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a b s t r a c t

This paper addresses the issue of optimal inference for parameters that are partially identified in models
with moment inequalities. There currently exists a variety of inferential methods for use in this setting.
However, the question of choosing optimally among contending procedures is unresolved. In this paper,
I first consider a canonical large deviations criterion for optimality and show that inference based
on the empirical likelihood ratio statistic is optimal. Second, I introduce a new empirical likelihood
bootstrap that provides a valid resampling method for moment inequality models and overcomes the
implementation challenges that arise as a result of non-pivotal limit distributions. Lastly, I analyze the
finite sample properties of the proposed framework usingMonte Carlo simulations. The simulation results
are encouraging.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recently, there have been many papers proposing methodolo-
gies for estimation and inference inmodelswhere the parameter of
interest is not uniquely defined by the economicmodel and the dis-
tribution of the observed data (see, among others, Chernozhukov
et al., 2007; Pakes et al., 2005; Romano and Shaikh, 2008, forthcom-
ing; Imbens and Manski, 2004; Rosen, 2008; Beresteanu and Moli-
nari, 2008). When this situation arises the model is said to be par-
tially identified. Given this expanding literature on various inferen-
tial methods, it is natural to wonder whichmethod is optimal. This
paper addresses the question of optimal inference and contains the
following contributions. First, I consider a canonical large devia-
tions criterion for optimality and show that inference based on the
empirical likelihood ratio (ELR) statistic is optimal. Second, I intro-
duce a simple and natural modification of the empirical likelihood
bootstrap introduced by Brown and Newey (2002) that provides a
valid bootstrap method for moment inequality models. This mod-
ified empirical likelihood bootstrap is important to overcome the
implementation challenges associated with non-pivotal limit dis-
tributions in partially identified models. Third, I conduct a Monte
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Carlo experiment which suggests a finite sample performance
advantage to the new bootstrap. These results firmly ground em-
pirical likelihood as an attractive method for inference in moment
inequality models.
The problem of optimal inference can be interpreted as a prob-

lem of optimal choice of a criterion function. Partially identified
models are usually represented via a population objective function
Q (θ, P0)which does not have a unique minimizer, so that

Θ0(P0) = argmin
θ∈Θ
Q (θ, P0)

represents a set containing all the values of θ consistent with the
economic model and the distribution P0. The primary goal is to use
a sample analog Q̂ of Q (θ, P0) to construct confidence regions that
cover each of the elements ofΘ0(P0)with a given probability.Most
of thesemodels involve amoment inequality condition of the form
E[m(z, θ)] ≥ 0 in which case Θ0(P0) is the set of all θ that sat-
isfy the moment condition.1 In such cases, there are many differ-
ent choices of Q (θ, P0) that have Θ0(P0) as the minimizer set and
each choice could lead to different sample analogs and thus dif-
ferent confidence sets. The question of interest is whether there
is an optimal criterion function Q ∗(θ, P0), where optimal means

1 Some partially identifiedmodels cannot be represented as amoment inequality
(see Santos, 2006; Chernozhukov et al., 2007).
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that inference based on Q̂ ∗ is more precise than inference based
on any other sample criterion function. This paper contributes to
the growing literature on inference in partially identified models
by giving an answer to this question. I introduce empirical likeli-
hood (EL) as a new procedure for partially identified models and
show that inference based on the empirical likelihood ratio (ELR)
statistic is optimal in a large deviations sense.
Themethod of empirical likelihood is known to have several op-

timality properties for models with equality moment restrictions.
In terms of point estimation, the EL estimator is semiparamet-
rically efficient (i.e., attains the semiparametric efficiency bound
derived by Chamberlain, 1987). In addition, this estimator ex-
hibits desirable properties in terms of higher order comparisons
(see Newey and Smith, 2004). Regarding inference, DiCiccioet al.
(1991) proved that the ELR test admits Bartlett correction, which
gives the same accuracy rate as the parametric case, while Kita-
mura (2001) showed that EL is uniformlymost powerful in an Gen-
eralized Neyman–Pearson sense for testing moment restrictions.
Additional optimality results are presented by Kitamura and Otsu
(2005), Kitamura et al. (2009) and Canay and Otsu (2009). This is
just a sample of the large list of papers that show some sort of opti-
mality for EL. Kitamura (2006) andOwen (2001) provide additional
discussions.
The search for an optimal test in partially identified models

involves a number of complications that are not found in the point
identified case. The fact thatΘ0(P0) is not a singleton complicates
the use of local asymptotic optimality notions since standard
expansion tools are not as obviously available.2 Another optimality
notion that has been widely applied in point identified models
is the large deviations approach. This approach has the virtue of
translating naturally to the partially identified setting and is the
criterion I pursue here.
The theory of large deviations deals with the behavior of

estimators in a fixed neighborhood of the true value. Suppose that
there is a statistic Tn that converges in probability to T and let A
denote a set such that the closure of A does not contain T . For
each n, Pr(Tn ∈ A) → 0. In typical cases, Pr(Tn ∈ A) → 0 at an
exponential rate, i.e. there exists a constant 0 < η <∞ such that,
n−1 log Pr(Tn ∈ A) → −η. Notice the contrast with conventional
local asymptotic theory where the focus is on the behavior of Tn in
a shrinking neighborhood of the true parameter value, T . Here the
neighborhood A is fixed. For example, let X1, . . . , Xn be i.i.d. from
N(0, 1) and consider the sample mean X̄n = n−1

∑n
i=1 Xi. Since X̄n

is also normal with zero-mean and variance 1/n, for any δ > 0,

Pr(|X̄n| ≥ δ) = 1− (
√
2π)−1

∫ δ
√
n

−δ
√
n
e−x

2/2dx→ 0

H⇒
1
n
log Pr(|X̄n| ≥ δ)→−

δ2

2
. (1.1)

Eq. (1.1) is an illustration of a large deviations statement: the
typical value of X̄n is of order 1/

√
n, but with small probability

(of the order e−nδ
2/2), X̄n takes values outside a fixed bound. The

large deviations behavior of the type I and type II error probabilities
associated with a given test procedure gives insight on the good
performance of the test: the higher the rate of decrease of these
errors, the better the inference. Thus, while standard definitions
of efficiency (e.g., Pitman relative efficiency) make the testing
problem harder by considering alternative hypothesis that get

2 This is related to the lack of an asymptotic distribution for sets. The
methodology used by Beresteanu and Molinari (2008) is a promising direction for
this type of analysis. Also, Andrews and Soares (forthcoming) use local asymptotics
to compare the power properties of different critical values for a given criterion
function.
closer to the null hypothesis as the sample size increases, the
efficiency criteria based on large deviations make the problem
harder by letting the type I and type II error probabilities go to
zero asymptotically. Precise statements are postponed to Section 3,
where I show that the ELR test achieves the fastest rates of
decrease.
The second main contribution of this paper is related to the ac-

tual implementation of the newoptimal procedure. I show that un-
der the null hypothesis the ELR statistic converges to awell defined
asymptotic distribution. However, whether this limit distribution
is useful to calculate critical values depends on the case under con-
sideration. The number of binding constraints – the components of
the vector m(z, θ) with zero expectation – depends crucially on θ
and this causes the asymptotic distribution to be non-pivotal. The
non-pivotalness is not a barrier in some cases and then one can
compute valid critical values using a simple and straightforward
approximation. In more complicated setups though, these approx-
imations could be really slack (see Wolak, 1991; Gourieroux et al.,
2008) so that using a resampling technique could be desirable. One
alternative that many authors have adopted in these types of mod-
els is the use of subsampling for the construction of critical values.
Subsampling would in fact be valid to approximate the limit dis-
tribution of the ELR statistic. Yet, the contribution in this paper lies
in a different alternative. I first show that the empirical likelihood
bootstrap proposed by Brown and Newey (2002) is not asymptot-
ically valid when applied to moment inequality models.3 Then I
propose a slight modification of that bootstrap, along the lines of
the modified parametric bootstrap in Andrews (2000), that does
work asymptotically. The modification involves changing the set
of inequalities E[m(z, θ)] ≥ 0 by E[m(z, θ)] ≥ %n, where %n is a
positive sequence that goes to zero asymptotically.4
Before proceeding any further, I mention the recent literature

that has introduced different techniques to deal with partially
identifiedmodels and is closely related to the tools presented here.
Horowitz and Manski (1998, 2000), Manski and Tamer (2002) and
Imbens and Manski (2004) developed methods for estimation and
inference for the case where the identification region is defined
by lower and upper bounds that can be estimated from the data.
For an excellent exposition of such cases see Manski (2003). Going
beyond these particular cases, Chernozhukov et al. (2004, 2007),
were the first to extend themethodologies tomore general setups,
defining the identified set as the solution of the minimization of a
criterion function and providing several results on estimation and
inference on both θ0 andΘ0(P0) based on subsampling, simulation
and the bootstrap. See also Andrews et al. (2004) and Pakes et al.
(2005). Romano and Shaikh (2008, forthcoming) carry out a further
analysis of the validity of subsampling and present conditions
under which the confidence regions cover the parameter of
interest uniformly. For additional results on uniform coverage see
Soares (2006) and the recent papers byAndrews andGuggenberger
(2009) and Andrews and Soares (forthcoming). Rosen (2008)
presents a connection betweenmoment inequalitymodels and the
literature on one-sided hypothesis testing. As it will be noted in the
next section, his Gaussian quasi-likelihood ratio (QLR) statistic is
closely related to the empirical likelihood ratio statistic proposed
here. Using a different line of analysis Beresteanu and Molinari
(2008) propose an inference procedure for partially identified
models that can be written as a transformation of an expectation
of a set valued random variable. Galichon and Henry (2006a,b)
address the choice of the criterion function suggesting the use

3 Brown and Newey (2002) developed an EL bootstrap for models comprised of
moment equalities.
4 This idea is related to the independently derived work by Andrews and Soares
(forthcoming) and Bugni (forthcoming, 2009).
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of a Kolmogorov-Smirnov-type statistic and present a bootstrap
algorithm to make feasible inference in their setup. A general
bootstrap procedure for moment inequality models was proposed
by Bugni (forthcoming).5 Finally, the works by Ciliberto and Tamer
(forthcoming), Ho (2009) and Ishii (2005) are some of the papers
that apply the tools mentioned above.
The remainder of the paper is organized as follows. Section 2

presents the basic notation and the two canonical examples used
throughout the paper. Section 3 develops the empirical likelihood
approach for unconditional moment inequalities and shows that
inference based on the empirical likelihood ratio statistic is large
deviations optimal. There are two main results in the section. The
first one characterizes the asymptotic distribution of the ELR statis-
tic. The second one deals with the so-called Generalized Ney-
man–Pearson optimality. Once the optimal properties are defined,
Section 4 introduces the new empirical likelihood bootstrap for
moment inequality models. Section 5 studies the finite sample be-
havior of the method proposed in this paper via Monte Carlo sim-
ulations. Finally, Section 6 concludes.

2. Setup and notation

The point of departure is a statistical model that imposes an
inequality moment condition,

EP0 [m(z, θ0)] ≡
∫

Z

m(z, θ0)dP0 ≥ 0, (2.1)

where {zi : i ≤ n} is an i.i.d. sample generated from some
distribution P0 with support on Z ⊆ Rd, θ0 is the parameter of
interest that lies inΘ ⊆ Rk andm(z, θ) is a q× 1 known function.
Under the moment condition (2.1), the set
Θ0(P0) ≡ {θ ∈ Θ : EP0 [m(z, θ)] ≥ 0}
denotes the so-called identified set while any θ ∈ Θ0(P0) has
been termed an identifiable parameter by Romano and Shaikh
(2008). Thus, the true value of the parametermight not be uniquely
identified by the distribution of the observed data P0 and the
economic model.

Example 1 (Missing Data — Manski (1989)). Let {(xi;wi) : i =
1, . . . , n} be a random sample with support [0, 1] × {0, 1}, where
xi is only observed if wi = 1. Let θ0 = E(x) ≡ pµ1 + (1 − p)µ0,
where µj = E(x|w = j), j = {1, 2} and p = E(wi). µ1 is identified
by the data but µ0 is only known to be in [0, 1]. Thus, the model
yields the following two moment inequalities,
E[m1(x, w, θ0)] = E[θ0 − xw] ≥ 0 (2.2)
E[m2(x, w, θ0)] = E[1− w + xw − θ0] ≥ 0, (2.3)

and the identified set is simplyΘ0(P0) = [pµ1, pµ1 + (1− p)].

Example 2 (Entry Game — Tamer (2003)). Suppose that firm j ∈
{1, 2}decideswhether to enter (zj,m = 1) amarketm ∈ {1, . . . ,M}
or not (zj,m = 0) based on the profit function πj,m = (εj,m −
θjz−j,m)1{zj,m = 1}, where εj,m is firm’s j benefit of entry in market
m and z−j,m denotes the decision of the other firm. Let εj,m ∼
U(0, 1) and θ0 = (θ1, θ2) ∈ (0, 1)2. There are four possible
outcomes in this game: (i) (z1,m, z2,m) = (1, 1) is the unique Nash
equilibrium (NE) if εj,m > θj for all j; (ii) (z1,m, z2,m) = (1, 0); is
the unique NE if ε1,m > θ1 and ε2,m < θ2; (iii) (z1,m, z2,m) = (0, 1)
is the unique NE if ε1,m < θ1 and ε2,m > θ2 and; (iv) there are
multiple equilibria if εj,m < θj for all j as both (z1,m, z2,m) = (1, 0)
and (z1,m, z2,m) = (0, 1) are NE. Without imposing additional
assumptions this model implies

5 The bootstrap procedure proposed in this paper and in Bugni (forthcoming,
2009) were independently derived and both are related to the GMS approach
introduced, also independently, by Andrews and Soares (forthcoming).
P(z1,m = 1, z2,m = 1) = (1− θ1)(1− θ2)
θ2(1− θ1) ≤ P(z1,m = 1, z2,m = 0) ≤ θ2,

so that there are two moment inequalities and one moment
equality,

E[m1(zm, θ0)] = E[z1,mz2,m − (1− θ1)(1− θ2)] = 0

E[m2(zm, θ0)] = E[z1,m(1− z2,m)− θ2(1− θ1)] ≥ 0 (2.4)
E[m3(zm, θ0)] = E[θ2 − z1,m(1− z2,m)] ≥ 0.

The identified setΘ0(P0) is given by,

Θ0(P0)=

θ ∈ Θ :
θ2 ≤

E[z1,m(1− z2,m)]
E[z1,m(1− z2,m)] + E[z1,mz2,m]

θ2 ≥ E[z1,m(1− z2,m)]
θ1 = 1− E[z1,mz2,m]/(1− θ2)

 . (2.5)
Given the moment inequalities, the goal is to construct confi-

dence regions Cn that contain the parameter of interest with some
pre-specified probability. Depending on the case, interest might
center on the element θ0 or the set Θ0(P0). That is, in partially
identified models there is a distinction between inference on the
identified set or on individual elements of that set (see Imbens
andManski, 2004; Chernozhukov et al., 2007; Romano and Shaikh,
forthcoming). This paper focuses on inference about θ0. This fo-
cus corresponds to interest in a particular ‘‘true value’’ of the pa-
rameter, which often has a particular economic interpretation. An-
other distinction of importance iswhether the coverage of the con-
fidence region is only valid for a fixed probability distribution P0 or
if the coverage is uniform over a large class of probability functions
P . Confidence regions in the former case satisfy the condition

inf
θ∈Θ0(P0)

lim inf
n→∞

P0(θ ∈ Cn) ≥ 1− α, (2.6)

while confidence regions in the latter case satisfy

lim inf
n→∞

inf
(θ,P)∈Θ0(P)×P

P(θ ∈ Cn) ≥ 1− α. (2.7)

In Section 4 I show that the EL confidence regions are uniformly
valid over the class of null probabilities considered byAndrews and
Soares (forthcoming).
Construction of Cn with the required coverage level typically

proceeds as follows. One uses a sample analog Q̂ (θ) of a population
criterion function Q (θ, P0) and exploits the duality between
hypothesis tests and confidence sets. The confidence region arises
by inverting the test of each of the individual null hypotheses Hθ0 :
θ ∈ Θ0(P0) so that Cn ≡ {θ ∈ Θ : Q̂ (θ) ≤ c} for a given cut-off
value c. In this paper I show that the use of the empirical likelihood
ratio statistic ELRn(θ) results in optimal inference when testing
the hypothesis Hθ0 : EP0 [m(z, θ)] ≥ 0, which is equivalent to
Hθ0 : θ ∈ Θ0(P0). I also show that ELRn(θ) has a well defined
asymptotic distribution that allows one to compute an asymptotic
critical value cθ1−α for a given asymptotic size α. Thus, for each
θ ∈ Θ there is a cθ1−α such that

Cn ≡ {θ ∈ Θ : ELRn(θ) ≤ cθ1−α} (2.8)

satisfies (2.6). Aswill be clear later on, in some cases the asymptotic
distribution might not be that useful to compute cθ1−α . For such
cases I introduce a modified empirical likelihood bootstrap that
consistently estimates cθ1−α .

3. Optimal inference in partially identified models

An inferentialmethod involves a test statistic based on a sample
analog of Q (θ, P0) together with a critical value cθ . On the one
hand, given a criterion function one might compute the critical
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value using an asymptotic approximation, a simulation technique
or a resampling approach (e.g., subsampling or the bootstrap).
On the other hand, a model that imposes EP0 [m(z, θ)] ≥ 0
has many different criterion functions Q (θ, P0) that have Θ0(P0)
as the minimizer set. This fact translates into consequences
for the inferential procedure given that a standard method of
confidence region construction is to invert a test based on a sample
analog of the criterion function. Consider the next example for an
illustration.

Example 3 (Missing Data Cont.). Consider the moments in (2.2)
and (2.3) and let m(z, θ)′ = [m1(z, θ) m2(z, θ)]. The following
criterion functions provide an equivalent representation of the
identified set viaΘ0(P0) = argminθ∈Θ Qk(θ, P0), for k = {1, 2, 3}.

1. Q1(θ, P0) ≡
(
EP0 [m(z, θ)]

)′
−
W (θ)

(
EP0 [m(z, θ)]

)
−
. Here

(x)− = min{x, 0} and W (θ) is a positive definite weighting
matrix. This criterion function for the choice W (θ) = I2×2
has been used by Chernozhukov et al. (2007) and Romano and
Shaikh (2008).

2. Q2(θ, P0) ≡ mint≥0
(
EP0 [m(z, θ)] − t

)′ V (θ)−1(EP0 [m(z, θ)] −
t), where V (θ) = var{m(z, θ)}. This Gaussian quasi-likelihood
ratio has been used by Rosen (2008).

3. Q3(θ, P0) ≡ maxλ≤0 EP0 [log(1 + λ′m(z, θ))]. This criterion
function defines the identified set (Lemma B.3 in Appendix B)
and is the one associated with empirical likelihood.

It is useful then to think of the search for an optimal test in terms
of choice of criterion function and choice of critical value. Unfortu-
nately, optimizing over bothQ and cθ turns out to be very challeng-
ing in moment inequality models. Therefore, what this paper does
is to search for the optimal criterion function given a fixed (not
data-dependent) critical value and shows that appropriate choice
of Q (θ, P0) leads to a large deviations optimal inferential proce-
dure.6 In particular, I use a large deviations optimality criteria that
is defined in terms of asymptotic power since more powerful tests
reject more false hypotheses and generally lead to smaller confi-
dence regions. Then I show that tests based on the empirical likeli-
hood ratio statistic are optimal according to this criteria. The result
firmly grounds the use of ELRn(θ), the statistic associated with
the criterion function Q3(θ, P0) in Example 3.
One notion of optimality for confidence regions is to focus on

the optimality of the corresponding tests that are inverted. To as-
sess the relative or absolute performance of test procedures there
exist several optimality criteria which, in order to make informa-
tive comparisons, usually consider problems that become harder
as the sample size increases. A line of attack that is applicable to
a wide range of cases is based on the theory of large deviations
and has been used since the papers by Bahadur (1960), Chernoff
(1952) and Hoeffding (1965), among others. Thus, test procedures
are compared through their power functions and the variousmeth-
ods of comparison differ in the manner in which type I and type II
error probabilities vary with the sample size, and also in the man-
ner in which the alternatives under consideration are required to
behave. Letting αn and βn denote the type I and type II error proba-
bilities of a test, each performance criteria entails particular speci-
fications regarding: (i) whether αn goes to zero or not, (ii) whether
βn goes to zero or not, and (iii) whether the alternative hypotheses
are fixed or get closer to the null with the sample size.7
In this paper I focus on large deviations cases where both types

of errors decrease to zero as the sample size increases and the set

6 As a way of comparison, Andrews and Soares (forthcoming) do basically the
opposite. For a given criterion function Q , they search for the optimal way (in terms
of size and power) of computing a critical value.
7 For a review on asymptotic comparisons see Serfling (1980, Ch. 10) and van der
Vaart (1998, Ch. 14).
of alternatives is held fixed. I follow Kitamura (2001) and use the
so-called Generalized Neyman–Pearson approach, an extension of
the idea introduced by Hoeffding (1965) for multinomial models.
To put it in simple terms, consider competing tests that satisfy
lim supn→∞ n−1 logαn ≤ −η, for a given η > 0. Among such tests,
a test is optimal if it minimizes lim supn→∞ n−1 logβn uniformly
over all distributions in a given class. In Section 3.3 I show that
the empirical likelihood-based test of the unconditional moment
restrictions (2.1) is optimal in the above sense. In anticipation of
such result and for ease of exposition, I first introduce empirical
likelihood for moment inequalities.

3.1. The ELR statistic for moment inequalities

EL is a data-driven nonparametric method of estimation and
inference for moment restriction models, which does not require
weight matrix estimation like GMM and is invariant to nonsingu-
lar linear transformations of the moment conditions.8 It was intro-
duced by Owen (1988, 1990, 1991) and later studied in depth by
Qin and Lawless (1994), Imbenset al. (1998), Kitamura (2001) and
Newey and Smith (2004), among others.
The standard EL for moment equalitiesmaximizes the nonpara-

metric likelihood over distributions with an atom of probability on
each zi that impose the moment condition. In this paper I use this
idea, but impose themoment inequality (2.1) into the optimization
problem. The (restricted) empirical log-likelihood problem is,

lrEL(θ) ≡ max
p1,...,pn

{
n∑
i=1

log(pi)

∣∣∣∣∣ pi > 0; n∑
i=1

pi = 1;

n∑
i=1

pim(zi, θ) ≥ 0

}
(3.1)

where pi denotes the probability mass placed at zi by a discrete
distribution with support {z1, . . . , zn}. Note that this differs from
the usual EL for moment equalities only in the last restriction
where

∑n
i=1 pim(zi, θ) is now required to satisfy an inequality. The

unrestricted empirical log-likelihood problem, lurEL(θ), is similar to
lrEL(θ) except that the moment restriction

∑n
i=1 pim(zi, θ) ≥ 0 is

not imposed. The solution in such case is simply p̃i = 1/n and
then lurEL(θ) = −n log(n). The ELR statistic arises by computing the
difference between the restricted and unrestricted log-likelihood,

ELRn(θ) ≡ 2{lurEL(θ)− l
r
EL(θ)}

= min
p1,...,pn

{
2
n∑
i=1

log
(
1/n
pi

)∣∣∣∣∣ pi > 0; n∑
i=1

pi = 1;

n∑
i=1

pim(zi, θ) ≥ 0

}
. (3.2)

Hence, large values of this statistic suggest the restriction is not
supported by the data.
A nice feature of EL is that imposing moment inequalities pre-

serves the simplicity of the moment equality case. The only differ-
ence lies in the behavior of the Lagrange multipliers. To see this,
note that (3.1) is solved by maximizing the Lagrangian

L(θ, {pi}ni=1, λ, ~) ≡
n∑
i=1

log(pi)+ ~

(
1−

n∑
i=1

pi

)

− nλ′
n∑
i=1

pim(zi, θ) (3.3)

8 EL does not require weight matrix estimation even computationally when ones
uses algorithms with numerical derivatives.
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where ~ is the Lagrange multiplier for the second constraint and
λ ≤ 0 is a q × 1 vector of multipliers for moment inequality con-
straints. Solving this problem results in

p̂i =
1

n(1+ λ̂′m(zi, θ))
, (3.4)

which looks identical to the standard EL solution. The difference
lies in λ̂, which now solves the following three first order condi-
tions9
n∑
i=1

m(zi, θ)

n(1+ λ̂′m(zi, θ))
≥ 0; λ̂ ≤ 0;

λ̂′
n∑
i=1

m(zi, θ)

n(1+ λ̂′m(zi, θ))
= 0.

Since p̂i has a closed form solution, I can write a profiled
likelihood and define λ̂ accordingly. Plugging (3.4) into (3.3) results
in
lrEL(θ) ≡ L(θ, {̂pi}ni=1, λ, ~̂)

= min
λ≤0

{
−n log(n)−

n∑
i=1

log(1+ λ′m(zi, θ))

}
.

Finally, using lurEL(θ) = −n log(n) the statistic in (3.2) becomes,
ELRn(θ) ≡ 2{lurEL(θ)− l

r
EL(θ)}

= max
λ≤0
2
n∑
i=1

log(1+ λ′m(zi, θ)). (3.5)

Therefore, a model represented through moment inequalities
affects the empirical likelihood ratio statistic only via the Lagrange
multiplier λwhich is now required to be non-positive. This differ-
ence is important for two reasons. First, relative to the standard
case, the computational difficulty is only trivially affected. Second,
the restriction on λ affects the limit distribution of the statistic to
a great extent and results in a non-pivotal asymptotic distribution,
as the next section shows.

3.2. Asymptotic distribution

Before deriving the asymptotic distribution of the ELR statistic
I introduce some additional notation. Let m(zi, θ) be q × 1 with
the following partition: m(zi, θ)′ = [mb(zi, θ)′ms(zi, θ)′] where
mb(zi, θ) is a b(θ) × 1 vector of moments with zero mean,
EP0 [mb(z, θ)] = 0, and ms(zi, θ) is a s(θ) × 1 vector of moments
with positivemean, EP0 [ms(z, θ)] > 0. The asymptotic behavior of
the test statistic will follow from the next standard assumption.

Assumption 3.1. (i) {zi : i ≤ n} is a random sample where
zi ∈ Z ⊆ Rd. (ii) Θ ⊆ Rk is compact and m : Rd × Θ → Rq
is known. (iii) supθ∈Θ0(P0) EP0 [‖m(z, θ)‖

r
] < ∞ for r ≥ 3. (iv)

For each θ ∈ Θ0(P0), Σb(θ) = EP0 [mb(z, θ)mb(z, θ)
′
] is positive

definite.

Assumption 3.1(iii) implies that for all θ ∈ Θ0(P0),
√
n{m̄n(θ)− EP0 [m(z, θ)]} ; N(0, V (θ))

where m̄n(θ) = n−1
∑n
i=1m(zi, θ)→

P0 EP0 [m(z, θ)], V (θ) =
varP0{m(z, θ)} and ; denotes weak convergence. In particular,
under the same assumption

√
nm̄n,b(θ) ; N(0,Σb(θ)).

The following theorem provides a limit distribution for the
statistic ELRn(θ) under the null hypothesis.

Theorem 3.1. Under Assumption 3.1, for all θ ∈ Θ0(P0) the statistic
in (3.5) satisfies:

9 λ̂ is a shorthand for λ̂(θ) or λ̂(θ, τ ) depending on the context.
lim
n→∞

P0(ELRn(θ) ≥ c)

=

b(θ)∑
j=0

$(b(θ), b(θ)− j,Σb(θ)) Pr(χ2j ≥ c) (3.6)

where $(b(θ), b(θ) − j,Σb(θ)) is the weight function defined by
Wolak (1987) and Kudo (1963).

Proof. See Appendix A. �

Theorem 3.1 shows that the limit distribution of ELRn(θ) is a
chi-bar-square distribution, which I denote by χ2b(θ)(Σb(θ)). This
distribution is non-pivotal since both b(θ) and $(b(θ), b(θ) −
j,Σb(θ)) depend on θ . The set of b(θ) binding constraints has a
significant discontinuous effect on the shape of the distribution. In
the extreme case where θ is such that b(θ) = 0 – no constraint
is binding – the resulting distribution is degenerate at zero since
ELRn(θ) = 0 wp→1. The weights$(b(θ), b(θ) − j,Σb(θ)) are
called level probabilities and aside from cases where b(θ) ≤ 4,
there are no closed-form expressions for these weights.10 Rosen
(2008) derived a QLR statistic for the model in (2.1) and showed
that its limit distribution is the chi-bar-square distribution in (3.6).
To overcome the problem caused by the non-pivotalness of the
statistic Rosen uses two conservative approximations to the chi-
bar-square that were proposed by Wolak (1987, 1991). These
approximations require imposition of an upper bound b∗ on b(θ),
i.e., supθ∈Θ0(P0) b(θ) ≤ b

∗ — see Eq. (5.1) in Section 5.11
Theorem3.1 shows that the ELR statistic is equivalent to theQLR

statistic proposed by Rosen (2008) up to first order. However, EL
has two clear advantages. First, theQLR statistic cannot outperform
ELRn(θ) in terms of asymptotic power as the next subsection
shows. Second, the computation of ELRn(θ) does not require
an estimate of V (θ) as it is required for the QLR statistic. This
feature reflects the internal Studentization property of empirical
likelihood that often improves finite sample properties of the tests.
In fact, avoiding estimation of V (θ)−1 ismore important than usual
in the present setup. For example, in the entry game of Section 5
thismatrix is singular.12 On the other hand, the onedisadvantage of
EL is additional computational time. Section 5 also addresses this.

3.3. Generalized Neyman–Pearson optimality

I now consider the problem of optimal inference in models
that impose the moment inequalities (2.1) and show that the
ELR statistic just described yields optimal inference from a large
deviations point of view. The idea works as follows. A test for Hθ0 is
amap fromdata into a decision. I denote thismapping by rθn : Z→
{0, 1}, where rθn = 0(r

θ
n = 1)means acceptance (rejection) of the

null. Characterizing data by the empirical measure P̂n it induces, a
test maps P̂n into accept/reject. This is equivalent to partitioning
the space of probability measures into acceptance or rejection
regions. Towrite this formally denote byM the space of probability
measures on the Borel σ -field (Z,B(Z)) endowed with the Lévy
metric.13 A test then induces a partition Ωθ

n ≡ (Ωθ
n,0,Ω

θ
n,1) ofM

such that rθn = 1(P̂n ∈ Ω
θ
n,1).

10 These issues and much more have been studied in depth in the literature on
one-sided hypothesis testing, e.g. Wolak (1987), Silvapulle and Sen (2004) and
Gourieroux et al. (1982).
11 If b∗ is a good approximation to the supremum and the number of moments
is small, these approximations can work well (see Example 1, Section 5). However,
if the moments are non-linear and the number of binding moments is large, they
could be slack as mentioned by Wolak (1991) and Gourieroux et al. (2008).
12 Also,V (θ)might be singularwhenusing subsampling in the presence ofmissing
data and small n.
13 The Lévy metric is compatible with the weak topology, Dembo and Zeitouni
(1998, Theorem D.8).
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Recall that the null hypothesis for each θ ∈ Θ is given by

Hθ0 : EP0 [m(z, θ)] ≡
∫

Z

m(z, θ)dP0 ≥ 0, (3.7)

which can be alternatively written as Hθ0 : P0 ∈ P0(θ), where

P0(θ) ≡ {P ∈M : EP [m(z, θ)] ≥ 0}

denotes the subset of probabilitymeasures that satisfy themoment
inequality restriction. Next, let Q � P denote that Q is absolutely
continuous with respect to P ,14

I(Q ‖ P) ≡

{∫
log(dQ/dP)dQ if Q � P

∞ otherwise

denote the relative entropy (or Kullback–Leibler divergence) for
measures Q and P , and

P (Q , θ) ≡ {J ∈ P0(θ) : J � Q ,Q � J},

denote the measures in P0(θ) that are equivalent to a given
measure Q . This notation allows me to re-write the ELR statistic
in (3.2) as,

ELRn(θ) = min
P∈P (P̂n,θ)

2nI(P̂n ‖ P).

Intuitively, EL picks the measure in the set P (P̂n, θ) that is closest
to the empirical measure, where closest is defined in terms of
entropy. Finally, note that the test based on ELR,

r̄θn ≡ 1
(

ELRn(θ)

2n
≥ ηθ

)
= 1

(
inf

P∈P (P̂n,θ)
I(P̂n ‖ P) ≥ ηθ

)
,

depends on the data solely through P̂n and induces the following
partition ofM,

Λθ0 ≡

{
Q ∈M : inf

P∈P (Q ,θ)
I(Q ‖ P) < ηθ

}
,

Λθ1 ≡

{
Q ∈M : inf

P∈P (Q ,θ)
I(Q ‖ P) ≥ ηθ

}
.

(3.8)

In a recent paper, Kitamura et al. (2009) established the Gener-
alizedNeyman–Pearson optimality of EL for testingmoment equal-
ities. They provide a counterexample to the results of Kitamura
(2001), who was the first to consider this problem. The coun-
terexample shows that if the class of null distributions is too rich,
most commonly-used tests (including EL) cannot control the rate
at which the type I error tends to zero. Taking this into considera-
tion I define the space of null distributions as follows.

Definition 3.1 (Null Parameter Space). Given ε > 0, Fε denotes the
space for null parameters (θ, P) ∈ Θ ×M such that:
(i) {zi : i ≤ n} is i.i.d under P,
(ii) EP [m(z, θ)] ≥ 0,
(iii) σ 2P,j(θ) = varP [mj(z, θ)] ∈ [ε,∞), for j = 1, . . . , q,
(iv) |CorrP [m(z, θ)]| ≥ ε, and
(v) EP |mj(z, θ)/σP,j(θ)|2+a ≤ M, for a > 0, M < ∞ and j =
1, . . . , q,

where CorrP denotes correlation matrix and | · | the determinant of a
square matrix. In addition, for a given θ ∈ Θ , Pε,0(θ) = {P ∈ M :
(θ, P) ∈ Fε} is the set of null distributions in Fε and F0 denotes Fε
with σ 2P,j(θ) ∈ (0,∞).

Note that the space F0 is the same parameter space used by
Andrews and Soares (forthcoming) to show uniform validity of

14 Q is absolutely continuous with respect to P if P(B) = 0 implies Q (B) = 0 for
every measurable set B.
their generalized moment selection (GMS) approach. The boot-
strap method proposed in the next section is also uniformly valid
over F0. Fε further restricts F0 by ruling out distributions that be-
come arbitrarily close to degenerate distribution (i.e., distributions
that put probability 1 on a strict subspace of Z). This is similar
in spirit to the approach used by Kitamura et al. (2009) although
Fε imposes variance-covariance restrictions as opposed to directly
controlling the minimummass P puts on any half-space.15
The main result of this section follows from the two assump-

tions below, and uses the following notation. An open δ-blow up
of a set A ⊂ M is given by Aδ ≡ {Q ∈ M : infP∈A d(Q , P) < δ},
where d(Q , P) denotes the Lévymetric. Also, Pn denotes the n-fold
product measure

⊗n
i=1 P of a measure P .

Assumption 3.2. Z andΘ are compact subsets of Rd and Rk.

Assumption 3.3. m(z, θ) : Z × Θ 7→ Rq is continuous in z for
each θ ∈ Θ .

Theorem 3.2. Suppose Assumptions 3.2 and 3.3 hold. Let Λθ =
(Λθ0,Λ

θ
1) be defined as in (3.8) and Pε,0(θ) denote the null set from

Definition 3.1. For each θ ∈ Θ there exists ηθ (ε) > 0 such that for
any 0 < ηθ ≤ ηθ (ε) the statements below follow.

(I) The Empirical Likelihood Ratio test satisfies,

sup
P∈Pε,0(θ)

lim sup
n→∞

1
n
log Pn(P̂n ∈ Λθ1) ≤ −η

θ . (3.9)

(II) If an alternative test Ωn ≡ (Ωn,0,Ωn,1) satisfies,

sup
P∈Pε,0(θ)

lim sup
n→∞

1
n
log Pn(P̂n ∈ Ω

θ,δ
n,1 ) ≤ −η

θ (3.10)

for any δ > 0, it follows that,

lim sup
n→∞

1
n
log Pn1 (P̂n ∈ Ωn,0) ≥ lim sup

n→∞

1
n
log Pn1 (P̂n ∈ Λ

θ
0)

for any P1 ∈ Aη,ε(θ) ≡ {Q 6∈ P0(θ) : d(Q , P) ≥
√
η/2,∀P ∈

P0(θ) \ Pε,0(θ)}.

Proof. See Appendix A. �

Theorem 3.2 says that EL uniformly controls the rate of decay
of type I error probabilities over distributions in Pε,0(θ) and that
there is no test for the null (3.7) satisfying the rate restriction (3.10)
that outperforms EL in term of asymptotic power rate. This part
of the Theorem also holds uniformly over alternative distributions
that are far from degenerate null distributions, i.e., alternatives in
Aη,ε(θ).

Remark 3.1. As in Kitamura (2001, Theorem 2), Theorem 3.2 uses
δ-smoothing. To get a similar resultwithout the need of smoothing,
the alternative test has to be regular, i.e.,

lim
δ→0

sup
P∈Pε,0(θ)

lim sup
n→∞

n−1 log Pn(P̂n ∈ Ω
θ,δ
n,1 )

= sup
P∈Pε,0(θ)

lim sup
n→∞

n−1 log Pn(P̂n ∈ Ωθ
n,1).

Remark 3.2. Theorem 3.2 is an analog result to those in Kitamura
(2001) and Kitamura et al. (2009), although with important

15 A completely different approach would be to use the notion of δ-optimality as
in Zeitouni and Gutman (1991). A Supplementary Appendix available upon request
shows that EL is also optimal in this sense.
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differences. First, the type I error rate in (3.9) is controlled by
imposing restrictions on the covariance matrix ofm(z, θ). Second,
the set of relevant alternative distributionsAη,ε(θ) is here defined
in terms of the Lévy distance which is the metric ofM. Third, the
proof of the Theorem exploits the Donsker–Varadham variational
formula of the relative entropy and does not use duality of linear
programs.

Remark 3.3. Theorem 3.2 employs a ‘‘fixed’’ (i.e., not data depen-
dent) critical valueηθ that depends on θ and soηθ is not necessarily
conservative. However, in many situations computing such a crit-
ical value might not be feasible without using a data-dependent
rule.

Remark 3.4. Having good power against distant alternatives is im-
portant in moment inequality models. This is so because confi-
dence regions are constructed by exploring Θ pointwise. Note,
however, that alternatives in Aη,ε(θ) can be close to null distri-
butions in Pε,0(θ).

The large deviation optimality of EL is tightly related to its
connection to the relative entropy. The two key elements that help
explain this connection are the Large Deviation Principle (LDP) and
Sanov’s Theorem, defined below.

Definition 3.2 (Large Deviation Principle). Let I : S → [0,∞] be
a function such that I−1([0, a]) ⊂ S is compact for each a > 0. The
sequence of probability measures {Qn}n≥1 is said to obey the LDP with
a rate function I if for any set G ⊂ S,

− inf
y∈Go
I(y) ≤ lim inf

n→∞

1
n
logQn(Go) ≤ lim sup

n→∞

1
n
logQn(Ḡ)

≤ − inf
y∈Ḡ
I(y),

where Go and Ḡ denote the interior and closure of G, respectively.

The LDP characterizes the limiting behavior of a family of
probability measures in terms of a rate function I(·). For example,
the rate function that controls the probability measure of the
sample mean in Eq. (1.1) is I(y) = y2/2,

lim sup
n→∞

1
n
log Pn(X̄n ∈ [δ,∞)) ≤ − inf

y∈[δ,∞)

y2

2
= −

δ2

2
.

Cramér showed that the LDP holds for sample means of i.i.d.
random variables. Since the empirical measure can be viewed as
a mean (of Dirac measures), it is a potential candidate for a large-
deviation theorem. The first version of such a theoremwas proved
by Sanov.

Theorem 3.3 (Sanov). Let M(Ψ ) denote the space of probability
measures on a Polish spaceΨ equipped with the Lévy metric and take
P0 ∈M(Ψ ). Then for any set G ∈M(Ψ ),

− inf
v∈Go
I(v ‖ P0) ≤ lim inf

n→∞
n−1 log Pn0 (P̂n ∈ G

o)

≤ lim sup
n→∞

n−1 log Pn0 (P̂n ∈ Ḡ) ≤ − inf
v∈Ḡ
I(v ‖ P0).

Intuitively, the ELR test uses the minimum Kullback–Leibler
divergence between the empirical measure P̂n and the setP (P̂n, θ)
as a statistical criterion. By Sanov’s Theorem, the sequence of
empiricalmeasures P̂n satisfies the LDPwith rate function I(Q ‖ P),
and then I(Q ‖ P) controls the limit behavior of the probability that
P̂n falls into the set P (P̂n, θ).
Before moving to the next section it is important to note

that the good power properties of EL have direct implications on
the associated confidence regions since Cn is constructed by test
inversion. Therefore, if θ∗ ∈ Θc0 is such that P0 ∈ Aη,ε(θ

∗),
Λθ
∗

0 is most powerful and then the EL confidence region Cn
is asymptotically most accurate at θ∗, meaning that it is the
procedure with the smallest chance of covering such incorrect
values of θ .

4. Implementation: A new empirical likelihood bootstrap

This sections concerns implementation issues for the ELR statis-
tic. From (2.8) it is clear that once a critical value cθ1−α is avail-
able, the construction of the confidence region only involves the
evaluation of ELRn(θ) which is straightforward. The analysis in
Section 3 shows that ELRn(θ) has a well defined asymptotic dis-
tribution that can beused to compute critical values in some simple
cases.More generally, computation of fixed asymptotic critical val-
ues is infeasible. In the present EL setting the empirical likelihood
bootstrap introduced by Brown and Newey (2002) for moment
equality models seems to be an appealing alternative. Since when
inequality constraints are present such approach does not produce
a consistent approximation to the limit distribution ofELRn(θ), as
the next section illustrates, I show that a slight modification of this
bootstrap is first order valid. The modification is simple enough to
preserve the computational tricks that typically make EL straight-
forward to use.

4.1. EL bootstrap invalidity: A canonical example

To motivate the modified empirical likelihood bootstrap, I use
a simple example from Romano and Shaikh (2008) to show that
the standard empirical likelihood bootstrap does not work. The
argument follows the one used byAndrews (2000) to show that the
standard i.i.d. bootstrap is inconsistent when the parameter is on
the boundary of the parameter space. The example also illustrates
intuitively why the new bootstrap does work. The general case is
developed following this illustrative example.
Suppose the economic model imposes EP0(X) ≥ θ where Xi ∼

P0 = N(0, 1). Without loss of generality and to make the example
simpler, I use the criterion function Q (θ, P0) = (EP0(X) − θ)

2
−

where (a)− = min{a, 0}. The identified set here isΘ0(P) = [θl, 0]
where θl is some lower bound of the parameter space. The sample
analog satisfies,

nQ̂n(θ) = (
√
n(X̄n − θ))2− ; (Z)2

−
× 1{θ = 0}, Z ∼ N(0, 1).

The EL bootstrap works as follows. Denote by P̃n = (p̃1, . . . , p̃n)
the EL probabilities that solve (3.1) with m(Xi, θ) = Xi − θ and
let µ̃θn ≡

∑
p̃i(Xi − θ) = max{X̄n − θ, 0}. The bootstrap samples

{X∗i : i ≤ n} are i.i.d. according to P̃n and the bootstrap criterion
function is given by nQ̃ ∗n (θ) = (

√
n(X̄∗n − θ))

2
−
.

Following Andrews (2000, page 401) let Bc ≡ {ω : lim supn→∞√
nX̄n > c} for 0 < c < ∞ and note that by the law of iterated
logarithm P0(Bc) = 1. For ω ∈ Bc consider a subsequence {nk :
k ≥ 1} of n such that n1/2k X̄n(ω) ≥ c for all k. Then, for such a
subsequence,

nkQ̃ ∗nk(0) = (
√
nk(X̄∗nk − µ̃

0
nk)+

√
nkµ̃0nk)

2
−

= (
√
nk(X̄∗nk − µ̃

0
nk)+max{

√
nkX̄nk , 0})

2
−

≤ (
√
nk(X̄∗nk − µ̃

0
nk)+ c)

2
−

; (Z+ c)2
−
as k→∞ conditional on {P̃nk : k ≥ 1}

≤ (Z)2
−
,

meaning thatwith probability one (with respect to the randomness
in {P̃n : n ≥ 1}) the EL bootstrap fails to approximate the asym-
ptotic distribution of nQ̂n(θ) at θ = 0.

4.2. EL bootstrap validity: Modification for the canonical example

Next I show that a simple modification to the EL bootstrap
yields first order validity for the canonical example and in the next
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section I discuss the general case. The modification of the EL boot-
strap I propose affects both the EL probabilities and the bootstrap
criterion function. Intuitively, instead of imposingEP0(X−θ) ≥ 0, I
imposeEP0(X−θ) ≥ %nwhere %n is a sequence of positive random
(or deterministic) variables satisfying

P0
(
lim
n→∞

%n = 0 and lim inf
n→∞

%n(n/(2 log log n))1/2 ≥ 1
)
= 1. (4.1)

The modified EL bootstrap for this example requires two steps.
The first step involves computing the modified EL probabilities
P̄n = (p̄1, . . . , p̄n) by solving

l̃rEL = sup
p1,...,pn

{
n∑
i=1

log(pi)

∣∣∣∣∣ pi > 0; n∑
i=1

pi = 1;

n∑
i=1

pi(Xi − θ) ≥ %n

}
.

Once P̄n is known, the newempirical likelihoodmean is denoted
by µ̄θn =

∑
p̄i(Xi − θ) = max{X̄n − θ, %n}. The second step

generates i.i.d. bootstrap samples {X∗i : i ≤ n} from P̄n and
computes the modified bootstrap criterion function, nQ̂ ∗n (θ) =
(
√
n(X̄∗n − θ − %n))

2
−
.

Remark 4.1. When the parameter of interest is on the boundary
of the parameter space, Andrews (2000, page 403) proposes a
parametric bootstrap procedure in which the parameter estimator
used to generate the bootstrap shrinks to the boundary when X̄n
is below %n. The EL bootstrap I propose here does basically the
opposite.16 This is, when θ = 0 the EL mean is given by µ̄0n =
max{X̄n, %n} so that it keeps the mean far from zero when X̄n is too
small.

Note that by (4.1) and the law of iterated logarithm,

P0

(
lim sup
n→∞

(X̄n − θ − %n) ≤ 0
)
=

{
0 if θ < 0
1 if θ = 0,

meaning that µ̄θn > %n for n large enough with probability one
(w.p.1) when θ < 0 and µ̄θn = %n for n large enough w.p.1 when
θ = 0. Hence, for all θ ≤ 0,

nQ̂ ∗n (θ) = (
√
n(X̄∗n − θ − %n))

2
−

= (
√
n(X̄∗n − θ − µ̄

θ
n)+
√
n(µ̄θn − %n))

2
−

; (Z)2
−
× 1{θ = 0}, conditional on {P̄n : n ≥ 1},

and the new bootstrap is asymptotically valid to approximate the
distribution of nQ̂n(θ).

4.3. Modified EL bootstrap validity: The general case

Now consider the general case where the economic model im-
poses EP0 [m(z, θ)] ≥ 0. The modified empirical likelihood func-
tion is,

l̃rEL(θ, %
θ
n) ≡ max

p1,...,pn

{
n∑
i=1

log(pi)

∣∣∣∣∣ pi > 0; n∑
i=1

pi = 1;

n∑
i=1

pim(zi, θ) ≥ %θn

}
(4.2)

where %θn ≥ 0 is a q × 1 vector of random (or deterministic) vari-
ables that satisfies

16 A supplementary appendix shows how the new EL bootstrap works for the
example in Andrews (2000).
P0
(
lim
n→∞

%θj,n = 0 and lim infn→∞
%θj,n(n/(2 log log n))

1/2
≥ V 1/2jj (θ)

)
= 1 (4.3)

where Vjj(θ) = VarP0{mj(zi, θ)} for all j ∈ {1, . . . , q}. By the law of
iterated logarithm,

P0

(
lim sup
n→∞

(m̄j,n(θ)− %θj,n) ≤ 0
)
=

{
0 if EP0 [mj(z, θ)] > 0
1 if EP0 [mj(z, θ)] = 0.

(4.4)

Denote themodified EL probabilities that solve (4.2) by P̄n(θ) =
(p̄1, . . . , p̄n) and define µ̄n(θ) =

∑n
i=1 p̄im(zi, θ). Let {Z

∗

i : i ≤ n}
be i.i.d. according to P̄n(θ) so that EP̄n [m(z

∗, θ)] = µ̄n(θ). The
modified bootstrap empirical likelihood function is,

l̃r∗EL(θ, %
θ
n) ≡ max

p1,...,pn

{
n∑
i=1

log(pi)

∣∣∣∣∣ pi > 0; n∑
i=1

pi = 1;

n∑
i=1

pi(m(z∗i , θ)− %
θ
n) ≥ 0

}
and the modified bootstrap ELR statistic is,

ELR∗n(θ, %
θ
n) ≡ max

λ≤0
2
n∑
i=1

log[1+ λ′(m(z∗i , θ)− %
θ
n)]. (4.5)

Letting Nn be the number of bootstrap replications, the (1−α)-
quantile of {ELR∗n,k(θ, %

θ
n) : k ≤ Nn} is given by,

c̄θn,1−α ≡ inf

{
x :
1
Nn

Nn∑
k=1

1{ELR∗n,k(θ, %
θ
n) ≤ x} ≥ 1− α

}
,

so that the bootstrap confidence region is just,

Cn ≡ {θ ∈ Θ : ELRn(θ) ≤ c̄θn,1−α}. (4.6)

The next theorem shows that the confidence set Cn defined in
(4.6) satisfies the pointwise coverage requirement for all Θ0(P0)
and it is uniformly valid over F0.

Theorem 4.1. Suppose Assumption 3.1 holds and let %θn ≥ 0 be the
vector satisfying (4.3). Then, for 0 < α < 1/2, the statements below
follow.
I. For all θ ∈ Θ0(P0) the modified bootstrap ELR statistic defined in
(4.5) satisfies

ELR∗n(θ, %
θ
n) ; χ2b(θ)(Σb(θ))

where the convergence is conditional on {P̄n(θ) : n ≥ 1} for
almost every sample path.

II. Cn as defined in (4.6) satisfies

lim inf
n→∞

P0(θ ∈ Cn) ≥ 1− α (4.7)

for all θ ∈ Θ0(P0).
III. Cn as defined in (4.6) satisfies

lim inf
n→∞

inf
(θ,P)∈F0

P(θ ∈ Cn) = 1− α. (4.8)

Proof. See Appendix A. �

Remark 4.2. The statements in (4.7) can be decomposed into two
parts. When θ is on the boundary of Θ0(P0) it is the case that
lim infn→∞ P0(θ ∈ Cn) = 1−α. However, when θ is in the interior
ofΘ0(P0), Cn includes θ w.p.→ 1.

Remark 4.3. The sequence %θj,n provides a rule to determine
whether the jth moment is binding or not. Thus, this sequence is
similar to κnn−1/2 in Andrews and Soares (forthcoming, Assump-
tion GMS4), to τnn−1/2 in Bugni (forthcoming) and to cj

√
log n/n in

Chernozhukov et al. (2007, Remarks 4.5 and 5.1).
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Remark 4.4. The uniform result in Theorem 4.1 follows almost
immediately from Andrews and Soares (forthcoming, Theorem 1)
since it turns out that the modified EL bootstrap falls into the
class of GMS procedures. I include it here for completeness and in
the Appendices I show the adjustments to make the modified EL
bootstrap fit into the GMS family.

Remark 4.5. Andrews and Soares (forthcoming) recently proved
that, keeping a given test statistic fixed, tests based on a
generalized moment selection (GMS) critical values have greater
power than tests based on subsampling or fixed asymptotic critical
values. The modified EL bootstrap falls into the class of GMS tests
and so inherits this power property.
As is the case for the asymptotic distribution and subsampling,

the application of this bootstrap procedure is not free of tuning
parameters. Although any sequence %θn that satisfies the rate in
(4.3) will work asymptotically, the finite sample properties of the
confidence regionmight be sensitive to this choice. One advantage
here is that there is a value of %θn that can serve as a natural
benchmark. This value is given by,

%̄θj,n ≡ n
−1(2 log log n× Vjj(θ))1/2, (4.9)

which represents a lower bound for %θj,n, since %
θ
j,n = C × %̄

θ
j,n for

C < 1 does not satisfy (4.3). There is no reason to believe that %̄θn
is optimal in any sense but having a reference value might in fact
be useful in practice. Optimal choice of %θn is beyond the scope of
this paper.17 In the examples of Section 5 I find that the benchmark
value performs well, and that coverage appears reasonably robust
to this choice.
Finally, it is worth mentioning that the results from Romano

and Shaikh (2008) and Andrews and Guggenberger (2009) can be
applied to show that subsampling is a uniformly valid approach
to approximate the distribution of ELRn(θ) and thus construct
confidence regions for θ0. The main practical problem in using
subsampling lies in choosing the block size an = o(n). The
simulations of the next section suggest that finite sample coverage
of the confidence regions might be more sensitive to the choice of
an than the choice of ρθn .

5. Monte Carlo simulations

5.1. Missing data example

This section takes the setup from Example 1 to evaluate the fi-
nite sample performance of the tools developed in the previous
sections. Each simulation experiment depends on three parame-
ters: the sample size n, the size of the test α and the propensity
score p. I set p = 0.7 and I consider n = {100, 500, 1000} and
1 − α = {0.85, 0.90, 0.95}.18 I then take independent draws of
xi ∼ Uniform(0,1) and wi ∼ Bernoulli(p) to construct the simu-
latedmissing data as {(xiwi, wi) : i ≤ n}, resulting in the identified
set Θ0(P0) = [θL, θH ] = [0.35, 0.65]. The number of Monte Carlo
replications is equal to 3000.
I compute three empirical likelihood confidence regions that

use different critical values. The first oneuses an asymptotic critical
value. Since themaximumnumber of binding constraints is one, i.e.
b∗ = 1, I can use the limit distribution in Theorem 3.1 without the
need of any approximation,

lim
n→∞

P0(ELRn(θ) ≥ c) =
1
2
P(χ21 ≥ c).

A confidence region for θ0 simply uses a critical value that solves
P{χ21 ≥ c} = 2α in this case. The second confidence region

17 Andrews and Jia (2008) recently proposed a way to choose these type of tuning
parameters.
18 Different values of p yield similar results so they are not reported.
uses subsampling to compute the critical value. I use four different
subsample sizes, an = {n0.95/10, n0.95/8, n0.95/6, n0.95/4} with
Nn = 200 subsamples. Finally, the last set of confidence regions
uses the modified empirical likelihood bootstrap introduced in
Section 4. In this case I set Nn = 200 and use four different values
for the parameter %θn = {%̄

θ
n , 1.5%̄

θ
n , 2%̄

θ
n , 3%̄

θ
n}, where %̄

θ
n is defined

in (4.9).
Table 1 shows the empirical coverage and the average power

over the set of points {0.27, 0.29, 0.31, 0.33, 0.67, 0.69, 0.71,
0.73} outsideΘ0(P0). The results show that themodified empirical
likelihood bootstrap performs well. A comparison between the
bootstrap and subsampling shows that for small sample sizes the
bootstrap represents a better approximation. Subsampling does
really well in some cases (e.g., n = 500 and α = 0.15) although
given a value of an its performance varies as n varies. In the case of
the bootstrap on the other hand, if we just focus on the benchmark
case bootstrap_1 where %θn = %̄θn , the bootstrap performs very
well across n.19 Note also that inmost cases themodified bootstrap
approach performs as well as the asymptotic approximation. This
is worth noticing since the bootstrap requires no knowledge on
the number of binding constraints. Finally, the average power of
the bootstrap dominates almost uniformly both subsampling and
the asymptotic approximation. This is consistent with Remark 4.5.
The gains in size and power over subsampling cost additional
computational time. While each bootstrap case takes 2 (n = 100),
6.5 (n = 500) and 32.5 (n = 1000) s to compute the size
for each MC round, each subsampling case takes 1, 1.5 and 2 s
respectively.20
Table 2 shows the finite sample power (not adjusted for size)

of EL versus alternative criterion functions. In this case n = 100,
α = {0.15, 0.05}, with 10,000 replications. The columns labeled
Asymptotic compare the performance of the ELR statistic versus
the Gaussian quasi-likelihood ratio (QLR) statistic associated with
Q2(θ, P0) in Example 3. Since both of these statistics have the
same asymptotic distribution, I use a common critical value from
P{χ21 ≥ c} = 2α. The columns under the label Subsampling
compare the ELR statistic and the sample analog of Q1(θ, P0) ≡
‖(EP0 [m(z, θ)])−‖

2 from Example 3. Here, the critical value is
computed using subsampling with an = 25 and Nn = 200. Given
the 10,000 Monte Carlo replications it follows that the gains in
power by EL are marginal for values close to 0.65, but significant
for most cases when the alternative is far from the null.21 This
fact is consistent with the results in Theorem 3.2. As before, the
associated cost is computational time. In the asymptotic case, EL
takes 0.05 s to test the 11 points in the table while QLR takes 0.01
s. For subsampling EL takes 10 s to go over the 11 points 200 times,
while the statistic Q1 (which does not involve any optimization)
takes 0.03 s.

5.2. Entry game example

This section takes the simultaneous entry game from Exam-
ple 2. I set θ0 = (0.3, 0.5) and consider n = 1000 and α =
{0.85, 0.95}.22 The four possible Nash Equilibria (NE) situations are

19 Note that Bugni (2009) shows that while the rate of approximation of
subsampling depends on an , the rate of approximation of his bootstrap approach
does not depend on τn , a sequence which has a similar role to ρθn in this paper.
20 All the computations were carried out using R 2.8 on a Mac Pro computer with
two 2.8 GHz quad-core processors and 8 GB 800 MHz of ram. The extra time the
bootstrap takes is greatly affected by the fact that I use a loop to resample data with
probability P̄n . Computational time could be reduced by avoiding this loop.
21 Note that in this case the maximal simulation standard errors are
√
0.5× 0.5/10,000 = 0.005.
22 Results for n = 500 are similar and not reported to save space.
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Table 1
Missing data example. Coverage and average power. Coverage is computed as min{P(θL ∈ Cn), P(θH ∈ Cn)}. Four values of an for subsampling and four values of ρn for the
Bootstrap. 200 bootstrap/subsampling replications. 3000 MC replications.

Coverage 0.85 0.90 0.95
Sample size 100 500 1000 100 500 1000 100 500 1000

Asymptotic 0.8380 0.8434 0.8510 0.8900 0.8884 0.8910 0.9443 0.9450 0.9440
Subsampling_1 0.9073 0.8703 0.8323 0.9540 0.9070 0.8583 0.9837 0.9454 0.8953
Subsampling_2 0.9073 0.8667 0.8273 0.9527 0.9027 0.8513 0.9803 0.9380 0.8837
Subsampling_3 0.9120 0.8577 0.8073 0.9530 0.8964 0.8303 0.9793 0.9317 0.8623
Subsampling_4 0.9194 0.8517 0.7907 0.9590 0.8817 0.8067 0.9833 0.9154 0.8373
Bootstrap_1 0.8250 0.8377 0.8443 0.8780 0.8860 0.8805 0.9360 0.9404 0.9420
Bootstrap_2 0.8270 0.8373 0.8477 0.8773 0.8840 0.8843 0.9337 0.9380 0.9387
Bootstrap_3 0.8274 0.8330 0.8487 0.8777 0.8843 0.8847 0.9343 0.9387 0.9370
Bootstrap_4 0.8223 0.8283 0.8443 0.8807 0.8780 0.8830 0.9337 0.9330 0.9407

Average power over {0.27, 0.29, 0.31, 0.33, 0.67, 0.69, 0.71, 0.73}

Asymptotic 0.6564 0.8928 0.9428 0.5822 0.8613 0.9315 0.4713 0.8088 0.8964
Subsampling_1 0.5325 0.8433 0.9178 0.4268 0.8017 0.9038 0.2730 0.7446 0.8779
Subsampling_2 0.5217 0.8365 0.9137 0.4167 0.7953 0.9017 0.2815 0.7423 0.8793
Subsampling_3 0.5036 0.8265 0.9115 0.3996 0.7898 0.9015 0.2707 0.7395 0.8807
Subsampling_4 0.4662 0.8102 0.9105 0.3609 0.7751 0.8968 0.2370 0.7278 0.8778
Bootstrap_1 0.6647 0.8959 0.9418 0.5942 0.8638 0.9321 0.4876 0.8128 0.8998
Bootstrap_2 0.6708 0.8942 0.9453 0.6000 0.8645 0.9327 0.4933 0.8133 0.9002
Bootstrap_3 0.6694 0.8950 0.9453 0.5980 0.8651 0.9328 0.4910 0.8156 0.9007
Bootstrap_4 0.6700 0.9002 0.9451 0.5987 0.8727 0.9329 0.4891 0.8254 0.9004
Table 2
Missing data example. Power across different criterion functions. 200 subsampling replications with an = 25. 10,000 MC replications.

Theta Asymptotic Subsampling Asymptotic Subsampling
α = 0.15 α = 0.15 α = 0.05 α = 0.05
ELR QLR ELR Q_1 ELR QLR ELR Q_1

0.65 0.1508 0.1467 0.0576 0.0559 0.0505 0.0473 0.0097 0.0085
0.66 0.2278 0.2239 0.0947 0.0908 0.0932 0.0869 0.0204 0.0191
0.67 0.3213 0.3149 0.1479 0.1460 0.1518 0.1425 0.0354 0.0343
0.74 0.9606 0.9580 0.8208 0.8043 0.8786 0.8643 0.5274 0.4879
0.75 0.9799 0.9785 0.8839 0.8686 0.9353 0.9246 0.6439 0.5924

Average Power over ten points in [0.65, 0.75]

0.6789 0.6732 0.4760 0.4647 0.5161 0.5009 0.2501 0.2324
Fig. 1. Left: four possible outcomes of the entry game. Right: The identified set when θ0 = (0.5, 0.3).
presented in Fig. 1 (left panel). This model imposes one moment
equality and two moment inequalities, as described in Eq. (2.4).23

In addition, the identified set Θ0(P0) is given in Eq. (2.5). The set
Θ0(P0) has no interior, as Fig. 1 (right panel) shows, for the param-
eter values used in the simulation.
I simulate the data by taking independent draws of εj,m ∼

U(0, 1) for j = {1, 2} and computing the equilibrium according to
the region inwhich εm = (ε1,m, ε2,m) falls. In the region ofmultiple
equilibria, I select (1, 0)with probability 0.7. Note that in order to

23 Handling moment equalities with the approach this paper proposes is
straightforward: moment equalities have unrestricted Lagrange multipliers and
%θn = 0 for the bootstrap implementation.
simulate the data I need an equilibrium selection mechanism, but
this information is not used for inference. This is precisely why the
model is not point identified. Intuitively, each θ in the identified
set is consistent with some selection mechanism in the region of
uncertainty.
As before, I compute the ELR statistic with three alternative

critical values. For the asymptotic critical value I use the following
approximation fromRosen (2008) to dealwith the non-pivotalness
of the asymptotic distribution,

sup
θ∈Θ0(P0)

lim
n→∞

P0(ELRn(θ) ≥ c)

≤
1
2
Pr(χ2b∗ ≥ c)+

1
2
Pr(χ2b∗−1 ≥ c), (5.1)

where b∗ = 2 since there is no θ such that both inequalities are
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Table 3
Entry game example. Coverage for a grid of values inΘ0(P0). 3000 MC replications. 200 bootstrap/subsampling replications.

θ1 θ2 n = 1000− coverage = 0.85 n = 1000− coverage = 0.95
Asymp Boot SubSam Asymp Boot SubSam

0.3578 0.4550 0.8530 0.8497 0.8027 0.9460 0.9377 0.8793
0.3519 0.4600 0.8893 0.8810 0.8270 0.9653 0.9587 0.8973
0.3458 0.4650 0.9090 0.9037 0.8330 0.9703 0.9677 0.8977
0.3396 0.4700 0.9180 0.9093 0.8317 0.9720 0.9717 0.8983
0.3333 0.4750 0.9200 0.9107 0.8273 0.9727 0.9673 0.8933
0.3269 0.4800 0.9203 0.9083 0.8190 0.9727 0.9653 0.8887
0.3204 0.4850 0.9203 0.8950 0.8140 0.9727 0.9650 0.8830
0.3137 0.4900 0.9203 0.8887 0.8080 0.9727 0.9597 0.8793
0.3069 0.4950 0.9203 0.8770 0.8020 0.9727 0.9540 0.8753
0.3000 0.5000 0.9203 0.8720 0.7997 0.9727 0.9510 0.8713
0.2929 0.5050 0.9203 0.8620 0.7960 0.9727 0.9497 0.8687
0.2857 0.5100 0.9203 0.8560 0.7943 0.9727 0.9437 0.8660
0.2784 0.5150 0.9203 0.8543 0.7907 0.9727 0.9443 0.8660
0.2708 0.5200 0.9203 0.8507 0.7900 0.9727 0.9453 0.8653
0.2632 0.5250 0.9203 0.8557 0.7897 0.9727 0.9433 0.8640
0.2553 0.5300 0.9203 0.8560 0.7913 0.9727 0.9450 0.8657
0.2473 0.5350 0.9203 0.8593 0.7940 0.9727 0.9457 0.8663
0.2391 0.5400 0.9203 0.8703 0.7977 0.9727 0.9517 0.8690
0.2308 0.5450 0.9203 0.8863 0.8020 0.9727 0.9573 0.8757
0.2222 0.5500 0.9203 0.9010 0.8110 0.9727 0.9643 0.8837
0.2135 0.5550 0.9183 0.9093 0.8247 0.9723 0.9697 0.8903
0.2045 0.5600 0.9103 0.9040 0.8243 0.9693 0.9640 0.8933
0.1954 0.5650 0.8570 0.8530 0.7910 0.9520 0.9467 0.8757

Min. coverage 0.8530 0.8497 0.7897 0.9460 0.9377 0.8640
Ave. coverage 0.9122 0.8788 0.8070 0.9700 0.9552 0.8788
binding simultaneously. Thus, I compute c by solving:
1
2
Pr(χ22 ≥ c)+

1
2
Pr(χ21 ≥ c) = α.

For the modified empirical likelihood bootstrap I use the
benchmark value %θn = %̄

θ
n while for subsampling I use an = 100.

24

In both of these cases Nn = 200.
Table 3 shows the coverage over a grid of values of θ ∈ Θ0(P0)

equally spaced between (0.19, 0.56) and (0.35, 0.45) — see Fig. 1.
Note that at the true parameter value θ0 = (0.3, 0.5), the asymp-
totic approximation that uses b∗ = 2 is too conservative (0.9203)
since at that point only one moment is binding. The bootstrap cap-
tures this difference and so it gives a better approximation (0.872).
For thismodel, the bootstrap takes 16min to compute coverage for
the entire grid while subsampling takes 1 min.

6. Concluding remarks

This paper presents results about the optimal choice of criterion
function in moment inequality models and introduces empirical
likelihood as a new inference tool for suchmodels. Inference based
on the empirical likelihood ratio statistic is shown to be optimal
in a Generalized Neyman–Pearson sense. The paper also addresses
implementation of the new optimal procedure by proposing an
empirical likelihood bootstrap for moment inequality models.
There are a number of directions for future research. First, it

would be interesting to explore alternative notions of asymptotic
optimality to differentiate between test statistics in these mod-
els. Second, the current large deviation optimality result requires
a fixed (non data-dependent) critical value η while the recom-
mended procedure employs the bootstrap. It would be interesting
then to extend the result to allow for a data-dependent η. Third,
the proposed EL bootstrap involves choosing the tuning parame-
ter %n for its application. Optimal choice of such a sequence would
represent an important contribution for practitioners. The recent

24 10% of the sample size is a common value of an in applications (e.g., Ciliberto
and Tamer, forthcoming).
paper by Andrews and Jia (2008) addresses this issue for GMS tests
in general.
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Appendix

Throughout the appendix I partition a given vector vn as v′n =
[v′n,b, v

′
n,s], where vn,b is a b × 1 vector associated with binding

moments and vn,s is a s× 1 vector associated with slack moments.
Typical elements are denoted by vn,b,j and vn,s,j. I use µP(θ) to
denote EP [m(z, θ)] and σ 2P (θ) to denote varP{m(z, θ)}. When P0
is understood, the subscript is omitted. Finally, P̄n(θ)-a.e. denotes
‘‘conditional on {P̄n(θ) : n ≥ 1} for almost every sample path’’.

Appendix A. Proof of theorems

Proof of Theorem 3.1. To derive the asymptotic distribution of
ELRn(θ) it is convenient to write an alternative parametrization
as follows,

ELRn(θ) = min
τ≥0

max
λ(θ,τ )∈Rq

{
2
n∑
i=1

log(1+ λ(θ, τ )′m(zi, θ))

− 2λ(θ, τ )′nτ

}
≡ min

τ≥0
max

λ(θ,τ )∈Rq
Rn(θ, λ, τ ).
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Note that the derivative with respect to τ is non-negative,
∂
∂τ
Rn(θ, λ, τ ) ≥ 0, and this in turn imposes λ ≤ 0 and themoment

condition. Note also that τ̂ =
∑n
i=1 p̂im(zi, θ) ≥ 0.

Now consider an element j ofms(z, θ). For suchmoment ∃N s.t.
∀n ≥ N , m̄n,s,j(θ) > 0 with probability one (w.p.1). This implies
that ∀n ≥ N , τ̂n,s,j > 0 w.p.1 since,

τ̂n,s,j =
1
n

n∑
i=1

(
ms,j(zi, θ)

1+ λ̂n(θ)′m(zi, θ)

)
≥

m̄n,s,j(θ)

1+ λ̂n(θ)′m̄n(θ)
(A.1)

by Jensen’s inequality, λ̂n(θ) ≤ 0 and λ̂n(θ)′m̄n(θ) ≥ 0. The latter
follows from

0 ≤ max
λ≤0
2
n∑
i=1

log[1+ λ(θ)′m(zi, θ)]

≤ 2 log

[
1+ λ̂n(θ)′

n∑
i=1

m(zi, θ)

]
.

Given that τ̂n,s,j×λ̂n,s,j(θ) = 0 for all n, it follows that λ̂n,s,j(θ) =
0 for n large enough with probability one. Conclude that λ̂n,s(θ) =
0 for n large enough w.p.1. On the other hand, Lemma B.2 shows
that ‖λ̂n,b(θ)‖ = Op(n−1/2). Hence, ∃N s.t. ∀n ≥ N the following
equalities hold w.p.1.

ELRn(θ) = 2
n∑
i=1

log(1+ λ̂n,b(θ)′mb(zi, θ)+ λ̂n,s(θ)′ms(zi, θ))

= 2
n∑
i=1

log(1+ λ̂n,b(θ)′mb(zi, θ))

= max
λb(θ)≤0

2
n∑
i=1

log(1+ λb(θ)′mb(zi, θ))

= min
τb≥0

max
λb(θ,τb)∈Rb

Rn(θ, λb, τb).

Now I can make a similar expansion to that in Owen (1990, pages
100–102) for the expression given above. For an arbitrary sequence
0 ≤ τn,b = Op(n−1/2), the first order condition for λ̂n,b(θ, τn,b) is
given by:

−

n∑
i=1

mb(zi, θ)

(1+ λ̂n,b(θ, τn,b)′mb(zi, θ))
+ nτn,b = 0. (A.2)

Let γi ≡ λ̂n,b(θ, τn,b)
′mb(zi, θ) and note that by Lemmas B.1 and

B.2 we have:

max
1≤i≤n
|γi| = Op(n−1/2)op(n1/2) = op(1). (A.3)

Expanding (A.2):

0 = −
n∑
i=1

mb(zi, θ)(1− γi + γ 2i /(1+ γi))+ nτn,b

= −m̄n,b(θ)+Σn,b(θ)λ̂n,b(θ, τn,b)

−
1
n

n∑
i=1

mb(zi, θ)γ 2i /(1+ γi)+ τn,b

= −m̄n,b(θ)+Σn,b(θ )̂λn,b(θ, τn,b)+ τn,b + r1,n

where Σn,b(θ) ≡ n−1
∑n
i=1mb(zi, θ)mb(zi, θ)

′ and r1,n ≡

−
1
n

∑n
i=1mb(zi, θ)γ

2
i /(1+ γi). Then,

λ̂n,b(θ, τn,b) = Σ
−1
n,b (θ)

(
m̄n,b(θ)− τn,b

)
−Σ−1n,b (θ)r1,n (A.4)
where∥∥r1,n∥∥ ≤ 1n
n∑
i=1

‖mb(zi, θ)‖3
∥∥∥λ̂n,b(θ, τn,b)∥∥∥2 |1+ γi|−1

= Op(1)Op(n−1)Op(1) = Op(n−1) (A.5)

by Assumption 3.1. Next, use log(1+ γi) = γi− γ 2i /2+ r2,i where
for some finite C > 0

P
(∣∣r2,i∣∣ ≤ C |γi|3 , 1 ≤ i ≤ n)→ 1 (A.6)

as n → ∞. Now I can approximate the likelihood ratio and then
use (A.4).

ELRn(θ) = min
τb≥0
2
n∑
i=1

log(1+ λ̂n,b(θ, τb)′mb(zi, θ))

− 2λ̂n,b(θ, τb)′nτb

= min
τb≥0

{
2λ̂n,b(θ, τb)′

n∑
i=1

mb(zi, θ)

− λ̂n,b(θ, τb)
′

n∑
i=1

mb(zi, θ)mb(zi, θ)′λ̂n,b(θ, τb)

− 2λ̂n,b(θ, τb)′nτb + 2
n∑
i=1

r2,i

}

= min
τb≥0

{
nλ̂n,b(θ, τb)′(m̄n,b(θ)− τb)

+ nλ̂n,b(θ, τb)′r1,n + 2
n∑
i=1

r2,i

}

= min
τb≥0

{
n(m̄n,b(θ)− τb)′Σ−1n,b (θ)(m̄n,b(θ)− τb)

− nr ′1,nΣ
−1
n,b (θ)r1,n + 2

n∑
i=1

r2,i

}
= T θn + Op(n

−1/2) (A.7)

where

T θn ≡ min
τb≥0

{
n(m̄n,b(θ)− τb)′Σ−1n,b (θ)(m̄n,b(θ)− τb)

}
nr ′1,nΣ

−1
n,b (θ)r1,n = nOp(n

−1)Op(1)Op(n−1) = Op(n−1)∣∣∣∣∣ n∑
i=1

r2,i

∣∣∣∣∣ ≤ n∑
i=1

|γi|
3
= n

∥∥∥λ̂n,b(θ, τb)′∥∥∥3 1n
n∑
i=1

‖mb(zi, θ)‖3

= nOp(n−3/2)Op(1) = Op(n−1/2).

Next, define

ςn,b(θ) ≡
√
nm̄n,b(θ)→p ςb(θ) ∼ N(0,Σb(θ))

so that for all θ ∈ Θ0(P0)

T θn = min
τb≥0

(
ςn,b(θ)−

√
nτb
)′
Σ−1n,b (θ)

(
ςn,b(θ)−

√
nτb
)

; min
ub≥0

(ςb(θ)− ub)′Σ−1b (θ) (ςb(θ)− ub)

where ub =
√
nτb andΣn,b(θ)→pΣb(θ) by Assumption 3.1.

The statistic T θ = minub≥0 (ςb(θ)− ub)
′Σ−1b (θ) (ςb(θ)− ub)

measures the distance of the normal random variable ςb(θ) ∼
N(0,Σb(θ)) from the nonnegative orthant and by Wolak (1991)

P0
{
T θ > c

}
=

b(θ)∑
j=0

$(b(θ), b(θ)− j,Σb(θ)) Pr{χ2j ≥ c}. �
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Proof of Theorem 3.2. Fix θ ∈ Θ and denote byΠ the class of all
finite measurable partitions of X, where X ≡ {m(z, θ) : z ∈ Z}
denotes the support of m(z, θ). Also, let ZQ denote the support of
Q . The first step then involves proving that there exists η(ε) > 0
such that for all 0 < η ≤ η(ε), Λθ1 ⊆ Λ

θ,∗
1 where Λθ,∗1 ≡ {Q ∈

M : infP∈Pε,0(θ) I(Q |P) ≥ η}. To this end note that since Q ∈ Λ
θ
1 ,

we have µQ ,j(θ) < 0 for some j = 1, . . . , q and any probability
that has entropy less than η must put mass outside ZQ . Suppose
that indeedZQ ⊂ Z. By Lemma 1.4.3(g) in Dupuis and Ellis (1997),

I(Q |P) = sup
π∈Π

∑
A∈π

log
(
Q (A)
P(A)

)
Q (A). (A.8)

Taking the partitionX = {A, Ac}, with A ≡ {m(z, θ) : z ∈ ZQ } it
follows that,

I(Q |P) ≥ Q (A) log
(
Q (A)
P(A)

)
since Q (Ac) = 0. Therefore,

inf
P∈Pε,0(θ)

I(Q |P) ≥ − sup
P∈Pε,0(θ)

log(P(A)), (A.9)

and the more the mass we assign to A, the closer P is to Q . Also
by (A.8), the closer P(B) is to Q (B) for B any Borel measurable set
in A, the smaller the entropy. Thus, let c > 0 and define Pc as the
distribution that satisfies Pc(B) = (1 − c)Q (B) for any Borel set
B ⊂ A and assigns mass c to a point m0 in Ac . To be in Pε,0(θ), Pc
must satisfy the following conditions for j = 1, . . . , q,

µPc ,j(θ) ≡

∫
mj(z, θ)dPc = (1− c)µQ ,j(θ)+ cm0,j ≥ 0, (A.10)

σ 2Pc ,j(θ) ≡

∫
m2j (z, θ)dPc − µ

2
Pc ,j(θ)

= (1− c)σ 2Q ,j(θ)+ c(1− c)(m0,j − µQ ,j)
2
≥ ε, (A.11)

|CorrPc [m(z, θ)]| ≥ ε. (A.12)

We wish to show that c ≥ c̄ > 0. From condition (A.10) it follows
thatm0,j ≥ m∗0,j ≡ −(1− c)µQ ,j(θ)/c and form

∗

0,j ∈ X, it must be
that

c ≥ cj(µ) ≡ −µQ ,j(θ)/(mH,j − µQ ,j(θ)),

where mH,j = supz∈Zmj(z, θ). This restricts c from below only
when µQ ,j(θ) < 0 and places no restriction otherwise. Now, from
condition (A.11),

c(1− c)(m0,j − µQ ,j(θ))2 ≥ (1− c)(ε − σ 2Q ,j(θ))+ cε. (A.13)

Setm0,j = mH,j1{µQ ,j(θ) < mH,j/2} and suppose that σ 2Q ,j(θ) = 0.
Then, c(1 − c)(m0,j − µQ ,j(θ))2 ≥ c(1 − c)m2H,j/4 > ε, for some
c > 0 and small ε (i.e., ε < m2H,j/8). The same analysis holds for
σ 2Q ,j(θ) < ε. Thus, letting cj(σ ) ≡ inf{c ∈ (0, 1) : σ 2Pc ,j(θ) ≥ ε}

condition (A.11) imposes c ≥ cj(σ ) only when σ 2Q ,j(θ) < ε and
places no restriction otherwise (when σ 2Q ,j(θ) ≥ ε the right hand
side of (A.13) is ≤ cε and cj(σ ) = 0). Finally, condition (A.12)
imposes the restriction c ≥ c∗, where c∗ ≡ inf{c ∈ (0, 1) :
|CorrPc [m(z, θ)]| ≥ ε} and this represents a restriction to c only
if |CorrQ [m(z, θ)]| < ε. Putting all restrictions together,

c ≥ cQ ≡ max
j
max

{
cj(µ), cj(σ ), c∗

}
.

If it turns out that c(ε) ≡ inf{cQ : Q ∈ Λ1} > 0, then

inf
P∈Pε,0(θ)

I(P̂n|P) ≥ − sup
P∈Pε,0(θ)

log(P(A)) = − log(1− c(ε)),
and the results follows for η(ε) = − log(1 − c(ε)). To see that
this is actually the case, suppose by way of contradiction that
c(ε) = 0. Then there would exists a sequence Qn in Λ1 such
that Qn ; Q ∗ where EQ∗ [m(z, θ)] = 0,

∫
m2j (z, θ)dQ

∗
= ε

and |CorrQ∗ [m(z, θ)]| = ε. By the Portmanteau Lemma, for every
κ > 0 there exists N(κ) ∈ N such that for all n > N(κ),∣∣∣∣∫ m2j (z, θ)dQn − ε∣∣∣∣ < κ ∀j = 1, . . . , q.

Pick κ > 0 small enough such that ε′ ≡ ε − κ > 0. It then
follows that for n sufficiently large,

∫
m2j (z, θ)dQn ≥ ε

′. A similar
argument shows that for n sufficiently large, |CorrQn [m(z, θ)]| ≥
ε′. Since EQn [m(z, θ)] → 0, it then follows that zero eventually
belongs to the interior of the convex hull ofX and thenP (Qn) 6= ∅
for n large enough. Hence, infP∈P (Qn) I(Qn|P) < ∞ and we can let
P∗n denote the measure that minimizes the entropy. It follows that
I(Qn|P∗n ) → 0 under the sequence Qn and then for EQn(X) small
enough I(Qn|P∗n ) < η, which in turn violates Qn ∈ Λ1 for all n. It
follows that c(ε) > 0 and so for all η ≤ η(ε) = − log(1− c(ε)),

inf
P∈Pε,0(θ)

I(Q |P) ≥ η. (A.14)

The second step is to prove that Λθ,∗1 and Pε,0(θ) are compact
in the weak topology. SinceM is compact by Assumption 3.2 and
Prohorov’s Theorem, any subset ofM is sequentially compact and
it is enough to prove that these sets are closed. To see that Pε,0(θ)
is closed define f aj (z, θ) = |m(z, θ)|

a for a ≥ 1 and take any
sequence in Pε,0(θ) such that Pn ; P . We wish to show that
P ∈ Pε,0(θ). By Assumption 3.3, f aj (z, θ) ∈ Cb(Z) where Cb(Z)
denotes the set of bounded continuous functions on Z and then
the sequence Pn is uniformly integrable. Thus, by Theorem 2.20 in
van der Vaart (1998),

EP [f aj (z, θ)] = limn→∞EPn [f
a
j (z, θ)],

and Pε,0(θ) is immediately closed. Now consider Λ
θ,∗
1 . Take a

sequence Qn ∈ Λ
θ,∗
1 such that Qn ; Q . We wish to show that Q ∈

Λ∗1 . Suppose by way of contradiction that infP∈Pε,0(θ) I(Q |P) < η.
By Dupuis and Ellis (1997, Lemma 1.4.3(b)), I(Q |·) is lower semi
continuous so the minimum is attained on Pε,0(θ) compact. It
then follows that there exits κ > 0 and P̄ ∈ Pε,0(θ) such that
I(Q |P̄) < η−κ . By the Donsker–Varadhan variational formula, we
can express the relative entropy as

I(Q |P̄) = sup
g∈Cb(X)

{∫
gdQn − log

∫
egdP̄

}
. (A.15)

Take any g ∈ Cb(Z) and note that,∫
gdQ − log

∫
egdP̄ =

∫
gdQn +

∫
g(dQ − dQn)

− log
∫
egdP̄ < η − κ,

so that,∫
gdQn − log

∫
egdP̄ < η −

(
κ +

∫
g(dQ − dQn)

)
.

By Prohorov’s Theorem
∫
g(dQ − dQn)→ 0 as n→∞ so that for

n large enough κ ′g = κ +
∫
g(dQ − dQn) is positive. This means

that for all g ∈ Cb(Z) there exists κ ′g > 0 such that∫
gdQn − log

∫
egdP̄ < η − κ ′g ,

for n large enough and then
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inf
P∈Pε,0(θ)

I(Qn|P) ≤ I(Qn|P̄) = sup
g∈Cb(Z)

{∫
gdQn − log

∫
egdP̄

}
< η − inf

g∈Cb(Z)
κ ′g < η,

which contradicts Qn ∈ Λ
θ,∗
1 . Thus, Λ

θ,∗
1 is closed in the weak

topology.
The third step is to prove part (I) of the Theorem using Sanov’s

Theorem. Define,

ηθ (P) ≡ inf
Q∈Λθ,∗1

I(Q |P), ∀P ∈ Pε,0(θ),

and note that,

sup
P∈Pε,0(θ)

lim sup
n→∞

1
n
log Pn(P̂n ∈ Λθ1)

≤ sup
P∈Pε,0(θ)

lim sup
n→∞

1
n
log Pn(P̂n ∈ Λ

θ,∗
1 )

≤ sup
P∈Pε,0(θ)

− inf
Q∈Λθ,∗1

I(Q |P)

= − inf
P∈Pε,0(θ)

ηθ (P),

where the first inequality follows fromΛθ1 ⊆ Λ
θ,∗
1 , and the second

inequality by Sanov’s Theorem and the fact thatΛθ,∗1 is closed. The
result would then follow by proving that,

inf
P∈Pε,0(θ)

ηθ (P) ≥ η. (A.16)

Take any P ∈ Pε,0(θ). Since IP(Q ) is lower semi continuous and
Λ
θ,∗
1 is compact, there exists JP ∈ Λ

θ,∗
1 such that η

θ (P) = I(JP |P) ≥
η. Since Pε,0(θ) is closed, (A.16) follows.
Part (II) follows from two steps. First, there exists N1 ∈ N such

that

Λ
θ,∗
0 ⊆ Ω

θ
n,0

for all n > N1, where Λ
θ,∗
0 ≡ {Q ∈ M : infP∈Pε,0(θ) I(Q |P) < η}.

Suppose it is not so. Then there exists an infinite sequence of
measures {Qn}n∈N such that Qn ∈ Λ

θ,∗
0 and Qn ∈ Ωθ

n,1. Since M
is compact in the weak topology by Assumption 3.2, there exists a
subsequence {nk}k∈N such that Qnk ; Q̄ ∈ M. For such Q̄ and for
δ > 0 take the open ball B(Q̄ , δ/2). It follows that there exists k0
such that for all k ≥ k0,

Qnk ∈ B(Q̄ , δ/2) ⊂ Ω
θ,δ
nk,1
. (A.17)

We can then use Sanov’s Theorem to note that,

sup
P∈Pε,0(θ)

lim sup
n→∞

n−1 log Pn(P̂n ∈ Ω
θ,δ
n,1 )

≥ sup
P∈Pε,0(θ)

lim inf
nk→∞

1
nk
log Pnk(P̂nk ∈ Ω

θ,δ
nk,1
)

(1)
≥ sup
P∈Pε,0(θ)

lim inf
nk→∞

1
nk
log Pnk(P̂nk ∈ B(Q̄ , δ/2))

(2)
≥ sup
P∈Pε,0(θ)

− inf
J∈B(Q̄ ,δ/2)

I(J|P)

≥ − inf
P∈Pε,0(θ)

I(Qnk0 |P) > η, (A.18)

where
(1)
≥ follows from (A.17),

(2)
≥ follows fromSanov’s Theoremand

(A.18) follows from Qnk0 ∈ Λ
θ,∗
0 . This contradicts

lim sup
n→∞

n−1 log Pn(P̂n ∈ Ω
θ,δ
n,1 ) ≤ −η.

Therefore,Λθ,∗0 ⊆ Ω
θ
n,0 for all n ≥ N1 so that ∀P ∈M,
lim sup
n→∞

n−1 log Pn(P̂n ∈ Ωθ
n,0)

≥ lim sup
n→∞

n−1 log Pn(P̂n ∈ Λ
θ,∗
0 ). (A.19)

The last step involves showing that ∃N2 ∈ N such that for all
n ≥ N2,

Pn1 (P̂n ∈ Λ
θ,∗
0 ) ≥ P

n
1 (P̂n ∈ Λ

θ
0), (A.20)

for P1 ∈ Aη,ε(θ). To see this note that P̂n ∈ Λθ0 means that there
exist P∗n and κ1 > 0 such that I(P̂n|P∗n ) = infP∈P (P̂n) I(P̂n|P) =
η − κ1. Since P̂n ; P1, it follows that for all κ2 > 0 there exists
N2 such that d(P1, P̂n) < κ2 for all n ≥ N2 and then for κ2 small,

d(P1, P∗n ) ≤ d(P1, P̂n)+ d(P̂n, P
∗

n ) < κ2 +
√
(η − κ1)/2

<
√
η/2, (A.21)

where the first inequality follows by the triangle inequality and
the second one by d(Q1,Q2) ≤ (I(Q1|Q2)/2)1/2 for two measures
Q1 and Q2 inM. As P1 ∈ Aη,ε(θ) and P∗n ∈ P0(θ), (A.21) implies
P∗n ∈ Pε,0(θ) for n ≥ N1 so (A.19) follows. Part (II) is a consequence
of (A.19) and (A.20). �

Proof of Theorem 4.1. To prove part (I) consider the jth element
ofms(z, θ). For such moment,

τ̂ ∗n,s,j =
1
n

n∑
i=1

(
ms,j(z∗i , θ)− %

θ
n,s,j

1+ λ̂∗n(θ)′(m(z
∗

i , θ)− %
θ
n)

)

≥
m̄∗n,s,j(θ)− %

θ
n,s,j

1+ λ̂∗n(θ)′(m̄∗n(θ)− %θn)

=
m̄∗n,s,j(θ)− µ̄n,s,j(θ)

1+ λ̂∗n(θ)′(m̄∗n(θ)− %θn)
+

µ̄n,s,j(θ)− %
θ
n,s,j

1+ λ̂∗n(θ)′(m̄∗n(θ)− %θn)
,

(A.22)

where the first term is Op(n−1/2)P̄n(θ)-a.e. and the second term is
positive for n large enough w.p.1 by Lemma B.4. Thus, τ̂ ∗n,s,j > 0 for
n sufficiently large P̄n(θ)-a.e. Furthermore, since τ̂ ∗n,s,j × λ

∗

n,s,j =

0 for all n, we can conclude that λ∗n,s,j = 0 for n sufficiently
large P̄n(θ)-a.e. for all j such that E[mj(zi, θ)] > 0. In addition,
by Lemma B.2 it follows ‖λ∗n,b‖ = Op(n

−1/2)P̄n(θ)-a.e. Therefore,
similar arguments as those in the proof of Theorem 3.1 show that,

ELR∗n(θ, %
θ
n) ≡ min

τb≥0
max
λb∈Rb

2
n∑
i=1

log[1+ λ′b(mb(z
∗

i , θ)− %
θ
b,n)]

− 2nλ′bτb

so that the corresponding first order condition is,
n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)

(1+ γ ∗i )
− nτb = 0

where ‖λ̂∗n,b‖ = Op(n−1/2), γ ∗i ≡ λ̂∗′n,b(mb(z
∗

i , θ) − %θn,b) and
max1≤i≤n

∣∣γ ∗i ∣∣ = op(1). Therefore, using the same expansion as
in (A.7), the statistic ELR∗n(θ, %

θ
n) is equivalent to a QLR statistic

of the form,

ELR∗n(θ, %
θ
n,b) = min

τb≥0

{
n
(
m̄∗n,b(θ)− %

θ
n,b − τb

)′
Σ̃∗n,b(θ)

−1

× (m̄∗n,b(θ)− %
θ
n,b − τb)

}
+ op(1)

= T θ∗n (%
θ
n,b)+ op(1),

where Σ̃∗n,b(θ) = n
−1∑n

i=1(mb(z
∗

i , θ) − %
θ
n,b)(mb(z

∗

i , θ) − %
θ
n,b)
′
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and m̄∗n,b(θ) = n−1
∑n
i=1mb(z

∗

i , θ). Now define the random
variable ς∗b,n(θ) and note that,

ς∗n,b(θ) ≡
√
n(m̄∗n,b(θ)− µ̄n,b(θ))→

p ςb(θ) ∼ N(0,Σb(θ)) (A.23)

where µ̄n,b(θ) =
∑n
i=1 p̄imb(zi, θ) and the convergence is for all

θ ∈ Θ0(P0)P̄n(θ)-a.e. Then, letting ub =
√
n(τb− (µ̄n,b(θ)−%θn,b))

T θ∗n (%
θ
n,b) = min

τb≥0

{(
ς∗n,b(θ)−

√
n(%θn,b + τb − µ̄n,b(θ))

)′
Σ̃∗n,b(θ)

−1

× (ς∗n,b(θ)−
√
n(%θn,b + τb − µ̄n,b(θ)))

}
= min
ub≥−

√
n(µ̄b,n(θ)−%θb,n)

(
ς∗n,b(θ)− ub

)′
Σ̃∗n,b(θ)

−1

×
(
ς∗n,b(θ)− ub

)
.

By Lemma B.4,−
√
n(µ̄n,b(θ)−%θn,b) = 0w.p.1 for n sufficiently

large, meaning that for n large enough the following equality holds
w.p.1:

T θ∗n (%
θ
n,b) = minub≥0

(
ς∗n,b(θ)− ub

)′
Σ̃∗n,b(θ)

−1 (ς∗n,b(θ)− ub) .
Since Σ̃∗n,b(θ)→

pΣb(θ)P̄n(θ)-a.e., it follows that T θ∗n (%
θ
n,b) = T

θ
+

op(1)P̄n(θ)-a.e. where

T θ = min
ub≥0

(ςb(θ)− ub)′Σb(θ)−1(ςb(θ)− ub). (A.24)

This is exactly the same asymptotic distribution of ELRn(θ) and
the result follows.
Part (II) follows by noting that T θn = 0 wp→1 for any θ in the

interior ofΘ0(P0), and so,

lim inf
n→∞

P0(ELRn(θ) ≤ c) = 1,

for θ ∈ int(Θ0(P0)) and any c ≥ 0; in particular, for c̄θn,1−α as
defined in (4.5). On the other hand, when θ ∈ ∂Θ0(P0) it follows
from the result in Part I that,

lim inf
n→∞

P0(ELRn(θ) ≤ c̄θn,1−α) = 1− α.

Part (III) uses the notation from Appendix C where the EL
Bootstrap critical value c̄n(θ, 1 − α) is the 1 − α quantile of
T ∗n (θ) = S(ς

∗
n (θ) + ϕ̄(ξn(θ)), Ω̄

∗
n (θ)). Now let {γn,h = (γn,h,1,

γn,h,2, γn,h,3) : n ≥ 1} be a sequence of points in Γ that satisfies
(i) n1/2γn,h,1 → h1 for some h1 ∈ R

q
+,∞, (ii) κ−1n n

1/2γn,h,1 → π1
for some π1 ∈ R

q
+,∞ and (iii) γn,h,2 → h2 for some γn,h,2 =

(θn,h, vech∗(Ω(θn,h, Pn,h))) ∈ R
p
[±∞]

. Let h = (h1, h2), π = (π1,
π2) and π2 = h2. We wish to show that,
(a) c̄n(θn,h, 1− α) ≥ c̄∗n a.s. for all n for a sequence of r.v. {c̄

∗
n : n ≥

1} that satisfies c̄∗n→p cπ∗(1− α) under {γn,h : n ≥ 1},
(b) lim infn→∞ Pγn,h

(
Tn(θn,h) ≤ c̄n(θn,h, 1− α)

)
≥ 1− α,

(c) for any subsequence {wn : n ≥ 1} of {n}, the results of parts (a)
and (b) hold with wn in place of n provided conditions (i)–(iii)
above hold withwn in place of n.
Let’s first prove (a). If cπ∗(1 − α) = 0 define c̄∗n = 0 and so

c̄n(θn,h, 1−α) ≥ c̄∗n→p cπ∗(1−α). Next, suppose cπ∗(1−α) > 0.
For ξ ∈ Rq

[+∞]
, let ϕ̄∗(ξ) denote the k-vector whose jth element is

ϕ̄∗j (ξ) =

{
ϕ̄j(ξ) if π1,j = 0 and j = 1, . . . , q
∞ if π1,j > 0 and j = 1, . . . , q.

Now let c̄∗n denote the 1 − α quantile of the df of S(ς
∗
n (θn,h) +

ϕ̄∗(ξn(θn,h)), Ω̄
∗
n (θn,h)), where ς

∗
n is random and ξn(θn,h) is fixed.

Since ϕ̄∗(ξn(θn,h)) ≥ ϕ̄(ξn(θn,h)), a.s. [Z∗] by construction, it
follows that,

c̄n(θn,h, 1− α) ≥ c̄∗n a.s. for all n.
Now I show that c̄∗n→
p cπ∗(1− α) > 0. Under {γn,h : n ≥ 1},

(ξn(θn,h), Ω̄
∗

n (θn,h))→p((π1, 0v),Ωh2,2), P̄n(θn,h)-a.e.. (A.25)

Consider j for which π1,j = 0. Then, as ξ → π1 it follows ϕ̄∗j (ξ) =
ϕ̄j(ξ) → ϕ̄j(π1) = 0 a.s. [Z∗] since the function ϕ̄∗j (ξ) satisfies
Assumption GMS1 in AS. Next consider j for which π1,j > 0. In
such case ϕ̄∗j (ξ) = ∞. This result plus the fact that S(m,Ω) is
continuous inm imply that for x > 0, as (ξ ,Ω)→ (π,Ω0),

S(Ω1/2Z∗ + ϕ̄∗(ξ),Ω)→ S(Ω1/20 Z
∗
+ ϕ̄∗(π1),Ω0) a.s. [Z∗],

1
(
S(Ω1/2Z∗ + ϕ̄∗(ξ),Ω) ≤ x

)
→ 1

(
S(Ω1/20 Z

∗
+ ϕ̄∗(π1),Ω0) ≤ x

)
a.s. [Z∗],

P
(
S(Ω1/2Z∗ + ϕ̄∗(ξ),Ω) ≤ x

)
→ P

(
S(Ω1/20 Z

∗
+ ϕ̄∗(π1),Ω0) ≤ x

)
, (A.26)

following the same arguments as those in AS. This shows that
P
(
S(Ω1/2Z∗ + ϕ̄∗(ξ),Ω) ≤ x

)
is a continuous function of (ξ ,Ω)

at (π1,Ω0). This result plus conditions (vi′)–(ix′) from Appendix C
imply that under {γn,h : n ≥ 1} for all x > 0,

Ln(x) = P
(
S(ς∗n (θn,h)+ ϕ̄

∗(ξn(θn,h)), Ω̄
∗

n (θn,h)) ≤ x
)

→ P
(
S(Ω1/20 Z

∗
+ ϕ̄∗(π1),Ω0) ≤ x

)
= L(x), P̄n(θn,h)-a.e. (A.27)

where Ω̄∗n (θn,h)→pΩh2,2 = Ω0, P̄n(θn,h)-a.e. by (viii′). By defini-
tion c̄∗n is the 1−α quantile of Ln(x) and cπ∗(1−α) is the 1−α quan-
tile of L(x). By Andrews and Guggenberger (forthcoming, Lemma
5), c̄∗n→p cπ∗(1 − α) completing the proof. Parts (b) and (c) fol-
low by the same arguments in those in AS once part (a) holds for
c̄n(θn,h, 1− α). It then follows that Lemmas 2 and 3 in AS holds for
c̄n(θn,h, 1−α) in place of ĉn(θn,h, 1−α), and Theorem 1 in AS holds
for the Modified EL Bootstrap. �

Appendix B. Auxiliary lemmas

Lemma B.1. Let z1, . . . , zn be i.i.d. If supθ∈Θ0(P0) E[‖m(zi, θ)‖a] <
∞ for some a > 0 then for all θ ∈ Θ0(P0) and n large enough,

P0{max
1≤i≤n
‖m(zi, θ)‖ = o(n1/a)} = 1.

Proof. This proof follows Owen (1990, Lemma 3). Let ε > 0. Since
{zi : i ≤ n} is i.i.d. and

sup
θ∈Θ0(P0)

∞∑
n=1

P0{‖m(z1, θ)‖a /ε ≥ n}

≤ sup
θ∈Θ0(P0)

E[‖m(z1, θ)‖a /ε] <∞,

we have
∑
∞

n=1 P0{A
θ
n} < ∞ for all θ ∈ Θ0(P0) where Aθn ≡

{‖m(zn, θ)‖ ≥ ε1/an1/a}. By theBorel–Cantelli lemma P0{Aθn i.o.} =
0 and this implies P0{max1≤i≤n ‖m(zi, θ)‖ ≥ ε1/an1/a i.o.} = 0
for all θ ∈ Θ0(P0) so that lim supn→∞max1≤i≤n ‖m(zi, θ)‖ n1/a <
ε1/a with probability 1. Since ε is arbitrarily small it follows that
P0
{
max1≤i≤n ‖m(zi, θ)‖ = o(n1/a)

}
= 1 for all θ ∈ Θ0(P0) and n

large enough. �

Lemma B.2. Consider the set of binding moments, EP0 [mb(zi, θ)] =
0, and define λ̂∗n,b(θ, τn,b) as,

λ̂∗n,b(θ, τn,b) ≡ argmax
λb∈Rb

2
n∑
i=1

log[1+ λ′b(mb(z
∗

i , θ)− %
θ
n,b)]

− 2nλ′bτn,b (B.1)
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where z∗i ∼ P̄n(θ) as defined in (4.2), 0 ≤ τn,b = Op(n−1/2)
and %θn,b is the sequence in (4.3). Then, under Assumption 3.1,
‖λ̂∗n,b(θ, τn,b)‖ = Op(n

−1/2) conditional on {P̄n : n ≥ 1} for almost
every sample path. In addition, letting λ̂n,b(θ, τn,b) be defined as in
(B.1) but setting %θn,b = 0 and replacing z

∗

i with zi ∼ P0. Under the
same assumption, ‖λ̂n,b(θ, τn,b)‖ = Op(n−1/2).

Proof. The first order condition for λ̂∗n,b ≡ λ̂
∗

n,b(θ, τn,b) is,

0 =
1
n

n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)

1+ λ̂∗′n,b(mb(z
∗

i , θ)− %
θ
n,b)
− τn,b ≡ g(λ̂∗n,b).

Let λ̂∗n,b = cnan, where cn ≥ 0 and ‖an‖ = 1. Now,

0 = ‖g(cnan)‖ ≥ |a′ng(cnan)|

=
1
n

∣∣∣∣∣a′n
(

n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)

− cn
n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)a

′
n(mb(z

∗

i , θ)− %
θ
n,b)

1+ cna′n(mb(z
∗

i , θ)− %
θ
n,b)

− τn,b

)∣∣∣∣∣
≥
cn
n

n∑
i=1

a′n(mb(z
∗

i , θ)− %
θ
n,b)(mb(z

∗

i , θ)− %
θ
n,b)
′an

1+ cna′n(mb(z
∗

i , θ)− %
θ
n,b)

−
1
n

∣∣∣∣∣ b∑
j=1

e′j
n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)− τn,b

∣∣∣∣∣ ,
where ej is the unit vector in the jth coordinate direction. Now
let An = maxi a′n(mb(z

∗

i , θ) − %
θ
n,b) and note that An = o(n

1/2)

by similar arguments to those in Lemma B.1. Note in addi-
tion that Σ̃∗n,b(θ) = n−1

∑n
i=1(mb(z

∗

i , θ) − %θn,b)(mb(z
∗

i , θ) −

%θn,b)
′
→
pΣb(θ), P̄n(θ)-a.e. By Assumption 3.1, σ(1) > 0, where

σ(1) is the smallest eigenvalue of Σb(θ) so that a′nΣ̃
∗

n,b(θ)an ≥
σ(1) + op(1) and

0 ≥
cna′nΣ̃

∗

n,b(θ)an
1+ cnAn

−
1
n

∣∣∣∣∣ b∑
j=1

e′j
n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)− τn,b

∣∣∣∣∣
≥
cn(σ(1) + op(1))
1+ cnAn

−
1
n

∣∣∣∣∣ b∑
j=1

e′j
n∑
i=1

(mb(z∗i , θ)− %
θ
n,b)− τn,b

∣∣∣∣∣
so that,

cn(σ(1) + op(1))
1+ cnAn

≤
1
n

∣∣∣∣∣ b∑
j=1

e′j
n∑
i=1

(mb(z∗i , θ)− µ̄n,b(θ))

∣∣∣∣∣
+

∣∣∣∣∣ b∑
j=1

e′j(µ̄n,b(θ)− %
θ
n,b)

∣∣∣∣∣+ ∣∣τn,b∣∣ ≤ Op(n−1/2),
conditional on {P̄n(θ) : n ≥ 1} for almost every sample path,where
µ̄n,b(θ) =

∑n
i=1 p̄imb(zi, θ). The last inequality followsbecause the

first term obeys a triangular CLT conditional on the data and the
second term satisfies

√
n(µ̄n,b(θ) − %θn,b) = 0 for n large enough

w.p.1 by Lemma B.4. We can then conclude that,

cn = ‖λ̂∗n,b(θ, τn,b)‖ ≤
OP(n−1/2)
σ(1) + op(1)

. (B.2)

Finally, note that setting %θn,b = 0 and replacing z
∗

i with zi ∼ P0,
we have ‖λ̂n,b(θ, τn,b)‖ = Op(n−1/2) following the same steps as
above without re-centering by µ̄n,b(θ) in the last part. �

Lemma B.3. Define the criterion function Q (θ, P0) ≡ maxλ≤0 EP0
[log(1+ λ′m(z, θ))]. Then,

Θ0(P0) ≡ {θ ∈ Θ : EP0 [m(z, θ)] ≥ 0} = argmin
θ∈Θ

Q (θ, P0).
Proof. First, note that Q (θ, P0) ≥ EP0 [log(1)] = 0. Next fix θ and
consider j ∈ {1, . . . , q} such that EP0 [mj(z, θ)] > 0. Then the
multiplier λj associated with mj(z, θ) has to be zero. To see this,
note that λj < 0 would induce a contradiction since

0
(1)
= EP0

[
mj(z, θ)

1+ λ′m(z, θ)

]
(2)
≥

EP0mj(z, θ)
1+ λ′EP0m(z, θ)

> 0

where
(1)
= follows from the FOC when λj < 0,

(2)
≥ follows

from Jensen’s inequality and the last inequality follows from
λ′EP0m(z, θ) ≥ 0. Now use Jensen’s inequality to conclude,

Q (θ, P0) = max
λ≤0

EP0 [log(1+ λ
′m(z, θ))]

≤ max
λ≤0
log(1+ λ′sEP0 [ms(z, θ)] + λ

′

bEP0 [mb(z, θ)]) = 0,

since λs = 0 by the previous argument and EP0 [mb(z, θ)] = 0.
Therefore, Q (θ, P0) = 0 for all θ ∈ Θ0(P0). To complete the
argument note that Q (θ, P0) > 0 if θ is such that EP0 [mj(z, θ)] <
0 for some j ∈ {1, . . . , q}. To see this note that EP0 [log(1 +
λ′m(z, θ))]λ=0 = 0 and

∂EP0 [log(1+ λ
′m(z, θ))]

∂λj

∣∣∣∣
λ=0

< 0.

Let λ̃ be such that λ̃j = −ε for some small ε > 0 and λ̃k = 0 for
k 6= j. By continuity of the objective function in λ we have that
Q (θ, P0) ≥ EP0 [log(1+ λ̃

′m(z, θ))] > EP0 [log(1)] = 0. �

Lemma B.4. Let µ̄n(θ) =
∑n
i=1 p̄im(zi, θ) denote the Modified EL

mean and %θn be the sequence in (4.3). Under Assumption 3.1 the
following two statements hold.

(a) µ̄n,s(θ) > %θn,s for n large enough with probability one.
(b) µ̄n,b(θ) = %θn,b for n large enough with probability one.

Proof. For part (a) recall that µ̄s,j,n(θ) comes from problem (4.2)
and note that from

0 ≤ max
λ≤0
2
n∑
i=1

log[1+ λ′(m(zi, θ)− %θn)]

≤ 2 log

[
1+ λ̂′n

n∑
i=1

(m(zi, θ)− %θn)

]
,

it follows that λ̂′n
∑n
i=1(m(zi, θ) − %

θ
n) ≥ 0. Now, from the FOC of

λs,j,

1
n

n∑
i=1

(
ms,j(zi, θ)− %θn,s,j

1+ λ̂′n(m(zi, θ)− %θn)

)
(1)
≥

m̄n,s,j(θ)− %θn,s,j
1+ λ̂′n(m̄n(θ)− %θn)

(B.3)

where
(1)
≥ follows from Jensen’s inequality. Since λ̂′n(m̄n(θ)−%

θ
n) ≥

0 for all n and m̄n,s,j(θ)−%θn,s,j > 0 for n large enoughw.p.1 by (4.4)
we have,

P

(
lim inf
n→∞

1
n

n∑
i=1

(
ms,j(zi, θ)− %θn,s,j

1+ λ̂′n(m(zi, θ)− %θn)

)
> 0

)
= 1

meaning that µ̄n,s,j(θ) ≡ 1
n

∑n
i=1

(
mj(zi,θ)

1+λ̂′n(m(zi,θ)−%
θ
n )

)
> %θn,s,j w.p.1

for n sufficiently large.
For part (b) set λ = 0 and consider the FOC for λb,j,

1
n

n∑
i=1

(
mj(zi, θ)− %θn,b,j

1+ λ′(m(zi, θ)− %θn)

)∣∣∣∣∣
λ=0

= m̄n,b,j(θ)− %θn,b,j. (B.4)
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By (4.4) we know m̄n,b,j(θ) − %θn,b,j ≤ 0 for n large w.p.1. If
m̄n,b,j(θ) − %θn,b,j = 0, we are done since µ̄n,b,j(θ) = m̄n,b,j(θ) =
%θn,b,j and λb,j = 0 is optimal. If m̄n,b,j(θ) − %θn,b,j < 0, then
the optimal value of λb,j has to decrease (so it will be negative)
by continuity of the objective function in λb,j. Since the optimal
solution has to satisfy λb,j(µ̄n,b,j(θ) − %θn,b,j) = 0, it follows that
µ̄n,b,j(θ) = %

θ
n,b,j. �

Appendix C. Auxiliary notation

This appendix uses notation from Andrews and Soares (forth-
coming) (AS in what follows) and Andrews and Guggenberger
(2009) (AG) to write the Modified EL Bootstrap as a GMS proce-
dure. Consider the space F0 of null parameters (θ, P) from Defi-
nition 3.1. This space can be alternatively parametrized using the
vector γ = (γ1, γ2, γ3) ∈ Γ , with elements,

γ1,j = σ
−1
P,j (θ)EPmj(z, θ) for j = 1, . . . , q,

γ2 = (θ, vech∗(Ω(θ, P))), γ3 = P,
(C.1)

where σ 2P,j(θ) = limn→∞ varP(n1/2m̄n(θ)),Ω(θ, P) = limn→∞
CorrP(n1/2m̄n(θ)), m̄n(θ) = n−1

∑n
i=1m(zi, θ), and vech∗ gives the

elements of a matrix below the diagonal. The parameter space for
γ is Γ = {γ = (γ1, γ2, γ3) : for some (θ, P) ∈ F0}. Given that the
data is i.i.d., the space Γ satisfies the conditions (i) to (x) in AS (see
AS, page 35). Finally, define the QLR test statistic as

Tn(θ) = S(n1/2m̄n(θ), Σ̂n(θ)) = S(n1/2D̂−1/2n (θ)m̄n(θ), Ω̂n(θ))

where S(m,Σ) = inft∈Rq
+,∞
(m−t)′Σ−1(m−t), Σ̂n(θ) = n−1

∑n
i=1

(m(zi, θ) − m̄n(θ))(m(zi, θ) − m̄n(θ))′, D̂n(θ) = diag(Σ̂n(θ)),
Ω̂n(θ) = D̂

−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ) and σ̂n,j(θ) = [D̂n(θ)]j.

In addition, let %̄θn = n
−1/2κn×D̄

1/2
n (θ), whereκn =

√
2 log log n

and D̄n(θ) = diag(Σ̄n(θ)), Σ̄n(θ) =
∑n
i=1 p̄i(θ)(m(zi, θ) −

µ̄n(θ))(m(zi, θ) − µ̄n(θ))′, and Σ̄∗n (θ) = n−1
∑n
i=1(m(z

∗

i , θ) −

µ̄n(θ))(m(z∗i , θ) − µ̄n(θ))
′. As before, P̄n(θ) and µ̄n(θ) denote

Modified EL probabilities and mean.
Under Assumption GEL in AG, for any sequence {γn,h : n ≥ 1}

that satisfies n1/2γn,h,1 → h1, (θn,h, vech∗(Ω(θn,h, Fn,h)))→ h2 for
some (h1, h2) ∈ R

q
+,∞ × R

p
[±∞]

, p = k+ q(q− 1)/2,

ELRn(θn,h)− Tn(θn,h) = op(1).

This is an extension of the result in Eq. (A.7) and so ELRn(θ)
satisfies Assumption B0 in AG and I can focus on Tn(θ) in the
following analysis.
AS define a function ϕ(·) that replaces the vector h1 in the

asymptotic distribution. To write the Modified EL Bootstrap using
such a notation, define ϕ̄(ξn(θ)) as the k-vector with elements

ϕ̄j(ξn(θ)) =

{
0 if ξn,j(θ) ≤ 1 and j = 1, . . . , q
en(ξn,j(θ)) if ξn,j(θ) > 1 and j = 1, . . . , q,

(C.2)

where en(ξn,j(θ)) is a sequence that satisfies en(ξn,j(θ)) ≥

κn(ξn,j(θ) − 1) for all n and ξn,j(θ) = κ−1n n
1/2σ̄−1n,j (θ)m̄n,j(θ).

The function ϕ̄(·) satisfies Assumptions GMS1, GMS3 and GMS6
in AS. The Modified EL Bootstrap replaces h1 with the function
n1/2D̄−1/2n (θ)(µ̄n(θ) − %̄θn), which is a particular case of ϕ̄(ξ).
Indeed, similar arguments to those in Lemma B.4 show that when
ξn,j(θ) ≤ 1, (µ̄n,j(θ)−%̄θn,j) = 0,while n

1/2σ̄−1n,j (θ)(µ̄n,j(θ)−%̄
θ
n,j) ≥

κn(ξn,j(θ)− 1)→∞when ξn,j(θ) > 1.
In order to extend the uniformity results to the Modified EL

Bootstrap I need to impose additional conditions on the space Γ .
Let ς∗n (θ) be the k-vector whose jth element is

ς∗n,j(θ) = n
1/2(m̄∗n,j(θ)− µ̄n,j(θ))/σ̄n,j(θ)
where m̄∗n,j(θ) = n−1
∑n
i=1mj(z

∗

i , θ), σ̄
2
n,j(θ) = [D̄n(θ)]jj, and

z∗i ∼ P̄n(θ) denotes the bootstrap data. Then, under any sequence
{γn,h = (γn,h,1, (θn,h, vech∗(Ω(θn,h, Pn,h))), Pn,h) : n ≥ 1} inΓ that
satisfies n1/2γn,h,1 → h1 and (θn,h, vech∗(Ω(θn,h, Pn,h)))→ h2, the
following conditions are needed.

(vi′) ς∗n (θn,h) ; Zh2,2 ∼ N(0q,Ωh2,2), P̄n(θn,h)-a.e.
(vii′) σ̄n,j(θn,h)/σPn,h,j(θn,h)→p 1, P̄n(θn,h)-a.e.
(viii′) D̄−1/2n (θn,h)Σ̄

∗
n (θn,h)D̄

−1/2
n (θn,h) = Ω̄∗n (θn,h)→pΩh2,2 , P̄n

(θn,h)-a.e.
(ix′) Conditions (vi′)–(viii′) hold for all subsequences {wn} in

place of {n}.

The conditions in Definition 3.1 imply condition (vi′) above by
the Lyapunov CLT for row-wise i.i.d. random variables with mean
zero and variance one. Conditions (vii′) and (viii′) follow by stan-
dard arguments using the WLLN for row-wise i.i.d. random vari-
ables. Condition (iv′) holds by the same type of arguments.
Finally, given a vector π = (π1, π2) define π∗ = (π∗1 , π2) as

π∗1,j = ∞ if π1,j > 0 and π
∗

1,j = 0 if π1,j = 0 for j = 1, . . . , q. Also,
cπ∗(1 − α) denotes the 1 − α quantile of S(Ω

1/2
π2,2Z

∗
+ π∗1 ,Ωπ2,2)

where Z∗ ∼ N(0q, Iq) and by definition if π∗1,j = ∞ then the jth
element ofΩ1/2π2,2Z

∗
+ π∗1 equals∞.
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