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Here we provide technical details about our estimation procedure and report ad-

ditional results on post-WWII U.S. inflation-gap persistence. This supplement is not

self-contained, so readers are advised to read the main paper first.

A Markov chain Monte Carlo algorithm for simu-

lating the VAR posterior

For the VAR, the posterior density is1

p(θT , HT
y , HT

s , By, Bs, σy, σs|Y T ). (1)

The state and measurement innovation variances are defined as

Qt = (B−1
s )′Hst(B

−1
s ), (2)

Rt = (B−1
y )′Hyt(B

−1
y ),

respectively, where Hst and Hyt are diagonal matrices with univariate stochastic

volatilities along the main diagonal and Bs and By are triangular matrices with

ones along the main diagonal and static covariance parameters below. The univari-

ate stochastic volatilities are geometric random walks; the vectors σs and σy list their

innovation variances. The notation xT represents the complete history of xt.

We use a ‘Metropolis-within-Gibbs’ algorithm to simulate the posterior. The

parameters are partitioned into 7 blocks:
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1The MCMC algorithm for the univariate AR is a special case of that for the VAR.
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After substituting Qt for Q, the samplers for the first four blocks are identical to

those in Cogley and Sargent (2005); details can be found there. Those for the last

three blocks – which pertain to the state innovation variance Qt – are isomorphic to

the three blocks for the measurement innovation variance Rt. Thus, the appendices

in Cogley and Sargent (2005) cover those blocks as well.

We executed 100,000 scans of the chain and diagnosed convergence by inspecting

recursive mean plots of the parameters. We discarded the first 50,000 scans to allow

for burn in. The results reported in the text are based on the remaining 50,000 scans.

A.1 Priors for the VAR

The priors are similar to those in Cogley and Sargent (2005). We assume that the

hyperparameters and initial value of the drifting parameters are independent across

blocks, so that the joint prior factors into a product of marginal priors. Each of the

marginal priors is selected from a family of natural conjugate priors and is specified

to proper yet weakly informative.

The unrestricted prior for the initial state is Gaussian,

f(θ0) ∝ N (θ̄, P̄ ), (3)

where θ̄ and P̄ are the OLS point estimate and asymptotic variance, respectively,

based on a training sample covering the period 1948-58. Because the training sample

is short, the asymptotic variance is large, making the prior weakly informative for θ0.
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Priors for the blocks governing Rt are also calibrated to put considerable weight

on sample information. The prior for H ii
y0 is log-normal,

f
(
ln H ii

y0

)
= N (lnRii

0 , 10), (4)

where ln Rii
0 is the estimate of the log of residual variance of variable i from the

preliminary sample. A variance of 10 is huge on a log scale and allows a wide range

of values for hi0. As is the case for θ0, the prior mean for Hy0 is no more than a

ballpark number surrounded by considerable uncertainty.

Similarly, the prior for βy is normal with mean zero and a large variance,

f (β) = N (0, 10000 · I). (5)

Lastly, the prior for σ2
yi, the variance of the stochastic volatility innovations, is inverse-

gamma

f(σ2
i ) = IG(δi/2, 1/2), (6)

with scale parameter δ = 0.0001 and degree-of-freedom parameter equal to 1. This

distribution is proper but has fat tails.

The priors for the blocks governing Qt parallel those for Rt. The prior for H i
Q0 is

also log-normal,

f
(
ln H ii

Q0

)
= N (lnQii

0 , 10), (7)

where Q0 = γ2P̄ is calibrated in the same way as in Cogley and Sargent (2005).

Similarly, the priors for βQ and σQ have the same form as those for βy and σy. We

just alter the dimensions so that they conform to HQt instead of HRt. The prior mean

for HQ0 induces only a slight degree of time variation in θt, but in other respects the

priors are sufficiently uninformative that they permit a wide range of outcomes for

Qt.

B Markov chain Monte Carlo algorithm for simu-

lating the DSGE posterior

As in An and Schorfheide (2006), we use a Metropolis-Hastings algorithm to

simulate the posterior distribution of the coefficients of the DSGE model. Let yT

denote the set of available data and α the vector of coefficients of the DSGE model.

Moreover, let α(j) denote the jth draw from the posterior of α. The subsequent draw
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is obtained by drawing a candidate value, α̃, from a Gaussian proposal distribution

with mean α(j) and variance s · V . We then set α(j+1) = α̃ with probability equal to

min

{
1,

p
(
α̃|yT

)
p (α(i)|yT )

}
. (8)

If the proposal is not accepted, we set α(j+1) = α(j).

The posterior distribution for α, p
(
α|yT

)
, can be computed multiplying the

prior density by the likelihood function. Because the DSGE model has a linear-

Gaussian state-space representation, the likelihood function can be evaluated using

the prediction-error decomposition and the Kalman filter.

The algorithm is initialized around the posterior mode, found using a standard

maximization algorithm. We set V to the inverse Hessian of the posterior evaluated

at the mode, while s is chosen in order to achieve an acceptance rate approximately

equal to 25 percent. We run two chains of 70,000 draws and discard the first 20,000

to allow convergence to the ergodic distribution.

C A univariate autoregression with drifting pa-

rameters and stochastic volatility

Stock and Watson’s (2007) univariate unobserved-components model makes in-

flation the sum of a driftless random walk and a martingale-difference error. Their

model highlights the importance of drift in trend inflation, but it imposes that the

inflation gap gt ≡ πt − τt is serially uncorrelated for all t. Because of this restric-

tion, Stock and Watson’s model is not a suitable vehicle for investigating whether

inflation-gap persistence has changed over time.

Thus, as a modest extension, we add a lag of inflation to Stock and Watson’s mea-

surement equation and estimate a univariate AR(1) model with drifting parameters

and stochastic volatility. For this model, yt = πt, Xt = [1, πt−1]
′, θt = [μt, ρt]

′, By = 1,

and Bs is a 2x2 matrix of the form of equation (6) in the main paper.

Notice that the parameter μt in the measurement equation is an intercept rather

than a measure of trend inflation. Accordingly, we now approximate trend inflation

by τt ≈ μt/(1 − ρt). To a first-order approximation, this is also a driftless random

walk.

The parameter ρt governs the degree of inflation-gap persistence. We constrain ρt

to be less than one in absolute value at all dates. Having assumed that trend inflation
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is a driftless random walk, the stability constraint on ρt just rules out a second unit

or explosive root in inflation.

Figure 1 portrays the posterior median and interquartile range for ρt. for the two

inflation measures. For GDP inflation, the inflation gap is moderately persistent

throughout the sample. The median estimate for ρt was around 0.55 in the early

1960s. It increased gradually to 0.7 by 1980, and then fell in two steps in the early

1980s and early 1990s, eventually reaching a value of 0.3 at the end of the sample.

These estimates imply half-lives of 3.5, 5.8, and 1.7 months, respectively. For PCE

inflation, the gap was initially less persistent, with an autocorrelation of 0.3, but

otherwise movements in ρt are similar to those for GDP inflation.
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Figure 1: Posterior Median and Interquartile Range for ρt

To assess whether changes in ρt are statistically significant, we proceed as in the

main text by inspecting the joint distributions for 1960.Q4-1980.Q4 and 1980.Q4-

2004.Q4. Figure 2 portrays the results, with outcomes for GDP inflation shown in

the left-hand column and those for PCE inflation in the right. The top row depicts

the joint distribution for ρ1980 and ρ2004, with values for 1980 plotted on the x-axis

and those for 2004 on the y-axis. Combinations clustered near the 45 degree line

represent pairs for which there was little or no change. Those below the 45 degree

line represent a decrease in persistence (ρ1980 > ρ2004), while those above represent

increasing persistence. Similarly, the bottom row illustrates the joint distribution for

ρ1960 and ρ1980, with values for 1960 plotted on the x-axis and those for 1980 on the

y-axis.
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Figure 2: Joint Distributions for ρt, 1960-80 and 1980-2004

A number of alternative perspectives can be represented on these graphs. Stock

and Watson assume ρt = 0, so the point (0, 0) represents their model. There are

some realizations in the neighborhood of the origin, but most of the probability mass

lies elsewhere. The second column of table 1 reports the probability that ρt is close

to zero in both periods, where ‘close’ is defined as |ρ| < 0.1. For GDP inflation, this

comes out to 1.2 and 1.7 percent, respectively, for the two pairs of years. For PCE

inflation, the probabilities are 0.006 and 0.008, respectively. This finding motivates

our extension of their model.
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Table 1: Posterior Probabilities
GDP Inflation

pair Stock-Watson |Δρ| < 0.05 High, No Change Changing ρ
1980, 2004 0.012 0.122 0.001 0.894
1960, 1980 0.017 0.384 0.027 0.758

PCE Inflation
pair Stock-Watson |Δρ| < 0.05 High, No Change Changing ρ

1980, 2004 0.006 0.056 0.001 0.959
1960, 1980 0.008 0.066 <0.001 0.956

To calculate the probability that inflation-gap persistence is approximately un-

changed, we define a neighborhood along the 45 degree line and count the fraction

of points that lie within. As figure 2 shows, the posterior distributions attach con-

siderable probability mass to a ridge clustered tightly along the 45 degree line. How

much probability is near that ridge depends on how a neighborhood is defined. For

example, suppose we define ‘little change’ by the neighborhood |Δρ| < 0.05. For

GDP inflation, the 45-degree ridges are thickly populated, and the posterior proba-

bility that |Δρ| < 0.05 comes to 12 and 38 percent, respectively, for the two pairs

of years. For PCE inflation, the 45-degree ridges are more sparsely populated, and

posterior probabilities are 5.6 and 6.6 percent, respectively. Obviously these proba-

bilities would be higher if we widened the neighborhood and lower if we narrowed it,

but the point is that the probability is nontrivial even for a narrowly defined interval

along the 45 degree line. For the GDP deflator, the notion that univariate inflation-

gap persistence is approximately constant cannot be rejected at the 10 percent level,

while for PCE inflation that hypothesis can be rejected at the 10 percent level but

not at the 5 percent level.

If we examine the ridges more closely, we notice that the scatterplots are densest

along the ridge for low values of ρ and that they become sparse for high values.

Thus, the notion that inflation-gap persistence is both unchanging and high has little

support. For example, suppose we define ‘high persistence’ as a half-life of 1 year

or more (ρ ≥ 0.8409). For GDP inflation, the probability of high and unchanging

persistence is less than one-tenth of 1 percent for 1980-2004 and 2.7 percent for

1960-1980. For PCE inflation, the probabilities are one-tenth of one percent or less.

Inflation-gap persistence might have been high (especially during the Great Inflation),

or it might have been unchanged, but it is unlikely that it was both. As noted above,
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the notion that persistence is both high and unchanging really applies to inflation –

because of drift in τt – but not to the inflation gap.

In the top-left panel of figure 2, the largest probability mass of points – a bit

less than 90 percent – lies below the 45 degree line. For combinations in this region,

ρ1980 > ρ2004, so this represents the probability of declining GDP inflation-gap per-

sistence. We interpret this as substantial though not decisive evidence of a decline

in persistence. Similarly, in the bottom-left panel, the preponderance of the combi-

nations – approximately 75 percent – lie above the 45 degree line and are consistent

with the idea that the inflation gap became more persistent between 1960 and 1980.

Stronger evidence emerges for PCE inflation. The probability of an increase in ρt

between 1960 and 1980 is 0.956, and the probability of a decline after 1980 is 0.959.

Thus, for GDP inflation the univariate evidence is mixed. The preponderance of

the joint distribution points to a rise and then a decline in persistence, but there is

enough mass along the 45 degree ridge to support the idea that inflation-gap persis-

tence has not changed. For PCE inflation, there is significant evidence of a rise then

a fall in inflation-gap persistence.

D Comparison with Atkeson-Ohanian findings

Stock and Watson interpret a result of Atkeson and Ohanian (2001) in terms

of the changing time-series properties of inflation. Atkeson and Ohanian studied

the predictive power of backward-looking Phillips-curve models during the Volcker-

Greenspan era and found that Phillips-curve forecasts were inferior to a naive forecast

that equates expected inflation over the next 12 months with the simple average of

inflation over the previous year. Stock and Watson show that Phillips-curve models

were more helpful during the Great Inflation, and they account for the change by

pointing to two features of the data. First, like many macroeconomic variables,

unemployment became less volatile after the mid-1980s. Hence there is less variation

in the predictor. Second, the coefficients linking unemployment and other activity

variables to future inflation have also declined in absolute value, further muting their

predictive power.

Our VARs share these characteristics. In figure 3, we illustrate how news about

unemployment alters forecasts of inflation. At each date, we imagine that forecasters

start with information on inflation, unemployment, and the nominal interest rate

8



through date t − 1 and then see a one-sigma innovation in unemployment. They

revise their inflation forecasts in light of the unemployment news. Because the VAR

innovations are correlated, the forecast revision at horizon j is2

FRjt = eπAj
tE(εzt|εut)σut. (9)

Since the innovations are conditionally normal and the unemployment innovation is

scaled to equal σut, E(εzt|εut) = cov(εzt, εut)/σut. The figure portrays the median and

interquartile range for forecast revisions at horizons of 1, 4, and 8 quarters.
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Figure 3: How Unemployment News Alters Expected Inflation

For the most part, a positive innovation in unemployment reduces expected infla-

tion. Furthermore, in the 1970s and early 1980s, the magnitude of forecast revisions

2This follows from another anticipated-utility approximation.
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was substantial. For instance, according to the median estimates, a one-sigma inno-

vation in unemployment would have reduced expected inflation 4 quarters ahead by

close to 50 basis points in the mid-1970s and by approximately 1 to 1.5 percentage

points at the time of the Volcker disinflation. After the mid 1980s, however, the

sensitivity of inflation forecasts to unemployment news was more muted. During the

Greenspan era, a one-sigma innovation in unemployment would have had essentially

no influence at all on inflation forecasts one or two years ahead.

As Stock and Watson point out, these outcomes reflect both that unemployment

innovations are less volatile and that inflation forecasts are less sensitive to innova-

tions of a given size. Figure 4 depicts the posterior median and interquartile range

for σut, the standard deviation of innovations to unemployment. The magnitude of

unemployment innovations was largest at the beginning of the sample and around

the time of the Volcker disinflation, but it declined sharply after the mid 1980s. One

reason why unemployment news has become less relevant for inflation forecasting is

that there is less of it.
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Figure 4: Standard Deviation of Unemployment Innovations

But this is not the whole story. Figure 5 adjusts for changes in the innovation

variance by showing forecast revisions for the time-series average of the median esti-

mate of σut shown in figure 4. This holds the size of the hypothetical unemployment

innovation constant across dates. Although less pronounced, the pattern shown here

is similar to that depicted in figure 3 (the two figures are graphed on the same scale).

Hence figure 3 cannot be explained solely by changes in σut. Especially at horizons of

a 4 or 8 quarters, inflation forecasts have also become less sensitive to a given amount

of unemployment news than they were during the Great Inflation.
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Figure 5: Forecast Revisions with σu Held Constant

Ironically, the decreased predictive power of unemployment innovations for infla-

tion coincided with a return of the Phillips correlation. Figure 6 portrays a number of

conditional and unconditional correlations for inflation and unemployment.3 The un-

conditional correlation – shown in the bottom row – was negative prior to the 1970s,

but it turned positive during the Great Inflation. A negative correlation reappeared

after the Volcker disinflation and has hovered around -0.25 ever since.

The other rows of the figure depict conditional correlations at forecast horizons

of 1, 4, and 8 quarters. The 1- and 4-quarter ahead forecasts are most relevant for

reconciling conventional wisdom with Atkeson and Ohanian. At these horizons, con-

ditional correlations have indeed been negative throughout the sample, peaking in

3These were also calculated using anticipated-utility approximations.
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magnitude at the time of the Volcker disinflation. They are smaller now than in the

past, but at the 4-quarter horizon the correlation is still around -0.25. Nevertheless,

these conditional correlations are irrelevant for prediction because they summarize

unexpected comovements in the two variables. That prediction errors in unemploy-

ment are inversely related with prediction errors in inflation tells us little about fore-

castable movements in the two variables. Thus, Atkeson and Ohanian’s observations

about predictability can coexist comfortably with conventional views about Phillips

correlations.
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Figure 6: Conditional and Unconditional Phillips Correlations

Contrary to Atkeson and Ohanion, figure 3 suggests that some short-term pre-
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dictability remains at the end of the sample. Two caveats should be kept in mind,

however. One is that our calculations involve pseudo forecasts that depend on data

and estimates through the end of the sample, while Atkeson and Ohanian look at

real-time, out-of-sample forecasts. Presumably this matters only slightly at the end

of the sample, but more for earlier periods.

The other caveat is that there is substantial uncertainty about R2
2004. We can

state with confidence that R2
2004 is smaller than R2

1980, but that is mainly because the

posterior for R2
1980 clusters tightly near 1. It is harder to say how predictable inflation

is at the end of the sample. At the 1-quarter horizon, the probability that R2
2004

exceeds 0.25 is 0.904 for GDP inflation and 0.924 for PCE inflation. Thus, although

our estimates suggest more predictability than those of Atkeson and Ohanian, the fact

that the posteriors portrayed in figures 10 and 11 assign non-negligible probability to

values of R2
2004 near zero provides some support for their point of view.

E A structural interpretation of the Atkeson-Ohanian

findings

Finally, we examine what our structural model has to say about Atkeson and

Ohanian’s findings. Table 2 addresses the results of Atkeson and Ohanian (2001).

Here we report the model-implied slope β of the Phillips curve,

Et

(̂̄π4,t+4 − ̂̄π4,t

)
= β

(
Ŷt − Ŷ ∗

t

)
.

We omit a constant because the model-generated variables in the regression all have

mean zero. Except for the fact that we replace the unemployment rate with the output

gap, this is the regression estimated by Atkeson and Ohanian (2001). Consistent with

their results, those of Stock and Watson, and our own results reported above, our

DSGE model implies a substantial decline in the predictive power of real-activity

variables in a conventional Phillips curve regression after the Volcker disinflation. In

our model, the coefficient on the output gap falls by 70 percent.
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Table 2: Implications of the DSGE Model for a Phillips-Curve

Regression

Slope (β)
1960.Q1-1979.Q3 0.132
1982.Q1-2006.Q4 0.040
Percent Change -70

Table 3 examines how counterfactual changes in monetary policy and private-

sector parameters contribute to the flattening of the slope in an Atkeson-Ohanian

regression. As in the main text, the numbers recorded here represent the proportion

of the total change across subsamples accounted for by the hypothetical structural

shift,

100 × counterfactual change

total change
.

Positive numbers signify that the counterfactual goes in the same direction as the

total change, and negative numbers mean that it goes in the opposite direction.

Table 3: Counterfactual Exercises Based on the DSGE Model

Coefficients Slope (β
Policy 2, Private 1 -94

σ∗ -46
φπ -26

Private 2, Policy 1 125
ρθ 121

The DSGE model predicts a total decline in β from 0.13 to 0.04 across the two

subsamples. In this case, the relative importance of better policy and better luck are

reversed. Changes in private sector parameters go in the right direction and overpre-

dict the total decline. After a mark-up shock, the output gap and future changes in

the inflation rate comove positively. The decline in the persistence and unconditional

volatility of the mark-up shock after 1982 reduces this positive comovement and re-

sults in a lower estimate of the slope coefficient. But changes in policy parameters

go in the wrong direction and predict a substantial increase in β. Thus, for a com-

plete picture of the change in inflation outcomes, both private and policy factors are

needed.
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