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Abstract—This paper studies the wild bootstrap–based test proposed in
Cameron, Gelbach, and Miller (2008). Existing analyses of its properties
require that number of clusters is “large.” In an asymptotic framework
in which the number of clusters is “small,” we provide conditions under
which an unstudentized version of the test is valid. These conditions in-
clude homogeneity-like restrictions on the distribution of covariates. We
further establish that a studentized version of the test may only overreject
the null hypothesis by a “small” amount that decreases exponentially with
the number of clusters. We obtain a qualitatively similar result for “score”
bootstrap-based tests, which permit testing in nonlinear models.

I. Introduction

IT is common in the empirical analysis of clustered data
to be agnostic about the dependence structure within a

cluster (Wooldridge, 2003; Bertrand, Duflo, & Mullainathan,
2004). The robustness afforded by such agnosticism, how-
ever, may unfortunately result in many commonly used in-
ferential methods behaving poorly in applications where the
number of clusters is “small” (Donald & Lang, 2007). In re-
sponse to this concern, Cameron, Gelbach, and Miller (2008)
introduced a procedure based on the wild bootstrap of Liu
(1988) and found in simulations that it led to tests that be-
haved remarkably well even in settings with as few as five
clusters. This procedure is sometimes referred to as the “clus-
ter” wild bootstrap, but we henceforth refer to it more com-
pactly as the wild bootstrap. Due at least in part to these sim-
ulations, the wild bootstrap has emerged as arguably the most
popular method for conducting inference in settings with few
clusters. Recent examples of its use as either the leading infer-
ential method or as a robustness check for conclusions drawn
under other procedures include Acemoglu et al. (2011), Giu-
liano and Spilimbergo (2014), Kosfeld and Rustagi (2015),
and Meng, Qian, and Yared (2015). The number of clusters
in these empirical applications ranges from as few as five to
as many as nineteen.

The use of the wild bootstrap in applications with such a
small number of clusters contrasts sharply with analyses of
its theoretical properties, which, to the best of our knowl-
edge, all employ an asymptotic framework where the num-
ber of clusters tends to infinity—for example, Carter, Schne-
pel, and Steigerwald (2017), Djogbenou, MacKinnon, and
Nielsen (2019), and MacKinnon, Nielsen, and Webb (2019).
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In this paper, we address this discrepancy by studying its
properties in an asymptotic framework in which the number
of clusters is fixed but the number of observations per cluster
tends to infinity. In this way, our asymptotic framework cap-
tures a setting in which the number of clusters is “small,” but
the number of observations per cluster is “large.”

Our main results concern the use of the wild bootstrap
to test hypotheses about a linear combination of the coeffi-
cients in a linear regression model with clustered data. For
this testing problem, we first provide conditions under which
using the wild bootstrap with an unstudentized test statistic
leads to a test that is valid in the sense that it has limiting re-
jection probability under the null hypothesis no greater than
the nominal level. Our results require, among other things,
certain homogeneity restrictions on the distribution of covari-
ates. These homogeneity conditions are satisfied in particular
if the distribution of covariates is the same across clusters, but,
as explained in section IIA, are also satisfied in other circum-
stances. While our conditions are not necessary, we believe
our results help shed some light on the poor behavior of the
wild bootstrap in simulation studies that violate our homo-
geneity requirements (see Ibragimov and Müller, 2016, and
section IV below).

Establishing the properties of a wild bootstrap–based test
in an asymptotic framework in which the number of clus-
ters is fixed requires fundamentally different arguments from
those employed when the number of clusters diverges to in-
finity. Importantly, when the number of clusters is fixed, the
wild bootstrap distribution is no longer a consistent estima-
tor for the asymptotic distribution of the test statistic, and
hence, standard arguments do not apply. Our analysis instead
relies on a resemblance of the wild bootstrap-based test to a
randomization test based on the group of sign changes with
some key differences that, as explained in section III, pre-
vent the use of existing results on the large-sample properties
of randomization tests, including those in Canay, Romano,
and Shaikh (2017). Despite these differences, we are able to
show under our assumptions that the limiting rejection proba-
bility of the wild bootstrap-based test equals that of a suitable
level-α randomization test.

We emphasize, however, that the asymptotic equivalence
described above is delicate in that it relies crucially on the
specific implementation of the wild bootstrap recommended
by Cameron et al. (2008), which uses Rademacher weights
and the restricted least squares estimator. Furthermore, it does
not extend to the case where we studentize the test statistic
in the usual way. In that setting, our analysis only establishes
that the test that employs a studentized test statistic may over-
reject the null hypothesis by only a small amount in the sense
that it has limiting rejection probability under the null hy-
pothesis that does not exceed the nominal level by more than
a quantity that decreases exponentially with the number of
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clusters. In particular, when the number of clusters is eight (or
more), this quantity is no greater than approximately 0.008.

The arguments used in establishing these properties for
the studentized wild bootstrap–based test permit us to es-
tablish qualitatively similar results for wild bootstrap–based
tests of nonlinear null hypotheses and closely related “score”
bootstrap-based tests in nonlinear models. In particular, un-
der conditions that include suitable homogeneity restrictions,
we show that the limiting rejection probability of these tests
under the null hypothesis does not exceed the nominal level
by more than an amount that decreases exponentially with the
number of clusters. We defer a formal statement of these re-
sults to section S.3 in the supplemental appendix, but briefly
discuss score bootstrap-based tests of linear null hypotheses
in the generalized method of moments (GMM) framework
of Hansen (1982) in the main text. Due to the differences
with the wild bootstrap–based tests described previously, our
discussion focuses on implementation and the homogeneity
requirements needed in our formal result.

This paper is part of a growing literature studying infer-
ence in settings where the number of clusters is small, but the
number of observations per cluster is large. Ibragimov and
Müller (2010) and Canay et al. (2017), for instance, develop
procedures based on the cluster-level estimators of the co-
efficients. Importantly, these approaches do not require the
homogeneity restriction described above. Canay et al. (2017)
is related to our theoretical analysis in that it also employs a
connection with randomization tests, but, as mentioned pre-
viously, the results in Canay et al. (2017) are not applicable
to our setting. Bester, Conley, and Hansen (2011) derive the
asymptotic distribution of the full-sample estimator of the
coefficients under assumptions similar to our own. Finally,
there is a large literature studying the properties of variations
of the wild bootstrap, including, in addition to some of the
already noted references, Webb (2013) and MacKinnon and
Webb (2017).

The remainder of the paper is organized as follows. In
section II, we formally introduce the test we study and the
assumptions that underlie our analysis. Our theoretical results
are contained in section III. In sections IV and V, we illustrate
the relevance of our asymptotic analysis for applied work via
a simulation study and empirical application. We conclude in
section VI with a summary of the main implications of our
results for empirical work. The proofs of the main results are
contained in appendix A. Auxiliary lemmas and a number of
extensions can be found in the online supplemental appendix.

II. Setup

We index clusters by j ∈ J ≡ {1, . . . , q} and units in the
jth cluster by i ∈ In, j ≡ {1, . . . , n j}. The observed data con-
sist of an outcome of interest, Yi, j , and two random vec-
tors, Wi, j ∈ Rdw and Zi, j ∈ Rdz , that are related through the
equation

Yi, j = Z ′
i, jβ + W ′

i, jγ + εi, j, (1)

where β ∈ Rdz and γ ∈ Rdw are unknown parameters and our
requirements on εi, j are explained in sections IIA. In what fol-
lows, we consider β to be the parameter of primary interest
and view γ as a nuisance parameter. For example, in the con-
text of a randomized controlled trial, Zi, j may be an indicator
for treatment status, and Wi, j may be a vector of controls such
as additional unit-level characteristics or cluster-level fixed
effects. Our hypothesis of interest therefore concerns only β.
Specifically, we aim to test

H0 : c′β = λ versus H1 : c′β �= λ, (2)

for given values of c ∈ Rdz and λ ∈ R, at level α ∈ (0, 1). An
important special case of this framework is a test of the null
hypothesis that a particular component of β equals a given
value.

In order to test (2), we first consider tests that reject for
large values of the statistic,

Tn ≡ |√n(c′β̂n − λ)|, (3)

where β̂n and γ̂n are the ordinary least squares estimators
of β and γ in equation (1). We also consider tests that re-
ject for large values of a studentized version of Tn, but post-
pone a more detailed description of such tests to section IIIB.
For a critical value with which to compare Tn, we employ
a version of the one proposed by Cameron et al. (2008).
Specifically, we obtain a critical value through the following
construction:

Step 1: Compute β̂r
n and γ̂r

n, the restricted least squares es-
timators of β and γ in equation (1) obtained under the
constraint that c′β = λ. Note that c′β̂r

n = λ by construc-
tion.

Step 2: Let G = {−1, 1}q and for any g = (g1, . . . , gq) ∈ G,
define

Y ∗
i, j (g) ≡ Z ′

i, j β̂
r
n + W ′

i, j γ̂
r
n + g j ε̂

r
i, j, (4)

where ε̂r
i, j = Yi, j − Z ′

i, j β̂
r
n − W ′

i, j γ̂
r
n. For each g =

(g1, . . . , gq) ∈ G, compute β̂∗
n(g) and γ̂∗

n(g), the ordinary
least squares estimators of γ and β in equation (1) ob-
tained usingY ∗

i, j (g) in place ofYi, j and the same regressors
(Z ′

i, j,W ′
i, j )

′.

Step 3: Compute the 1 − α quantile of {|√nc′(β̂∗
n(g) − β̂r

n)| :
g ∈ G}, denoted by

ĉn(1 − α) ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I{|√nc′(β̂∗
n(g)

− β̂r
n)| ≤ u} ≥ 1 − α

}
, (5)

where I{A} equals 1 whenever the event A is true and
equals 0 otherwise.
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In what follows, we study the properties of the test φn

of (2) that rejects whenever Tn exceeds the critical value
ĉn(1 − α):

φn ≡ I{Tn > ĉn(1 − α)}. (6)

It is worth noting that the critical value ĉn(1 − α) defined in
equation (5) may also be written as

inf{u ∈ R : P{|c′√n(β̂∗
n(ω) − β̂r

n)| ≤ u|X (n)} ≥ 1 − α},
where X (n) denotes the full sample of observed data and ω is
uniformly distributed on G independent of X (n). This way
of writing ĉn(1 − α) coincides with the existing literature
on the wild bootstrap that sets ω = (ω1, . . . , ωq) to be i.i.d.
Rademacher random variables—that is, ω j equals ±1 with
equal probability. Furthermore, this representation suggests
a natural way of approximating ĉn(1 − α) using simulation,
which is useful when |G| is large.

A. Assumptions

We next introduce the assumptions that will underlie our
analysis of the properties of the test φn defined in equation (6),
as well as its studentized counterpart. In order to state these
assumptions formally, we require some additional notation.
In particular, it is useful to introduce a dw × dz-dimensional
matrix �̂n satisfying the orthogonality conditions

∑
j∈J

∑
i∈In, j

(Zi, j − �̂′
nWi, j )W

′
i, j = 0. (7)

Our assumptions will guarantee that, with probability tending
to 1, �̂n is the unique dw × dz matrix satisfying equation
(7). Thus, �̂n corresponds to the coefficients obtained from
linearly regressing Zi, j on Wi, j employing the entire sample.
The residuals from this regression,

Z̃i, j ≡ Zi, j − �̂′
nWi, j, (8)

will play an important role in our analysis as well. Finally,
for every j ∈ J , let �̂c

n, j be a dw × dz-dimensional matrix
satisfying the orthogonality conditions

∑
i∈In, j

(Zi, j − (�̂c
n, j )

′Wi, j )W
′

i, j = 0. (9)

Because the restrictions in equation (9) involve only data
from cluster j, there may be multiple matrices �̂c

n, j satisfying
equation (9) even asymptotically. Nonuniqueness occurs, for
instance, when Wi, j includes cluster-level fixed effects. For
our purposes, however, we only require that for each j ∈
J , the quantities (�̂c

n, j )
′Wi, j with i ∈ In, j (i.e., fitted values

obtained from a linear regression of Zi, j on Wi, j using only
data from cluster j) are uniquely defined, which is satisfied
by construction.

Using this notation, we now introduce our assumptions.
Before doing so, we note that all limits are understood to be
as n → ∞, and it is assumed for all j ∈ J that n j → ∞ as
n → ∞. Importantly, the number of clusters, q, is fixed in
our asymptotic framework.

Assumption 1. The following statements hold:

(i) The quantity

1√
n

∑
j∈J

∑
i∈In, j

(
Zi, jεi, j

Wi, jεi, j

)

converges in distribution.
(ii) The quantity

1

n

∑
j∈J

∑
i∈In, j

(
Zi, jZ ′

i, j Zi, jW ′
i, j

Wi, jZ ′
i, j Wi, jW ′

i, j

)

converges in probability to a positive-definite matrix.

Assumption 1 imposes sufficient conditions to ensure that
the ordinary least squares estimators of β and γ in equation
(1) are well behaved. It further implies that the least squares
estimators of β and γ subject to the restriction that c′β = λ are
well behaved under the null hypothesis in (2). Assumption 1
in addition guarantees �̂n converges in probability to a well-
defined limit. The requirements of assumption 1 are satisfied,
for example, whenever the within-cluster dependence is suf-
ficiently weak to permit application of suitable laws of large
numbers and central limit theorems and there is no perfect
colinearity in (Z ′

i, j,W ′
i, j )

′.
Whereas assumption 1 governs the asymptotic properties

of the restricted and unrestricted least squares estimators,
our next assumption imposes additional conditions that are
employed in our analysis of the wild bootstrap.

Assumption 2. The following statements hold:

(i) There exists a collection of independent random
variables {Z j : j ∈ J}, where Z j ∈ Rdz and Z j ∼
N (0, � j ) with � j positive definite for all j ∈ J, such
that⎧⎨

⎩ 1√
n j

∑
i∈In, j

Z̃i, jεi, j : j ∈ J

⎫⎬
⎭ d→{Z j : j ∈ J}.

(ii) For each j ∈ J, n j/n → ξ j > 0.
(iii) For each j ∈ J,

1

n j

∑
i∈In, j

Z̃i, j Z̃
′
i, j

P→ a j�Z̃ , (10)

where a j > 0 and �Z̃ is positive definite.
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(iv) For each j ∈ J,

1

n j

∑
i∈In, j

‖W ′
i, j (�̂n − �̂c

n, j )‖2 P→ 0.

The distributional convergence in assumption 2(i) is satis-
fied, for example, whenever the within-cluster dependence is
sufficiently weak to permit application of a suitable central
limit theorem and the data are independent across clusters
or, as explained in Bester et al. (2011), the boundaries of the
clusters are small. The additional requirement that Z j have
full rank covariance matrices requires that Zi, j cannot be ex-
pressed as a linear combination of Wi, j within each cluster.
Assumption 2(ii) governs the relative sizes of the clusters.
It permits clusters to have different sizes, but not dramati-
cally so. Assumptions 2(iii)–(iv) are the main homogeneity
assumptions required for our analysis of the wild bootstrap.
These two assumptions are satisfied, for example, whenever
the distributions of (Z ′

i, j,W ′
i, j )

′ are the same across clusters
but may also hold when that is not the case. For example, if
Zi, j is a scalar, then assumption 2(iii) reduces to the require-
ment that the average of Z̃2

i, j within each cluster converges in
probability to a nonzero constant. Similarly, if Wi, j includes
only cluster-level fixed effects, then assumption 2(iv) is triv-
ially satisfied (see example 1). In contrast, assumption 2 is
violated by the simulation design in Ibragimov and Müller
(2016), in which the size of the wild bootstrap–based test ex-
ceeds its nominal level. Finally, we note that under additional
conditions, it is possible to test assumptions 2(iii)–(iv) by, for
example, comparing the sample second moments matrices of
(Z ′

i, j,W ′
i, j )

′ across clusters.
We conclude with three examples that illustrate the content

of our assumptions.

Example 1: Cluster-level fixed effects. In certain applica-
tions, adding regressors Wi, j can aid in verifying assumptions
2(iii)–(iv). For example, suppose that

Yi, j = γ + Z ′
i, jβ + εi, j

with E [εi, j] = 0, and E [Zi, jεi, j] = 0. If the researcher spec-
ifies that Wi, j is simply a constant, then assumption 2(iv)
demands that the cluster-level sample means of Zi, j all tend
in probability to the same constant, while assumption 2(iii)
implies the cluster-level sample covariance matrices of Zi, j

all tend in probability to the same, positive-definite matrix
up to scale. On the other hand, if the researcher specifies that
Wi, j includes only cluster-level fixed effects, then assumption
2(iv) is immediately satisfied, while assumption 2(iii) is again
satisfied whenever the cluster-level sample covariance matri-
ces of Zi, j all tend in probability to the same, positive-definite
matrix up to scale. We also note that including cluster-level
fixed effects is important for accommodating the model in
Moulton (1986), where the error term is assumed to be of the
form v j + εi, j .

Example 2: Cluster-level parameter heterogeneity. It is
common in empirical work to consider models in which the
parameters vary across clusters. As a stylized example, let

Yi, j = γ + Zi, jβ j + ηi, j, (11)

where Zi, j ∈ R, E [ηi, j] = 0 and E [Zi, jηi, j] = 0. For β equal
to a suitable weighted average of the β j , we may write
equation (11) in the form of equation (1) by setting εi, j =
Zi, j (β j − β) + ηi, j . By doing so, we see that unless β j = β

for all j ∈ J , assumption 2(i) is violated, as it requires that

1√
n j

∑
i∈In, j

Z̃i, jεi, j = 1√
n j

∑
i∈In, j

(Zi, j − Z̄n)(Zi, j (β j − β) + ηi, j )

converge in distribution for all j ∈ J . A direct application of
other methods that are valid with a small number of large clus-
ters, such as Ibragimov and Müller (2010, 2016) and Canay
et al. (2017), for this problem would also require that β j = β

for all j ∈ J . We emphasize, however, that these methods
would not require such an assumption for inference about
(β j : j ∈ J ).

Example 3: Differences-in-differences. It is difficult to sat-
isfy our assumptions 2(iii) and (iv) in settings where Zi, j is
constant within cluster, that is, Zi, j does not vary with i ∈ In, j .
A popular setting in which this occurs and the wild bootstrap
is commonly employed is differences-in-differences, where
treatment status is assigned at the level of the cluster. We il-
lustrate this point in section S.2 of the supplemental appendix
with a stylized differences-in-differences example.

III. Main Results

In this section, we first analyze the properties of the test φn

defined in equation (6) under assumptions 1 and 2. We then
proceed to analyze the properties of a studentized version of
this test under the same assumptions and discuss extensions
to nonlinear models and hypotheses.

A. Unstudentized Test

Our first result shows that the unstudentized wild
bootstrap-based test φn is indeed valid in the sense that its
limiting rejection probability under the null hypothesis is no
greater than the nominal level α. In addition, we show the test
is not too conservative by establishing a lower bound on its
limiting rejection probability under the null hypothesis.

Theorem 1. If assumptions 1 and 2 hold and c′β = λ, then

α − 1

2q−1
≤ lim inf

n→∞ P{Tn > ĉn(1 − α)}
≤ lim sup

n→∞
P{Tn > ĉn(1 − α)} ≤ α.
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In the proof of theorem 1, we show under assumptions 1
and 2 that the limiting rejection probability of φn equals that
of a level-α randomization test, from which the conclusion
of the theorem follows immediately. Despite the resemblance
described above, relating the limiting rejection probability of
φn to that of a level-α randomization test is delicate. In fact,
the conclusion of theorem 1 is not robust to wild bootstrap
variants that construct outcomes Y ∗

i, j (g) in other ways, such as
the weighting schemes in Mammen (1993) and Webb (2013).
We explore this in our simulation study in section IV. The
conclusion of theorem 1 is also not robust to the use of the
ordinary least squares estimators of β and γ instead of the re-
stricted estimators β̂r

n and γ̂r
n. Notably, the use of the restricted

estimators and Rademacher weights has been encouraged by
Davidson and MacKinnon (1999), Cameron et al. (2008), and
Davidson and Flachaire (2008).

While we focus on the ordinary least square setting of sec-
tion II, we emphasize that the conclusion of theorem 1 can
be easily extended to linear models with endogeneity. In par-
ticular, one may consider the test obtained by replacing the
ordinary least squares estimator and the least squares esti-
mator restricted to satisfy c′β = λ with instrumental variable
counterparts. Under assumptions that parallel assumptions 1
and 2, it is straightforward to show using arguments similar to
those in the proof of theorem 1 that the conclusion of theorem
1 holds for the test obtained in this way.

We next examine the power of the wild bootstrap–based
test against n−1/2-local alternatives. To this end, suppose

Yi, j = Z ′
i, jβn + W ′

i, jγn + εi, j,

with βn satisfying c′βn = λ + δ/
√

n. Below, we denote by
Pδ,n the distribution of the data in order to emphasize the
dependence on both n and the local parameter δ. Our
next result shows that the limiting rejection probability of
φn along such sequences of local alternatives exceeds the
nominal level (at least for sufficiently large values of |δ|).
While we do not present it as part of the result, the proof
in fact provides a lower bound on the limiting rejection
probability of φn along such sequences of local alterna-
tives for any value of δ. In addition to assumptions 1 and
2, we impose that �|G|(1 − α)� < |G| − 1, where �x� de-
notes the smallest integer greater than or equal to x, in order
to ensure that the critical value is not simply equal to the
largest possible value of |√nc′(β̂∗

n(g) − β̂r
n)|. This require-

ment will always be satisfied unless either α or q is too
small.

Theorem 2. If assumptions 1 and 2 hold under {Pδ,n} and
�|G|(1 − α)� < |G| − 1, then

lim
|δ|→∞

lim inf
n→∞ Pδ,n{Tn > ĉn(1 − α)} = 1.

Remark 1. In order to appreciate why theorem 1 does not
follow from results in Canay et al. (2017), note that Tn =
Fn(sn) for some function Fn : Rq → R and

sn ≡
⎧⎨
⎩ 1√

n

∑
i∈In, j

Z̃i, jεi, j : j ∈ J

⎫⎬
⎭ , (12)

while, for any g ∈ G, |√nc′(β̂∗
n(g) − β̂r

n)| = Fn(gŝn), where

ŝn ≡
⎧⎨
⎩ 1√

n

∑
i∈In, j

Z̃i, j ε̂
r
i, j : j ∈ J

⎫⎬
⎭ (13)

and ga = (g1a1, . . . , gqaq) for any a ∈ Rq. These observa-
tions and the definition of φn in equation (6) reveals a re-
semblance to a randomization test, but also highlights an im-
portant difference: the critical value is computed by applying
g to a different statistic (i.e., ŝn) from the one defining the
test statistic (i.e., sn). This distinction prevents the applica-
tion of results in Canay et al. (2017), as sn and ŝn do not even
converge in distribution to the same limit.

Remark 2. For testing certain null hypotheses, it is possi-
ble to provide conditions under which wild bootstrap-based
tests are valid in finite samples. In particular, suppose that
Wi, j is empty and the goal is to test a null hypothesis that
specifies all values of β. For such a problem, ε̂r

i, j = εi, j ,
and as a result, the wild bootstrap-based test is numeri-
cally equivalent to a randomization test. Using this obser-
vation, it is then straightforward to provide conditions under
which a wild bootstrap-based test of such null hypotheses is
level α in finite samples. For example, sufficient conditions
are that {(εi, j, Zi, j ) : i ∈ In, j} be independent across clusters
and {εi, j : i ∈ In, j}|{Zi, j : i ∈ In, j} d= {−εi, j : i ∈ In, j}|{Zi, j :
i ∈ In, j} for all j ∈ J . Davidson and Flachaire (2008) present
related results under independence between εi, j and Zi. j .
In contrast, because we are focused on tests of (2), which
only specify the value of a linear combination of the coef-
ficients in equation (1), wild bootstrap-based tests are not
guaranteed finite-sample validity even under such strong
conditions.

B. Studentized Test

We now analyze a studentized version of φn. Before pro-
ceeding, we require some additional notation in order to de-
fine formally the variance estimators that we employ. To this
end, let

�̂Z̃,n ≡ 1

n

∑
j∈J

∑
i∈In, j

Z̃i, j Z̃
′
i, j, (14)

where Z̃i, j is defined as in equation (8). For β̂n and γ̂n the
ordinary least squares estimators of β and γ in equation (1)
and ε̂i, j ≡ Yi, j − Z ′

i, j β̂n − W ′
i, j γ̂n, define

V̂n ≡ 1

n

∑
j∈J

∑
i∈In, j

∑
k∈In, j

Z̃i, j Z̃
′
k, j ε̂i, j ε̂k, j .
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Using this notation, we define our studentized test statistic to
be Tn/σ̂n, where

σ̂2
n ≡ c′�̂−1

Z̃,n
V̂n�̂

−1
Z̃,n

c. (15)

Next, for any g ∈ G ≡ {−1, 1}q, recall that (β̂∗
n(g)′, γ̂∗

n(g)′)′
denotes the unconstrained ordinary least squares estimator of
(β′, γ′)′ obtained from regressing Y ∗

i, j (g) (as defined in equa-
tion (4)) on Zi, j and Wi, j . We therefore define the dz × dz

covariance matrix

V̂ ∗
n (g) ≡ 1

n

∑
j∈J

∑
i∈In, j

∑
k∈In, j

Z̃i, j Z̃
′
k, j ε̂

∗
i, j (g)ε̂∗

k, j (g),

with ε̂∗
i, j (g) = Y ∗

i, j (g) − Z ′
i, j β̂

∗
n(g) − W ′

i, j γ̂
∗
n(g), as the wild

bootstrap analogue to V̂n, and

σ̂∗
n(g)2 ≡ c′�̂−1

Z̃,n
V̂ ∗

n (g)�̂−1
Z̃,n

c (16)

to be the wild bootstrap analogue to σ̂2
n. Notice that since the

regressors are not resampled when implementing the wild
bootstrap, the matrix �̂Z̃,n is employed in computing both σ̂n

and σ̂∗
n(g). Finally, we set as our critical value

ĉsn(1 − α) ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I

{∣∣∣∣∣√n
c′(β̂∗

n(g) − β̂r
n)

σ̂∗
n(g)

∣∣∣∣∣
≤ u

}
≥ 1 − α

}
. (17)

As in section II, we can employ simulation to approxi-
mate ĉsn(1 − α) by generating q-dimensional vectors of i.i.d.
Rademacher random variables independent of the data.

Using this notation, the studentized version of φn that we
consider is the test φs

n of (2) that rejects whenever Tn/σ̂n

exceeds the critical value ĉsn(1 − α):

φs
n ≡ I{Tn/σ̂n > ĉsn(1 − α)}. (18)

Our next result bounds the limiting rejection probability of
φs

n under the null hypothesis.

Theorem 3. If assumptions 1 and 2 hold and c′β = λ, then

α − 1

2q−1
≤ lim inf

n→∞ P

{
Tn

σ̂n
> ĉsn(1 − α)

}

≤ lim sup
n→∞

P

{
Tn

σ̂n
> ĉsn(1 − α)

}
≤ α + 1

2q−1
.

Theorem 3 indicates that studentizing the test-statistic Tn

may lead to the test over-rejecting the null hypothesis in the
sense that the limiting rejection probability of the test exceeds
its nominal level, but by a small amount that decreases ex-
ponentially with the number of clusters. The reason for this

possible over-rejection is that studentizing Tn results in a test
whose limiting rejection probability no longer equals that of a
level-α randomization test. Its limiting rejection probability,
however, can still be bounded by that of a level-(α + 21−q)
randomization test, from which the theorem follows. This
implies, for example, that in applications with eight or more
clusters, the limiting amount by which the test over-rejects
the null hypothesis will be no greater than 0.008. These re-
sults also imply that it is possible to “size-correct” the test
simply by replacing α with α − 21−q.

It is important to emphasize that there are compelling rea-
sons for studentizing Tn in an asymptotic framework in which
the number of clusters tends to infinity. In such a setting, the
asymptotic distribution of Tn/σ̂n is pivotal, while that of Tn

is not. As a result, the analysis in Djogbenou et al. (2019)
implies that the rejection probability of φs

n under the null
hypothesis converges to the nominal level α at a faster rate
than the rejection probability of φn under the null hypothesis.
Combined with theorem 3, these results suggest that it may
be preferable to employ the studentized test φs

n unless the
number of clusters q is sufficiently small for the difference
between the upper bound in theorem 3 and α to be of concern
for the application at hand.

C. Discussion of Extensions

The arguments used in establishing theorem 3 can be used
to establish qualitatively similar results in a variety of other
settings, such as tests of nonlinear null hypotheses and in
nonlinear models, under suitable homogeneity requirements.
We reserve the statement of formal results to section S.3 of
the supplemental appendix, but briefly discuss in this section
tests of linear null hypotheses in a GMM framework. Given
that there are no natural residuals in this framework, we do not
employ the wild bootstrap to obtain a critical value. Instead,
we rely on a specific variant of the score bootstrap as studied
by Kline and Santos (2012). Our discussion therefore empha-
sizes computation of the critical value and the homogeneity
assumptions needed in our formal result.

Denote by Xi, j ∈ Rdx the observed data corresponding to
the ith unit in the jth cluster. Let

β̂n ≡ arg min
b∈Rdβ

⎛
⎝1

n

∑
j∈J

∑
i∈In, j

m(Xi, j, b)

⎞
⎠

′

× �̂n

⎛
⎝1

n

∑
j∈J

∑
i∈In, j

m(Xi, j, b)

⎞
⎠ , (19)

where m(Xi, j, ·) : Rdβ → Rdm is a moment function and �̂n

is a dm × dm weighting matrix. Under suitable conditions, β̂n

is consistent for its estimand, which we denote by β. As in
section IIIA, we consider testing

H0 : c′β = λ vs. H1 : c′β �= λ (20)
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at level α ∈ (0, 1) by employing the test statistic T gmm
n ≡

|√n(c′β̂n − λ)|. The critical value with which we compare
T gmm

n is computed as follows:

Step 1: Compute β̂r
n, the restricted GMM estimator obtained

by minimizing the criterion in equation (19) under the
constraint c′b = λ. Note that c′β̂r

n = λ by construction.

Step 2: For any b ∈ Rdβ , let �̂n(b) ≡ (D̂n(b)′�̂nD̂n(b))−1

D̂n(b)�̂n, where we define

D̂n(b) ≡ 1

n

∑
j∈J

∑
i∈In, j

∇m(Xi, j, b) (21)

for ∇m(Xi, j, b) the Jacobian of m(Xi, j, ·) : Rdβ → Rdm

evaluated at b. For G = {−1, 1}q and writing an element
g ∈ G as g = (g1, . . . , gq), we set as our critical value

ĉgmm
n (1 − α) ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I

{ ∑
j∈J

g j√
n

∑
i∈In, j

c′�̂n(β̂r
n)m(Xi, j, β̂

r
n)

}
≥ 1 − α

}
.

We then obtain a test of (20) by rejecting whenever T gmm
n

is larger than ĉgmm
n (1 − α):

φgmm
n ≡ I{T gmm

n > ĉgmm
n (1 − α)}.

It is instructive to examine how φ
gmm
n simplifies in the

context of section IIIA. To this end, suppose Wi, j is empty
in equation (1), and set Xi, j = (Yi, j, Z ′

i, j )
′ and m(Xi, j, b) =

(Yi, j − Z ′
i, jb)Zi, j . It is straightforward to show that in this

case,

Z̃i, j = Zi, j, m(Xi, j, β̂
r
n) = ε̂r

i, jZi, j, and D̂n(β̂r
n) = �̂Z̃,n.

As a result, the test φ
gmm
n is numerically equivalent to the test

φn defined in equation (6). In this sense, φgmm
n may be viewed

as a natural generalization of φn to the GMM setting. More-
over, the observation that D̂n(β̂r

n) = �̂Z̃,n suggests that the
appropriate generalization of the homogeneity requirement
imposed in assumption 2(iii) is to require for all j ∈ J that

1

n j

∑
i∈In, j

∇m(Xi, j, β)
P→ a jD(β) (22)

for some a j > 0 and dm × dβ matrix D(β) independent of
j ∈ J . Indeed, in section S.3 of the supplemental appendix,
we show that under conditions including equation (22), the
test φ

gmm
n has limiting rejection probability under the null

hypothesis that is bounded by α + 21−q. We thus find that
nonlinearities, similar to studentization, may cause φ

gmm
n to

over-reject by a “small” amount, in the sense that its limit-
ing rejection probability under the null hypothesis exceeds

the nominal level by an amount that decreases exponentially
with q.

IV. Simulation Study

In this section, we illustrate the results in section III with
a simulation study. In all cases, data are generated as

Yi, j = γ + Z ′
i, jβ + σ(Zi, j )(η j + εi, j ), (23)

for i = 1, . . . , n and j = 1, . . . , q, where η j , Zi, j , σ(Zi, j ) and
εi, j are specified as follows:

Model 1: We set γ = 1; dz = 1; Zi, j = Aj + ζi, j where Aj ⊥⊥
ζi, j , Aj ∼ N (0, 1), ζi, j ∼ N (0, 1); σ(Zi, j ) = Z2

i, j ; and
η j ⊥⊥ εi, j with η j ∼ N (0, 1) and εi, j ∼ N (0, 1).

Model 2: As in model 1, but we set Zi, j = √
j(Aj + ζi, j ).

Model 3: As in model 1, but dz = 3; β = (β1, 1, 1); Zi, j =
Aj + ζi, j with Aj ∼ N (0, I3) and ζi, j ∼ N (0, � j ), where
I3 is a 3 × 3 identity matrix and � j , j = 1, . . . , q,
is randomly generated following Marsaglia and Olkin
(1984).

Model 4: As in model 1, but dz = 2, Zi, j ∼ N (μ1, �1) for
j > q/2 and Zi, j ∼ N (μ2, �2) for j ≤ q/2, where μ1 =
(−4, −2), μ2 = (2, 4), �1 = I2,

�2 =
[

10 0.8

0.8 1

]
,

σ(Zi, j ) = (Z1,i, j + Z2,i, j )2, and β = (β1, 2).

For each of the above specifications, we test the null hy-
pothesis H0 : β1 = 1 against the unrestricted alternative at
level α = 10%. We further consider different values of (n, q)
with n ∈ {50, 300} and q ∈ {4, 5, 6, 8}, as well as both β1 = 1
(i.e., under the null hypothesis) and β1 = 0 (i.e., under the al-
ternative hypothesis).

The results of our simulations are presented in tables 1 to
4. Rejection probabilities are computed using 5,000 replica-
tions. Rows are labeled in the following way:

Unstud: Corresponds to the unstudentized test studied in
theorem 1.

Stud: Corresponds to the studentized test studied in theo-
rem 3.

ET-US: Corresponds to the equi-tailed analog of the unstu-
dentized test. This test rejects when the unstudentized
test statistic Tn = √

n(c′β̂n − λ) is either below ĉn(α/2)
or above ĉn(1 − α/2), where ĉn(1 − α) is defined in
equation (5).

ET-S: Corresponds to the equi-tailed analog of the stu-
dentized test. This test rejects when the studentized
test statistic Tn/σ̂n is either below ĉsn(α/2) or above
ĉsn(1 − α/2), where σ̂n and ĉsn(1 − α) are defined in equa-
tions (15) and (17), respectively.
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TABLE 1.—REJECTION PROBABILITY UNDER THE NULL HYPOTHESIS β1 = 1 WITH α = 10%

Rademacher with Fixed Effects Rademacher without Fixed Effects Mammen with Fixed Effects
q q q

Test 4 5 6 8 4 5 6 8 4 5 6 8

Model 1 Unstud 6.48 9.90 9.34 9.42 9.24 14.48 13.80 12.48 15.40 14.42 13.06 12.16
n = 50 Stud 7.36 10.42 9.54 9.76 7.74 10.80 10.04 9.86 6.10 6.26 5.16 4.58

ET-US 1.48 7.40 9.64 9.26 1.50 11.42 14.00 12.16 2.32 3.14 3.30 4.74
ET-S 4.24 8.64 9.90 9.52 3.08 8.34 10.32 9.46 24.98 25.72 24.32 22.04

Model 2 Unstud 9.02 5.96 9.70 9.98 10.58 15.84 15.60 15.42 14.26 13.62 13.78 13.72
n = 50 Stud 9.44 7.74 9.72 10.08 8.18 10.38 10.06 11.04 5.56 5.92 4.60 4.10

ET-US 6.68 1.58 9.88 9.72 1.34 12.44 15.68 15.00 1.16 1.54 2.22 3.58
ET-S 7.60 4.02 10.34 9.88 2.48 8.30 10.24 10.80 26.86 25.42 25.26 25.40

Model 1 Unstud 7.24 9.72 9.46 10.16 10.54 15.48 14.32 14.24 15.58 14.78 13.48 12.88
n = 300 Stud 8.42 10.22 9.64 10.16 8.62 11.24 10.42 10.86 6.62 6.88 5.30 4.58

ET-US 2.10 7.14 9.66 9.84 1.10 12.00 14.42 13.82 1.82 2.66 3.62 4.70
ET-S 4.18 8.12 10.12 9.92 2.80 8.78 10.74 10.56 26.06 25.08 24.38 24.14

Model 2 Unstud 6.96 9.68 9.74 10.12 12.30 17.74 16.20 15.26 15.50 14.86 14.08 13.34
n = 300 Stud 8.26 10.16 9.86 10.16 8.88 10.96 10.28 10.66 6.64 6.18 4.80 4.34

ET-US 2.00 7.26 10.00 9.96 1.30 13.60 16.24 14.74 0.98 1.80 2.36 3.40
ET-S 4.36 8.16 10.42 9.88 3.02 8.00 10.44 10.40 27.14 26.80 26.66 25.42

TABLE 2.—REJECTION PROBABILITY UNDER THE ALTERNATIVE HYPOTHESIS β1 = 0 WITH α = 10%

Rademacher with Fixed Effects Rademacher without Fixed Effects Mammen with Fixed Effects
q q q

Test 4 5 6 8 4 5 6 8 4 5 6 8

Model 1 unstud 19.80 33.14 39.34 42.28 20.42 34.94 39.54 40.74 35.46 37.86 40.84 42.50
n = 50 Stud 22.44 33.72 39.22 42.40 20.76 31.84 34.94 35.90 18.08 18.68 20.78 28.88

ET-US 5.64 28.80 39.70 41.62 4.60 30.32 39.90 40.16 10.14 15.84 22.06 29.26
ET-S 11.08 30.10 39.76 41.72 9.58 28.40 35.66 35.44 51.16 51.94 54.50 55.76

Model 2 unstud 13.34 20.28 20.04 18.88 15.56 25.16 23.38 21.58 22.68 22.28 20.94 20.34
n = 50 Stud 16.00 20.66 19.66 18.40 13.94 19.24 17.86 16.68 12.42 11.74 10.12 10.50

ET-US 3.88 17.56 20.32 18.58 3.00 21.68 23.50 21.08 3.02 4.58 5.74 6.88
ET-S 8.86 18.50 20.08 18.18 6.26 16.50 18.24 16.34 37.70 36.42 35.40 33.26

Model 1 unstud 22.22 39.20 42.46 48.32 21.80 39.72 40.84 44.80 38.30 42.10 43.38 48.08
n = 300 Stud 25.26 40.04 42.64 48.26 22.68 36.18 37.02 39.58 19.90 22.30 22.08 34.52

ET-US 6.12 33.78 42.88 47.80 4.70 34.16 41.14 44.20 11.80 20.16 25.78 35.68
ET-S 11.98 35.82 43.26 47.90 10.70 31.94 37.62 39.20 54.10 55.86 56.40 59.96

Model 2 unstud 15.60 23.98 24.72 20.86 17.46 27.72 26.92 22.88 24.58 23.98 24.52 21.08
n = 300 Stud 17.90 24.24 24.72 20.64 15.70 21.30 20.72 17.80 14.40 13.10 13.16 12.90

ET-US 4.88 20.44 25.06 20.40 3.22 23.60 27.16 22.28 3.66 5.52 7.38 8.06
ET-S 9.36 21.50 25.24 20.30 6.78 18.46 21.00 17.46 42.04 39.88 39.32 34.92

Each of the tests may be implemented with or without
fixed effects (see example 1), and with Rademacher weights
or the alternative weighting scheme described in Mammen
(1993).

Tables 1 and 2 display the results for models 1 and 2 under
the null and alternative hypotheses, respectively. These two
models satisfy assumptions 2(iii) and (iv) when the regression
includes cluster-level fixed effects but not when only a con-
stant term is included (see example 1). Table 3 displays the
results for models 3 and 4 under the null hypothesis. These
two models violate assumptions 2(iii) and (iv) and are in-
cluded to explore sensitivity to violations of these conditions.
Finally, table 4 displays results for model 1 with α = 12.5%
to study the possible over-rejection under the null hypothesis
of the studentized test, as described in theorem 3.

We organize our discussion of the results by test.

A. Unstud

As expected in light of theorem 1 and example 1, table 1
shows the unstudentized test has rejection probability under
the null hypothesis very close to the nominal level when the
regression includes cluster-level fixed effects and the num-
ber of clusters is larger than four. When q = 4, however, the
test is conservative in the sense that the rejection probability
under the null hypothesis may be strictly below its nominal
level. In fact, when α = 5% (not reported), the test rarely re-
jects when q = 4 and is somewhat conservative for q = 5.
Table 1 also illustrates the importance of including cluster-
level fixed effects in the regression: when the test does not
employ cluster-level fixed effects, the rejection probability
often exceeds the nominal level. In addition, table 1 shows
that the Rademacher weights play an important role in our
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TABLE 3.—REJECTION PROBABILITY UNDER THE NULL HYPOTHESIS β1 = 1 WITH α = 10%

Rademacher with Fixed Effects Rademacher without Fixed Effects
q q

Test 4 5 6 8 4 5 6 8

Model 3 unstud 11.58 13.90 13.32 13.24 26.68 37.16 32.38 26.12
n = 50 Stud 11.14 12.74 11.94 11.44 19.98 18.62 14.54 12.66

ET-US 5.62 10.82 12.78 12.92 8.66 31.40 33.18 25.62
ET-S 7.06 10.24 11.34 11.38 13.52 16.08 15.10 12.46

Model 4 unstud 12.96 17.70 16.30 12.96 12.44 22.64 18.00 14.22
n = 50 Stud 13.00 16.34 14.62 10.88 15.24 22.68 17.22 12.84

ET-US 5.52 14.68 16.56 12.72 3.60 19.08 18.20 14.02
ET-S 7.62 14.30 15.10 10.76 9.60 20.70 17.66 12.74

Model 3 unstud 12.26 15.10 13.52 12.66 30.10 39.08 33.26 26.06
n = 300 Stud 12.32 13.52 11.40 10.96 22.00 19.38 15.44 12.96

ET-US 5.88 12.20 14.14 12.38 14.20 32.34 16.14 12.74
ET-S 8.20 11.86 11.94 10.74 17.80 16.70 13.00 11.98

Model 4 unstud 13.54 17.18 15.94 12.84 14.72 24.38 17.56 13.78
n = 300 Stud 13.40 15.78 14.94 11.72 17.12 25.10 17.66 12.58

ET-US 5.60 13.98 16.36 12.68 4.32 19.66 17.80 13.60
ET-S 7.88 13.38 15.46 11.56 10.42 22.16 18.14 12.36

TABLE 4.—REJECTION PROBABILITY UNDER THE NULL HYPOTHESIS β1 = 1 WITH α = 12.5%

Rademacher with Fixed Effects Rademacher without Fixed Effects
q q

Test 4 5 6 8 4 5 6 8

Model 1 - n = 50 Stud 14.76 14.26 12.96 11.26 16.60 15.28 13.80 12.42
Model 1 - n = 300 Stud 14.56 13.54 13.10 11.76 16.30 14.34 13.94 12.10

results and may not extend to other weighting schemes such
as those proposed by Mammen (1993). Indeed, the rejection
probability under the null hypothesis exceeds the nominal
level for all values of q and n when we use these alternative
weights (see the last four columns in tables 1 and 2). We
therefore do not consider these alternative weights in tables
3 and 4.

Models 3 and 4 are heterogeneous in the sense that assump-
tion 2(iii) is always violated and assumption 2(iv) is violated
if cluster-level fixed effects are not included. Table 3 shows
that the rejection probability of the unstudentized test under
the null hypothesis exceeds the nominal level in nearly all
specifications, including those employing cluster-level fixed
effects. These results highlight the importance of assump-
tions 2(iii) and (iv) for our results and for the reliability of
the wild bootstrap when the number of clusters is small. Our
findings are consistent with our theoretical results in section
III and simulations in Ibragimov and Müller (2016), who find
that the wild bootstrap may have rejection probability under
the null hypothesis greater than the nominal level whenever
the dimension of the regressors is larger than 2.

B. Stud

The studentized test studied in theorem 3 has rejection
probability under the null hypothesis very close to the nomi-
nal level in table 1 across the different specifications. Remark-
ably, this test seems to be less sensitive to whether cluster-

level fixed effects are included in the regression. Nonetheless,
when cluster-level fixed effects are included, the rejection
probability under the null hypothesis is closer to the nominal
level of α = 10%. In the heterogeneous models of table 3,
however, the rejection probability of the studentized test un-
der the null hypothesis exceeds the nominal level in many of
the specifications, especially when q < 8. Here, the inclusion
of cluster-level fixed effects attenuates the amount of over-
rejection. Finally, table 2 shows that the rejection probability
under the alternative hypothesis is similar to that of the un-
studentized test, except when q = 4 where the studentized
test exhibits higher power.

Theorem 3 establishes that the asymptotic size of the stu-
dentized test does not exceed its nominal level by more than
21−q. Table 4 examines this conclusion by considering stu-
dentized tests with nominal level α = 12.5%. Our simulation
results shows that the rejection probability under the null hy-
pothesis indeed exceeds the nominal level, but by an amount
that is in fact smaller than 21−q. This conclusion suggests that
the upper bound in theorem 3 can be conservative.

C. ET-US/ET-S

The equi-tailed versions of the unstudentized and stu-
dentized tests behave similar to their symmetric counter-
parts when q is not too small. When q ≥ 6, the rejection
probability under the null and alternative hypotheses is very
close to those of the unstudentized and studentized tests (see
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TABLE 5.—RESULTS FOR MODEL (24) FOR THE SIX ANALYSES IN TABLE 2 OF MENG ET AL. (2015)

Wild Wild S. Cluster Robust
Analysis H0 FE Coef Tn Tn/σ̂n p-Value p-Value p-Value p-Value

#1 β1 = 0 No 0.148 3.532 3.195 0.019 0.029 0.005 0.000
Yes 0.141 3.363 2.899 0.026 0.028 0.010 0.000

β1 + β2 = 0 No 0.141 3.371 2.368 0.054 0.061 0.029 0.001
Yes 0.145 3.470 2.937 0.046 0.081 0.009 0.001

#2 β1 = 0 No 0.103 1.614 2.473 0.041 0.047 0.024 0.013
Yes 0.088 1.374 1.900 0.037 0.052 0.074 0.023

β1 + β2 = 0 No 0.098 1.533 1.829 0.070 0.072 0.084 0.025
Yes 0.050 0.790 0.893 0.321 0.353 0.383 0.270

#3 β1 = 0 No 0.156 4.097 3.877 0.013 0.014 0.001 0.000
Yes 0.140 3.676 3.182 0.027 0.027 0.004 0.001

β1 + β2 = 0 No 0.115 3.023 3.140 0.049 0.029 0.005 0.007
Yes 0.174 4.577 4.245 0.017 0.032 0.000 0.000

#4 β1 = 0 No 0.120 2.071 3.245 0.029 0.026 0.004 0.005
Yes 0.084 1.445 1.818 0.082 0.080 0.083 0.047

β1 + β2 = 0 No 0.094 1.628 2.576 0.056 0.030 0.017 0.033
Yes 0.057 0.975 1.010 0.297 0.281 0.323 0.248

#5 β1 = 0 No 0.137 3.262 3.885 0.015 0.008 0.001 0.000
Yes 0.135 3.227 3.322 0.015 0.011 0.004 0.000

β1 + β2 = 0 No 0.113 2.689 1.784 0.168 0.141 0.091 0.004
Yes 0.024 0.576 0.394 0.803 0.692 0.699 0.739

#6 β1 = 0 No 0.090 1.419 3.215 0.031 0.021 0.005 0.015
Yes 0.087 1.371 2.380 0.012 0.011 0.029 0.008

β1 + β2 = 0 No 0.089 1.402 1.528 0.160 0.171 0.144 0.045
Yes −0.124 1.943 1.303 0.227 0.180 0.209 0.340

Coef: the estimated value of β1 or β1 + β2. Tn : the corresponding value of the statistic in equation (3). Tn/σ̂n : the corresponding value of the Studentized statistic in equation (18). Wild p-value: the corresponding
p-value using the un-Studentized wild bootstrap. Wild S. p-value: the corresponding p-value using the Studentized wild bootstrap. Cluster p-value: the corresponding p-value using cluster-robust standard errors. Robust
p-value: the corresponding p-value using heteroskedasticity-consistent standard errors.

tables 1–3). When q < 6, however, the equi-tailed versions of
these tests have rejection probability under the null hypothe-
sis below those of Unstud and Stud. These differences in turn
translate into lower power under the alternative hypothesis
(see table 2).

V. Empirical Application

In their investigation into the causes of the Chinese Great
Famine between 1958 and 1960, Meng et al. (2015) study the
relationship between province-level mortality and agricul-
tural productivity during both famine and nonfamine years.
To this end, in their baseline specification, they estimate by
ordinary least squares the equation

Yj,t+1 = Z (1)
j,t β1 + Z (2)

j,t β2 + W ′
j,tγ + ε j,t (24)

using data from nineteen provinces between 1953 and 1982,
where

Yj,t+1 = log(number of deaths in province j during year

t + 1)

Z (1)
j,t = log(predicted grain production in province j

during year t )

Z (2)
j,t = Z (1)

j,t × I{t is a famine year}

and Wj,t is vector of year-level fixed effects and other
covariates. We henceforth refer to this as analysis #1. As ro-

bustness checks, Meng et al. (2015) additionally consider the
following:

Analysis #2: Repeating analysis #1 using only data between
1953 and 1965.

Analysis #3: Repeating analysis #1 using four additional
provinces.

Analysis #4: Repeating analysis #2 using four additional
provinces.

Analysis #5: Repeating analysis #1 using actual rather than
predicted grain production.

Analysis #6: Repeating analysis #2 using actual rather than
predicted grain production.

The results of these six analyses can be found in table 2
of Meng et al. (2015). Among other things, for each anal-
ysis, Meng et al. (2015) report the ordinary least squares
estimate of β1, as well as its heteroskedasticity-consistent
standard errors, and the ordinary least squares estimate of
β1 + β2, as well as a p-value for testing the null hypoth-
esis that β1 + β2 = 0 computed using heteroskedasticity-
consistent standard errors. In unreported results, they write in
note 33 that conclusions computed using the wild bootstrap
are similar.

In table 5, we consider for each of these six analyses dif-
ferent ways of testing the null hypotheses that β1 = 0 and
β1 + β2 = 0. For each analysis and for each null hypothesis,
we report the ordinary least squares estimate of the quan-
tity of interest; the value of the unstudentized test statistic
Tn defined in equation (3); the value of the studentized test
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statistic Tn/σ̂n, where σ̂2
n is defined in equation (15); the wild

bootstrap p-value corresponding to Tn; the wild bootstrap p-
value corresponding to Tn/σ̂n; the p-value computed using
cluster-robust standard errors; and, finally, the p-value com-
puted using heteroskedasticity-consistent standard errors. We
also repeat each of these exercises after adding cluster-level
fixed effects.

Our results permit the following observations:

1. The inclusion or exclusion of cluster-level fixed effects
may have a significant impact on the wild bootstrap
p-values (both unstudentized and studentized). For an
extreme example of this phenomenon, see the p-values
for testing the null hypothesis that β1 + β2 = 0 in anal-
yses #2 and #4, where the wild bootstrap p-values with
cluster-level fixed effects are far above any conven-
tional significance level, whereas those without cluster-
level fixed effects are quite small. We note that in light
of our discussion in example 1, we would expect the
results with cluster-level fixed effects included to be
more reliable.

2. The unstudentized wild bootstrap p-values may be both
smaller or larger than the studentized wild bootstrap p-
values. Importantly, in some cases, these differences
may be meaningful in that they may lead tests based on
these p-values to reach different conclusions. In order
to illustrate this point, see the p-values for testing the
null hypothesis that β1 + β2 = 0 in analyses #1 and
#4. Given that in this application 21−q ≤ 2−18, theorem
3 and the benefits of studentizing as the number of
clusters diverges to infinity (Djogbenou et al., 2019)
suggest that test based on the studentized wild bootstrap
p-values are preferable to those based on unstudentized
wild bootstrap p-values in this application.

3. The wild bootstrap p-values (both unstudentized and
studentized) may be both smaller or larger than the
p-values computed using cluster-robust standard er-
rors. As in our preceding point, in some cases these
differences may be meaningful in that they may lead
tests based on these p-values to reach different conclu-
sions. In order to illustrate this point, see the p-values
for testing the null hypothesis that β1 = 0 in analyses
#2 and #3. Since p-values based on cluster-robust stan-
dard errors are only theoretically justified in a frame-
work where the number of clusters tend to infinity, our
analysis suggests that in this setting, it is preferable to
employ wild bootstrap-based p-values.

Recall that both theorems 1 and 3 rely on the homogeneity
requirements described in assumption 2(iii). We therefore
conclude our empirical application with a brief examination
of the plausibility of this assumption in this example. We
pursue this exercise only in the context of analysis #1, using
predicted versus actual grain production and using data on
nineteen provinces between 1953 and 1982. To this end, we
compute below the matrix on the left-hand side of equation

(10) for several different provinces. If assumption 2(iii) held,
then we would expect these matrices to be approximately
proportional to one another. This property does not appear
to hold in this application. To see this, consider the values
of these matrices for Beijing (corresponding to j = 1) and
Tianjin (corresponding to j = 2):

�1,n =
(

0.302 0.066

0.066 0.987

)
and �2,n =

(
0.228 0.021

0.021 0.012

)
.

The lower diagonal elements of these matrices differ by a
factor of > 80, whereas the other elements differ by a factor
that is at least an order of magnitude smaller. Similar results
hold for other pairs of provinces and other analyses. These
observations suggest that assumption 2(iii) does not hold in
this application. In light of the simulation study in section
IV, we may therefore wish to be cautious when applying the
wild bootstrap in this setting.

VI. Recommendations for Empirical Practice

This paper has studied the properties of the wild bootstrap-
based test proposed in Cameron et al. (2008) for use in
settings with clustered data. Our results have a number of
important implications for applied work:

• Wild bootstrap-based tests can be valid even if the number
of clusters is small. This conclusion, however, applies to a
specific variant of the wild bootstrap-based test proposed
in Cameron et al. (2008). Practitioners should, in particu-
lar, use Rademacher weights and avoid other weights such
those in Mammen (1993) in such settings. Practitioners
should also avoid reporting wild bootstrap-based standard
errors because t-tests based on such standard errors are
not asymptotically valid in an asymptotic framework in
which the number of clusters is fixed.

• The studentized version of the wild bootstrap-based test
has a limiting rejection probability that exceeds the nom-
inal level by an amount of at most 21−q. In an asymptotic
framework in which the number clusters diverge to infin-
ity, however, the studentized test exhibits advantages over
its unstudentized counterpart. Therefore, we recommend
employing studentized wild bootstrap-based test unless
the number of clusters is sufficiently small for the factor
21−q to be of concern.

• Our results rely on certain homogeneity assumptions on
the distribution of covariates across clusters. These homo-
geneity requirements can sometimes be weakened by in-
cluding cluster-level fixed effects. Whenever the number
of clusters is small and the homogeneity assumptions are
implausible, however, we recommend instead employing
an inference procedure that does not rely on these types
of homogeneity conditions, such as those developed in
Canay et al. (2017).
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Appendix A: Proof of Theorems

This appendix contains the proofs of the main theorems.
Lemmas S.1.1 and S.1.2 referenced below are in section S.1
of the online supplemental appendix.

Proof of Theorem 1. We first introduce notation that will
help streamline our argument. Let S ≡ Rdz×dz × ⊗

j∈J Rdz

and write any s ∈ S as s = (s1, {s2, j : j ∈ J}) where s1 ∈
Rdz×dz is a (real) dz × dz matrix, and s2, j ∈ Rdz for all j ∈ J .
Further, let T : S → R satisfy

T (s) ≡
∣∣∣∣∣∣c′(s1)−1

⎛
⎝∑

j∈J

s2, j

⎞
⎠

∣∣∣∣∣∣ (A-1)

for any s ∈ S such that s1 is invertible, and let T (s) = 0 when-
ever s1 is not invertible. We also identify any (g1, . . . , gq) =
g ∈ G = {−1, 1}q with an action on s ∈ S given by gs =
(s1, {g js2, j : j ∈ J}). For any s ∈ S and G′ ⊆ G, denote the
ordered values of {T (gs) : g ∈ G′} by

T (1)(s|G′) ≤ · · · ≤ T (|G′|)(s|G′).

Next, let (γ̂′
n, β̂

′
n)′ be the least squares estimators of (γ′, β′)′

in equation (1) and recall that ε̂r
i, j ≡ (Yi, j − Z ′

i, j β̂
r
n − W ′

i, j γ̂
r
n),

where (γ̂r′
n , β̂r′

n )′ are the constrained least squares estimators
of the same parameters restricted to satisfy c′β̂r

n = λ. By the
Frisch-Waugh-Lovell theorem, β̂n can be obtained by regress-
ing Yi, j on Z̃i, j , where Z̃i, j is the residual from the projection
of Zi, j on Wi, j defined in equation (8). Using this notation,
we can define the statistics Sn, S∗

n ∈ S to be given by

Sn ≡
⎛
⎝�̂Z̃,n,

⎧⎨
⎩ 1√

n

∑
i∈In, j

Z̃i, jεi, j : j ∈ J

⎫⎬
⎭

⎞
⎠ (A-2)

S∗
n ≡

⎛
⎝�̂Z̃,n,

⎧⎨
⎩ 1√

n

∑
i∈In, j

Z̃i, j ε̂
r
i, j : j ∈ J

⎫⎬
⎭

⎞
⎠ , (A-3)

where

�̂Z̃,n ≡ 1

n

∑
j∈J

∑
i∈In, j

Z̃i, j Z̃
′
i, j . (A-4)

Next, let En denote the event En ≡ I{�̂Z̃,n is invertible},
and note that whenever En = 1 and c′β = λ, the Frisch-
Waugh-Lovell theorem implies that

|√n(c′β̂n − λ)| = |√nc′(β̂n − β)|

=
∣∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In, j

Z̃i, jεi, j

∣∣∣∣∣∣ = T (Sn).

(A-5)
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Moreover, by identical arguments, it also follows that for any
action g ∈ G, we similarly have

|√nc′(β̂∗
n(g) − β̂r

n)| =
∣∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In, j

g j Z̃i, j ε̂
r
i, j

∣∣∣∣∣∣
= T (gS∗

n ) (A-6)

whenever En = 1. Therefore, for any x ∈ R letting �x� denote
the smallest integer larger than x and k∗ ≡ �|G|(1 − α)�, we
obtain from equations (A-5) and (A-6) that

I{Tn > ĉn(1 − α); En = 1} = I{T (Sn) > T (k∗ )(S∗
n |G);

En = 1}. (A-7)

In addition, it follows from assumptions 2(ii) and (iii) that

�̂Z̃,n
P→ ā�Z̃ , where ā ≡ ∑

j∈J ξ ja j > 0 and �Z̃ is a dz × dz

invertible matrix. Hence, we may conclude that

lim inf
n→∞ P{En = 1} = 1. (A-8)

Further, let ι ∈ G correspond to the identity action, ι ≡
(1, . . . , 1) ∈ Rq, and similarly define −ι ≡ (−1, . . . , −1) ∈
Rq. Then note that since T (−ιS∗

n ) = T (ιS∗
n ), we can conclude

from equation (A-3) and ε̂r
i, j = (Yi, j − Z ′

i, j β̂
r
n − W ′

i, j γ̂
r
n) that

whenever En = 1, we obtain

T (−ιS∗
n ) = T (ιS∗

n )

=
∣∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In, j

Z̃i, j (Yi, j − Z ′
i, j β̂

r
n − W ′

i, j γ̂
r
n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

1√
n

∑
i∈In, j

Z̃i, j (Yi, j − Z̃ ′
i, j β̂

r
n)

∣∣∣∣∣∣
= |√nc′(β̂n − β̂r

n)| = T (Sn), (A-9)

where the third equality follows from
∑

j∈J

∑
i∈In, j

Z̃i, jW ′
i, j =

0 due to Z̃i, j ≡ (Zi, j − �̂′
nWi, j ) and the definition of �̂n (see

equation (7)). In turn, the fourth equality in equation (A-9)
follows from equation (A-4) and the Frisch-Waugh-Lovell
theorem as in equation (A-5), while the final result in equation
(A-9) is implied by c′β̂r

n = λ and equation (A-5). In particular,
equation (A-9) implies that if k∗ ≡ �|G|(1 − α)� > |G| − 2,
then I{T (Sn) > T (k∗ )(S∗

n |G); En = 1} = 0, which establishes
the upper bound in theorem 1 due to equations (A-7) and (A-
8). We therefore assume that k∗ ≡ �|G|(1 − α)� ≤ |G| − 2,
in which case

lim sup
n→∞

E [φn]

= lim sup
n→∞

P{T (Sn) > T (k∗ )(S∗
n |G); En = 1}

= lim sup
n→∞

P{T (Sn) > T (k∗ )(S∗
n |G \ {±ι}); En = 1}

≤ lim sup
n→∞

P{T (Sn) ≥ T (k∗ )(S∗
n |G \ {±ι}); En = 1}, (A-10)

where the first equality follows from equations (A-7) and
(A-8), the second equality is implied by equation (A-9),
and k∗ ≤ |G| − 2, and the final inequality follows by set
inclusion.

To examine the right-hand side of equation (A-10), we
first note that assumptions 2(i) and (ii) and the continuous
mapping theorem imply that

⎧⎨
⎩

√
n j√
n

1√
n j

∑
i∈In, j

Z̃i, jεi, j : j ∈ J

⎫⎬
⎭ d→{√ξ jZ j : j ∈ J}.

(A-11)

Since ξ j > 0 for all j ∈ J by assumption 1(ii), and the vari-
ables {Z j : j ∈ J} have full-rank covariance matrices by as-
sumption 1(i), it follows that {√ξ jZ j : j ∈ J} have full-rank
covariance matrices as well. Combining equation (A-11) to-
gether with the definition of Sn in equation (A-2) and the

previously shown result �̂Z̃,n
P→ ā�Z̃ then allows us to

establish

Sn
d→ S ≡

(
ā�Z̃ , {√ξ jZ j : j ∈ J}

)
. (A-12)

We further note that whenever En = 1, the definition of
Sn and S∗

n in equations (A-2) and (A-3), together with the
triangle inequality, yield for every g ∈ G an upper bound of
the form

|T (gSn) − T (gS∗
n )|

≤
∣∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

n j

n

1

n j

∑
i∈In, j

g j Z̃i, jZ
′
i, j

√
n(β − β̂r

n)

∣∣∣∣∣∣
+

∣∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

n j

n

1

n j

∑
i∈In, j

g j Z̃i, jW
′

i, j

√
n(γ − γ̂r

n)

∣∣∣∣∣∣ . (A-13)

In what follows, we aim to employ equation (A-13) to
establish that T (gSn) = T (gS∗

n ) + oP(1). To this end, note
that whenever c′β = λ, it follows from assumption 1 and
Amemiya (1985, eq. (1.4.5)) that

√
n(β̂r

n − β) and
√

n(γ̂r
n −

γ) are bounded in probability. Thus, lemma S.1.2 yields

lim sup
n→∞

P

{∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

n j

n

1

n j

∑
i∈In, j

g j Z̃i, jW
′

i, j

√
n(γ − γ̂r

n)

∣∣∣∣∣
> ε; En = 1

}
= 0 (A-14)
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for any ε > 0. Moreover, lemma S.1.2 and assumptions 2(ii)
and (iii) establish for any ε > 0 that

lim sup
n→∞

P

{
|c′�̂−1

Z̃,n

∑
j∈J

n j

n

1

n j

∑
i∈In, j

g j Z̃i, jZ
′
i, j

√
n(β − β̂r

n)|

> ε; En = 1

}

= lim sup
n→∞

P

{
|c′�̂−1

Z̃,n

∑
j∈J

n j

n

1

n j

∑
i∈In, j

g j Z̃i, j Z̃
′
i, j

√
n(β − β̂r

n)|

> ε; En = 1

}

= lim sup
n→∞

P

{
|c′�−1

Z̃

∑
j∈J

ξ jg ja j

ā
�Z̃

√
n(β − β̂r

n)|

> ε; En = 1

}
, (A-15)

where recall ā ≡ ∑
j∈J ξ ja j . Hence, if c′β = λ, then equation

(A-15) and c′β̂r
n = λ yield for any ε > 0,

lim sup
n→∞

P

{
|c′�̂−1

Z̃,n

∑
j∈J

n j

n

1

n j

∑
i∈In, j

g j Z̃i, jZ
′
i, j

√
n(β − β̂r

n)|

> ε; En = 1

}

= lim sup
n→∞

P

{∣∣∣∣∣
∑
j∈J

ξ jg ja j

ā

√
n(c′β − c′β̂r

n)

∣∣∣∣∣ > ε; En = 1

}

= 0. (A-16)

Since we had defined T (s) = 0 for any s = (s1, {s2, j : j ∈
J}), whenever s1 is not invertible, it follows that T (gS∗

n ) =
T (gSn) whenever En = 0. Therefore, results (A-13), (A-14),
and (A-16) imply T (gS∗

n ) = T (gSn) + oP(1) for any g ∈ G.
We thus obtain from result (A-12) that

(T (Sn), {T (gS∗
n ) : g ∈ G})

d→ (T (S), {T (gS) : g ∈ G})

(A-17)

due to the continuous mapping theorem. Moreover, since

En
P→ 1 by result (A-8), it follows that (T (Sn), En, {T (gS∗

n ) :
g ∈ G}) converge jointly as well. Hence, Portmanteau’s theo-
rem (see theorem 1.3.4(iii) in van der Vaart & Wellner, 1996),

implies

lim sup
n→∞

P{T (Sn) ≥ T (k∗ )(S∗
n |G \ {±ι}); En = 1}

≤ P{T (S) ≥ T (k∗ )(S|G \ {±ι})}
= P{T (S) > T (k∗ )(S|G \ {±ι})}, (A-18)

where in the equality, we exploited that P{T (S) = T (gS)} =
0 for all g ∈ G \ {±ι} since the covariance matrix of Z j is
full rank for all j ∈ J and �Z̃ is nonsingular by assump-
tion 2(iii). Finally, noting that T (ιS) = T (−ιS) = T (S), we
can conclude T (S) > T (k∗ )(S|G \ {±ι}) if and only if T (S) >

T (k∗ )(S|G), which together with equations (A-10) and (A-18)
yields

lim sup
n→∞

E [φn] ≤ P{T (S) > T (k∗ )(S|G \ {±ι})}

= P{T (S) > T (k∗ )(S|G)} ≤ α, (A-19)

where the final inequality follows by gS
d= S for all g ∈ G

and the properties of randomization tests (see, e.g., Lehmann
& Romano, 2005, theorem 15.2.1). This completes the proof
of the upper bound in the statement of the theorem.

For the lower bound, first note that k∗ ≡ �|G|(1 − α)� >

|G| − 2 implies that α − 1
2q−1 ≤ 0, in which case the result

trivially follows. Assume k∗ ≡ �|G|(1 − α)� ≤ |G| − 2, and
note that

lim sup
n→∞

E [φn] ≥ lim inf
n→∞ P{T (Sn) > T (k∗ )(S∗

n |G); En = 1}

≥ P{T (S) > T (k∗ )(S|G)}
≥ P{T (S) > T (k∗+2)(S|G)} + P{T (S)

= T (k∗+2)(S|G)}

≥ α − 1

2q−1
, (A-20)

where the first inequality follows from result (A-7), the sec-
ond inequality follows from Portmanteau’s theorem (see, e.g.,
van der Vaart & Wellner, 1996, theorem 1.3.4(iii)), the third
inequality holds because P{T (z+2)(S|G) > T (z)(S|G)} = 1
for any integer z ≤ |G| − 2 by equation (A-1) and assump-
tion 2(i) and (ii), and the last equality follows from noticing
that k∗ + 2 = �|G|((1 − α) + 2/|G|)� = �|G|(1 − α′)� with
α′ = α − 1

2q−1 and the properties of randomization tests (see,
e.g., Lehmann & Romano, 2005, theorem 15.2.1). Thus, the
lower bound holds and the theorem follows.

Proof of Theorem 2. Throughout the proof, all convergence
in distribution and probability statements are understood to
be along the sequence {Pδ,n}. Following the notation in the
proof of theorem 1, we first let S ≡ Rdz×dz × ⊗

j∈J Rdz and
write an element of s ∈ S by s = (s1, {s2, j : j ∈ J}) where
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360 THE REVIEW OF ECONOMICS AND STATISTICS

s1 ∈ Rdz×dz is a (real) dz × dz matrix, and s2, j ∈ Rdz for any
j ∈ J . We then define the map T : S → R to be given by

T (s) ≡
∣∣∣∣∣∣c′(s1)−1

⎛
⎝∑

j∈J

s2, j

⎞
⎠

∣∣∣∣∣∣
for any s ∈ S such that s1 is invertible, and set T (s) = 0 when-
ever s1 is not invertible. We again identify any (g1, . . . , gq) =
g ∈ G = {−1, 1}q with an action s ∈ S defined by gs =
(s1, {g js2, j : j ∈ J}). We finally define En ∈ R and Sn ∈ S
to equal

En ≡ I{�̂Z̃,n is invertible} and

Sn ≡
⎛
⎝�̂Z̃,n,

⎧⎨
⎩

∑
i∈In, j

Z̃i, jεi, j√
n

+ Z̃i, j Z̃ ′
i, j

n

√
n(βn − β̂r

n)

⎫⎬
⎭

⎞
⎠ ,

where

�̂Z̃,n ≡ 1

n

∑
j∈J

∑
i∈In, j

Z̃i, j Z̃
′
i, j .

Since c′β̂r
n = λ, the Frisch-Waugh-Lovell theorem implies,

whenever En = 1, that

|√n(c′β̂n − λ)|
= |√nc′(β̂n − βn) + √

nc′(βn − β̂r
n)|

=
∣∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

∑
i∈In, j

Z̃i, jεi, j√
n

+ √
nc′(βn − β̂r

n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

∑
i∈In, j

(
Z̃i, jεi, j√

n
+ Z̃i, j Z̃ ′

i, j

n

√
n(βn − β̂r

n)

)∣∣∣∣∣∣
= T (Sn), (A-21)

where the final equality follows from the definition of T :
S → R. Also note that Amemiya (1985, eq. (1.4.5)), assump-
tion 1, and

√
nc′(βn − λ) = δ imply that

√
n(β̂r

n − βn) =
OP(1) and

√
n(γ̂r

n − γn) = OP(1). Therefore, manipulations
similar to those in equation (A-21), lemma S.1.2, and n j/n →
ξ j > 0 by assumption 2(ii) imply, whenever En = 1, that for
any g ∈ G,

|√nc′(β̂∗
n(g) − β̂r

n)|

=
∣∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In, j

g j Z̃i, j ε̂
r
i, j

∣∣∣∣∣∣

=
∣∣∣∣∣c′�̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In, j

g j (Z̃i, jZ
′
i, j (βn − β̂r

n)

+ Z̃i, jW
′

i, j (γn − γ̂r
n) + Z̃i, jεi, j )

∣∣∣∣∣
=

∣∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

∑
i∈In, j

g j

(
Z̃i, jεi, j√

n
+ Z̃i, j Z̃ ′

i, j

n

√
n(βn − β̂r

n)

)∣∣∣∣∣∣
+ oP(1).

We next study the asymptotic behavior of T (gSn). To this
end, we first note that Amemiya (1985, eq. (1.4.5)) and the
partitioned inverse formula imply, whenever En = 1, that

β̂r
n = β̂n − �̂−1

Z̃,n
c

c′β̂n − λ

c′�̂−1
Z̃,n

c

= β̂n − �̂−1
Z̃,n

c

(
c′(β̂n − βn)

c′�̂−1
Z̃,n

c
+ c′βn − λ

c′�̂−1
Z̃,n

c

)
. (A-22)

Therefore, employing that
√

n(c′βn − λ) = δ by hypothesis,
we conclude that whenever En = 1,

∑
i∈In, j

Z̃i, j Z̃ ′
i, j

n

√
n(βn − β̂r

n)

=
∑
i∈In, j

Z̃i, j Z̃ ′
i, j

n

{(
Idz − �̂−1

Z̃,n

cc′

c′�̂−1
Z̃,n

c

)
√

n(βn − β̂n)

+
�̂−1

Z̃,n
c

c′�̂Z̃,nc
δ

}
, (A-23)

where Idz denotes the dz × dz identity matrix. Since as-

sumptions 2(ii) and (iii) imply �̂Z̃,n
P→ ā�Z̃ where ā ≡∑

j∈J ξ ja j > 0 and �Z̃ is a dz × dz invertible matrix, it fol-
lows that En = 1 with probability tending to 1. Hence, re-
sults (A-22) and (A-23), and assumptions 2(ii) and (iii)
yield

lim sup
n→∞

Pδ,n

{∣∣∣∣∣√nc′(β̂∗
n(g) − β̂r

n) − c′�̂−1
Z̃,n

∑
j∈J

∑
i∈In, j

g j

×
(

Z̃i, jεi, j√
n

+ c
ξ ja jδ

c′�̂−1
Z̃,n

c

)∣∣∣∣∣ > ε; En = 1

}
= 0. (A-24)

In particular, results (A-21) and (A-24), �̂Z̃,n
P→ ā�Z̃ , and

assumption 2(i) establish that
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(Tn, {
√

nc′(β̂∗
n(g) − β̂r

n) : g ∈ G})
d→ (T (Sδ),

{T (gSδ) : g ∈ G})

where

Sδ ≡
(

ā�Z̃ ,

{√
ξ jZ j + c

āξ ja jδ

c′�−1
Z̃

c
: j ∈ J

})
.

By definition of ĉn(1 − α) and Portmanteau’s theorem (see,
e.g., van der Vaart & Wellner, 1996, theorem 1.3.4(ii)), it then
follows that

lim inf
n→∞ Pδ,n{Tn > ĉn(1 − α)}

≥ P

{
T (Sδ) > inf

{
u ∈ R :

1

|G|
∑
g∈G

I{T (gSδ) ≤ u}

≥ 1 − α

}}
. (A-25)

To conclude the proof, we denote the ordered values of
{T (gs) : g ∈ G} according to

T (1)(s|G) ≤ · · · ≤ T (|G|)(s|G).

Then observe that since �|G|(1 − α)� < |G| − 1 by hypoth-
esis, result (A-25) implies that

lim inf
|δ|→∞

lim inf
n→∞ Pδ,n

{
Tn > ĉn(1 − α)

}
≥ lim inf

|δ|→∞
P
{
T (Sδ) = T (|G|)(Sδ|G)

}
.

Let ι = (1, · · · , 1) ∈ Rq, and note that since T (ιS) =
T (−ιS), the triangle inequality yields

P{T (Sδ) = T (|G|)(Sδ|G)}

≥ P

{∣∣∣∣∣
∑
j∈J

(√
ξ j

ā
c′�−1

Z̃
Z j + ξ ja jδ

)∣∣∣∣∣
≥ max

g∈G\{±ι}

∣∣∣∣∣
∑
j∈J

g j

(√
ξ j

ā
c′�−1

Z̃
Z j + ξ ja jδ

)∣∣∣∣∣
}

≥ P

{
|δ|

( ∑
j∈J

ξ ja j − max
g∈G\{±ι}

∣∣∣∣∣
∑
j∈J

ξ ja jg j

∣∣∣∣∣
)

≥ 2
∑
j∈J

∣∣∣∣∣
√

ξ j

ā
c′�−1

Z̃
Z j

∣∣∣∣∣
}

.

Since a jξ j > 0 for all 1 ≤ j ≤ J and every g ∈ G \ {±ι}
must have at least one coordinate equal to 1 and at least one
coordinate equal to −1, it follows that

∑
j∈J

ξ ja j − max
g∈G\{±ι}

∣∣∣∑
j∈J

ξ ja jg j

∣∣∣ > 0.

Hence, since
∑

j∈J |√ξ jc′�−1
Z̃
Z j | = OP(1) by assumption

2(i), we finally obtain that

lim inf
|δ|→∞

lim inf
n→∞ Pδ,n{Tn > ĉn(1 − α)}

≥ lim inf
|δ|→∞

P

{
|δ|

( ∑
j∈J

ξ ja j − max
g∈G\{±ι}

∣∣∣∣∣
∑
j∈J

ξ ja jg j

∣∣∣∣∣
)

≥ 2
∑
j∈J

∣∣∣∣∣
√

ξ j

ā
c′�−1

Z̃
Z j

∣∣∣∣∣
}

= 1,

which establishes the claim of the theorem.

Proof of Theorem 3. The proof follows similar arguments as
those employed in establishing theorem 1, and thus we keep
exposition more concise. We again start by introducing no-
tation that will streamline our arguments. Let S ≡ Rdz×dz ×⊗

j∈J Rdz , and write an element s ∈ S by s = (s1, {s2, j : j ∈
J}) where s1 ∈ Rdz×dz is a (real) dz × dz matrix, and s2, j ∈ Rdz

for any j ∈ J . Further, define the functions T : S → R and
W : S → R to be pointwise given by

T (s) ≡
∣∣∣∣∣c′(s1)−1

(∑
j∈J

s2, j

)
− λ

∣∣∣∣∣, (A-26)

W (s) ≡
(

c′(s1)−1
∑
j∈J

(
s2, j − ξ ja j

ā

∑
j̃∈J

s2, j̃

)

×
(

s2, j − ξ ja j

ā

∑
j̃∈J

s2, j̃

)′
(s1)−1c

)1/2

, (A-27)

for any s ∈ S such that s1 is invertible, and set T (s) = 0 and
W (s) = 1 whenever s1 is not invertible. We further identify
any (g1, . . . , gq) = g ∈ G = {−1, 1}q with an action on s ∈
S defined by gs = (s1, {g js2, j : j ∈ J}). Finally, we set An ∈
R and Sn ∈ S to equal

An ≡ I{�̂Z̃,n is invertible, σ̂n > 0, and

σ̂∗
n(g) > 0 for all g ∈ G}, (A-28)

Sn ≡
(

�̂Z̃,n,

{
1√
n

∑
i∈In, j

Z̃i, jεi, j : j ∈ J

})
(A-29)

where recall �̂Z̃,n was defined in equation (14) and Z̃i, j was
defined in equation (8).
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First, note that by assumptions 2(i) and (ii) and the contin-
uous mapping theorem, we obtain

{√
n j√
n

1√
n j

∑
i∈In, j

Z̃i, jεi, j : j ∈ J

}
d→ {√ξ jZ j : j ∈ J}.

(A-30)

Since ξ j > 0 for all j ∈ J by assumption 2(ii), and the vari-
ables {Z j : j ∈ J} have full rank covariance matrices by as-
sumption 2(i), it follows that {√ξ jZ j : j ∈ J} have full rank
covariance matrices as well. Combining equation (A-30) to-
gether with the definition of Sn in equation (A-29), assump-
tions 2(ii) and (iii), and the continuous mapping theorem then
allows us to establish

Sn
d→ S ≡

(
ā�Z̃ , {√ξ jZ j : j ∈ J}

)
, (A-31)

where ā ≡ ∑
j∈J ξ ja j > 0. Since �Z̃ is invertible by assump-

tion 2(iii) and ā > 0, it follows that �̂Z̃,n is invertible with
probability tending to 1. Hence, we can conclude that

σ̂n = W (Sn) + oP(1) σ̂∗
n(g) = W (gSn) + oP(1) (A-32)

due to the definition of W : S → R in equation (A-27) and
lemma S.1.1. Moreover, �̂Z̃,n being invertible with probabil-
ity tending to 1 additionally allows us to conclude that

lim inf
n→∞ P{An = 1}

= lim inf
n→∞ P{σ̂n > 0 and σ̂∗

n(g) > 0 for all g ∈ G}
≥ P{W (gS) > 0 for all g ∈ G} = 1, (A-33)

where the inequality in equation (A-33) holds by equations
(A-31) and (A-32), the continuous mapping theorem, and
Portmanteau’s theorem (see, e.g., van der Vaart & Wellner,
1996, theorem 1.3.4(ii)). In turn, the final equality in equation
(A-33) follows from {√ξ jZ j : j ∈ J} being independent and
continuously distributed with covariance matrices that are
full rank.

Next, recall that ε̂r
i, j = (Yi, j − Z ′

i, j β̂
r
n − W ′

i, j γ̂
r
n) and note

that whenever An = 1, we obtain

√
nc′(β̂∗

n(g) − β̂r
n)

= c′�̂−1
Z̃,n

1√
n

∑
j∈J

∑
i∈In, j

g j Z̃i, j ε̂
r
i, j

= c′�̂−1
Z̃,n

1√
n

∑
j∈J

∑
i∈In, j

g j Z̃i, j (εi, j − Z ′
i, j (β̂

r
n − β)

− W ′
i, j (γ̂

r
n − γ)). (A-34)

Further note that c′β = λ, assumption 1, and Amemiya (1985,
eq. (1.4.5)) together imply that

√
n(β̂r

n − β) and
√

n(γ̂r
n − γ)

are bounded in probability. Therefore, lemma S.1.2 implies

lim sup
n→∞

P

{∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

g j

n

∑
i∈In, j

Z̃i, jW
′

i, j

√
n(γ̂r

n − γ)

∣∣∣∣∣ > ε;

An = 1

}
= 0 (A-35)

for any ε > 0. Similarly, since
√

n(β̂r
n − β) is bounded in

probability and �Z̃ is invertible by assumption 2(iii), lemma
S.1.2 together with assumptions 2(ii) and (iii) imply for any
ε > 0,

lim sup
n→∞

P

{∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

n j

n

1

n j
g j

∑
i∈In, j

Z̃i, jZ
′
i, j

√
n(β̂r

n − β)

∣∣∣∣∣
> ε; An = 1

}

= lim sup
n→∞

P

{∣∣∣∣∣c′�̂−1
Z̃,n

∑
j∈J

n j

n

1

n j
g j

∑
i∈In, j

Z̃i, j Z̃
′
i, j

√
n(β̂r

n − β)

∣∣∣∣∣
> ε; An = 1

}

= lim sup
n→∞

P

{∣∣∣∣∣c′�−1
Z̃

∑
j∈J

ξ ja jg j

ā
�Z̃

√
n(β̂r

n − β)

∣∣∣∣∣ > ε;

An = 1

}
= 0. (A-36)

It follows from results (A-32) to (A-36) together with
T (Sn) = Tn that whenever �̂Z̃,n is invertible,

((|√n(c′β̂n −λ)|, σ̂n), {(|c′√n(β̂∗
n(g)− β̂r

n)|, σ̂∗
n(g)) : g ∈ G})

= ((T (Sn),W (Sn)), {(T (gSn),W (gSn)) : g ∈ G}) + oP(1).

(A-37)

To conclude, we define a function t : S → R to be given by
t(s) = T (s)/W (s). Then note that for any g ∈ G, gS assigns
probability 1 to the continuity points of t : S → R since �Z̃ is
invertible and P{W (gS) > 0 for all g ∈ G} = 1 as argued in
equation (A-33). In what follows, for any s ∈ S, it will prove
helpful to employ the ordered values of {t(gs) : g ∈ G}, which
we denote by

t(1)(s|G) ≤ . . . ≤ t(|G|)(s|G). (A-38)

Next, we observe that result (A-33) and a set inclusion in-
equality allow us to conclude that
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lim sup
n→∞

P

{
Tn

σ̂n
> ĉsn(1 − α)

}

≤ lim sup
n→∞

P

{
Tn

σ̂n
≥ ĉsn(1 − α); An = 1

}

≤ P

{
t(S) ≥ inf

{
u ∈ R :

1

|G|
∑
g∈G

I{t(gS) ≤ u} ≥ 1 − α

}}
,

(A-39)

where the final inequality follows by results (A-31) and
(A-37), and the continuous mapping and Portmanteau the-
orems (see, e.g., van der Vaart & Wellner, 1996, theorem
1.3.4(iii)). Therefore, setting k∗ ≡ �|G|(1 − α)�, we can then
obtain from result (A-39) that

lim sup
n→∞

P

{
Tn

σ̂n
> ĉsn(1 − α)

}

≤ P{t(S) > t(k∗ )(S)} + P{t(S) = t(k∗ )(S)}
≤ α + P{t(S) = t(k∗ )(S)}, (A-40)

where in the final inequality we exploited that gS
d= S for all

g ∈ G and the basic properties of randomization tests (see,

e.g., Lehmann & Romano, 2005, theorem 15.2.1). Moreover,
applying Lehmann & Romano (2005, theorem 15.2.2) yields

P{t(S) = t(k∗ )(S)}
= E [P{t(S) = tk∗

(S)|S ∈ {gS : g ∈ G}}]

= E

[
1

|G|
∑
g∈G

I{t(gS) = t(k∗ )(S)}
]
. (A-41)

For any g = (g1, . . . , gq) ∈ G, let −g = (−g1, . . . , −gq) ∈
G and note that t(gS) = t(−gS) with probability 1. However,
if g̃, g ∈ G are such that g̃ /∈ {g, −g}, then

P{t(gS) = t(g̃S)} = 0 (A-42)

since, by assumption 2, S = (ā�Z̃ , {√ξ jZ j : j ∈ J}) is such
that �Z̃ is invertible, ξ j > 0 for all j ∈ J , and {Z j : j ∈ J}
are independent with full-rank covariance matrices. Hence,

1

|G|
∑
g∈G

I{t(gS) = t(k∗ )(S)} = 1

|G| × 2 = 1

2q−1
(A-43)

with probability 1, and where in the final equality we ex-
ploited that |G| = 2q. The claim of the upper bound in the
theorem therefore follows from results (A-40) and (A-43).
Finally, the lower bound follows from similar arguments to
those in equation (A-20) and so we omit them here.

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/103/2/346/1915882/rest_a_00887.pdf by N
O

R
TH

W
ESTER

N
 U

N
IVER

SITY user on 14 Septem
ber 2021


