted as a general way to deal with missing values in public-use data (Rubin, 1987, 1996). The 

adjective “random” refers to drawing imputed values from a specified probability distribution. The 

adjective “multiple” refers to repetition of the random imputation process, generating multiple pseudo 

datasets and correspondingly multiple estimates of parameters of interest. 

Rubin (1996) made this broad recommendation (p. 473): “For the context for which it was envisioned, 

with database constructors and ultimate users as distinct entities, I firmly believe that multiple imputation 

is the method of choice for addressing problems due to missing values.” This recommendation has been 

influential. Considering missing data in clinical trials, a National Research Council panel (National 

Research Council, 2010) argued favorably for RMI. Use of RMI has also been recommended for 

observational studies in medicine (e.g., Sterne et al., 2009; Azur et al., 2011; Pedersen et al., 2017). 

Enthusiasm for RMI has extended beyond application to missing data to encompass its use to replace 

observed data that are deemed sensitive, the aim being to preserve the privacy of sample members. Rubin 

(1993) proposed that a data steward use observed data to estimate a model approximating the probability 

distribution of sensitive data conditional on non-sensitive data. One then uses random draws from this 

modelled distribution to replace the sensitive data. Repeating this process yields multiple imputations. The 

idea has subsequently been discussed by Reiter (2002), Drechsler and Reiter (2009), Hotz et al. (2022), and 

others. In research on data privacy, imputations are usually called synthetic data. 

It is easy to see why imputation may be attractive to empirical researchers who seek a simple fix to the 

nuisance of missing data. One imputes data and then performs statistical analysis as if they are actual data. 

Rubin (1996) put it this way (p. 474): “Each tool in the ultimate users’ existing arsenals can be applied to 
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any data set with missing values using the same command structure and output standards as if there were 

no missing data.” This is the allure of making stuff up. 

The allure is superficial. RMI is an operational procedure to approximate a modelled distribution of 

missing data by repeated simulation and to facilitate use of readily available statistical software. RMI is 

well-grounded only if the modelled distribution closely approximates the actual distribution of missing 

data, conditional on the observed data. However, there is rarely good reason to think that modelled 

distributions of missing data are accurate. It has been common to assume that data are missing at random 

and to use observed data to model the distribution of missing data. Analysts typically invoke this assumption 

without much if any comment about its credibility. A frank exception is a U.S. Census Bureau document 

describing the American Housing Survey, which states (U. S. Census Bureau,  2011): 

“Some people refuse the interview or do not know the answers. When the entire interview is 

missing, other similar interviews represent the missing ones . . . . For most missing answers, an answer 

from a similar household is copied. The Census Bureau does not know how close the imputed values 

are to the actual values.” 

 Commentators have expressed concern about the accuracy of modelled distributions for sensitive data. 

Matthews and Harel (2011) observe that inferences made with imputed data are generically incorrect if the 

imputation model is incorrect. Reiter (2002) states (p. 532): “the validity of inferences depends critically 

on the accuracy of the imputation model.” He explains that “When these models fail to reflect accurately 

certain relationships, analysts’ inferences also will not reflect those relationships. Similarly, incorrect 

distributional assumptions built into the models will be passed on to the users’ analyses.” Hotz et al. (2022) 

write: “in cases where data sets have a large number of variables and the number of relationships that 

researchers might want to investigate is very large, it is essentially impossible for all relationships to be 

accurately captured by the type of models that are feasible to use for synthetic data set creation.” 

I find it disturbing that empirical researchers continue to trust in imputation in general, and RMI in 

particular, even though maintained assumptions about the distribution of missing data commonly lack 

foundation. The simplicity of imputation to the user, with its superficial enablement of conventional 

inference, does not suffice to justify its use in empirical research. Credibility should matter.  
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 I have previously cautioned against poorly motivated imputation, notably in Horowitz and Manski 

(1998) and Manski (2016). Credible assumptions about the distribution of missing data are commonly too 

weak to yield point identification. Given this, I have recommended that empirical researchers acknowledge 

the realism of partial identification and report appropriate interval estimates. When point estimation is 

necessary as an input to decision making, I have recommended that statistical decision theory be used to 

derive estimates with desired properties (Dominitz and Manski, 2017). 

 This paper adds to my earlier work in two main ways. Section 2 provides a transparent assessment of 

the mix of Bayesian and frequentist thinking that has been used to argue for RMI. While it is not new 

research in the traditional sense, this assessment is an original contribution in the sense of providing an 

easily understandable new explanation of a subject whose discussion has often been opaque. In particular, 

I explain that the fundamental part of RMI is the distribution used to generate random imputations, not the 

generation of multiple imputations. The “multiple” aspect of RMI is simply a renaming of Monte Carlo 

integration to approximate the mean of a Bayesian posterior distribution for a parameter of interest. 

 Section 3, building on and adding to Horowitz and Manski (1998), evaluates random imputation to 

replace missing outcome or covariate data when the objective is to learn a conditional expectation. The 

primary new contribution is my study of the probability limits of imputations of outcomes (Section 3.1.1) 

and covariates (Section 3.2.1). This analysis reveals the specific distributional assumptions that must be 

satisfied if an estimator that imputes missing data is to converge asymptotically to a population parameter 

of interest. The concluding Section 4 considers steps that might help combat the allure of making stuff up. 

 This paper does not discuss the large literature that assumes a known distribution of missing data and 

then studies the finite-sample statistical imprecision of alternative imputation or other estimates. Examples 

include inverse probability weighting for missing outcome and covariate data (Wooldridge, 2007) and use 

of overidentifying restrictions for missing covariates (Abrevaya and Donald, 2017). This work is valuable 

when it is credible to assume a particular distribution of missing data, but my concern is the common 

situation in which a credible assumption is lacking. In this situation, the primary issues for analysis are 

identification of parameters and the consistency of estimates rather than their statistical precision. 
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2. The Bayesian Theory and Frequentist Interpretation of RMI 

 

2.1. Bayesian Theory 

 

 RMI was originally motivated from a subjective Bayesian perspective. One places a joint subjective 

distribution on all observed and missing data. One computes the posterior subjective distribution of missing 

data conditional on the observed data. One uses this to derive the posterior distribution of a parameter of 

interest. Given this, RMI is simply a computational method that uses Monte Carlo integration to 

approximate the mean of the posterior distribution. 

The Bayesian theory was developed in a series of articles and a book (Rubin, 1987). A concise 

statement was given in Rubin (1996), where he considered the posterior distribution for a real parameter 

Q(Y), Y being a random vector with some components observed and some missing. He wrote (p. 476): 

“The key Bayesian motivation for multiple imputation is given by result 3.1 in Rubin (1987). . . . . the 

results and its consequences can be easily stated using the simplified notation that the complete-data 

are Y = (Yobs, Ymis), where Yobs is observed and Ymis is missing. Specifically, the basic result is 

    P(Q|Yobs) = ∫P(Q|Yobs, Ymis)P(Ymis|Yobs)dYmis.” 

 

Here P(Q|Yobs) is the posterior predictive distribution of Q conditional on Yobs, P(Q|Yobs, Ymis) is the 

posterior for Q given (Yobs, Ymis), and P(Ymis|Yobs) is the posterior for Ymis given Yobs. P(Q|Yobs, Ymis) and 

P(Ymis|Yobs) are specified subjective distributions, making P(Q|Yobs) computable. In practice, the focus has 

been on the posterior mean of Q: E(Q|Yobs) = ∫ E(Q|Yobs, Ymis)P(Ymis|Yobs)dYmis. 

 What Rubin called “the basic result” does not refer to RMI. He interpreted it as RMI by considering 

Monte Carlo integration as a practical approach to approximate E(Q|Yobs). One draws repeated values of 

Ymis at random from P(Ymis|Yobs) and averages the resulting values of E(Q|Yobs, Ymis). Semantically, one 

may refer to Monte Carlo draws of Ymis as imputations. Hence, RMI is Monte Carlo integration. 
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2.2. Frequentist Interpretation 

 

 The above motivation for RMI is well-grounded from a subjective Bayesian perspective. A disconnect 

between the theory and practice of RMI stems from efforts made to assert desirable frequentist properties 

for RMI. To a subjective Bayesian, the posterior mean E(Q|Yobs) is interpretable regardless of whether it 

equals an objective quantity of scientific interest. A frequentist, however, assumes the existence of an 

objective quantity of interest, say Q*, and wants to estimate this quantity well across repeated samples. 

 The posterior mean E(Q|Yobs) need not be a good estimate of Q* when P(Q|Yobs, Ymis) and P(Ymis|Yobs) 

are simply subjective distributions. To prove good frequentist properties for E(Q|Yobs), one typically 

assumes that the distributions P(Q|Yobs, Ymis) and P(Ymis|Yobs) are objectively correct. Rubin (1996) 

demonstrated awareness of this core requirement when he wrote (p. 474): “My conclusion is that ‘correctly’ 

modeling the missing data must be, in general, the data constructor’s responsibility.” However, he provided 

no evidence that data constructors are able to model missing data correctly. 

 He argued that a desirable frequentist property for statistical procedures is “randomization validity,” 

interpreted as requiring approximately unbiased point estimates of scientific estimands. He wrote (p. 476): 

“Multiple imputation was designed to satisfy both achievable objectives by using the Bayesian and 

frequentist paradigms in complementary ways: the Bayesian model based approach to create procedures, 

and the frequentist (randomization-based approach) to evaluate procedures.” Continuing, he wrote that if 

the multiple imputations are “proper” and complete data inference is randomization-valid, then (p. 477): 

“the large-m repeated-imputation inference . . . is randomization-valid for the scientific estimand Q, no 

matter how complex the survey design.” 

 I find it difficult to understand the extended verbal discussion of “proper” multiple imputation. 

However, I believe that I understand the type of frequentist inference that he had in mind. His symbol m 

refers to the number of random draws made from P(Ymis|Yobs). Hence, “large-m” refers to asymptotic 

analysis as m goes to infinity. Thus, it means that Monte Carlo integration yields a well-behaved estimate 

of a population mean as the number of pseudo-draws goes to infinity. Randomization validity in this sense 
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means that RMI yields a consistent estimate of the subjective posterior mean E(Q|Yobs), asymptotically in 

m. It implies nothing about the performance of RMI in estimation of the objective quantity Q*. 

 

3. Imputation Estimation of Conditional Expectations 

 

 To obtain a concrete sense of the behavior of imputation estimates, this section studies estimation of a 

conditional expectation when some data are missing and are replaced by imputations. Section 3.1 considers 

the simple case of imputation of missing outcomes and Section 3.2 the more subtle one of imputation of 

missing covariates. I focus throughout first on identification and then on the probability limit of estimates 

that use imputations. I make only a few remarks on statistical inference with finite-sample data. 

 

3.1. Imputation of Missing Outcomes 

 

Consider a population with members characterized by variables (y, x, z). Here y is a real outcome with 

closed domain Y and x is a covariate vector with finite domain X. Realizations of x are always observable, 

but some realizations of y are not. The binary variable z indicates whether y is observable (z = 1) or not (z 

= 0). The distribution of (y, x, z) is denoted P. The objective is to learn E(y|x = ξ) when P(x = ξ) > 0. 

A simple argument presented in Manski (1989) yields the identification region for E(y|x = ξ). Use the 

Law of Iterated Expectations to write 

 

(1)   E(y|x = ξ)  =  E(y|x = ξ, z = 1)P(z = 1|x = ξ) + E(y|x = ξ, z = 0)P(z = 0|x = ξ). 

 

E(y|x = ξ, z = 1) and P(z = 1|x = ξ) are observable but E(y|x = ξ, z = 0) is not. Knowledge of the domain Y 

restricts E(y|x = ξ, z = 0) to lie in the interval [YL, YU], where YL ≡ min(Y) and YU ≡ max(Y). Hence, the 

identification region with no assumptions on the distribution of missing data is the interval 
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(2)   [E(y|x = ξ, z = 1)P(z = 1|x = ξ) + YLP(z = 0|x = ξ),  E(y|x = ξ, z = 1)P(z = 1|x = ξ) + YUP(z = 0|x = ξ)]. 

 

If assumptions restrict E(y|x = ξ, z = 0) to a proper subset of [YL, YU], say Γ, the identification region is 

 

(3)    E(y|x = ξ, z = 1)P(z = 1|x = ξ) + γ∙P(z = 0|x = ξ), γ ∈ Γ. 

 

Example: To illustrate (2), Manski (1989) considered a missing-data problem that arose in a study of exit 

from homelessness undertaken by Piliavin and Sosin (1988). These researchers wished to learn the 

probability that an individual who was homeless at a given date would have a home six months later. Thus, 

the population of interest was the set of people who were homeless at the initial date. The variable y was 

binary, with y = 1 if the individual had a home six months later and y = 0 if he or she remained homeless. 

The regressors x were individual background attributes. The objective was to learn E(y|x) = P(y = l|x). The 

investigators interviewed a random sample of the people who were homeless in Minneapolis in late 

December 1985. Six months later they attempted to reinterview the original respondents but succeeded in 

locating only a subset. Thus, the missing data problem was attrition from the sample: z = 1 if a respondent 

was located for reinterview, z = 0 otherwise.  □ 

 

 Random imputation estimates assume that P(y|x = ξ, z = 0) is a specified distribution and use 

realizations drawn from this distribution to replace missing values of y. Suppose that a random sample of 

N population members are drawn. One observes (xi, zi) for all i = 1, . . . , N and observes yi when zi = 1. If 

y were always observed, one might naturally estimate E(y|x = ξ) by the sample average EN(y|x = ξ,). To 

cope with missing outcome data, consider replacement of missing values of y with imputations and 

computation of the sample average combining observed and imputed data. 

I now examine the probability limit of the imputation estimate as sample size goes to infinity, showing 

how the limit depends on the probability distribution used to generate imputations. It suffices to study the 
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limiting behavior of estimation using one synthetic sample. Multiple imputation yields multiple synthetic 

samples and multiple estimates, each with the same probability limit. 

 

3.1.1. Analysis 

 

 Let each member of the population be assigned an imputed outcome u ∊ Y, which is used to replace 

missing outcome data. In a sample of size N, Let N(1, ξ) be the sub-sample where (z = 1, x = ξ) and let N(0, 

ξ) be the sub-sample where (z = 0, x = ξ). Let N1ξ = |N(1, ξ)|, N0ξ = |N(0, ξ)|, and πNξ ≡ N1ξ/(N1ξ + N0ξ). 

Whenever N1ξ > 0 and N0ξ > 0, the imputation estimate of E(y|x = ξ) is 

 

                           1         
(4)  θNξ  ≡  ──────     ( ∑   yi   +           ∑   ui      ) 
                   N1ξ + N0ξ       i ∊ N(1, ξ)              i ∊ N(0, ξ) 
 
 
                        1                                           1 
           =  πNξ ──     ∑   yi    +     (1 − πNξ) ──     ∑   ui   . 
                      N1ξ     i ∊ N(1, ξ)                          N0ξ    i ∊ N(0, ξ) 
 

Let N ⇾ ∞. The probability limit of θNξ is 

 

(5)    θξ  ≡  E(y|x = ξ, z = 1)∙P(z = 1|x = ξ) + E(u|x = ξ, z = 0)∙P(z = 0|x = ξ). 

 

In general, θξ ≠ E(y| x = ξ). Comparison of (5) with (1) shows that the imputation estimate is consistent 

if and only if 

 

(6)      E(u|x = ξ, z = 0)  =  E(y|x = ξ, z = 0).  
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Seeking to justify (6), researchers sometimes assume that data are missing at random conditional on  x and 

aim to draw imputations from a consistent estimate of the observable distribution P(y|x, z = 1), say PN(y|x, 

z = 1). Thus, let 

 

(7a)   P(y|x = ξ, z = 0)  =  P(y|x = ξ, z = 1), 

(7b)   P(u|x = ξ, z = 0)  =  PN(y|x = ξ, z = 1). 

 

Equation (7a) is an untestable assumption. Given (7a), equation (7b) asymptotically implies (6). 

 

3.1.2. Alternatives to Random Imputation 

 

Alternatives to random imputation provide superior approaches to inference on E(y|x). First suppose 

that one thinks it credible to assume that missing data have a particular distribution, say Q(y|x = ξ, z = 0). 

Let EQ(y|x = ξ, z = 0) be the mean outcome under Q. Then a simple alternative to random imputation is to 

replace missing values by EQ(y|x = ξ, z = 0), yielding the estimate 

 

                            1                                           
(8)  θQNξ  ≡  πNξ ──      ∑   yi    +   (1 − πNξ)∙EQ(y|x = ξ, z = 0). 
                           N1ξ    i ∊ N(1, ξ)                             
 

Estimate (8) has the same probability limit as the imputation estimate (4). Moreover, it has greater statistical 

precision. The difference between a random imputation estimate and (8) is that a random imputation 

estimate uses a realization drawn from distribution Q. In contrast, (8) directly uses the distribution itself. 

 Now suppose that one lacks a credible basis to specify a distribution for missing data and contemplates 

estimation without assumptions. Interval (2) gives the identification region for E(y|x = ξ). This interval is 

bounded if YL and YU are finite. Then a natural interval estimate for E(y|x = ξ) is the sample analog of (2), 

namely 
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                 1                                                      1     
(9)   [πNξ ──     ∑   yi    +  (1 − πNξ)YL,   πNξ ──      ∑   yi    +  (1 − πNξ)YU],    
               N1ξ    i ∊ N(1, ξ)                                         N1ξ    i ∊ N(1, ξ)                             
 

whose probability limit is (2). An example is the estimate of a bound on exiting homelessness in Manski 

(1989), discussed above. 

Should it be necessary to provide a point estimate of E(y|x), an attractive option is to use the midpoint 

of interval (9). This estimate converges to the midpoint of (2), which minimizes the maximum value of 

asymptotic squared bias among all point estimates of E(y|x). Dominitz and Manski (2017) study the finite-

sample performance of the midpoint estimate from the perspective of statistical decision theory and derive 

the maximum value of mean square error across all distributions of missing data. 

 

3.2. Imputation of Missing Covariates 

 

In practice, many patterns of missing data may occur within a covariate vector. Analysis of every 

possible pattern requires cumbersome notation, so I focus on settings in which some covariates are always 

observed whereas others may have missing data. I denote the former covariates as x and the latter as w.  

Thus, consider a population with members characterized by variables (y, x, w, z). Here y is a real outcome 

with domain Y, whereas x and w are covariate vectors with finite domains X and W. Realizations of (y, x) 

are always observable, but some realizations of w are not. The binary variable z now indicates whether w 

is observable (z = 1) or not (z = 0). The population distribution of (y, x, w, z) is P. The objective is to learn 

E(y|x = ξ, w = ω) when P(x = ξ, w = ω) > 0. 

Horowitz and Manski (1998) derived the identification region for E(y|x, w) with no assumptions on 

the distribution of missing data. The derivation is more subtle than with missing outcome data and the 

general form of the region is more complex than (2). However, Horowitz and Manski (2000) and Manski 
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(2003) show that the region has a simple explicit form when y is a binary outcome, say taking the values 0 

and 1. Applying Manski (2003, Corollary 3.8.1), the identification region for E(y|x = ξ, w = ω) is the interval 

 
                       P(y=1, x=ξ, z=1, w=ω)                   P(y=1, x=ξ, z=1, w=ω) + P(y=1, x=ξ, z=0) 
(10)  [──────────────────────,  ──────────────────────────]. 
            P(x=ξ, z=1, w=ω) + P(y=0, x=ξ, z=0)          P(x=ξ, z=1, w=ω) + P(y=1, x=ξ, z=0)       
 

The lower bound is achieved if the distribution of missing data has P(w = ω|y = 1, x = ξ, z = 0) = 0 and P(w 

= ω|y = 0, x = ξ, z = 0) = 1. The upper bound is achieved if the distribution of missing data has P(w = ω|y 

= 1, x = ξ, z = 0) = 1 and P(w = ω|y = 0, x = ξ, z = 0) = 0. 

 

Example: Horowitz and Manski (2000) illustrated a more general form of bound (10), applicable when data 

are sometimes missing for outcomes and sometimes for covariates. We considered the setting of Manski et 

al. (1992), which used data from the 1979 National Longitudinal Study of Youth (NLSY) to study the rate 

of high school graduation of youth in intact and non-intact families. The outcome took the value y = 1 if a 

youth received a high school diploma by 1985 and y = 0 otherwise. The covariates included x = (sex, 

race/ethnicity, family structure during adolescence), and w = (mother’s and father’s years of schooling). 

The pattern of missing data was complex. Some had missing outcome data, some had missing schooling 

data for one or more parent, and some had missing data for both the outcome and one or more parent.  □ 

 

 Random imputation estimates assume that P(w|y, x = ξ, z = 0) is a specified distribution and use 

realizations drawn from this distribution to replace missing values of w. Although Rubin supposed that a 

researcher knows this distribution, I find it difficult to see how a researcher would know it in practice. Labor 

economists sometimes find it credible to know properties of a distribution P(y|x, w), such as an income  or 

wage distribution. The distribution P(w|y, x = ξ, z = 0), however, is an unusual object that plays no clear 

role in economic analysis. 

Suppose that a random sample of N population members are drawn. One observes (yi, xi, zi) for all i = 

1, . . . , N and observes wi when zi = 1. If w were always observed, one might naturally estimate E(y|x = ξ, 
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w = ω) by the sample average EN(y|x = ξ, w = ω). To cope with missing covariate data, consider replacement 

of missing values of w with imputations and computation of the sample average combining observed and 

imputed data. 

I now examine the probability limit of the estimate as sample size goes to infinity, showing how the 

limit depends on the probability distribution used to generate imputations. It again suffices to study the 

limiting behavior of estimation using one synthetic sample as multiple imputation yields multiple estimates, 

each with the same probability limit. 

 

3.2.1. Analysis 

 

 Let each member of the population be assigned an imputed value u ∊ W, which is used to replace 

missing covariate data. In a sample of size N, Let N(1, ξ, ω) be the sub-sample where (z = 1, x = ξ, w = ω) 

and let Nm(0, ξ, ω) be the sub-sample where (z = 0, x = ξ, u = ω). Let N1ξω = |N(1, ξ, ω)|, N0ξω = |N(0, ξ, ω)|, 

and πNξω ≡ N1ξω/(N1ξω + N0ξω). Then, when N1ξω + N0ξω > 0, the imputation estimate of E(y|x = ξ, w = ω) is 

 

                               1         
(11)    θNξω  ≡  ──────     ( ∑   yi   +           ∑   yi       ) 
                       N1ξω + N0ξω     i ∊ N(1, ξ, ω)         i ∊ N(0, ξ, ω) 
 
 
                                 1                                                1 
                  =  πNξω ───     ∑   yi    +     (1 − πNξω) ───    ∑   yi   . 
                               N1ξω    i ∊ N(1, ξ, ω)                          N0ξω    i ∊ N(0, ξ, ω) 
 

 Let N ⇾ ∞. The probability limit of θNξω is 

 

(12)     θξω  ≡  E(y|x = ξ, w = ω, z = 1)∙πξω + E(y|x = ξ, u = ω, z = 0)∙(1 − πξω), 

 

where 
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                                                P(z = 1, x = ξ, w = ω) 
(13)     πξω  =  ───────────────────────────  
                        P(z = 1, x = ξ, w = ω) + P(z = 0, x = ξ, u = ω) 
 
 
                                        P(z = 1, w = ω|x = ξ) 
                  =  ────────────────────────── . 
                        P(z = 1, w = ω|x = ξ) + P(z = 0, u = ω|x = ξ) 
    
 

In general, θξω ≠ E(y|x = ξ, w = ω). By the Law of Iterated Expectations, 

 

(14)    E(y|x = ξ, w = ω)  =  E(y|x = ξ, w = ω, z = 1)∙P(z = 1|x = ξ, w = ω) 

                                              + E(y|x = ξ, w = ω, z = 0)∙ P(z = 0|x = ξ, w = ω). 

 

Comparison of (12) and (14) shows that they coincide if 

 

(15a)     P(z = 0, u = ω|x = ξ)  =  P(z = 0, w = ω|x = ξ), 
 
(15b)     E(y|x = ξ, u = ω, z = 0)  =  E(y|x = ξ, w = ω, z = 0). 

 

These equalities generally do not hold. 

Equations (15a)-(15b) do hold if the distribution of imputations is 

 

(16)   P(u|y, x, z = 0)  =  P(w|y, x, z = 0). 

 

Multiplying both sides of (16) by the observable distribution P(y, x, z = 0) yields 

 

(17)    P(y, x, u, z = 0)  =  P(y, x, w, z = 0), 

 

which implies (15a)-(15b). The problem, of course, is that satisfaction of equation (16) requires knowledge 

of the distribution P(w|y, x, z = 0) of missing data. 
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Seeking to justify (16), researchers sometimes assume that w data are missing at random conditional 

on (y, x) and aim to draw imputations from a consistent estimate of the observable distribution P(w|y, x, z 

= 1), say PN(w|y, x, z = 1). Thus, let 

 

(18a)   P(w|y, x, z = 0)  =  P(w|y, x, z = 1), 

(18b)   P(u|y, x, z = 0)  =  PN(w|y, x, z = 1). 

 

Equation (18a) is an untestable assumption. Given (18a), equation (18b) asymptotically implies (16). 

 

3.2.2. Imputation as an Attempted Solution to the Ecological Inference Problem 

 

 A polar case of missing covariates that warrants special attention occurs when w is always missing; 

thus, P(z = 0) = 1. Then no conclusions about E(y|x = ξ, w = ω) can be drawn without further information. 

The literature on ecological inference has studied settings in which further information arises from a 

separate sampling process that yields observations of (w, x) but not of y. Here one faces the problem of 

identification of P(y|x, w) given observability of P(y|x) and P(w|x). 

Duncan and Davis (1953) considered identification of P(y = 1|x = ξ, w = ω) when y is a binary outcome. 

They sketched a proof that the identification region is the interval 

 

                                 P(y = 1|x = ξ) – P(w ≠ ω|x = ξ)         P(y = 1|x = ξ) 
(19)       [0, 1]  ∩  [───────────────────,   ────────── ].     
                                                   P(w = ω|x = ξ),                     P(w = ω|x = ξ) 
 

Horowitz and Manski (1995) formalized this finding and studied identification of E(y|x = ξ, w = ω) when 

y is real-valued. The latter analysis is more subtle than when y is binary. The identification region is an 

interval that does not have an explicit form but can be computed numerically. Cross and Manski (2002) 

extend the analysis. Ridder and Moffitt (2007) and Cho and Manski (2008) review aspects of the literature. 



17 
 

 Some medical researchers have used imputation of genotypes in an attempt to perform ecological 

inference. In this setting, y is a patient outcome while (x, w) are genetic markers. One dataset yields 

observations of (y, x) and another provides observations of (x, w), enabling estimation of P(y|x) and P(w|x). 

For each patient i in the former dataset, the estimate of distribution P(w|x = xi) is used to impute wi, yielding 

(yi, xi, ui), i = 1, . . . , N. This partially synthetic dataset is analyzed using the imputations as if they were 

real covariate data. See Gragert et al. (2014), Tinckam et al. (2016), Geneugelijk et al.(2017), Kamoun et 

al. (2017), and Nilsson et al. (2019). 

 Manski et al. (2019) and Manski et al. (2021) counsel against this use of genotype imputation. By 

construction, imputations drawn from P(w|x) are statistically independent of actual outcomes y. Applying 

(12), the probability limit of the imputation estimate of E(y|x = ξ, w = ω) is E(y|x = ξ). Thus, imputation of 

w accomplishes nothing. 

 

3.2.3. Alternatives to Random Imputation 

 

Suppose one thinks it credible to assume that missing w data have a particular distribution, say Q(w|y, 

x = ξ, z = 0). This assumption can be used to estimate E(y|x, w) without constructing randomly imputed 

data. Use the Law of Total Probability to write 

 

(20)     P(y, x, w)  =  P(y, x, w|z = 1)P(z = 1) + P(y, x, w|z = 0)P(z = 0) 

                             =  P(y, x, w|z = 1)P(z = 1) + P(w|y, x, z = 0)P(y, x|z = 0P(z = 0). 

 

Distributions P(y, x, w|z = 1), P(y, x|z = 0), and P(z) are observable. Each is consistently estimable by its 

sample analog, denoted PN(y, x, w|z = 1), PN(y, x|z = 0), and PN(z). Inserting these estimates into (20), and 

assuming that Q is the distribution of missing covariates, yields a consistent estimate of P(y, x, w), namely 

 

(21)   PN(y, x, w)  =  PN(y, x, w|z = 1)PN(z = 1) + Q(w|y, x, z = 0)PN(y, x|z = 0PN(z = 0). 
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The conditional mean of PN(y, x, w) is a consistent estimate of E(y|x, w). 

 Suppose that one lacks a credible basis to specify a distribution for missing data and contemplates 

estimation without assumptions. The complex general form of the identification region for E(y|x = ξ, w = 

ω) makes estimation of this region complex as well. However, estimation is easy when y is a binary 

outcome. Then interval (10) gives the identification region. A natural interval estimate is its sample analog. 

An example is the estimate of the bound on the rate of high school graduation in Horowitz and Manski 

(2000), discussed above. 

Should it be necessary to provide a point estimate, an attractive option is to use the midpoint of this 

interval estimate. As N increases, this converges to the midpoint of (10), which minimizes the maximum 

value of asymptotic squared bias among all point estimates. 

 

4. Combatting the Allure of Making Stuff Up 

 

The use of imputed data is a striking illustration of research with incredible certitude (Manski, 2011, 

2020). Arguing for RMI, Rubin (1996) wrote (p. 473): “alternative methods either require special knowledge 

and techniques not available to typical users or produce answers that are generally not statistically valid for 

scientific estimands.” Development of user-friendly methods is a worthy objective, provided that the methods 

yield useful findings. 

 RMI and other imputation methods are useful only if the assumed distribution of missing data is close to 

correct. Rubin recognized this central requirement in principle when he wrote (p. 474): “My conclusion is that 

‘correctly’ modeling the missing data must be, in general, the data constructor’s responsibility.” Yet 

assigning responsibility to the data constructor is futile if demonstrably correct modeling is not achievable. 

Assumed distributions of missing data commonly lack credible foundations. Hence, assertions that RMI 

yields findings that are valid in certain Bayesian and frequentist senses should not comfort empirical 

researchers who want to make credible inferences about the real world. The new analysis in Sections 3.1.1 
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and 3.2.1 of this paper shows the specific distributional assumptions that must be satisfied if an estimator 

that imputes missing data is to converge asymptotically to a population parameter of interest. 

 I have focused the analysis of Section 3 on the problem of learning a conditional mean because this is 

so often the objective of empirical research and because this problem is relatively easy to study. Extension 

of the analysis to other settings would be welcome. Random imputation appears to have especially severe 

difficulties when data are longitudinal, as sequences of repeated imputations become necessary. Hotz et al. 

(2022) call attention to this matter in the setting of data privacy, writing (Appendix B4-B5): 

“Synthetic data may be produced for waves of a longitudinal data set, using the existing information 

through wave t to form the predictive synthetic data conditional on data collected through that wave. 

But, how should one synthesize data for future waves of the survey? To be consistent, should one 

condition the predictive distribution to wave t + 1 on the synthetic data or on the confidential data 

through wave t? Conditioning the predictive distribution on the former will perpetuate any model 

misspecification in earlier waves. Conditioning it on the confidential data from previous waves makes 

use of the cumulative information in that data, but risks producing inconsistency in individual-level 

time series across the waves of the synthetic data.” 

The identification problem generated by missing data in longitudinal studies has been analyzed in Horowitz 

and Manski (1998, 2000). 

Recognition of the fragility of imputation is necessary to combat the allure of making stuff up, but I 

doubt that it will suffice. Another necessary step is to provide tractable methods that enable credible 

empirical research. Section 3.1 showed that assumption-free interval estimation is simple with missing 

outcome data. Section 3.2 showed that it is simple with missing covariate data when y is a binary outcome. 

Interval estimation using various potentially credible assumptions with identifying power is 

straightforward. Examples include monotone-instrumental-variable and bounded-variation assumptions 

(Manski and Pepper, 2000; Manski et al. 2019). On the other hand, identification analysis  in some problems 

with missing data is complex. Empirical researchers should be sophisticated enough to recognize that 

performing credible analysis may be a challenge.  
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