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Abstract

Models defined by moment inequalities have become a standard modeling frame-

work for empirical economists, spreading over a wide range of fields within eco-

nomics. From the point of view of an empirical researcher, the literature on infer-

ence in moment inequality models is large and complex, including multiple survey

papers that document the non-standard features these models possess, the main

novel concepts behind inference in these models, and the most recent developments

that bring advances in accuracy and computational tractability. In this paper we

present a guide to empirical practice intended to help applied researchers navigate

all the decisions required to frame a model as a moment inequality model and then

to construct confidence intervals for the parameters of interest. We divide our tem-

plate into four main steps: (a) a behavioral decision model, (b) moving from the

decision model to a moment inequality model, (c) choosing a test statistic and crit-

ical value, and (d) accounting for computational challenges. We split each of these

steps into a discussion of the “how” and the “why”, and then illustrate how to

take these steps to practice in an empirical application that studies identification of

expected sunk costs of offering a product in a market.
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1 Introduction

Partially identified models have become a standard modeling framework for empirical

economists in the last two decades, spreading over a long list of topics in several ar-

eas. Examples include measurement error (Klepper and Leamer, 1984; Horowitz and

Manski, 1995), missing data (Manski, 1989, 1994; Horowitz and Manski, 1998; Manski

and Tamer, 2002), industrial organization (Tamer, 2003; Haile and Tamer, 2003; Ho,

2009; Holmes, 2011; Crawford and Yurukoglu, 2012; Eizenberg, 2014; Ho and Pakes,

2014; Pakes et al., 2015; Wollmann, 2018; Houde et al., 2023; Maini and Pammolli,

2023), finance (Hansen and Jagannathan, 1991; Hansen et al., 1995), labor economics

(Blundell et al., 2007; Kline et al., 2013; Kline and Tartari, 2015), trade (Dickstein and

Morales, 2018; Morales et al., 2019), program evaluation (Manski, 1990, 1997; Manski

and Pepper, 2000; Heckman and Vytlacil, 2001; Bhattacharya et al., 2008, 2012; Shaikh

and Vytlacil, 2011), and limited consideration sets (Cattaneo et al., 2020; Barseghyan

et al., 2021), to name a few. Within the family of partially identified models, the set of

models that can be represented by a set of moment inequalities has received particular

attention for two reasons. First, a large class of behavioral decision models in industrial

organization, labor, and other subfields, admit a representation in terms of moment in-

equalities; making moment inequality models a versatile way of representing behavior of

agents across economic settings. Second, the structure imposed by moment inequalities

facilitates the study and development of econometric tools to conduct inference in these

models that help compensate for the challenging non-standard features that partially

identified models introduce relative to traditional, point identified, models.

While there are challenges and questions that have not yet been resolved, the lit-

erature on inference in moment inequality models is mature enough to have produced

multiple survey papers to this date. For example, Tamer (2010) provides a comprehen-

sive summary of the history and early developments of the literature. Canay and Shaikh

(2017) review the fundamentals behind the construction of confidence regions for param-

eters in identified sets characterized by a finite number of moment inequalities, with an

emphasis on the importance of requiring confidence regions to be uniformly consistent

in level over relevant classes of distributions. Ho and Rosen (2017) survey a class of

econometric models used in a variety of empirical applications and discuss the roles that

assumptions and data play in partial identification analysis. Molinari (2020) reviews

the microeconometrics literature on partial identification with a focus on random set

theory as a mathematical framework to unify a variety of models and methodologies.

Finally, Kline et al. (2020) and Kline and Tamer (2022) focus on the most recently

developed tools for inference in partially identified models and their applications to in-

dustrial organization. The rise in the popularity of these models is in part due to the

advocacy of Charles Manski, who, in a series of books and articles, argued forcefully

that partially identified models enable researchers to make more credible inferences (see
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the book-length treatments in Manski, 1995, 2003, 2007, 2013).

In this paper we present a guide to empirical practice intended to help applied re-

searchers navigate all the decisions required to frame a model as a moment inequality

model and then to construct confidence intervals for the parameters of interest. While

we survey the literature and the most recent theoretical advances along the way, our

main goal is not to provide a comprehensive chronological road-map of all the meth-

ods that are available up to this date but rather to provide a template that hopefully

lowers the entry cost to the literature, both to newcomers and researchers with some

exposure to the basic tools. The template we provide is divided into four main steps:

(a) developing a behavioral decision model, (b) stating the assumptions required to go

from the decision model to one defined in terms of moment inequalities, (c) choosing an

appropriate test statistic and critical value, and (d) accounting for the computational

considerations behind the construction of confidence intervals. We split each of these

steps into a discussion of the “how”, which succinctly describes the steps we recommend

and follow in our empirical application, and a discussion of the “why”, which discusses

the considerations that led to our recommendations as well as the alternatives that are

currently available to the researcher at each particular step. A reader can then choose to

focus on the “how”, and learn an established approach to inference in moment inequality

models without digging into the overwhelming number of alternatives available at each

stage, or have a more in-depth exposure, by not only learning the approach we adopt,

but also becoming aware of the pros and cons of alternative tools.

We illustrate how to use the template we develop in an empirical application that

studies sunk costs of offering products in the context of the acquisition of Energy Brands

by The Coca Cola Company in 2007. We provide computer codes in Matlab, Python,

and R that not only replicate our empirical application (using simulated data), but are

also flexible enough for researchers to use them as a starting point in the development

of their own code for similar empirical settings. All in all, we expect the combination of

the guiding template with the computer codes to provide an easy to digest introduction

to inference in moment inequality models that fosters the adoption of such models in

empirical research.

The rest of the paper is structured as follows. Section 2 introduces basic definitions

and notation. Section 3 describes the behavioral choice model that we use in our em-

pirical application. Section 4 introduces the main assumptions that are needed to write

the behavioral model as a model defined by a finite number of unconditional moment

inequalities. Section 5 describes the test we use to test the hypothesis that the moment

inequality model holds at a given value of the parameters of interest, which involves a

choice of test statistic and critical value, while Section 6 in turn explains how we invert

such a test in order to obtain confidence regions for those parameters. The first sub-

section in each of these sections, that is, Sections 3.1, 4.1, 5.1, and 6.1, provide a deep
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dive into the choices we made and discusses other alternatives available in the literature

that the analyst may consider. With this structure, a reader mostly interested in a

quick, hands-on, introduction to the topic may choose to skip the first subsection in

each section. Finally, we adopt the template we developed in an empirical application

we present in Sections 7-9. These sections not only illustrates in detail how we use the

tools discussed previously, but also describe required preliminary steps, like demand and

marginal cost estimation, making the section self-contained from beginning to end.

2 Setup and Notation

Suppose that a researcher observes an i.i.d. sample {Wi : 1 ≤ i ≤ N} from a distribution

P ∈ P on RdW . The set P constitutes the model for the distribution of the observed

data, and may include assumptions like finite second moments, certain matrices having

full rank, among others. We discuss some of these conditions as we introduce the

specifics of our model. A model defined by moment inequalities states that for a finite

dimensional parameter vector θ0 ∈ Θ ⊆ Rdθ ,

EP [m(Wi, θ0)] ≤ 0 , (1)

where m ≡ (m1, · · · ,mk)
′ is a known measurable function of the observed data and the

parameter θ0, and where the inequality is interpreted component-wise. The identified

set for θ0 is the set of values satisfying the moment inequalities in (1), i.e.,

Θ0(P ) = {θ ∈ Θ : EP [m(Wi, θ)] ≤ 0} . (2)

We focus on the construction of confidence regions Cn for points θ in the identified set

Θ0(P ) that are uniformly consistent in level, as defined in Canay and Shaikh (2017).

Concretely, the random set Cn satisfies

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P )

P{θ ∈ Cn} ≥ 1− α , (3)

which is usually accomplished by exploiting the duality between confidence regions and

inverting tests of each of the individual null hypotheses

Hθ : EP [m(Wi, θ)] ≤ 0 . (4)

More precisely, suppose that for each θ a test of Hθ, φn(θ), is available that satisfies

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

EP [φn(θ)] ≤ α . (5)

3



It then follows that the confidence region that collects all values of θ ∈ Θ that are not

rejected by φn(θ), i.e.,

Cn ≡ {θ ∈ Θ : φn(θ) = 0} , (6)

satisfies (3). Here we do not discuss the assumptions on P that are required for each

alternative test to lead to (5). We instead focus on practical and computational consid-

erations, and refer the reader to the original papers, or to Canay and Shaikh (2017) for

a unified theoretical framework. Finally, we focus on tests φn(θ) for the null hypotheses

Hθ that take the form,

φn(θ) ≡ I{Tn(θ) > cn(1− α, θ)} , (7)

where I{·} denotes the indicator function, Tn(θ) denotes a test statistic, and cn(1−α, θ)
denotes a critical value. In what follows, we remove the dependence on P from the

expectations to simplify exposition, and so we use E[·] instead of EP [·].

It is important to point out that the type of coverage for Cn in (3) is only one of the

two types that have been proposed in the literature. The second type requires that the

random set Cn covers the entire identified set with some pre-specified probability 1−α,

i.e.,

lim inf
n→∞

inf
P∈P

P{Θ0(P ) ⊆ Cn} ≥ 1− α . (8)

When θ0 is point-identified (i.e., Θ0(P ) is a singleton), then both (3) and (8) reduce to

lim inf
n→∞

inf
P∈P

P{θ0 ∈ Cn} ≥ 1− α .

In this sense, both (3) and (8) generalize the standard requirement for confidence regions

for parameters that are point-identified.

As emphasized by Imbens and Manski (2004), confidence region satisfying (8) of

course satisfy (3) as well, so confidence regions for points in the identified set are typically

smaller than confidence regions for the identified set. Imbens and Manski (2004) argue

further that confidence regions for points in the identified set are generally of greater

interest than confidence regions for the identified set itself, as there is still only one

“true” value for θ in the identified set. Other authors, however, have argued that

in some instances confidence regions for the identified set are more desirable. See,

for example, Henry and Onatski (2012), who describe a decision problem in which

constructing a confidence region satisfying (3) is undesirable. In this user’s guide, we

focus on confidence regions satisfying (3), which are the type that have received the most

attention in the literature on inference in partially identified models. Notable exceptions

include Chernozhukov et al. (2007), Bugni (2010), Romano and Shaikh (2010), and Chen

et al. (2018)

Remark 2.1. The literature on inference in models defined by moment inequalities has
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also distinguished between two notions of confidence regions: those that are pointwise

consistent in levels and those that are uniformly consistent in levels. From a purely

technical standpoint, the distinction boils down to confidence regions that are pointwise

consistent in levels having the order in which the limit and the infimum appear in (3)

reversed. More fundamentally, the importance of relying on uniformly valid confidence

regions relates to the superior finite sample performance of such confidence regions rela-

tive to those that only provide pointwise guarantees. This has been extensively discussed

in the literature and so we take it as well understood throughout our discussion. We

refer the reader to Canay and Shaikh (2017), and reference therein, for an introduction

to these alternative notions of coverage.

Remark 2.2. The model in (1) does not explicitly include moment equalities. The

methods we review here could all incorporate equality constraints by either writing each

equality as two inequalities or by choosing a test statistic in Section 5 that accounts for

both, equalities and inequalities.

Remark 2.3. In many applications the identified set for θ is determined by conditional

moment inequalities, in which case

E[g(Oi, θ)|Zi] ≤ 0 a.s.

for a known function g, a set of instruments Z, and other observed data O. In this

paper we focus on the case where the analyst replaces the conditional inequality with an

unconditional inequality E[g(Oi, θ)h(Zi)] ≤ 0 for a non-negative function h(·), so that

m(Wi, θ) = g(Oi, θ)h(Zi) in (1) with Wi = (Oi, Zi). We acknowledge that this keeps

the implementation simple at the cost of possibly losing information, as explained in

the literature on inference in conditional moment inequality models; see Andrews and

Shi (2013); Chernozhukov et al. (2013); Chetverikov (2013); Armstrong (2014b,a, 2015),

and Armstrong and Chan (2014), among others.

The goal of this paper is to provide a step by step guide to construct the confidence

region Cn in (6). We do so by describing the steps we take to compute Cn in the context

of the empirical application in Section 8, while also discussing the thought process behind

the decisions we made along the way. In this sense, we do not view this paper as a survey

of the literature but rather as a blueprint, or starting point, for researchers interested

in using models defined by moment inequalities in empirical settings. Specifically, in

the next sections we describe in detail what we view as the four essential steps that

are required to compute confidence regions in models defined by the inequalities in (1).

These four steps are:

Step 1: The behavioral decision model.

Step 2: The moment functions m(Wi, θ).
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Step 3: The test statistic Tn(θ) and the critical value cn(1− α, θ).

Step 4: The algorithm leading to Cn.

Relative to papers introducing methods for constructing confidence regions Cn, which

usually proceed by taking the model in (1) as given and then provide a test statistic

and a critical value that leads to a test with desirable properties for the hypotheses in

(4), here we start with the fundamental behavioral decision model (Step 1) and explain

how this may lead to the moment inequality functions m(Wi, θ) in Step 2. Different

empirical applications will necessarily involve a different decision model, but many of

the modeling choices we discuss apply broadly and go beyond the empirical setting we

consider in Section 8. In Step 2, we follow the “profit inequalities” approach in Pakes

(2010) to derive the moment inequalities and illustrate how different sets of moment

inequalities can be obtained under different assumptions on the unobservable random

variables entering the behavioral decision model. For a more comprehensive discussion

on alternative ways to derive moment inequalities in behavioral choice models, we refer

the reader to Pakes (2010) and Kline et al. (2020). For Step 3 we rely specifically on the

recent work by Chernozhukov et al. (2019) and on the framework presented by Canay

and Shaikh (2017) to discuss alternatives to the ones we take in this paper. Step 4 is

usually the bottleneck in empirical papers doing inference in models defined by moment

inequalities, and has been traditionally neglected in the theoretical literature. Here, we

summarize what we view as good practices and share some of the shortcuts that we use

to guide practitioners on how to deal with the potentially heavy computational burden

associated with these models. Despite our efforts, we view the computational barrier as

the main force preventing models defined by moment inequalities to be widely adopted.

3 The behavioral decision model

In order to illustrate how a behavioral choice model may lead to a model defined by

moment inequalities as in (1), we focus on the model that leads to the empirical appli-

cation in Section 8. This model is one where firms decide, for each of the products they

produce, whether to offer the product in each of several available markets. We start by

introducing some basic notation.

We index firms by s ∈ S, products by j ∈ J , and markets by i ∈ N , each with

cardinality S ≡ |S|, J ≡ |J |, and n ≡ |N |, respectively. Each product is produced

by only one firm, which means that J can be partitioned into S disjoint subsets, i.e.,

J = ∪s∈SJs. Let Js ≡ |Js| for each s ∈ S and assume Js > 0 for all s ∈ S.

On a given market i and for each product j, firm s makes a product offering decision

denoted by Di,j ∈ {0, 1}, where Di,j = 1 when product j is offered in market i and
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Di,j = 0 otherwise. The entire product portfolio in market i is then given by the

following J-dimensional vector,

Di ≡ (Di,1, . . . , Di,J)′ ∈ {0, 1}J . (9)

Di,j is not indexed by s since in our setting each product is produced by only one firm.

We denote the variable profits that firm s gets in market i given a product portfolio

Di by rs,i(Di). We also denote the sunk cost that firm s pays to introduce product j

to market i by ei,j(θ), which in turn depends on the parameter of interest θ. The total

stochastic profits that firm s obtains in market i when the product portfolio is Di are

then given by,

πs,i(Di, θ) ≡ rs,i(Di)−
∑
j∈Js

Di,jei,j(θ) . (10)

We assume that firm s chooses {Di,j : j ∈ Js} by maximizing its expected total profits

conditional on the information at its disposal at the time of making the decision. If we

denote the information set of firm s by Is, then firms maximize

E[πs,i(Di, θ)|Is] = E[rs,i(Di)|Is]−
∑
j∈Js

Di,jE[ei,j(θ)|Is] , (11)

where E[·] is an expectation with respect to the distribution across markets. This means

max
di∈Λs(Di)

E[πs,i(di, θ)|Is] ≤ E[πs,i(Di, θ)|Is] , (12)

where the set Λs(Di) captures that firm s can only choose the elements in di correspond-

ing to products in Js, i.e.,

Λs(Di) ≡ {di : di,j ∈ {0, 1} if j ∈ Js and di,j = Di,j if j /∈ Js} . (13)

Finally, we introduce notation to capture counter-factual deviations from the observed

product portfolio Di. For simplicity, we focus on one-product deviations and introduce

two operators to denote such deviations: ∂j , which is an operator on Di defined as

∂jDi = (Di,1, . . . , Di,j−1, 1−Di,j , Di,j+1, . . . , Di,J) , (14)

and ∆j , which is an operator on πs,i(·) or rs,i(·) defined as

∆jπs,i(Di, θ) = πs,i(∂jDi, θ)− πs,i(Di, θ) . (15)

That is, ∂j counter-factually changes the offering decision of product j by making it

available in market i (1 − Di,j = 1) if it was not previously offered (Di,j = 0) or by

removing the product from market i (1−Di,j = 0) if it was previously offered (Di,j = 1).
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In turn, ∆j computes the difference in profits (variable or total) that would arise if the

product portfolio were to change from Di to ∂jDi. In Section 3.1 we discuss multiple-

product deviations.

In equilibrium and given the profit maximizing behavior in (12), we obtain

E[∆jπs,i(Di, θ)|Is] ≤ 0 for all j ∈ Js and s ∈ S . (16)

We refer to the inequality in (16) as the inequality induced by profit maximizing be-

havior. This inequality will lead to the model defined by moment inequalities in (1),

but cannot be used directly as both expected variable profits and expected sunk costs

are unobserved to the analyst. In what follows we then impose additional structure on

costs and variable profits in order to go from the inequality in (16) to the one in (1).

Remark 3.1. The model we focus on here is determined by our empirical application in

Section 8, where the main indices are markets and products. In other applications there

could be additional dimensions that may introduce other indices, most notably, a time

index. Aside from dynamic models, which we do not discuss in this paper, additional

dimensions do not fundamentally change our analysis.

Expected variable profits and sunk costs

The analyst does not observe expected variable profits, E[rs,i(di)|Is], for any potential

product portfolio but rather realized variable profits, E[rs,i(Di)|Is], at the observed

portfolio. We then require a model capable of predicting expected variable profits both

for the observed product assortment and for deviations. In the empirical setting we

consider in Section 8, this is a structural model of demand and supply (we present the

details of this model in Section 7.2). In order to estimate this model, we assume the

analyst observes data on product offering decisions Di across markets, a vector of other

product and market characteristics that we denote by Xi,j , and a vector of instrumental

variables Li,j that are used to estimate demand and supply. The characteristics in Xi,j

could include variables that are market specific (e.g., market size), product specific (e.g.,

flavor or input costs), or market and product specific (e.g., price). The observed data

to estimate the structural model of demand and supply is then

{Oi ≡ (Di, Xi,1, . . . , Xi,J , Li,1, . . . , Li,J)′ : i ∈ N} , (17)

and is assumed to satisfy the conditions required to invoke appropriate versions of the

law of large numbers (LLN) and central limit theorem (CLT) that are needed later on.

We also denote by Zi,j a set of additional instruments will be used to instrument for the

moment inequalities in Section 4. These instruments could be variables not included in

Oi or functions of variables in Oi. The entire data set available to the researcher can be
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denoted by

{Wi ≡ (Oi, Zi,1, . . . , Zi,J)′ : i ∈ N} , (18)

which is again assumed to satisfy the conditions required to invoke appropriate versions

of the LLN and CLT. In the empirical setting we study in Section 8 we have information

for hundreds of markets and about 30 products, which explains why we choose markets,

i ∈ N , to be the index determining the data generating process. This choice may vary

depending on the setting, as long as there is at least one dimension that gives sufficient

independence to reliably invoke LLNs and CLTs.

We make the following assumption on the estimated variable profit differentials,

denoted by ∆j r̂s,i(Oi), for each product j ∈ J .

Assumption 3.1. The estimated variable profit differential ∆j r̂s,i(Oi) satisfies, for all

j ∈ J ,

∆j r̂s,i(Oi) = E[∆jrs,i(Di)|Is] + Ui,j where E[Ui,j | Di,j , Is] = 0 .

Assumption 3.1 requires that variable profit differentials are sufficiently well esti-

mated. The error Ui,j is sometimes referred to as a specification error (or expectational

error in some simpler settings) and the conditional mean independence of Ui,j with both

Di,j and Is have separate implications. First, conditional mean independence with Di,j

requires E[∆jrs,i(Di)|Is] to be equally well estimated regardless of the firm’s decision

about product j in market i, i.e., Di,j . Second, conditional mean independence with

Is means that E[∆jrs,i(Di)|Is] is the true conditional mean of ∆j r̂s,i(Oi). We discuss

alternatives to this assumption in Section 3.1.

The analyst does not observe expected sunk costs, E[ei,j(θ)|Is], either. Importantly,

expected costs capture the parameter of interest θ. We start with the simplest possible

specification for sunk costs, as described in the assumption below. In Section 3.1 we

discuss alternative specifications and their implications on the construction of confidence

sets.

Assumption 3.2. Sunk costs ei,j(θ) are known by firms at the time of making product

offering decisions, and they admit the representation

ei,j(θ) = θs + Vi,j with θs ∈ R and E[Vi,j ] = 0 for all j ∈ J .

Assumption 3.2 has two parts. First, sunk costs being known means that ei,j(θ) is

part of the information set and so E[ei,j(θ)|Is] = ei,j(θ). Second, the simple parametriza-

tion means that the stochastic sunk cost ei,j(θ) has a firm specific mean θs and a product

and market specific error term Vi,j that is mean zero across markets. As before, this

error term is part of the information set, Is, of the firms and so E[Vi,j |Is] = Vi,j . The
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parameter we intend to recover by means of a model defined by moment inequalities is

θs for all s ∈ S, i.e.,

θ ≡ (θs : s ∈ S)′ ∈ RS . (19)

Remark 3.2. In contrast to Ui,j in Assumption 3.1, the error term Vi,j is not uncor-

related with Di,j by virtue of being known at the time of making the product offering

decision. In fact, one would expect E[Vi,jDi,j ] = E[Vi,j |Di,j = 1]P{Di,j = 1} to be

negative if, conditional on offering a product, costs tend to be lower. Errors such as Vi,j

are sometimes referred to as “structural”.

Combining the profit maximizing behavior in (12) with the structure on expected

variable profits and sunk costs imposed by Assumptions 3.1 and 3.2, we can re-write

(16) as,

∆j r̂s,i(Oi)− Ui,j − (1− 2Di,j)(θs + Vi,j) ≤ 0 , (20)

or by grouping according to whether products were or were not offered, as

(∆j r̂s,i(Oi)− Ui,j − (θs + Vi,j))(1−Di,j) ≤ 0 if not offered (21)

(∆j r̂s,i(Oi)− Ui,j + (θs + Vi,j))Di,j ≤ 0 if offered. (22)

The group of inequalities (21) and (22) may appear similar to the one in (1), but there

is one important difference: while (1) is a function of the parameter of interest and the

observed data only, the inequalities in (21) and (22) depend on the unobserved variables

Ui,j and Vi,j . This would not be particularly problematic if these variables were mean

independent across markets conditional on Di,j = 0 and Di,j = 1. This is indeed the

case for Ui,j but, as discussed in Remark 3.2, likely not the case for Vi,j . In Section

4 we impose assumptions on Vi,j that allow us to derive moment inequality functions

that do not depend on Ui,j and Vi,j . In Section 4.1 we review how similar assumptions

have been used in the literature, as well as alternative versions that lead to potentially

different inequalities.

3.1 Why? Modeling choices

The behavioral decision model we introduce has three features that deserve discussion.

The first feature is the profit maximizing behavior in (12) that led to the inequality in

(16), which we re-state here for readability:

E[∆jπs,i(Di, θ)|Is] ≤ 0 for all j ∈ Js and s ∈ S .

This inequality depends on the operator ∆j and so it depends on one-product devia-

tions; that is, counter-factuals where a single product is added or removed from the

market. One-product deviations have been considered in a number of papers, including
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Nosko (2010), Eizenberg (2014), Wollmann (2018) and Fan and Yang (2022), among

others. However, the profit maximizing behavior in (12) considers any type of deviation

from the observed actions, and so in principle one could consider q-product deviations,

with q ≥ 1, and derive inequalities associated with the union of such deviations. This

approach quickly increases the number of moment inequalities and thus necessarily re-

quires confidence intervals that work well when the number of moment inequalities is

large relative to the sample size. For example, in the application we consider in Section

8 the model that considers one-product deviations can contain k = 2J = 62 moment

inequalities while the one that considers one and two-product deviations can contain

k = 1250 moment inequalities.

The second feature is the error term Ui,j introduced in Assumption 3.1. This er-

ror captures the difference between the estimated variable profit differential ∆j r̂s,i(Oi)

and the true expected profits E[∆jrs,i(Di)|Is]. This assumption could be relaxed by

decomposing Ui,j into a specification error and a so-called “structural error”, where the

structural error would be allowed to be correlated with Di,j , see Pakes (2010). We do

not consider this case here to keep our exposition simple and because our goal is not

to provide the most realistic empirical model but rather to present a relatively simple

one that still showcases the difficulties that commonly appear in practice. We note also

that it would be possible to treat such an error term similarly to the way we treat the

error term Vi,j at the expense of additional notation.

The third feature relates to Assumption 3.2. We have decided to focus on a straight-

forward parameterization to keep exposition simple and to make the role of the structural

error Vi,j starker: it is likely that sunk costs differ within firms across products and mar-

kets, and that firms take this into account when making product offering decisions. In

general, we expect most moment inequality models to feature a structural error of some

kind, so discussing strategies to deal with this issue is important. A natural extension

of Assumption 3.2 is to add covariates to the sunk cost, i.e.,

ei,j(θ) = X ′i,jθs + Vi,j .

While this increases the dimensionality of the confidence set and increases computa-

tional complexity, it is straightforward from a theoretical perspective. We discuss and

implement this extension in Section 8.2.

Remark 3.3. The decision model we use in this paper is one that leads to profit

inequalities, as in (16). A popular alternative to this approach is the “generalized

discrete choice” model introduced by Tamer (2003) and Ciliberto and Tamer (2009).

This approach adds additional structure to the model, that the analyst has a model

for ∆jrs,i(Di) with no error (i.e., Ui,j = 0), that the analyst knows the distribution of

Vi ≡ (Vi,1, . . . , Vi,J) conditional on observable characteristics, and complete information

across firms. Under these additional assumptions this alternative approach leads to a
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set of moment inequalities that we discuss further in Section 4.1. We refer the reader

to Pakes (2010) for a deeper discussion of the differences between the profit inequalities

and generalized discrete choice approaches, and Fan and Yang (2022) for an application

of the generalized discrete choice approach to a model of product assortment.

Remark 3.4. Assumption 3.1 implies that the analyst is able to estimate demand

and supply sufficiently well, in order for the differentials in variable profits to have a

conditional mean given by E[∆jrs,i(Di)|Is]. It also assumes that firms make product

variety decisions as a function of this conditional mean, rather than following another

criterion. If either assumption is not true, Ui,j becomes a structural error as well and

one could then treat this error similarly to how we treat the structural unobservable Vi,j

- say, by bounding its conditional expectation as in Assumption 4.2. Here, we choose to

maintain Assumption 3.1 for simplicity.

4 The moment functions

In order to derive the moment inequalities in (1) from those in (21) and (22), we need

assumptions that allow us to deal with the error terms Ui,j and Vi,j , or at least with their

expectations conditional on the product offering decision Di,j . We do so by discussing

the role of the instrumental variables, Zi,j , that we introduced in (18). We start with

the following assumption.

Assumption 4.1. The instrumental variables Zi,j satisfy

E[Ui,j |Zi,j , Di,j ] = 0 and E[Vi,j |Zi,j ] = 0 . (23)

The requirement in (23) requires Ui,j to be mean independent of Zi,j conditional

on Di,j = 1 (and Di,j = 0) and Vi,j to be mean independent of Zi,j . The additional

conditioning on Di,j may be viewed as a reasonable assumption for the specification error

Ui,j given Assumption 3.1, though in Section 8.2.1 we argue that intuitive arguments

that lead to powerful instruments may put this assumption at risk. This may be less

reasonable for Vi,j , as the fact that Vi,j belongs to the information set of the firms

suggests that

E[Vi,j |Zi,j , Di,j ] 6= 0 .

That is, one of the difficulties in our setting is that the exogeneity of the instrument needs

to hold conditional on products being offered, Di,j = 1, and conditional on products not

being offered, Di,j = 0, and this is unlikely to hold for a structural error term Vi,j since,

as discussed in Remark 3.2, E[Vi,j |Di,j ] is expected to be negative. It follows that the

instrumental variables Zi,j are not expected to play a significant role in dealing with the
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problems introduced by the error Vi,j , unless the analyst is willing impose assumptions

on E[Vi,j |Zi,j , Di,j ]. Below we consider one such assumption.

Assumption 4.2. The conditional expectation E[Vi,j |Zi,j , Di,j ] satisfies∣∣∣E[Vi,j |Zi,j , Di,j ]
∣∣∣ ≤ V̄

for some known value V̄ ≥ 0.

Assumption 4.2 does not pin down a unique value for E[Vi,j |Zi,j , Di,j ] but it limits

the range of values this expectation can take. A simple sufficient condition for this

assumption would be that Vi,j is supported on [−V̄ , V̄ ]. While this may be a strong

condition in certain settings, it is arguably weaker than assuming that sunk costs do not

have a structural error component or assuming V̄ = 0. In particular, it allows for the

conditional expectations E[Vi,j |Zi,j , Di,j = 1] and E[Vi,j |Zi,j , Di,j = 0] to be different

from each other, consistent with the discussion in Remark 3.2.

Let h(Zi,j) be some known, positive valued function of the instrument. In Section

4.1 we discuss some of the functions h(·) commonly used in applications, including the

ones we use in our empirical application. Our goal is to show that Assumptions 4.1

and 4.2 allow us to use the group of inequalities in (21) and (22) to construct a group

of moment inequalities, like those in (1), with moment functions m(Wi, θ) that do not

depend on unobserved random variables like Ui,j and Vi,j . We show the details for (21)

as (22) follows from similar arguments. Recall that (21) states that

(∆j r̂s,i(Oi)− Ui,j − (θs + Vi,j))(1−Di,j)h(Zi,j) ≤ 0 ,

where we have multiplied each side of the inequality by h(Zi,j). Taking expectations,

E[(∆j r̂s,i(Oi)− θs)(1−Di,j)h(Zi,j)] + E[Vi,j(1−Di,j)h(Zi,j)] ≤ 0 , (24)

where we used E[Ui,j(1 − Di,j)h(Zi,j)] = 0 by Assumption 4.1. The above expression

still depends on the unobservable Vi,j . To deal with this error note that

E[Vi,j(1−Di,j)h(Zi,j)] = E[Vi,jh(Zi,j)]− E[Vi,jDi,jh(Zi,j)] ≥ −E[V̄ Di,jh(Zi,j)] , (25)

where we used E[Vi,jh(Zi,j)] = 0 and E[Vi,jDi,jh(Zi,j)] ≤ E[V̄ Di,jh(Zi,j)] by invoking

by Assumption 4.1, the law of iterated expectations, and Assumption 4.2. It follows

from these derivations that (21) leads to the following moment inequality,

E[
(
(∆j r̂s,i(Oi)− θs)(1−Di,j)− V̄ Di,j

)
h(Zi,j)] ≤ 0 , (26)

where the term inside the expectation is now a known function of the data and the

parameter of interest. We conclude that under Assumptions 4.1 and 4.2, the following
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pair of moment functions have non-positive expectations,

ml
j(Wi, θ) ≡

((
∆j r̂s,i(Oi)− θs

)
(1−Di,j)− V̄ Di,j

)
h(Zi,j) (27)

mu
j (Wi, θ) ≡

((
∆j r̂s,i(Oi) + θs

)
Di,j − V̄ (1−Di,j)

)
h(Zi,j) . (28)

These moment functions can be interpreted as re-centered versions of the moment func-

tions that could be derived under a conditional independence assumption of the form

Vi,j ⊥ Di,j |Zi,j ; see Section 4.1 for details. Importantly, these are known functions of

the data, {Wi : i ∈ N} in (18), and the parameter of interest, θ in (19).

We conclude that the k = 2J dimensional vector of moment functions is

m(Wi, θ) = (ml
1, . . . ,m

l
J ,m

u
1 , . . . ,m

u
J)′ , (29)

where m(Wi, θ) satisfies E[m(Wi, θ)] ≤ 0, as in (1), by the arguments leading to (26).

Remark 4.1. The moment functions in (27) and (28) do not include the error terms Ui,j

and Vi,j by construction to emphasize the fact that m(Wi, θ) is, by definition, a known

function of observed variables, Wi, and the parameters of interest, θ. This makes the

notation consistent with the vast majority of theoretical papers that develop inference

tools for inference in moment inequality models.

4.1 Why? Bias and alternative moment functions

In this paper we have adopted the profit inequalities approach proposed by Pakes (2010)

as the main mechanic to obtain moment inequalities. This approach fits our empirical

application well and is computationally tractable but is by no means the only alternative

we could have followed. To clarify this point, we divide this section into two levels of

discussion, where we first discuss alternative steps we could have taken within the profit

inequalities approach, and then mention how one could have derived inequalities using

the leading alternative to the profit inequalities approach, generalized discrete choice

models as in Ciliberto and Tamer (2009).

14



Dealing with bias in the profit inequalities approach

The derivations leading to (26) show that E[ml
j(Wi, θ)] ≤ 0. To see that E[mu

j (Wi, θ)] ≤
0 as well, consider the following derivation,

E
[
mu
j (Wi, θ)

]
= E

[((
∆j r̂s,i(Oi) + θs

)
Di,j − V̄ (1−Di,j)

)
h(Zi,j)

]
= E

[(
E[∆jrs,i(Di)|Is] + θs + Vi,j

)
h(Zi,j)Di,j

]
+ E [Ui,jDi,jh(Zi,j)]− E [Vi,jDi,jh(Zi,j)]

− V̄ E [(1−Di,j)h(Zi,j)]

≤ −E [Vi,jDi,jh(Zi,j)]− V̄ E [(1−Di,j)h(Zi,j)]

≤ 0 ,

where the first inequality follows from the profit maximizing behavior in (12) and As-

sumption 4.1. The second inequality follows from

−E [Vi,jDi,jh(Zi,j)] = −E [Vi,jDi,jh(Zi,j)] + E [Vi,jh(Zi,j)]

= E [Vi,j(1−Di,j)h(Zi,j)]

≤ V̄ E [(1−Di,j)h(Zi,j)] ,

where the first equality now follows from Assumption 4.1 implying E [Vi,jh(Zi,j)] = 0

and the inequality follows from Assumption 4.2.

It is important to note that we derive moment inequalities from (21) and (22), as

opposed to (20), where both inequalities are combined into one. For convenience, we

re-state (20) below imposing Ui,j = Vi,j = 0 to provide a clean intuition for this choice,

∆j r̂s,i(Oi)− (1− 2Di,j)θs ≤ 0 .

Since (1 − 2Di,j) = 1 when Di,j = 0 and (1 − 2Di,j) = −1 when Di,j = 1, writing the

two sets of inequalities separately leads to

1

n0,j

∑
i∈N0,j

∆j r̂s,i(Oi) ≤ θs and θs ≤
1

n1,j

∑
i∈N1,j

∆j r̂s,i(Oi) , (30)

providing a lower and upper bound for θs, respectively. Here, we use the notation

Na,j ≡ {i ∈ N : Di,j = a} and na,j ≡ |Na,j |. In contrast, the sample average of the

single equation above would simply lead to a weighted average of the bounds,

1

n

∑
i∈N

∆j r̂s,i(Oi) +
(n1,j

n
− n0,j

n

)
θs ≤ 0 , (31)

which is weakly informative about θs in the sense that it only provides a lower (or an
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upper) bound depending on the sign of n1,j − n0,j .

To construct the moment functions in (27) and (28), Assumptions 3.1 and 3.2 were

insufficient and thus we additionally introduced Assumptions 4.1 and 4.2. Assumption

4.1 essentially requires a variable in the information set Is of the firms to be mean inde-

pendent of Vi,j , since the requirement on Ui,j holds for any variable in Is by Assumption

3.1. Assumption 4.2, on the other hand, deserves further discussion. Perhaps the best

way to understand why this particular assumption appears reasonable in the models we

consider and why it could be interpreted as weaker than other common alternatives is

to start with a conditional independence assumption,

Vi,j ⊥ Di,j | Zi,j . (32)

This assumption states that any relationship between Vi,j and the decision Di,j is fully

captured by Zi,j . It follows immediately that E[Vi,j |Zi,j , Di,j ] = E[Vi,j |Zi,j ] = 0, and

from here it follows that we could simply work with the following moment functions,

m̃l
j(Wi, θ) =

(
∆j r̂s,i(Oi)− θs

)
h(Zi,j)(1−Di,j) (33)

m̃u
j (Wi, θ) =

(
∆j r̂s,i(Oi) + θs

)
h(Zi,j)Di,j . (34)

Here h(Zi,j) is again some known, positive valued, function of the instrument. The

moment functions in (33) and (34) are functions of (Wi, θ) and do not include unobserved

random variables. In addition, note that the moment m̃l
j(Wi, θ) provides a lower bound

for the parameter θ while the moment m̃u
j (Wi, θ) provides an upper bound. To see that

m̃l
j(Wi, θ) and m̃u

j (Wi, θ) have non-positive expectations under the condition in (32),

let’s consider m̃u
j (·) as the arguments are symmetric for both set of moments. Note that

E
[
m̃u
j (Wi, θ)

]
≤ −E [Vi,jh(Zi,j)Di,j ] = 0 (35)

where the last equality follows from E [Vi,jh(Zi,j)Di,j ] = E[h(Zi,j)Di,jE [Vi,j |Zi,j , Di,j ]] =

0, due to (32). This derivation then shows that a conditional independence assumption

actually allows us to derive a simpler set of moment functions, relative to the ones we

derived in Section 4; see Ho (2009); Holmes (2011); Houde et al. (2023); Maini and

Pammolli (2023) for examples of papers using this approach.1 However, a concern with

these moment functions is that their validity, interpreted here as having non-positive

expectations, depends crucially on E [Vi,jh(Zi,j)Di,j ] being zero, as illustrated by (35).

Whenever the conditional independence assumption fails, we would expect (35) to be

strictly positive due to the reasons discussed in Remark 3.2, which then leads to the

possibility that E
[
m̃u
j (Wi, θ)

]
> 0. We refer to the term E [Vi,jh(Zi,j)Di,j ] as the “bias”

term induced by the error term Vi,j .

1We include into this category papers that assume Vi,j = 0
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The approach we take in Assumption 4.2 essentially imposes enough structure to

bound the magnitude of the bias term E [Vi,jh(Zi,j)Di,j ]. This approach was intro-

duced by Eizenberg (2014). An alternative interpretation of this assumption would be

to require that Vi,j has known support on [−V̄ , V̄ ], in which case Assumption 4.2 im-

mediately follows. The price we pay for a weaker assumption relative to the condition

in (32), which essentially translates to V̄ = 0, is that V̄ is now a tuning parameter

that needs to be chosen by the researcher and that is difficult to pin down in a data

dependent manner. Yet, the value of V̄ matters in applications as it directly enters the

moment functions in (27) and (28).

Remark 4.2. An alternative to imposing Assumption 4.2, which requires the choice of

the tuning parameter V̄ , would be to work with the inequalities in (33) and (34) that

assume V̄ = 0, and steer attention to the misspecification robust identified set instead

of the original identified set. This approach, that accounts for model misspecification

but re-interprets the object of interest, has been recently developed by Andrews and

Kwon (2019). At a high level, this approach recenters the “biased” moments using a

data-dependent adjustment to the moments that guarantees that (1) holds for at least

one value of θ after the moment conditions are properly adjusted. We compare our

results with this alternative approach in Section 8.2 and provide additional details on

its implementation in Appendix C.

Remark 4.3. Assumption 4.2 is not the only strategy that has been used to deal with

a structural error term. The most straightforward strategy is to enrich the parameteri-

zation of θ and to argue that there is no remaining structural error (Ho (2009); Holmes

(2011); Houde et al. (2023); Maini and Pammolli (2023)). A closely related alternative

is to use a control function for the structural error term, as discussed in Pakes (2010).

Both of these alternatives hinge on the econometrician being able to perfectly parame-

terize the relevant conditional expectation - if there are any structural error components

remaining, the model will be misspecified. Researchers who are considering following

these approaches may still benefit from augmenting them with Assumption 4.2.

Alternative Approaches to derive moment functions

Assumption 4.2 is not the only strategy that has been used to deal with a structural error

term, Vi,j , and to obtain moment functions with non-positive expectations. A common

alternative is differencing (Assumption 4a in Pakes (2010), Crawford and Yurukoglu

(2012); Ho and Pakes (2014); Morales et al. (2019)). Under this approach, the researcher

assumes that Vi,j does not vary across one dimension, products j or markets i, and adds

the inequalities in equations 21 and 22 across observations where opposite decisions

have been made. This addition cancels out the structural error term. Note that under

our specification of sunk costs, this approach would lead to θ cancelling out, but in
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richer sunk cost models Xi,jθs that need not be the case. A similar approach is to work

with unconditional inequalities, as in Assumption 4b in Pakes (2010) and Wollmann

(2018). We do highlight the fact that this approach can only deal with a structural

error component if the realizations of such an error are, in fact, identical across the

pairs of firms that are used to form the differences.

Other alternatives include the approach in Dickstein and Morales (2018), that re-

quires a parametric model for the structural unobservable, and the approach in Illanes

(2016), that combines inequalities like the one in (20) with Assumption 4.1 to obtain

bounds on the parameters of interest using a least favorable distribution for Vi,j as in

Schennach (2014). The first approach allows researchers to deal with a structural error

with unbounded support, but it has only been applied to binary choice settings. The

second one of these approaches increases the computational complexity significantly.

Perhaps the most notable alternative approach that we would like to mention is

the generalized discrete choice model introduced by Ciliberto and Tamer (2009). As

discussed in Remark 3.3, this approach requires additional assumptions on the profit

equation, the information set of agents, and the knowledge of the analyst. Under such

additional assumptions, this approach can lead to a characterization of the identified set

for θ that is “sharp”, in the sense that the moment inequalities that characterize Θ0(P )

contain all of the information assumed in the structure of the model. This feature would

not be shared by the profit inequalities strategy we follow in this paper under the same

assumptions (thus leading to the so-called “outer” identified sets which are larger than

the “sharp” counterparts). We refer the reader to Beresteanu et al. (2011) for a method

to construct sharp identified sets in a variety of partially identified models.

To be more concrete, assume that firms know the product portfolio Di, that Ui,j = 0,

and that the distribution of Vi ≡ (Vi,1, . . . , Vi,J) conditional on observable characteristics

is known. Under these assumptions, the generalized discrete choice model leads to 2J+1

inequalities given by

E[ml(d, Z,X, θ)] = P{θ|d, Z,X} − P̂{d|X,Z} ≤ 0 (36)

E[mu(d, Z,X, θ)] = P̂{d|X,Z} − P̄{θ|d, Z,X} ≤ 0 , (37)

for each d ∈ {0, 1}J , where P̂{d|X,Z} is the observed frequency of product portfolio d

(conditional on covariates) across markets,

P̄{θ|d, Z,X} ≡ P{d is st ∆jπs,i(d, θ) ≤ 0 for all j ∈ J | Z,X}

is the probability that the model predicts for d being one (of the possibly many) equilibria

of the game, and

P{θ|d, Z,X} ≡ P{d is the only element st ∆jπs,i(d, θ) ≤ 0 for all j ∈ J | Z,X}
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is the probability the model predicts for d being the unique equilibrium of the game.

The probabilities P̄{θ|d, Z,X} and P{θ|d, Z,X} are often computed via simulation, for

each θ, by taking draws from the known conditional distribution of Vi. For additional

details on the differences between the generalized discrete choice approach and the profit

inequalities approach, we refer the reader to Pakes (2010).

5 The test

The derivations in the previous two sections led to the moment functions in (29) that

in turn deliver the model in (1) under the stated assumptions. We now describe how to

test the hypothesis in (4), which we re-state here for readability

Hθ : E[m(Wi, θ)] ≤ 0 .

In order to do so, define for each 1 ≤ ` ≤ k,

m̄n,`(θ) =
1

n

∑
i∈N

m`(Wi, θ) and σ̂n,`(θ) =

√
1

n

∑
i∈N

(m`(Wi, θ)− m̄n,`(θ))2 , (38)

and let

m̄n(θ) = (m̄n,1(θ), . . . , m̄n,k(θ))
′ .

The test statistic we use to construct our test is

Tn(θ) = max
1≤`≤k

√
nm̄n,`(θ)

σ̂n,`(θ)
. (39)

This test statistic is known as a “max”-type test statistic and has been used by Cher-

nozhukov et al. (2019) as it has favorable properties in settings where the number of

moment inequalities, k, is large relative to the sample size, N . For this, and other rea-

sons we discuss in Section 5.1, we chose this test statistic out of the many choices of test

statistics available in the literature.

Much of the effort in developing a test of Hθ that satisfies (5) lies in the construction

of the critical value cn(1−α, θ). The difficulty is due to the fact that, in models defined

by moment inequalities, the limiting distribution of the usual test statistics, including

all the ones we discuss in the next subsection, depends on which and how many of the

moment conditions in (1) are in fact equal to zero, i.e., “binding”. The literature has

provided a variety of ways to circumvent this challenge that can be grouped into four

groups that we briefly review in Section 5.1 (for a more comprehensive description of

these and other critical values, see Canay and Shaikh, 2017).

Given our choice of test statistic in (39), we again use the approach proposed by
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Chernozhukov et al. (2019) and use a critical value that requires two steps.

Step 1: Let 0 < β < α/2 be a tuning parameter and Φ(·) be the distribution

function of the standard normal distribution. Define

k̂n =
k∑
`=1

I

{√
nm̄n,`(θ)

σ̂n,`(θ)
> −2ĉlf

n,k(1− β, θ)
}
, (40)

where

ĉlf
n,k(1− β, θ) =

Φ−1(1− β/k)√
1− Φ−1(1− β/k)2/n

. (41)

Step 2: Define the critical value of the test as

ĉts
n (1− α, θ) =

 Φ−1(1− (α− 2β)/k̂n)√
1− Φ−1(1− (α− 2β)/k̂n)2/n

 I{k̂n ≥ 1} . (42)

The resulting test is φn(θ) in (7) for Tn(θ) in (39) and cn(1 − α, θ) in (42). This

critical value is fast to compute and does not involve a resampling technique (like, for

example, the bootstrap). There are, however, variations that essentially maintain the

two step nature of ĉts
n (1− α, θ) while using the bootstrap to approximate the quantiles.

While there are no formal results that show that the bootstrap provides an asymptotic

refinement in models that exhibit discontinuities of the form that are usually present in

moment inequality models (and, in general, refinements are not expected in such set-

tings), there is significant numerical evidence that shows that the bootstrap often leads

to noticeable power gains (i.e., smaller confidence intervals) in practice. We describe the

bootstrap version of the two-step critical value in Section 5.2 and use it in the empirical

application of Section 8. In our application, the bootstrap once again leads to improved

performance relative to the standard two-step critical value in (42).

5.1 Why? On the choice of test statistic and critical value

On the Test Statistic

The vast majority of tests that have been proposed in the literature on inference in

models defined by moment inequalities reject Hθ for large values of a test statistic T

that is weakly increasing in each component of the vector m in (1). In order to describe

these test statistics succinctly, it is useful to introduce some additional notation. For
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m̄n,`(θ) and σ̂n,`(θ) as in (38), let

D̂n(θ) = diag(σ̂n,`(θ) : 1 ≤ ` ≤ k)

Ω̂n(θ) = D̂n(θ)−1 1

n

(∑
i∈N

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))′

)
D̂n(θ)−1 .

The test statistics can be broadly represented as:

Tn(θ) ≡ T
(
D̂−1
n (θ)

√
nm̄n(θ), Ω̂n(θ)

)
, (43)

where T is a real-valued function that is weakly increasing in each component of its first

argument, continuous in both arguments, and satisfies some additional mild conditions;

see Andrews and Soares (2010) for details. The “max” test statistic we choose in (39)

satisfies all these conditions. The choice of test statistic traditionally involves a trade-off

in two dimensions: computational tractability and power properties. Statistics that do

not directly depend on the sample correlation matrix Ω̂n(θ); like the max statistic we

use, are computationally attractive but could be less powerful than statistics that use

Ω̂n(θ); like the quasi-likelihood ratio proposed by Rosen (2008),

T qlr
n (θ) ≡ inf

t∈Rk:t≤0

(
D̂−1
n (θ)

√
nm̄n(θ)− t

)′
Ω̂−1
n (θ)

(
D̂−1
n (θ)

√
nm̄n(θ)− t

)
, (44)

the adjusted quasi-likelihood ratio proposed by Andrews and Barwick (2012), where

Ω̂n(θ) is replaced by

Ω̃n(θ) = max{ε− det(Ω̂n(θ)), 0}Ik + Ω̂n(θ)

for some fixed ε > 0, or the empirical likelihood ratio proposed by Canay (2010). The

adjustment referred to in the adjusted quasi-likelihood ratio statistic stems from the

desire to accommodate situations in which the correlation matrix is (nearly) singular.

A more recent consideration is the behavior of the test statistics in settings with a

large number of moment inequalities relative to the sample size, as studied by Cher-

nozhukov et al. (2019) and Bai et al. (2019), among others. The max statistic in (39)

is particularly convenient in settings with large k because its quantile grows very slowly

with k whereas the quantile of the modified method of moments statistic given by

Tmmm
n (θ) ≡

∑
1≤`≤k

max

{√
nm̄n,`(θ)

σ̂n,`(θ)
, 0

}2

,

and used by Andrews and Soares (2010); Ciliberto and Tamer (2009); Bugni (2010)

among others, would be expected to grow with k at a faster, polynomial rate. In this

paper we take the stance that inference in models defined by moment inequalities is, in
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most cases, demanding from a computational standpoint and so we do not assign heavy

weight on considerations that may improve power at the cost of introducing additional

computational burdens or behaving poorly when k is large. For this reason, we use

and recommend max-type test statistics as these are straightforward to compute, do

not require the analyst to compute and invert Ω̂n(θ), and behave particularly well in

applications with a large number of moment inequalities, see Chernozhukov et al. (2019);

Bai et al. (2019). Armstrong (2014a) discusses other desirable properties of tests based

on this test statistic while Andrews et al. (2019) propose a conditional inference approach

for linear conditional moment inequalities that is based on Tn(θ) in (39) as well.

On the Critical Value

As we mentioned earlier, the construction of a critical value that leads to a test satisfying

(5) has been the center of attention in the literature on inference in models defined by

moment inequalities. Broadly speaking, critical values can be divided into two groups:

those that aim at being sufficiently big without using the data (least favorable), and

those that use the data to determine which moments are likely binding and which

ones are likely slack (moment selection). Least favorable critical values are simple and

often exhibit computational advantages. Critical values involving moment selection are

computationally more demanding, but they often lead to more powerful tests. We discuss

the basic considerations that are relevant for the setting we consider in this paper below

and refer the interest reader to Canay and Shaikh (2017) for a more comprehensive

description of these and other critical values.

Least Favorable. Least favorable critical values are based on the observation

that considering the distribution that arises when all k moments are binding represents

the worst-case or least favorable case; a result that follows from Tn(θ) being increas-

ing in each component of its first argument and Hθ stating that each component of

EP [m(Wi, θ)] does not exceed zero. For Tn(θ) in (39), Chernozhukov et al. (2019) show

that the least favorable critical value is given by ĉlf
n,k(1 − α, θ) as defined in (41) but

with α replacing β. For other test statistics, like the modified method of moments or

the adjusted quasi-likelihood ratio, the least favorable critical value takes a different

form, see Canay and Shaikh (2017); Rosen (2008); Andrews and Guggenberger (2009)

for details in those cases. Least favorable critical values provide a convenient way to

obtain an initial idea of the confidence set Cn as they are one-step, do not require in-

formation on which moments are binding or not, and, as a result, are typically fast

to compute. Thus, even if the researcher decides to use a more powerful critical value

that requires two steps and moment selection, least favorable critical values may still

provide the analyst a quick idea of the shape, size, and location of Cn in settings that

are computationally demanding. In addition, when the least favorable critical value is

paired with the test statistic in (39), Armstrong (2014a) shows that the test is then
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close to optimal even without moment selection as we introduce next.

Moment Selection. Moment selection, also known as generalized moment selec-

tion, are critical values that use the data to decide which of the moments in (1) are

binding and which ones are slack, in a way that guarantees that the selected number of

binding moments is asymptotically conservative. They have been originally introduced

in the literature by Andrews and Soares (2010), with closely related ideas appearing in

Canay (2010) and Bugni (2014), and later on further refined by Romano et al. (2014) and

Chernozhukov et al. (2019), among others. Critical values involving moment selection

tend to be smaller than least favorable critical values and thus lead to more powerful

tests and smaller confidence regions.

Two-step methods that involve moment selection can be divided in two groups: those

that require a tuning parameter that drifts to infinity with the sample size (e.g., the

ones in Andrews and Soares, 2010; Bugni, 2014; Canay, 2010, among several others); and

those that require a fixed tuning parameter and that account for classification mistakes

in the first stage (e.g., the ones in Romano et al., 2014; Chernozhukov et al., 2019;

Bai et al., 2019). For example, the generalized moment selection approach proposed by

Andrews and Soares (2010) treats the `th moment as binding if

√
nm̄n,`(θ)

σ̂n,`(θ)
> −τn , (45)

where τn is a sequence satisfying 0 < τn → ∞ and τn/
√
n → 0. The tuning parameter

τn is an example of a drifting tuning parameter and a common rule of thumb to set

its value is τn =
√

log n. In contrast, the two-step approach in Chernozhukov et al.

(2019) relies on a non-drifting sequence of tuning parameters; that we denoted by β

in (42), and adjust the size in the second step to account for possible mistakes in the

first stage; which explains why ĉts
n,k(1 − α, θ) in (42) replaces α with α − 2β in the

expression of the least favorable critical value. We should note that this is not the only

inference approach that requires non-drifting tuning parameters and that allows for a

large number of moment inequalities. In particular, the method proposed by Romano

et al. (2014) pioneered the use of non-drifting tuning parameters like β for inference in

moment inequality models, and has been recently shown to be valid in settings with a

large number of moment inequalities by Bai et al. (2019). Overall, the fact that this

second group of critical values accounts for the probability that some inequalities may

be incorrectly labeled as binding tends to lead to better performance in finite samples.

This is perhaps the main reason why we focus here on two-step critical values that rely

on non-drifting sequences of tuning parameters.

Remark 5.1. Despite β being a non-drifting tuning parameter, its choice certainly

affects the power properties of the test. More concretely, increasing β has two effects.

First, increasing β leads to higher values of ĉts
n (1 − α, θ) in (42) since 1 − α + 2β is
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increasing in β. Second, increasing β lowers the value of k̂n in (40), which in turn leads

to smaller values of ĉts
n (1 − α, θ). Since the test statistic Tn does not depend on β, the

first effect decreases the power of the method and the second one increases it. Based on

simulation evidence, Chernozhukov et al. (2019) recommend the rule of thumb β = α/50

and we use this as our benchmark choice.

Remark 5.2. While the vast majority of recent papers proposing new tests for the

problems we review here require tuning parameters for their implementation, there are

some tuning parameter free alternatives. For example, Cox and Shi (2019) recently pro-

posed a test that, while involving moment selection, does not involve tuning parameters.

The critical value of this test is the quantile of a chi-square distribution with degrees

of freedom equal to the rank of the active moment inequalities, where “active” is deter-

mined in sample without tuning parameters. Such tuning parameter free critical value

necessarily requires the test statistic Tn(θ) to be the quasi-likelihood ratio test statistic

in (44), which by construction requires to compute Ω̂n(θ) and its inverse, and so this

type of tuning parameter free critical value does not apply to the max test statistic we

opted to choose in this paper.

Remark 5.3. In some settings the moment function m(Wi, θ) may depend on additional

point-identified parameters that need to be estimated before the mechanics that are

specific to inference in moment inequalities are implemented. This is indeed the case in

our empirical application, where the profit differentials, ∆j r̂s,i(Oi), require the analyst

to estimate demand in the first place; see Section 7. Formally, one could let m depend

on an additional parameter ϑ, so that E[m(Wi, θ, ϑ)] ≤ 0, and then redefine m̄n,`(θ) in

(38) as
1

n

∑
i∈N

m`(Wi, θ, ϑ̂)

where ϑ̂ is a consistent and asymptotically normally distributed estimator of ϑ. The

asymptotic variance of
√
nm̄n,`(θ) is different when ϑ is replaced by the estimator ϑ̂

and so σ̂n,`(`) in (38) needs to be defined accordingly, but otherwise the rest of the

mechanics remain unchanged; see Andrews and Soares (2010, Section 10.2 and footnote

15) for a discussion. This consideration still applies to cases where ϑ depends on θ,

i.e., ϑ(θ). Alternatively, one could modify the bootstrap approach in the next section

to simultaneously account for demand estimation and product offering decisions (i.e.,

allowing Step 1(b) to re-estimate ϑ for each bootstrap sample while keeping the same

expression for σ̂n,`(`) in (38)); similar in spirit to the recent implementation by Ciliberto

et al. (2021). Formal results on the properties of such a bootstrap modification have

not been yet derived.
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5.2 Bootstrap variant

The critical value defined in (42) can be easily computed in closed form and does not

require any type of numerical approximation. However, several of the methods developed

to construct confidence regions in models defined by moment inequalities end up using

some form of bootstrap approximation in the first or second stage (and sometimes in

both) in order to obtain more accurate confidence regions. In our empirical application

in Section 8 we consider both the asymptotically normal version of the critical value as

described in (42) and the bootstrap version, denoted by ĉbs
n (1− α, θ), that we describe

below following Chernozhukov et al. (2019, Section 4.2.2).

The bootstrap version of the two-step critical value for Tn(θ) in (39) involves the

following three steps:

Step 1 (bootstrap draws): Generate a bootstrap sample W ∗b,1, . . . ,W
∗
b,n as i.i.d. draws

from the empirical distribution of {Wi : i ∈ N}.

Step 2 (moment selection): Let 0 < β < α/2 be the tuning parameter discussed in

Remark 5.1. Label the moment inequalities as binding or slack via the following steps

(a) Compute m̄n,`(θ) as in (38) using the bootstrap sample and denote it by m̄∗b,`(θ).

(b) Construct the Bootstrap test statistic

T ∗b (θ) ≡ max
1≤`≤k

√
n(m̄∗b,`(θ)− m̄n,`(θ))

σ̂n,`(θ)
. (46)

(c) Define the quantile of the bootstrap test statistic as

c∗n(1− β, θ) ≡ { conditional 1− β quantile of T ∗b (θ) given {Wi : i ∈ N} }.

(d) Collect the indices of the binding moment inequalities,

L∗n ≡
{

1 ≤ ` ≤ k :

√
nm̄n,`(θ)

σ̂n,`(θ)
> −2c∗n(1− β, θ)

}
. (47)

Step 3 (critical value): Define the critical value of the test as ĉbs
n (1 − α, θ) via the

following steps:

(a) Compute m̄n,`(θ) as in (38) using the bootstrap sample and denote it by m̄∗b,`(θ).

(b) Construct the Bootstrap test statistic

T ∗b,L∗n(θ) ≡

(
max
`∈L∗n

√
n(m̄∗b,`(θ)− m̄n,`(θ))

σ̂n,`(θ)

)
I{L∗n 6= ∅} . (48)
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(c) Define the critical value as the quantile of the bootstrap test statistic,

ĉbs
n (1− α, θ) ≡ {1− α+ 2β quantile of T ∗b,L∗n(θ) given {Wi : i ∈ N}}. (49)

The resulting test is φn(θ) in (7) for Tn(θ) in (39) and cn(1−α, θ) given by ĉbs
n (1−α, θ)

as described in Step 3 above, i.e.,

φn(θ) = I

{
max

1≤`≤k

√
nm̄n,`(θ)

σ̂n,`(θ)
> ĉbs

n (1− α, θ)
}
.

There exist a number of variations of the bootstrap implementation we just described

that have been discussed in the literature, including the multiplier bootstrap and hybrid

methods, among others. We do not discuss these variations here and refer the reader to

Chernozhukov et al. (2019) and Bai et al. (2019) for additional details.

Remark 5.4. The bootstrap, in general, should not be expected to provide an asymp-

totic refinement in models defined by moment inequalities. However, extensive numerical

evidence in a variety of papers do tend to show that the bootstrap approximation tends

to be more accurate than approximations that are simply based on asymptotic normal-

ity, as it is the case in (42). In fact, Chernozhukov et al. (2019, Theorem 4.3) show that

when all the moment inequalities are binding, the asymptotic size of the tests based

on bootstrap methods coincides with the nominal size α; i.e., they are asymptotically

non-conservative.

Remark 5.5. The literature on inference in moment inequalities has also considered

other types of approximations to the asymptotic distribution of the test statistic, most

notably subsampling; see Romano and Shaikh (2008) and Andrews and Guggenberger

(2009). Subsampling has the advantages of automatically delivering moment selection

and so it is usually implemented in one step: in fact, it is algorithmically the same as

its implementation in other, perhaps more traditional, models. It does require the re-

searcher to choose a subsample size, i.e., a number b that is smaller than n and satisfies

b → ∞ and b/n → 0 and so, in this sense, it involves a drifting tuning parameter. In

simulation studies, subsampling appears to work well for an appropriately chosen sub-

sample size, but may behave poorly in finite samples for other choices of the subsample

size. Since good data-dependent rules for choosing b are not currently well developed,

we do not devote much attention to subsampling critical values in this paper.

6 Confidence intervals

Up until this point we discussed how to test the hypothesis Hθ : E[m(Wi, θ)] ≤ 0 for

a given value of θ using the test φn(θ). The duality between hypothesis testing and
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confidence regions then leads to an immediate characterization of a confidence region

for θ, simply by collecting all values of θ ∈ Θ that are not rejected by φn(θ), i.e.,

Cn ≡ {θ ∈ Θ : φn(θ) = 0} .

Note that, as opposed to more traditional settings where the parameters of interest are

point identified and asymptotically normally distributed, the confidence region Cn is

not generally available in closed form and is difficult to report as soon as the dimension

of θ is larger than 2. However, researchers are often mostly interested in marginal

confidence intervals for individual coordinates of θ, either to follow the tradition of

standard t-test-based inference or because only few individual coordinates of θ are of

interest. The dominant practice consists indeed in a projection of Cn into some, or all, of

its coordinates due to be the fact that such objects can be readily reported in standard

output tables. Concretely, the marginal confidence interval for the sth coordinate of θ

is given by

Cs
n ≡

[
min
θ∈Cn

c′θ,max
θ∈Cn

c′θ

]
,

where c is a vector in Rdθ that selects the sth coordinate. Computing Cs
n takes Cn as

an input, and so it still requires to “invert” the test φn(θ) by evaluating φn(θ) over all

possible values θ takes to then collect the values that are not rejected. Importantly,

even in cases where Cn satisfies (3) with equality, the projected confidence interval Cs
n

is typically conservative in the sense that its asymptotic coverage for θs exceeds the

normal level 1− α.

Test inversion is conceptually simple, but when it comes to computational consider-

ations it presents several challenges to practitioners that are often difficult to address.

There are at least three alternative that have been widely discussed and used in the

literature to compute Cn and Cs
n. The first one is grid search. When the dimension

of θ is low, a natural way to tackle this problem is by a simple grid search over Θ.

Mechanically, the analyst defines a finite set of points in Θ to evaluate φn(θ), denotes

such a grid by Θgrid, and then collects all the points in Θgrid that are not rejected, i.e.,

{θ ∈ Θgrid : φn(θ) = 0} .

In the specification of Section 8.2 where θ is two-dimensional, we consider a grid with

1401 points for each of the two dimensions of θ, leading to a grid Θgrid with 14012 ≈
2 × 106 evaluation points. While this is certainly tractable and reliable in low dimen-

sional settings, a grid search does not scale up well with the dimension of Θ. This is

relevant even for moderate dimensions of Θ, as the number of evaluations points grows

exponentially with dθ (i.e., in our case it leads to 1401dθ). We deal with this problem in

one of the alternative specifications of Section 8.2, where dθ = 6 and where we instead

opt to construct Cs
n by solving two non-linear optimization problems as we discuss next.
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Finally, in addition to the scaling of the computational complexity, grid search may lead

to confidence regions that are non-convex even if Θ0(P ) is a convex set.

The second alternative is to obtain Cs
n directly by optimization. To be concrete, let

c be a vector in Rdθ that selects one of the coordinates of θ; e.g., c = (1, 0, . . . , 0) would

be the vector that selects the first coordinate of θ. When c selects the sth coordinate

we may construct Cs
n by solving the following two optimization problems,

min
θ∈Θ

c′θ subject to Tn(θ) ≤ cn(1− α, θ) (50)

max
θ∈Θ

c′θ subject to Tn(θ) ≤ cn(1− α, θ) . (51)

These problems are generally non-convex, which introduces non-trivial computational

challenges. For example, there may not be guarantees that global optima is achievable

independently of the starting values used by the optimization algorithm; a point we

discuss further in Section 8.2. There are of course settings where these problems are

indeed convex and, in fact, even linear. For example, when Tn(θ) is linear in θ and

cn(1 − α, θ) does not depend on θ, these two problems are not only tractable but can

also be solved quite fast with modern computational resources; see Gafarov (2019); Cho

and Russell (2018); Andrews et al. (2019) for recent examples along this line. Even when

Tn(θ) is not linear in θ, the computational burden could be reduced by considering a

critical value cn(1 − α, θ) that does not depend on θ, as it is for example the case

when cn(1−α, θ) is the least favorable critical value ĉlf
n,k(1−α, θ) defined in (41) with α

replacing β. Approximating the critical value following Kaido et al. (2019), as we discuss

in the next section, is another way to reduce the number of evaluation points of cn(1−
α, θ). In the empirical application in Section 8, we found the optimization problems in

(50) and (51) to be generally well behaved across languages (Matlab, Python, R) and

consistent with a simple grid search. The notable exception was when the parameter θ

was a non-linear function of other parameters, as in Section 8.2.3, where the results for

θ1(µ) and θ2(µ) all led to different results in Matlab, Python, and R.2 This illustrates

the difficulties with blindly relying on (50) and (51) in non-linear settings.

Finally, a third alternative is to use an approach that directly computes a confidence

interval for each coordinate θs without computing Cn in the first place; an approach

known as subvector inference and that leads to confidence intervals that we denote by

C̃s
n. A full description of the existing methods to construct C̃s

n requires us to introduce

significant additional notation, so we instead refer the reader to the original references

in the next section. We note, however, that in some specific settings, including our

empirical application, the structure of the model is such that the moment inequalities

affecting each coordinate of θ are non-overlapping. That is, the vector of moment

2The codes in our Github repository https://github.com/iacanay/guide-inequalities replicate
these results with simulated data.
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functions in (29) admits the partition

m(Wi, θ) = (m1(Wi, θ1)′, . . . ,mdθ(Wi, θdθ)
′)′ ,

where each set of moments in ms(Wi, θs) only depend on θs, for s ∈ {1, . . . , dθ}. Sub-

vector inference in this special case can be easily done by following the same steps de-

scribed in Section 5 separately and sequentially for each of the non-overlapping moments

ms(Wi, θs). We illustrate this approach in Section 8.1. Leaving aside computational con-

siderations, using subvector inference to construct C̃s
n is generally expected to provide

narrower confidence intervals for each coordinate relative to Cs
n or, conversely, project-

ing a confidence region Cn for the vector θ into each of its coordinates θs is known to

lead to conservative confidence intervals.

Taking stock, constructing confidence regions becomes more difficult as the dimen-

sionality of θ grows and this introduces a trade-off that researchers commonly face. On

the one hand, using a richer model that controls for many observable characteristics

and brings flexibility to variable profit specifications provides certain reassurances that

key assumptions, like Assumption 3.1, are likely to hold. But since they increase the

dimensionality of θ, the computational burden associated with such additional flexibility

increases. On the other hand, a researcher that keeps the dimensionality low in order

to keep the computational burden under control is more likely to question the credibil-

ity of key assumptions and be concerned about misspecification. Since the presence of

flexible structural error terms like Vi,j alleviates misspecification concerns, we advocate

that researchers work with low-dimensional specifications of the parameter of interest

and compensate such simplicity with explicit and flexible assumptions on the structural

error term, along the lines of assumptions like Assumption 4.2.

6.1 Why? Computational Considerations

The computational challenges associated with inference in moment inequalities models

are perhaps one of the main reasons that prevent a broader adoption of these methods in

empirical work. As a result, whereas in the previous sections there were typically several

alternatives to the specific choices we make in this paper, when it comes to computational

tricks to compute Cn the number of existing alternatives are significantly reduced and

restricted to essentially some very recent work in the area. We believe that some of these

recent developments look quite promising, but we decided to stick to the “bread and

butter” approach to computing confidence intervals in our empirical application given

that: (a) this approach applies to a broad range of applications (taking the limitations

on dimensionality as given), and (b) it is unclear to us, as of today, which one of the new

methods we describe below will get traction in a wide range of applications. We instead

discuss some of the most recent papers that we believe contribute to the computational
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challenges in concrete ways, without delving into the details that are required for the

computational gains to kick in.

The literature on inference in conditional and unconditional moment inequalities has

recently devoted significant attention to methods, models, and empirical settings that

are aimed at reducing the computational challenges that are well known by practitioners

in one way or another. Some of these papers present methods that are intended to reduce

the computational cost for moment inequality models like those in (1) without imposing

additional structure on the moment functions m(W, θ). Within this class of papers,

Bugni et al. (2017), Kaido et al. (2019), and Belloni et al. (2018) proposed methods

that are computationally attractive in settings where only a few components of the

vector θ are of interest. This is known as a subvector inference problem, where all of

the parameters that are not the main parameter of interest are “profiled-out”, leading

to a test statistic and a critical value that are a function of only the coordinate of

interest. These approaches not only typically lead to some degree of computational gains,

but they also lead to confidence intervals that are less conservative than projections of

the joint confidence regions for the entire vector θ into each of its coordinates. In

particular, Kaido et al. (2019) propose confidence intervals for moment inequalities

models based on calibrated projections and the so-called E-A-M algorithm, which is

related to the family of expected improvement algorithms described in Jones (2001).

The authors show that calibrated projections could reduce the computational burden

of constructing confidence intervals for θ to a significant extent, as well as providing

numerical evidence that adapting the E-A-M algorithm to existing methods could also

reduce computational time; see Kaido et al. (2019, Appendix C). Another proposal

to improve the computational burden has been to combine frequentists and Bayesian

tools, though in most cases these connections have been developed for confidence sets

for Θ0(P ) satisfying (8), as discussed in Section 2. Along these lines, Chen et al. (2018)

propose to compute critical values using quantiles of the sample test statistic Tn(θ) in

(39) that are simulated from a quasi-posterior distribution, which requires a prior over

the parameter space Θ. The goal of this approach is to benefit from the many existing

algorithms, like MCMC or SMC, that are well-developed in the literature on Bayesian

computation. Finally, other recent contributions where much of the emphasis relies on

improving computational tractability include Cox and Shi (2019) and Syrgkanis et al.

(2017).

More recently, several papers have drifted attention to models that impose additional

structure in order to obtain a simpler moment function m(W, θ) that, in turn, can be

exploited to improve computational times. This second class of papers has mostly

focused on settings where the moment function m(W, θ) admits a linear representation

as a function of θ. For example, Gafarov (2019); Cho and Russell (2018); Andrews

et al. (2019) all propose novel methods that exhibit a higher degree of computational
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tractability when the model involves linear moment inequalities. Despite such linear

requirements, these methods are relevant in several empirical settings, including some

of the parametrizations we consider in Section 8. Finally, we note that in certain simpler

models that were prominent in the early developments of the literature it is even possible

to obtain the confidence region Cn in closed form (thereby avoiding the computational

challenges previously mentioned altogether). A prominent example of such models are

linear models with missing values in the outcome variable, as those studied by Imbens

and Manski (2004) and Stoye (2009), among others.

Remark 6.1. Applied researchers are often interested in moving beyond inference on θ

in order to study some type of counter-factual analysis, such as simulating equilibrium

impacts in alternative settings. While moving to counter-factual analysis introduces

certain new challenges, the specifics of their impact may be tightly connected to the

details of the particular empirical application under consideration. We therefore go over

the current practice and offer some guidance on how to conduct counter-factuals in

Section 9, within the context of our empirical application.

7 Empirical Application: Preliminaries

Our empirical application focuses on The Coca Cola Company’s acquisition of Energy

Brands in May 2007 for US$ 4.1 billion. Prior to the acquisition, Energy Brands (also

known as Glaceau) sold products under the Glaceau Smartwater and Vitaminwater

brands. In turn, The Coca Cola Company produced Dasani water, Powerade sports

drinks, and Minute Maid juices, as well as carbonated soft drinks. One potential benefit

of this acquisition is that Energy Brands would be able to harness Coca Cola’s distri-

bution network, allowing them to enter new markets or to introduce new products to

currently served markets. We aim to compare Energy Brands’ and Coca Cola’s pre-

acquisition sunk cost of selling a product in a market. The setting directly fits into the

behavioral decision model in Section 3 and the moment inequalities in Section 4.

It is important to note that the point of this paper is not to document the effects of

this acquisition, or to make welfare statements. Rather, we study this setting because it

helps us shine a brighter light on certain decisions that can be opaque when addressed

without an empirical example in mind. Our aim is to guide practitioners on how to use

moment inequalities to answer questions such as this one. We do not claim that any

estimates below are informative for antitrust policy.

Throughout the rest of this section and the next, we treat the bottled water and fruit

drinks market as the relevant product market for the analysis. This implies that the we

will limit ourselves to estimating demand and supply equations for products included

in Nielsen’s Bottled Water, Fruit Drinks - Canned, and Fruit Drinks - Other Container

31



modules. For the merging parties, these modules contain the products sold under the

Dasani, Powerade, Glaceau Smartwater and Vitaminwater brands. This decision implies

that we will not model substitution and pricing spillovers to other markets where Coca

Cola operates, such as carbonated soft drinks and fruit juices. This market definition

allows us to keep demand and supply estimation fairly simple, and is not out of line

with typical practice in industrial organization. For example, recent papers using the

Nielsen data that define markets in a similar fashion include Atalay et al. (2020); Brand

(2021) and Döpper et al. (2022).

7.1 Data Construction

We work with price and quantity data obtained from the NielsenIQ Retail Scanner

Dataset. This dataset provides scanner data from over 30,000 grocery, drug, and mass

merchandise stores in 205 designated market areas (DMAs) throughout the United

States. For each universal product code (UPC), NielsenIQ provides sales at the store-

week level along with the average price at which the product was sold. We also observe

a number of product characteristics, such as size and flavor. We restrict our analysis

period to 2006 and the pre-merger months in 2007, a window of around 1.5 years.

We restrict our attention to the main products in the product market, as estimating

demand and supply models including all products is likely intractable. This is a common

practice when working in markets with a long tail of products with small shares - for

example, Nevo (2001); Miller and Weinberg (2017) and Miravete et al. (2018) all make

similar restrictions. In particular, we restrict attention to UPCs that have a market

share of at least 1% in at least one DMA-month during our sample period. This leaves

us with 212 UPCs and 52 brands, which are owned by 34 firms. Across the DMA-

months in our sample, the median fraction of sales that is attributed to these J = 212

products is 69%, with the 10th percentile being 60%. We obtain ownership information

at the monthly level for each of these products from Euromonitor Passport. Table A.1

in Appendix A presents summary statistics for the 10 best-selling UPCs in our sample,

as well as for the next 5 top-selling Coca Cola and Energy Brands products.

7.2 Estimation of Variable Profit

In order to evaluate the moment functions in (27) and (28), we need estimated variable

profit differentials ∆j r̂s,i(Oi), a value for the bounds on the structural error component

V̄ , and the parameter of interest θs. In this section we discuss the most relevant consider-

ations behind the estimation of variable profit differentials, including statements of some

additional assumptions that are required to properly estimate demand and recover vari-

ables affecting demand and marginal costs that are unobserved to the econometrician.
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Further details are presented in Appendix B.1. We leave the discussion on the choice of

V̄ for Section 8, when we move to issues that are specific to moment inequalities.

To estimate variable profit differentials we rely on the standard supply and demand

estimation framework in industrial organization. That is, we posit a demand system,

make a conduct assumption regarding how firms set prices, and invert first order condi-

tions of the pricing game to recover marginal costs. One of the features of this approach

is that it requires the existence of product-market level demand and cost unobservables;

see Berry and Haile (2021) for a discussion of the critical role these unobservables play.

This, in turn, means that in order to compute counter-factual values of variable profit

(and thus obtain the differentials) we need to introduce a few additional assumptions

to be consistent with Assumption 3.1. Below we introduce these assumptions formally

and discuss why they are needed.

Assumption 7.1. Variable profits admit the representation

rs,i(Oi) =
∑
j∈Js

MiDi,j(pi,j − ci,j(ωi,j))si,j(pi, Di, Xi, ξi) , (52)

where Mi is the market size for market i, pi,j is the price of good j in market i, ci,j(ωi,j) is

the marginal cost of selling good j in market i given a cost shock ωi,j, and si,j(pi, Di, ξi) is

the market share of good j in market i given a price vector pi ≡ (pi,j : j ∈ J ), and vectors

of product characteristics that are observed and unobserved to the econometrician, Xi =

(Xi,j : j ∈ J ) and ξi = (ξi,j : j ∈ J ), respectively.

Assumption 7.2. Firms make product offering and pricing decisions in a two-stage

game. In the first stage, firms decide on product offerings with common knowledge re-

garding market and product characteristics Xi, the demand function si(·) for any product

offering portfolio, the distribution of marginal cost shocks ωi,j, and the distribution of

product characteristics.

First stage: firms choose a product portfolio to maximize

E[πs,i(Oi)] = E

∑
j∈Js

MiDi,j(pi,j − ci,j(ωi,j))si,j(pi, Di, Xi, ξi)−Di,jei,j(θ) | Is

 .
Second stage: firms observe product offerings and the realizations of ξi,j and ωi,j for

each j ∈ J that is offered in market i ∈ N . Provided products are offered, ξi,j and ωi,j

are common knowledge across firms. Firms then play a Nash-Bertrand pricing game,

setting prices in each market i to solve

max
{pi,j :j∈Js}

∑
j∈Js

MiDi,j(pi,j − ci,j(ωi,j))si,j(pi, Di, Xi, ξi) . (53)

Assumption 7.1 imposes that marginal costs are constant and defines how variable
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profits are calculated. Assumption 7.2 is more nuanced. In the first stage of the game

ξ and ω have not yet been realized, but their distributions are assumed to be known by

the firms and unknown to the econometrician. In the second stage the realizations of ξ

and ω are only known by firms for products that are offered, and this leads to a situation

where the econometrician can only identify, or recover estimates of, these unobservables

for products that are offered. This introduces a challenge, as computing one product

deviations that add products to a market requires estimates of these unobservables for

products that are not offered. Given the assumption that these unobservables are not

realized in the first stage, we obtain that firms cannot select on them when making

product variety decisions. It then follows that the estimated ω and ξ conditional on

products being offered are also informative of ω and ξ for products that are not offered.

Remark 7.1. The fact that unobservables are not known for out-of-sample products is a

common issue in the industrial organization literature; see Nevo (2003) for a discussion.

In general, what is required is either a model for out of sample unobservables, as we do

next, or a modification of Assumption 3.1 that turns Ui,j into a structural unobservable,

i.e., where the expectation of Ui,j conditional on the product offering decision is not

equal to the unconditional expectation.

Given these assumptions, we can estimate demand and recover the vector of realized

ξi,j for each product j ∈ J that is offered in market i ∈ N . While this step can be done

in a variety of ways, we use a nested logit specification as described in Appendix B.1.

The first order conditions for the pricing game can then be inverted to recover marginal

cost realizations ci,j(ωi,j) and, given these realizations, the vector of realized ωi,j can be

recovered; see Appendix B.2 for details. Armed with these realizations, we assume the

following.

Assumption 7.3. A market i is a combination of a DMA a and a month t, so that i =

(a, t). The model for product characteristics that are unobserved by the econometrician

is

ξi,j = ξj,a + ξa,t,j where E[ξa,t,j |pa,t,j , ξj,a] = 0 and ξa,t,j ⊥ Di .

The model for marginal cost realizations is

ln(ca,t,j) = ωj,a + ωa,t,j where E[ωa,t,j |ωj,a] = 0 and ωa,t,j ⊥ Di .

The restrictions on the distribution of these unobservables allows us to use the

empirical distribution of ξa,t,j and ωa,t,j for offered products as the empirical distri-

bution for products that are not offered. More precisely, recall that Assumption 3.1

requires ∆j r̂s,i(Oi) = E[∆jrs,i(Di)|Is] + Ui,j , with E[Ui,j |Di,j ] = E[Ui,j |Is] = 0. Since

E[∆jrs,i(Di)|Is] = E[rs,i(∂jDi)|Is]−E[rs,i(Di)|Is], to calculate expected variable profits

for a given product portfolio we draw from the empirical distribution of ξj,a + ξa,t,j and
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of ωj,a + ωa,t,j , solve for optimal prices given these draws, and compute variable profits

following (52). Appendix B.3 contains all remaining details.

Remark 7.2. Assumption 7.3 is internally consistent with the rest of the model only

if firms do not observe ξa,t,j and ωa,t,j before deciding on product offerings. Otherwise,

these decisions will be a function of the values of these unobservables, and the conditional

distribution will differ from the unconditional.

8 Empirical Application: Moment Inequalities

We now return to the moment functions defined in (27)-(28), which we re-state here for

readability:

ml
j(Wi, θ) =

((
∆j r̂s,i(Oi)− θs

)
(1−Di,j)− V̄ Di,j

)
h(Zi,j)

mu
j (Wi, θ) =

((
∆j r̂s,i(Oi) + θs

)
Di,j − V̄ (1−Di,j)

)
h(Zi,j) .

The previous section explained how to compute variable profit differentials ∆j r̂s,i(Oi).

This section describes our approach to dealing with V̄ and discusses the role of instru-

ments Zi,j . We then describe and discuss alternative approaches.

Before moving on, it is important to note that the parameter θs only enters into

moments associated with the Js products offered by firm s and that these moments do

not depend on θs′ or Js′ for s′ 6= s. Since our goal is to compare the expected sunk

costs of offering a product in a market for Coca-Cola and Energy Brands, denoted by

θ1 and θ2 respectively, this implies that we do not need to estimate θs for s > 2. As

a consequence, the total number of relevant products becomes 31, which amounts to

the products offered by these two firms, and the total number of moment inequalities is

62 = 31× 2 when h(Zi,j) = 1, i.e., there are no instruments. From here on, J = 31 and

J = J1∪J2. This contrasts with the 212 products that we used to estimate ∆j r̂s,i(Oi).

Note, however, that the same methodology could be used to estimate expected sunk

costs for any other firm in the market.

8.1 Main Specification and Results

Our parameters of interest are θ1 and θ2, the expected sunk costs of offering a product

in a market for Coca-Cola and Energy Brands, respectively. Since there are two moment

inequality functions for each product, this leads in theory to 62×NZ moment inequalities,

where we denote the number of instruments by NZ . In practice, however, there are fewer

moment inequalities since some Coca Cola products are offered in all markets and so

ml
j(Wi, θ) = 0 for all i ∈ N for such products. A product that is always offered is

a product whose expected marginal contribution to variable profit always covers the
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expected sunk cost. Thus, it delivers information about an upper bound for sunk cost

but is uninformative about a lower bound. Because of this, we ignore lower bound

moments for products that are always offered. This leaves us with 41 moments for Coca

Cola and 14 moments for Energy Brands, for a total of 55×NZ moment inequalities.

We construct confidence intervals for θ1 and θ2 following the steps described in

Section 6, using projections of the 2-dimensional confidence region for θ = (θ1, θ2) into

each of its coordinates, as well as using subvector inference for each coordinate separately.

In the case of projections, we operationalize a grid search over θ in two steps. In the

first step, we use a grid between −40, 000 and 100, 000 dollars in steps of 1, 000 for each

coordinate and evaluate the firm’s moment functions for each value in the grid. This

leads to 1412 evaluation points. In the second step, we refine the grid in steps of 100

dollars around the bounds obtained in the first step. This adds an additional 40, 000

evaluation points. For each value in the grid, we compute the test statistic in equation

(39), and compare it to the critical value cn(1 − α, θ) defined in equation (42), with

α = 0.05. We also compute confidence regions using the bootstrap variant of the test

statistic introduced in Section 5.2. One convenient feature of the setting we consider

in this application is that the expected variable profit differentials are not a function

of θ and, as a result, they can be computed once and saved, rather than re-computed

for different θ values. In the case of subvector inference, we exploit another convenient

feature of our setting that simplifies the inference problem. Each moment is only a

function of a particular firm’s θ, but not of both. This implies that one can separate

the problem into two: the problem of estimating Coca-Cola’s expected sunk costs and

the problem of estimating Energy Brand’s expected sunk costs. We then operationalize

the grid search over each θs using a grid between −40, 000 and 100, 000 dollars in steps

of 100, leading to 1401 evaluation points for each θs; a substantial reduction relative to

the projection approach. This approach, which we label “partitioning”, is analogous to

the subvector inference approach we discussed in Section 6.1.

Table 1 presents results for Coca Cola’s and Energy Brands’ sunk costs for two values

of V̄ : 500, 000 dollars and 1 million dollars per product-month. Panel A presents results

for projections and Panel B presents results for partitioning. As expected, projections

into individual coordinates are expected to be conservative and so the results in Panel

B show narrower confidence intervals relative to those in Panel A, but not by much.

The computational gains of exploiting the partitioning feature present in our setting

are remarkable, cutting down computing time by a factor of 10. Under the first value

of V̄ , for the self-normalized version of the critical value (as defined in (42)), we find

a confidence interval for Coca Cola’s sunk cost of offering a product in a given city

in a particular month of between −3, 200 and 27, 000 (Panel B). Using the bootstrap

version of the critical value (as defined in (49)) yields a slightly narrower interval of

between 4, 300 and 23, 300 (Panel B). The cost of this improvement is a 2.5 times longer
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run time. However, we can still recover these bounds in roughly 4 seconds, which

illustrates the convenience of having separability of moments in θ and working with

a model where the dimensionality of θ is small. In general, researchers working with

relatively low-dimensional models would benefit from using the bootstrap version of the

critical value. The confidence region is much less informative for Energy Brands, where

the expected sunk cost is between −40, 000 and 41, 900 (Panel B). Since −40, 000 is the

lower bound of our grid, we do not find an informative lower bound on Energy Brand’s

sunk cost. Turning to results when V̄ = 1, 000, 000, we find that the upper bound of the

confidence region for Coca Cola products is slightly higher. However, the lower bound for

Coca Cola products falls significantly, and the upper bound for Energy Brands products

increases substantially. This illustrates that Assumption 4.2 plays an important role and

highlights that dealing with structural unobservables in these types of models requires

making assumptions that can drastically affect empirical estimates. Thus, empirical

researchers using these tools should state their assumptions clearly, discuss why they

are sensible, and document how results change as these assumptions are relaxed. The

last column in Table 1 reports computational time in seconds, accounting for the fact

that we carried all our computations using Northwestern’s High-Performance Computing

(HPC) cluster, Quest.3

Figure 1 presents the same results in Panel A of Table 1 in graphical form. In this

figure, blue points denote the 95% confidence set obtained using self-normalized critical

values, while red points denote the set obtained using bootstrap critical values.

(a) V̄ = 500 (b) V̄ = 1000

Figure 1: 95%-confidence regions for θ1 and θ2 as reported in Panel A of Table 1.

3Concretely, each row of each table were computed in one Intel Xeon Gold 6132 2.6 GHz node with
28 cores (3.4 GB GB memory per node); see exact specifications at https://www.it.northwestern.

edu/departments/it-services-support/research/computing/quest/specs.html.
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Crit. Value θ1: Coca-Cola θ2: Energy Brands Comp. Time

Panel A: Projections

V̄=500 self-norm [ -4.8 , 27.8] [-40.0 , 45.9] 16.8

bootstrap [ 0.7 , 25.1] [-40.0 , 43.4] 49.4

V̄=1000 self-norm [-33.9 , 33.1] [-40.0 , 79.0] 19.3

bootstrap [-26.6 , 30.0] [-40.0 , 74.5] 58.7

Panel B: Partitioning/Subvector

V̄=500 self-norm [ -3.2 , 27.0] [-40.0 , 41.9] 1.6

bootstrap [ 4.3 , 23.3] [-40.0 , 39.4] 4.0

V̄=1000 self-norm [-31.8 , 32.2] [-40.0 , 71.9] 1.7

bootstrap [-23.3 , 28.9] [-40.0 , 67.5] 3.9

Table 1: 95%-confidence intervals for θ1 and θ2. The self-normalized and bootstrap critical
values are defined in (42) and in Section 5.2, respectively. The parameter space for both param-
eters is [−40, 100] where units are in thousands of US dollars. Computational time is presented
in seconds. Panel A presents results by projecting a 2-dimensional confidence region and Panel
B presents results by partitioning moments for each θs.

Remark 8.1. In many settings, economic theory provides restrictions on the parameter

space Θ that should be accounted for when computing confidence sets. For example, in

this application it is natural to restrict θ to be non-negative. We, however, decided not

to impose this restriction for pedagogical reasons, as it allows us to better illustrate how

our results change as V̄ changes and as instruments are brought in.

8.2 Why? Alternative Specifications

Having established baseline results, we now highlight three topics for further discussion.

First, the bounds obtained in the previous section are quite large, and it is natural to

ask whether instruments can be used to tighten them. We explore how instruments

change our results, and highlight some common issues in the first subsection. Second,

we explore the implications of ignoring selection bias in the structural unobservable

by setting V̄ = 0, as well as ways to deal with misspecification by re-centering test

statistics or by using more recent misspecification robust methods. Finally, we discuss

challenges that arise when estimating more complex models where the specification for

the expected sunk cost of offering a product includes covariates. In order to keep tables

concise, we only present results for the case where we partition the moments for each

θs, so the results below are comparable with those in Panel B of Table 1.
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8.2.1 Instrumental Variables

Equations (27) and (28) highlight that instruments operate as weights in this setting,

increasing the importance of the value of the moments for some observations relative

to others. This may lead to tighter bounds. In applications similar to the one we con-

sider here, the natural instruments are demand shifters such as market demographics

(Ho, 2009; Pakes et al., 2015), as one can argue that these shift expected variable profit

without shifting sunk costs. Other commonly used instruments are product character-

istics, either from the same firm or its competitors (Ho, 2009; Wollmann, 2018). The

rationale behind such instruments is that sunk costs of offering a product do not vary

as a function of the product’s characteristics, or of the characteristics of what rivals are

offering, while variable profits do. Naturally, whether these arguments are reasonable

or not is specific to the setting of interest. Finally, shifters of marginal cost that do not

shift the structural unobservable also serve as valid instruments but, again, whether or

not a given candidate variable would satisfy these condition is context-dependent. In

this section we present results based on market demographics and then discuss other

alternatives briefly.

Let Zi,j = (Z
(1)
i , Z

(2)
i , Z

(3)
i )′ be a vector of the following three random variables at

the market level: (a) employment rate Z
(1)
i , (b) average income in market Z

(2)
i , and (c)

median income Z
(3)
i . The four instruments we use in this section are the following:

h(Zi,j) = {constant, Z
(1)
i , I{Z(2)

i > median(Z
(2)
i )}, I{Z(3)

i > median(Z
(3)
i )}} . (54)

We work with binary instruments in the cases of Z
(2)
i and Z

(3)
i following standard

practice, e.g., Ho (2009); Holmes (2011); Eizenberg (2014); Wollmann (2018); Houde

et al. (2023). There are three features of working with indicator variables as instruments

that are worth highlighting. First, in the case of binary instruments working with

unconditional expectations (or moments) is equivalent to working with conditional ones,

up to scalar multiplication. To see this, suppose that m(W, θ) = g(O, θ)I{Z ∈ A} for

some event A and note that

E[m(W, θ)] = E[g(O, θ)|Z ∈ A]P{Z ∈ A} ∝ E[g(O, θ)|Z ∈ A] .

This means that binary instruments are isomorphic to models that do not use instru-

ments but instead take expectations of the moment functions conditional on subsets

of the data. For example, taking expectations over equations (27) and (28) separately

for markets with average income above/below the national median is identical to using

indicators for average income above/below the national median as instruments. The

flip-side of this argument implies that the common practice of computing averages using

only certain subsets of the data is equivalent to using indicators for such subsets as
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instruments and thus should be followed by a discussion of whether such an instrument

should be expected to be valid or not.

Second, binary instruments lead to simple intuition for their relevance (or power)

but may trap researchers into focusing too much on instrument relevance while putting

instrument validity at risk. To see this point, let Na,j ≡ {i ∈ N : Di,j = a} and

manipulate (27) to see that the binary instrument I{Z ∈ A} produces a tighter lower

bound whenever∑
i∈N0,j

∆j r̂s,i(Oi)I{Zi,j ∈ A} − V̄
∑

i∈N1,j
I{Zi,j ∈ A}∑

i∈N0,j
I{Zi,j ∈ A}

(55)

is high. That is, instruments that place higher weight on observations associated with un-

served markets with larger estimated variable profit gains from counter-factually adding

the product will lead to a tighter lower bound for the parameter θ. This insight may

lead to a practice where researchers search for events A that mechanically lead to the de-

sired higher weights, while ignoring the important property in Assumption 4.1 that the

instrument, I{Zi,j ∈ A}, must be mean independent from the error Ui,j associated with

the estimation of the variable profit differentials; i.e., E[Ui,j |Zi,j ∈ A,Di,j ] = 0. These

two requirements on the instruments introduce tension and illustrate the challenges in

finding instruments that are both informative and valid. An analogous phenomenon

arises with the upper bound on θ.

Finally, when dealing with binary instruments of the form I{Zi,j ∈ A}, it is advised

to report sample sizes for every moment that uses an indicator variable as an instrument,

or at least the minimum sample size over all the moments. This is due to the fact that

it is not unusual for the events I{Zi,j ∈ A,Di,j = 1} or I{Zi,j ∈ A,Di,j = 0} to happen

with low probability for some j ∈ J , and all the formal arguments behind the desirable

properties of the inference methods described in Section 5 rely on proper law of large

numbers and central limit theorems for each of the moments.

Table 2 presents 95% confidence intervals for θ1 and θ2 using the instruments in

(54). Similarly to Table 1, we present results for two values of V̄ and two critical values

(self-normalized and bootstrap). Note that the number of moment inequalities increases

linearly with the dimension of the instruments, NZ , and this means that there are 55

moment inequalities in Table 1 and 220 in Table 2. The immediate consequence is

that the least favorable critical value, ĉlf
n,k(1− β, θ) in (41), increases as the number of

inequalities, k, gets larger and the self-normalized critical value ĉts
n (1−β, θ) in (42) (that

includes moment selection) also increases due to the increase in k̂n. If the instruments are

not very powerful, this means that adding instruments to the baseline specification may

not lead to tighter inference, as it is the case in Table 2 here. In the case of Coca-Cola,

the confidence interval gets wider for both values of V̄ for the self-normalized critical

value, whereas for Energy-Brands only the upper bound is affected since the lower bound
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Crit. Value θ1: Coca-Cola θ2: Energy Brands Comp. Time

V̄ = 500 self-norm [-11.5 , 31.1] [-40.0 , 45.7] 18.0

bootstrap [ 4.3 , 23.3] [-40.0 , 39.4] 24.0

V̄ = 1000 self-norm [-40.0 , 36.9] [-40.0 , 78.6] 17.2

bootstrap [-23.3 , 28.9] [-40.0 , 67.5] 23.4

Table 2: 95%-confidence intervals for θ1 and θ2 using a constant and indicators variables based
on demographics (employment rate, average and median household income) as instruments. The
self-normalized and bootstrap critical values are defined in (42) and in Section 5.2, respectively.
The parameter space for both parameters is [−40, 100] where units are in thousands of US dollars.
Computational time is presented in seconds. The minimum sample size over all the moments
that use an indicator variable is 99.

was already uninformative in Table 1 and the additional instruments did not bring

additional identification power. When it comes to the bootstrap critical value, Table 2

illustrates how the bootstrap may be less affected by the presence of additional (and

mostly uninformative) moments and leads to confidence intervals that are essentially

identical to those in Table 1.

While the instruments in (54) do not lead to tighter inference on θ1 and θ2, they lead

to some important takeaways. First, they highlight that the computational benefits of

simple and fast critical values, like the self-normalized ones, usually comes at the cost

of conservative inference and so variants like the bootstrap are worth considering when

the computational burden is manageable. Second, the instruments Zi,j are required to

satisfy Assumptions 4.1 and 4.2, which illustrates the inter-dependence between the list

of instruments and the value of V̄ in Assumption 4.2.

8.2.2 Setting V to zero and dealing with misspecification

We now consider the results obtained by assuming that there is no structural unobserv-

able V , which is equivalent to assuming V̄ = 0 in Assumption 4.2. In our application we

have assumed that within firm expected sunk costs are homogeneous for all product-city

pairs and so we would expect the model with V̄ = 0 to be misspecified. More generally,

such a model would be misspecified whenever firms take into account more information

than what has been included in the model for sunk costs. As discussed earlier, if a model

with V̄ = 0 is misspecified then this necessarily means that increasing the dimension

of Zi,j would not alleviate the issue, so here we focus on the case where Zi,j is just a

constant.

Table 3 presents three alternative ways to present results in models with V̄ = 0.
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Test Stat. Crit. Value θ1: Coca-Cola θ2: Energy Brands Comp. Time

CCK self-norm [ 16.0 , 25.0] [ -1.0 , 17.9] 3.0

RC-CCK self-norm [-11.3 , 48.9] [ -1.0 , 17.9] 12.7

RC-CCK bootstrap [-11.7 , 45.0] [ -1.2 , 16.5] 14.4

RC-CCK SPUR1 [-40.0 , 100.0] [ -2.8 , 58.0] 14.6

Table 3: 95%-confidence intervals for θ1 and θ2 assuming V̄ = 0 (no structural unobservable).
† reports θ that minimizes the test statistic instead of an empty confidence interval. CCK and
RC-CCK are the max test statistic in (39) and its re-centered version, respectively. The self-
normalized, bootstrap, and SPUR1 critical values are defined in (42), in Section 5.2, and in
Section C, respectively. The parameter space for both parameters is [−40, 100] where units are
in thousands of US dollars. Computational time is presented in seconds.

The first row presents results that are analogous to those in Table 1. The model leads

to tighter confidence regions for both companies, relative to Table 1. This is consistent

with how model misspecification typically manifests in partially identified models, where

one of two possible situations arise: (a) misspecification may lead to what is known as

spurious precision; i.e., a false sense of precision, as discussed in Andrews and Kwon

(2019), or (b) misspecification may lead to a case where the confidence interval for θs

is empty. When the confidence interval for θs is empty, it is not uncommon for applied

researchers to simply report the value of θs that minimizes the test statistic, though we

argue that reporting an “NA” provides a more accurate characterization of an empty

confidence set in such situations. Here we did not obtain empty confidence intervals,

but rather a situation possibly associated with spurious precision instead. The second

and third rows of Table 3 report confidence intervals associated with a re-centered (RC)

version of the test statistic, using either the self-normalized or the bootstrap critical

values. This is common practice when no parameter value can rationalize the data,

as re-centering, by construction, guarantees that at least one solution exists (i.e., the

point(s) that minimizes the test statistic). To be concrete, the test in this case becomes

φrc
n (θ) = I {T rc

n (θ) > cn(1− α, θ)} for T rc
n (θ) ≡ Tn(θ)−min

θ∈Θ
Tn(θ) .

Importantly, in those situations where the confidence regions without re-centering are

empty, using φrc
n (θ) instead would mechanically lead to a non-empty confidence region.

Table 3 illustrates that inference based on a misspecificed model that imposes V̄ = 0

and uses re-centering may be less informative than a model where V̄ = 500, cf. Table 1 in

the case of Coca-Cola. Table 3 also illustrates that re-centering should not be expected

to alleviate spurious precision in general, as it is the case for Energy Brands (since in

this case minθ∈Θ Tn(θ) = 0). This motivated the recent proposal by Andrews and Kwon

(2019), who take concerns about poor properties of re-centering as a starting point to
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develop a method that changes both the test statistic and the critical value. We report

the results associated with their misspecification robust method, denoted by SPUR1,

in row 4 of Table 3 and present details associated with its implementation in Appendix

C. Overall, confidence regions for this approach are noticeably wider than in the re-

centered versions, highlighting that spurious precision may still be present after a simple

re-centering. Importantly, comparing the first and last row for Energy Brands illustrates

that even in settings where the confidence intervals are non-empty and minθ∈Θ Tn(θ) = 0,

a misspecification robust method like SPUR1 may widen the confidence intervals, see

Remark 8.2 below. Conceptually, in our context this method finds the minimum value of

V̄ that would make all the inequalities hold for some θ and then corrects critical values

to account for the fact that such a value of V̄ is data-dependent (which increases the

critical values). Since we compute our confidence intervals separately for each θs, the

resulting adjustment is different for each θs and the implicit value of V̄ is sufficiently

big that the SPUR1 confidence interval for Coca-Cola ends up being uninformative.

Remark 8.2. There are two features of the method proposed by Andrews and Kwon

(2019) that are worth highlighting. First, it is important to understand that SPUR1 de-

livers a confidence set for the misspecification-robust identified set, which is the minimal

enlargement of Θ0(P ) that makes it non-empty by construction (see (A.14) in Appendix

C). When the model is correctly specified, the two identified sets coincide. Second, while

the method delivers a data-dependent value of V̄ , defined to be the minimum value that

makes all moment inequalities hold, in sample, for at least one value of θ, such data-

dependent value of V̄ does not admit a natural economic interpretation and the true

model could be one with a smaller or larger value of V̄ . An immediate consequence of

this is that while we have illustrated the approach in a setting with V̄ = 0, it should be

clear to the reader that models with V̄ > 0 could also be misspecified and that SPUR1

tests could be considered in those settings. In other words, SPUR1 tests could be con-

sidered in any instance where there are concerns about misspecification and not limited

to cases where the estimated confidence sets are empty.

8.2.3 Alternative specification for sunk costs

The baseline model for sunk costs we use is simple relative to the standards of empir-

ical work. This is intentional, as it lets us focus on implementation issues. However,

researchers may want to have richer models, either because the question of interest

requires it or because dealing with a structural unobservable requires a richer param-

eterization. In this subsection, we discuss a richer parametrization by considering the

following alternative specification

ei,j(θ) = X ′i,jθs + Vi,j ,
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where Xi,j is a vector of the distance between the factory where the product is produced

and the designated market area. We consider both, a linear specification Xi,j = (1, di,j)
′,

and a quadratic specification Xi,j = (1, di,j , d
2
i,j)
′, where distance di,j is measured in

thousands of miles. To illustrate difficulties associated with a larger dimension, in this

section we do not partition the problem for each firm and rather work with all the

moment inequalities and both firms simultaneously; see the discussion in Section 8.1.

This leaves a 4 dimensional parameter in the linear model and a 6 dimensional parameter

in the quadratic model. In practice, we stress that researchers should partition their

models whenever possible.

(a) Initial value = (0,0,0,0,0,0), V̄ = 500, and no IV

(b) Initial value = (10,10,10,10,10,10), V̄ = 500, and no IV

Figure 2: Test statistic and self-normalized and bootstrap critical values as a function of θ.

To find confidence regions for each parameter value, we work with the optimization

problems defined in equations (50) and (51) of Section 6. For example, to find bounds

for θ1 in the linear case, c = (1, 0, 0, 0)′. The main challenge in this setting is the fact

that Tn(θ)−cn(1−α, θ) need not be convex. As a result, minimization techniques geared

for convex problems may not work well. We found it useful to plot the behavior of Tn(θ)

and cn(1− α, θ) when varying a single dimension of θ and holding the others fixed; see

Figure 2. In this setting it appears to be the case that Tn(θ) is sufficiently well behaved

for standard minimization software, such as fmincon or Knitro, to likely find a minimum.

The behavior of the bootstrap version of cn(1− α, θ) is more erratic, and could lead to

local minima. If this is the case, reported confidence regions would be expected to be
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V̄ = 500 V̄ = 1000

parameter linear quadratic linear quadratic

θ1,1 [ -8.3 , 50.1] [ -8.3 , 64.6] [ -38.1 , 55.7] [ -38.1 , 70.2]

Coca θ1,2 [ -20.0 , 37.0] [ -20.0 , 50.0] [ -20.0 , 50.0] [ -20.0 , 50.0]

Cola θ1,3 [ -10.0 , 10.0] [ -10.0 , 10.0]

θ1(µ) [ -32.0 , 35.2] [ -45.7 , 37.1] [ -63.3 , 42.8] [ -75.5 , 42.7]

θ2,1 [ -40.0 , 60.5] [ -40.0 , 66.7] [ -40.0 , 94.8] [ -40.0 , 100.0]

Energy θ2,2 [ -20.0 , 50.0] [ -20.0 , 50.0] [ -20.0 , 50.0] [ -20.0 , 50.0]

Brands θ2,3 [ -10.0 , 10.0] [ -10.0 , 10.0]

θ2(µ) [ -55.0 , 50.0] [ -60.6 , 52.8] [ -55.0 , 86.7] [ -60.6 , 87.0]

Comp. time 29.8 30.9 24.3 24.5

Table 4: 95%-confidence intervals for each parameter θs,k for k = 1, 2, 3 and s = 1, 2, and
the average entry costs θs(µ) ≡ θs,1 + θs,2µs + θs,3µ

2
s. Confidence intervals are computed by

solving optimization problems defined in (50) and (51) using fmincon and the least favorable
critical value ĉlfn,k(1− α, θ) defined in (41) but with α replacing β. The parameter space for the
parameters are θs,1 ∈ [−40, 100], θs,2 ∈ [−20, 50], µ1 ∈ [0, 3] and µ2 ∈ [0, 2], where units are in
thousands of US dollars and miles. Computational time is presented in seconds.

too narrow. In practice, we found that trying to solve (50) and (51) using either the

bootstrap version of cn(1−α, θ) or the self-normalized critical value defined in (42) often

led to results that were sensitive to starting points in the minimization procedure, which

raises concerns on blind implementation of tools like fmincon or Knitro.

When Tn(θ) is well-behaved, a simple approach is to solve (50) and (51) using the

least favorable critical value ĉlf
n,k(1−α, θ) defined in (41) but with α replacing β, as this

approach, while conservative, delivers a fixed critical value that is not a function of θ.

Other alternatives exist in this case, like approximating critical values following Kaido

et al. (2019). When Tn(θ) is not well-behaved, the problem is arguably harder and best

practices remain an open question. If it is possible to simplify the model to where a

grid search can be operationalized, then solving the problems in (50) and (51) can be

bypassed. Alternatively, more recent developments like those in Chen et al. (2018) could

be attractive in these situations.

We report estimates obtained by solving the optimization problems defined in equa-

tions (50) and (51) using fmincon in Table 4. Overall, confidence regions are large

and each marginal confidence interval cannot rule out the hypothesis θs,k = 0, for each

k = 1, 2, 3, and s = 1, 2. This is likely due to distance affecting marginal costs rather than

sunk costs. The table also reports confidence regions for θs(µ) ≡ θs,1 + θs,2µs + θs,3µ
2
s,
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where µs is the average distance to production facilities for company s. We note that

it is common in applied work to simply replace µs with an estimate µ̂s and project

the confidence region for θs = (θs,1, θs,2, θs,3) into θs,1 + θs,2µ̂s + θs,3µ̂
2
s, thus not ac-

counting for the additional randomness introduced by estimating µs. In this setting,

however, accounting for the additional randomness is straightforward as we can sim-

ply add two additional moments as a function of Xd
s,i,j , the distance from market j to

firm s’s production facilities for product i. The augmented model then includes the

additional parameters µs for s ∈ S and two additional moment inequalities for each of

those parameters, i.e., E[Xd
s,i,j ] ≤ µs and −E[Xd

s,i,j ] ≤ µs. Confidence regions for θs(µ)

reported in Table 4 are obtained from this augmented model. We find that taking the

estimation of µs into account widens confidence regions by around $3, 000− $6, 800 for

Coca Cola and by about $1, 900−$5, 100 for Energy Brands relative to a simple plug-in

approach.

9 Empirical Application: Counter-factuals

Applied researchers are often interested in moving beyond inference on θ in order to

study some type of counter-factual analysis, such as simulating equilibrium impacts

in alternative settings. While moving to counter-factual analysis introduces certain

new challenges, the specifics of their impact may be tightly connected to the details

of the particular empirical application under consideration. For example, one could be

interested in simulating pricing and product variety decisions for a firm after a potential

merger with another firm. This specific goal introduces two challenges. First, inference

on the sunk cost parameter θ is obtained by bounding Vi,j with V̄ , but in order to

simulate counter-factuals one needs to deal with the fact that Vi,j is the object that

determines product offering decisions. Second, it is often computationally very costly

(or infeasible) to solve for counter-factual product offerings for every value of θ in the

confidence region Cn. In Appendix B.4 we discuss ways to address these challenges via

a simple algorithm; see Algorithm B.1.

The current practice in applied work often computes counter-factuals evaluated at

a single point in the confidence set for θ (say, a middle point) and a particular value of

the unobserved error term Vi,j . The procedure described in Algorithm B.1, on the other

hand, checks whether a product assortment belongs to a class of strategies that contains

the set of Nash Equilibrium outcomes for any parameter in the confidence region Cn

and any value of the unobserved error term Vi,j . It does so by exploiting the bounding

assumption on Vi,j , and crucially it does not add additional computational steps relative

to current practice. In particular, Algorithm B.1 highlights that the computationally

difficult part of computing counter-factuals in partially identified models is not dealing

with set identification but rather solving for all Nash Equilibria. The main downside is
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that the algorithm is conservative, and may produce a set of counterfactual outcomes

that is larger than those supported under Nash Equilibria.

10 Concluding Remarks

This paper presents a guide for inference in moment inequality models intended to help

applied researchers navigate all the decisions required to frame a model as a moment

inequality model and then to construct confidence intervals for the parameters of interest.

Our main goal is not to provide a comprehensive chronological road-map of all the

methods in the literature up to this date, but rather to provide a template that hopefully

lowers the entry cost to the literature, both to newcomers and researchers with some

exposure to the basic tools. The structure of our guide is divided into “how” and

“why” sections, with the why sections discussing the considerations that led to our

recommendations as well as other alternatives currently available in the literature. A

reader can then choose to focus on the “how”, and learn an established approach to

inference in moment inequality models without digging into the overwhelming number

of alternatives available at each stage.

A companion Github repository4 contains all the codes required to replicate the

results of this paper in Matlab, Python, and R using simulated data. These codes

hopefully also facilitate the way for applied researchers to develop their own code for

similar empirical settings. All in all, we expect the combination of the guiding template

with the computer codes to provide an easy to digest introduction to inference in moment

inequality models that fosters the adoption of such models in empirical research.
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Online Supplemental Appendix

A Additional Tables and Figures

Table A.1 shows summary statistics for the main products in our estimation sample - average

prices, average / 25th percentile / median / 75th percentile shares, and the share of markets

(month-DMA) in which each product is offered. Panel A presents these statistics for the 10 most

popular products in the demand estimation sample. Panel B presents these statistics for the next

5 most popular Coca Cola products, while Panel C does the same for Energy Brands products.

Note that some Coca Cola products have perfect coverage during this period - naturally, this

will affect estimation of any bounds where the deviation requires adding a product. We discuss

this issue in detail in Section 8.1.

Avg Shares (in %) Share of

Firms Products price Avg p25 p50 p75 markets

Panel A: Top 10 Products

PepsiCo Aquafina 5.6 2.28 1.21 1.88 2.85 99.78

Coca-Cola Dasani 5.9 1.44 0.68 1.12 1.78 99.08

Nestle SA Arrowhead 4.9 2.41 1.44 2.26 3.25 22.55

Private 1 Independent 4.2 2.59 0.37 1.39 3.99 66.83

Nestle SA Deer Park 5.5 1.60 0.06 0.94 2.39 33.77

Nestle SA Poland Spring 5.9 0.58 0.01 0.04 0.19 45.01

PepsiCo Aquafina 20 Oz 1.3 0.19 0.11 0.16 0.23 100.00

Coca-Cola Dasani 20 Oz 1.3 0.21 0.11 0.16 0.24 100.00

Private 2 Independent 4.8 1.21 0.06 0.38 1.67 75.91

PepsiCo Gatorade 32 Oz 1.2 0.14 0.07 0.11 0.18 99.97

Panel B: Next 5 Coca Cola Products

Dasani 12 Oz 4.1 0.15 0.08 0.13 0.19 99.49

Simply Lemonade 2.7 0.05 0.03 0.04 0.07 85.34

Coca-Cola Dasani 33.8 Oz 1.3 0.08 0.03 0.05 0.09 100.00

Minute Maid 3.2 0.07 0.03 0.06 0.09 85.64

Powerade Ion4 1.0 0.14 0.06 0.10 0.17 64.82

Panel C: Next 5 Energy Brands Products

Dragonfruit 1.3 0.04 0.01 0.03 0.05 97.05

Energy Brands Fruit Punch 1.3 0.03 0.01 0.02 0.04 96.37

(VitaminWater) Tropical Citrus 1.3 0.03 0.01 0.02 0.04 95.85

Power C 1.3 0.02 0.01 0.02 0.03 93.22

Essential 1.3 0.02 0.01 0.02 0.03 92.57

Table A.1: Summary statistics for the 10 best-selling UPCs in our sample and for the next 5
top-selling Coca Cola and Energy Brands products.
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B Additional Details on Implementation

B.1 Demand Estimation

We estimate demand on pre-merger data using a nested logit model. This is an admittedly simple

demand estimation approach but it helps us devote attention to the issues that are more closely

related to inference with moment inequalities. Improving the demand estimation step would not

affect the construction of confidence regions for the parameters determining sunk costs, though

it would certainly affect the actual numbers. Since our goal here is mostly pedagogical, we keep

this initial step simple.

Throughout the appendix we define a market i as a combination of DMA a and time t, so

that i = (a, t) and interchangeably index variables by i or by (a, t) depending on the context.

That is, for any random variable X, Xi,j and Xa,t,j denote the same random variable.

To estimate the nested logit model, we divide all products into 3 mutually exclusive groups:

branded water, private label water, non-water, and the outside option. We assume a consumer

c that lives in DMA a in period t and purchases product j belonging to group g receives indirect

utility Uc,a,t,j according to

Uc,a,t,j = γ0 + γ1pa,t,j + ξj + ξa + ξj,a + ξa,t,j + ζc,g + (1− ρ)εc,a,t,j , (A.1)

where pa,t,j is price, ξj , ξa, ξj,a and ξa,t,j are product attributes that are unobserved to the

econometrician, εc,a,t,j is identically and independently distributed Gumbel error term, ζc,g is

a group-level error term, and ρ is the nesting parameter. The distribution of ζc,g is the unique

distribution such that ζc,g+(1−ρ)·εc,a,t,j is also distributed Gumbel (Cardell, 1997). Estimating

this model requires calculating market shares for each product and for the outside good. We

do so by assuming that market size in DMA a, Ma, is equal to 1.5 times the maximum liters

we observe being sold in a over time. With this assumption, one can compute the market share

sa,t,j of good j in market a in period t as the ratio between the number of liters of good j sold

in a during t and Ma. The share of the outside good is one minus the sum of shares for each

good j being offered in a during t. Having obtained shares, we invert the market share function

(Berry, 1994) and estimate

ln(sa,t,j)− ln(sa,t,0) = γ0 + γ1pa,t,j + ρ ln(s̄ga,t,j) + ξj + ξa + ξj,a + ξa,t,j , (A.2)

where sa,t,j and sa,t,0 are product j’s share and the outside good’s share in DMA a and period t,

respectively, and s̄ga,t,j is product j’s share within group g in DMA a and period t. We estimate

the model in (A.2) by ordinary least squares (OLS) using product, DMA and product-DMA

fixed effects. The main identification assumption is that unobserved product-DMA-time product

attributes, captured by ξa,t,j , are orthogonal to prices after controlling for product-DMA fixed

effects. The most important deviation relative to the frontier of the demand estimation literature

is that we do not use random coefficients. This implies that within nest substitution patterns

suffer from the issues highlighted in Berry et al. (1995). Again, since our goal is to illustrate how

to conduct inference using moment inequalities in this setting, instead of how to best estimate

demand for bottled water and juice drinks, we are comfortable making these assumptions. The

results are in Table B.1. We find large price elasticities, particularly for Coca Cola products.
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The mean price elasticity is 9.2, and the median is 7.2. Given that we are estimating demand

for bottled water products at the UPC level, we do not find these magnitudes implausible. We

also find that demand for Energy Brands’ products is less price-sensitive. This is consistent with

our prior, as these products aim to be more differentiated than standard bottled water.

(a) Demand estimation (b) Price elasticity weighted by shares

ln(sa,t,j/sa,t,0) All firms Coca-Cola Energy Brands

price -0.331 mean 9.20 7.98 4.34

[-0.334, -0.327] q25 4.37 4.13 4.01

ln(s̄ga,t,j) 0.899 q50 7.22 7.74 4.30

[0.897, 0.900] q75 12.54 10.83 4.63

Product FE Y Num. Prod. 212 Observ. 477,133

DMA FE Y Num. DMA 205 R2 0.945

Table B.1: Demand estimation and price elasticity based on a nested-logit model using monthly
pre-merge data.

B.2 Marginal Cost Estimation

Having recovered demand estimates, we now turn to estimating marginal costs. Recall that

market i denotes a DMA-period (a, t) combination. Under the assumption that firms compete

in prices, each firm’s first order conditions in market i are

si,j(pi) +
∑
j′∈Js

Di,j′(pi,j′ − ci,j′)
∂si,j′(pi)

∂pi,j
= 0 {∀j ∈ Js|Di,j = 1} . (A.3)

We solve this system of equations and recover estimates ĉi,j , or ĉa,t,j when being explicit about

i = (a, t). Further, we assume that marginal costs of each product j are constant in output and

that marginal cost realizations satisfy

ln(ĉa,t,j) = ωj + ωa + ωj,a + ωa,t,j , (A.4)

where ωj , ωa, ωjd and ωjdt are product attributes that are unobservable to the econometrician.

We estimate this model by OLS using product, DMA and product-DMA fixed effects.

B.3 Calculation of Estimated Variable Profit Differentials

This subsection discusses how to move from demand and marginal cost estimates to estimates

of variable profit differentials. First, note that we need estimated variable profit differentials

for two firms, Coca-Cola and Energy Brands, as we are only interested in computing sunk costs

for them. These companies offer J = 31 products in our data, so in this section, and we some

abuse of notation, we use J to denote products that are only offered by either Coca-Cola or
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Energy Brands, without including products offered by other firms. Consistent with this change,

each market i has an observed assortment vector Di ∈ {0, 1}J where J = 31 for the purposes of

estimating variable profit differentials.

Consider a given product portfolio D̃i ∈ {0, 1}J , which could be an observed product port-

folio or a counter-factual one. The algorithm to compute variable profit differential given this

particular product assortment is as follows:

1. For each product j that is offered in market i = (a, t) given the product assortment,

i.e. D̃i,j = 1, we draw B = 200 values from the empirical distributions of ξ̂j,a + ξ̂a,t,j

and ω̂j,a + ω̂a,t,j with replacement. These objects are the residuals from equations (A.2)

and (A.4), respectively. We denote these values by {ξ̂(b)
j,a + ξ̂

(b)
a,t,j : 1 ≤ b ≤ B} and

{ω̂(b)
j,a + ω̂

(b)
a,t,j : 1 ≤ b ≤ B}.

2. We then add to each draw, ξ̂
(b)
j,a + ξ̂

(b)
a,t,j , the estimated values of ξj and ξa, and to every

draw, ω̂
(b)
j,a + ω̂

(b)
a,t,j , the estimated values of ωj and ωa. For each b and for each j such that

D̃i,j = 1, this results in

ξ̂
(b)
i,j = ξ̂

(b)
j,a + ξ̂

(b)
a,t,j + ξ̂j + ξ̂a (A.5)

ω̂
(b)
i,j = ω̂

(b)
j,a + ω̂

(b)
a,t,j + ω̂j + ω̂a . (A.6)

3. For each b and for each j such that D̃i,j = 1, we compute marginal costs, optimal prices,

and market shares. First, we use equation (A.4) to solve for marginal costs using ω̂
(b)
i,j ,

i.e. ĉ
(b)
i,j = exp(ω̂

(b)
i,j ). Second, we solve for optimal prices by solving the non-linear system

of equations in prices defined by equation (A.3), and denote them by p̂
(b)
i,j . Finally, we

compute nested logit market shares as,

ŝ
(b)
a,t,j =

exp

(
δ̂
(b)
a,t,j

1−ρ̂

)
(D̂(b)

g )ρ̂
(∑

g′(D̂
(b)
g′ )1−ρ̂

) , (A.7)

where D̂(b)
g =

∑
j∈J̃g

exp

(
δ̂
(b)
a,t,j

1−ρ̂

)
, δ̂

(b)
a,t,j = γ̂0 + γ̂1pa,t,j + ξ̂j + ξ̂a + ξ̂

(b)
j,a + ξ̂

(b)
a,t,j , and J̃g

denotes the set of products belonging to group g.

4. For each b and each firm s, we compute variable profit according to (52) in Assumption

7.1, and then compute r̂s,i(Oi) by averaging across the B draws i.e.,

r̂s,i(Oi) =
1

B

B∑
b=1

∑
j∈Js

MiD̃i,j(p̂
(b)
i,j − ĉ

(b)
i,j )ŝ

(b)
i,j .

5. Variable profit differentials are the difference in these averages between counter-factual

product offerings and the observed portfolio, as defined in Section 3, where for each of

these alternative assortments we repeat steps 1-4 above.
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B.4 Details on Counter-factuals

Following the discussion in Section 9, assume that the counter-factual of interest is predicting

pricing and product variety decisions for Coca Cola post-merger. In this counter-factual, Coca

Cola (which now includes Energy Brands’ products) and all of its competitors will be allowed

to adjust pricing and product variety. To perform this analysis, one would need sunk cost

estimates θs for Coca Cola and all of its competitors. This is important since, as we discussed in

Section 8, by virtue of the model being separable in θ, it is possible and convenient to conduct

inference on θs for s ∈ {CocaCola,EnergyBrands} without accounting for other competitors.

The methodology, however, can easily be expanded to recover sunk cost estimates for other

firms. We proceed under the assumption that we have computed confidence regions for sunk

costs for all firms in the market and so J and S now include information on all the firms we

used to estimate demand. The algorithm we would propose is the following:

Algorithm B.1. Let Di ≡ {0, 1}J denote the set of all possible product assortment profiles in

market i and consider the following algorithm to compute counter-factuals.

Step 1 Compute expected equilibrium variable profits for each firm s ∈ S and for each Di ∈ Di
and denote them by r̂s,i(Di). In Section 7.2 this is done by solving for equilibrium prices

following Appendix B.3. Store the values of objects of interest of the counter-factual -

prices, consumer surplus, etc.

Step 2 Let θs denote the lowest value of θ in firm s confidence region. For each firm s ∈ S and

each product portfolio Di ∈ Di, consider the inequality

r̂s,i(Di)−
∑
j∈Js

Di,j(θs − V̄ ) ≥ 0 . (A.8)

Denote by D2
i ⊆ Di the set of product offerings Di for which (A.8) holds for all s ∈ S.

Step 3 For each firm s ∈ S and Di ∈ D2
i , let Ds(Di) be the subset of D2

i that keeps the assortment

decisions of s’s competitors fixed relative to Di, i.e., Ds(Di) ≡ Λs(Di)∩D2
i , where Λs(Di)

is defined in (13). Then, for each D′i ∈ Ds(Di) check the condition

r̂s,i(Di)− r̂s,i(D′i)− J in
s (θs − V̄ ) + Jout

s (θ̄s + V̄ ) ≥ 0 , (A.9)

where J in
s is the number of products offered by s in Di but not in D′i, and Jout

s is the

number of products offered by s in D′i but not in Di. Let D3
i ⊆ D2

i denote the set of

product portfolios Di for which (A.9) holds for all s ∈ S and all D′i ∈ Ds(Di).

Step 4 Construct bounds on the objects of interest (average prices, consumer surplus, etc.) by

finding the maximum and minimum values of those objects across all portfolios Di in D3
i .

Step 1 is the most computationally demanding step, as it requires computing Nash Equi-

librium prices for all possible product offerings. We see this step as the main limitation when

performing counter-factual analysis in this class of discrete games. Researchers often will need

to restrict strategy space in order to make this feasible. For example, instead of modelling the

action space of the product variety game as the decision to offer each of the J = 212 products in

our market separately, which would require solving for 2212− 1 Nash Equilibria, one can assume
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that subsets of products are always offered together, or that they will always be offered. Beyond

this, parallelization of step 1 is useful, and a benefit of this algorithm is that step 1 only needs

to be done once.

Step 2 checks whether a set of product offerings delivers positive profits to all firms in the

most advantageous case possible - when sunk costs are the lowest possible value. Since ei,j ≥
max[θs − V , 0], Di cannot be an equilibrium assortment profile if the condition in step 2 does

not hold for every firm. This check is straightforward once step 1 is computed and it potentially

removes irrelevant assortments to be considered in the next step, which is computationally more

intense.

Step 3 checks whether there are unilateral incentives to deviate to any other assortments

in the case where deviation incentives are the weakest - when sunk costs for offered products

are at the lowest possible value and sunk costs for non offered products are at their highest. It

is straightforward to show if Di is a Nash Equilibrium, it must belong to D3
i . The converse is

not true, however, as in equation (A.9) θs differs for offered and un-offered products, and our

behavioral model posits a fixed θs across products produced by firm s. Therefore, D3
i contains

all Nash Equilibria, and can be thought of as a conservative approximation to the strategies that

are a Nash Equilibrium in the counter-factual.

Claim B.1. Suppose ei,j ∈
[
θs − V̄ , θs + V̄

]
. If Di is a Nash Equilibrium, then Di ∈ D3

i .

Proof of Claim B.1: If Di is a Nash Equilibrium, then any firm s must have positive profits

r̂s,i (Di)−
∑
j∈Js

Di,jei,j ≥ 0 , (A.10)

and any firm s has no unilateral incentives to deviate

r̂s,i (Di)− r̂s,i (D′i)−
∑
j∈Js

(
Di,j −D′i,j

)
ei,j ≥ 0 (A.11)

for any D′i ∈ Λs(Di). Since ei,j ∈ [θs − V̄ , θs + V̄ ], we have that

r̂s,i (Di)−
∑
j∈Js

Di,jei,j ≤ r̂s,i (Di)−
∑
j∈Js

Di,j

(
θs − V̄

)
,

which implies Di ∈ D2
i using (A.10). Similarly, we obtain

r̂s,i (Di)− r̂s,i (D′i)−
∑
j∈Js

(
Di,j −D′i,j

)
ei,j ≤ r̂s,i (Di)− r̂s,i (D′i)− J in

s (θs − V̄ ) + Jout
s (θ̄s + V̄ ) ,

which implies Di ∈ D3
i using (A.11).

C Misspecification Robust CS

Andrews and Kwon (2019) study inference in moment inequality models like those in (1) in

settings where the model is misspecified and so Θ0(P ) in (2) is empty. A potential consequence

of misspecification is spurious precision of standard confidence sets for θ, meaning that the
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coverage probability of the confidence set is less than its nominal level 1 − α for all parameter

values, including any potential pseudo-true value.

Andrews and Kwon (2019) introduce a misspecification index that equals the maximum

violation across moment inequalities (normalized by their standard deviations) evaluated at the

parameter value that minimizes the maximum violation. In order to describe the method clearly,

we introduce some additional notation. Let

σ`(θ) =
√

var[m`(Wi, θ)] (A.12)

for 1 ≤ ` ≤ k and define

m∗(Wi, θ) = (m∗1(Wi, θ), . . . ,m
∗
k(Wi, θ))

′ for m∗` (Wi, θ) ≡
m`(Wi, θ)

σ`(θ)
. (A.13)

Θ∗0(P ) = {θ ∈ Θ : EP [m(Wi, θ)]− rinf1k ≤ 0} , (A.14)

where 1k is a k-dimensional vector of ones, and rinf is a scalar given by

rinf = inf
θ∈Θ

max
1≤`≤k

max{E[m∗` (Wi, θ)], 0} . (A.15)

Note that rinf equals the maximum violation across moment inequalities (normalized by their

standard deviations) evaluated at the parameter value that minimizes the maximum violation.

The misspecification-robust identified set is non-empty even under model misspecification.

The SPUR1 test we use in Section 8.2 consists of the following X steps:

1. Compute the sample analog of rinf as follows,

r̂inf
n ≡ inf

θ∈Θ
max

1≤`≤k
max

{
m̄n,`(θ)

σ̂n,`(θ)
, 0

}
. (A.16)

2. Modify the test statistic in (43) to account for r̂inf
n as follows,

T ∗n(θ) ≡ T
(√

n(D̂−1
n (θ)m̄n(θ) + r̂inf

n 1k), Ω̂n(θ)
)
. (A.17)

3. Compute the SPUR1 bootstrap critical, denoted by ĉspur
n (1−α, θ), as described in Andrews

and Kwon (2019).

4. Reject whenever T ∗n(θ) > ĉspur
n (1− α, θ)

Note that the critical value in Step 3, while similar in spirit to the one described in section 5.2,

requires substantial modifications to account for the additional randomness introduced by r̂inf
n .

We also note that, when the test statistic in (43) equals the max test statistic in (39), T ∗n(θ) is

equivalent to the re-centered version of Tn(θ) in (39). We refer the reader to Andrews and Kwon

(2019) for details or to our companion Matlab and Python packages.
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