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Abstract

A significant cost of traffic congestion is unreliable travel times. A major

source of this unreliability is that when roads are congested, interactions

between drivers can lead to capacity unexpectedly falling. For example,

collisions can close lanes and aggressive lane changers can slow traffic. This

paper analyzes how tolls should be set when accounting for such endogenous

reliability. We find tolls should be higher and maximum flow lower than

we might naı̈vely expect; and that such tolls make homogeneous drivers

better off, even before the toll revenue is used. Simulations suggest the

socially optimal maximum departure rate is fifteen percent below that which

maximizes expected throughput, and that tolling reduces private costs by

almost ten percent.
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1 Introduction

Traffic congestion is a serious problem for cities worldwide. In the United States, 41

percent of mayors report that traffic congestion is one of their top three problems

(Bloomberg Philanthropies, 2018). More than half of the time lost to traffic conges-

tion is due to non-recurring congestion; that is, congestion caused by crashes, bad

weather, and other shocks (Dowling et al., 2004; Kwon et al., 2006). Non-recurring

congestion leads to unpredictable travel times. Due to this unpredictability, drivers

have to depart earlier than they would prefer. On good days they arrive with time

to spare and on bad days they suffer the consequences of arriving late for work or

an important appointment. This lack of reliability accounts for between 30 and 70

percent of the total cost of congestion (Small et al., 2005; Bento et al., 2017).

While some of the shocks which cause non-recurring congestion are exogenous,

such as bad weather, others shocks are endogenous. For endogenous shocks, their

probability of occurring increases with traffic flow (the number of vehicles passing

a given point per lane per hour). For example, the rate at which crashes occur per

vehicle-mile traveled more than doubles as the flow increases from 1,500 to 2,000

vehicles per hour per lane (vphpl) (Kononov et al., 2012).1 Furthermore, as traffic

flow increases the probability that a small shock leads to a collapse in outflow

also increases. Transportation engineers call this collapse “flow breakdown” or

a “capacity drop”. Numerous types of small shocks can cause flow breakdown,

including vehicles weaving between lanes, excessively slow vehicles, aggressive

driving, tailgating, and sharp braking. Lorenz and Elefteriadou (2001) estimate

that as flow increases from 1,900 to 2,200 vphpl the probability of breakdown

increases by 50 percentage points. The magnitude of the breakdown appears to

1Much of the literature on the relationship between traffic flow and crash risk finds a U-shaped

relationship, with the minimum risk when flow is around half of capacity (around 1,000 vphpl).

Zhou and Sisiopiku (1997) and Kononov et al. (2012) find evidence that the high risk of a crash at

low levels of flow is driven by observations from late at night when the majority of crashes involve

alcohol, drugs, or falling asleep.
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be quite large, with documented declines in capacity of 25 percent (Persaud et al.,

1998).2

This paper’s contribution is to analyze how to implement tolls in the face of

this endogenous non-recurring congestion. We do so by extending the bottleneck

model of dynamic congestion (Vickrey, 1969; Arnott et al., 1993) to allow for an

endogenous probability of breakdown, where the probability is increasing in the

flow.

To keep the analysis tractable, we limit the space of possible toll schedules to a

commonly observed class of tolls: preset toll schedules that vary by time of day

to keep traffic flow from exceeding a target maximum. For example, California’s

SR-91 Express Lanes have a stated maximum average flow of 1,600 vphpl.3 Other

facilities implicitly have a maximum flow target because they aim to achieve a set

minimum average vehicle speed. The majority of facilities in the United States

with time-varying tolls have a preset schedule.4 These tolls are anticipatory, and

differ from dynamic tolls which respond in real time to realized traffic levels.

Dynamic tolls, with one exception, have only been used when pricing a portion of

2For further discussion and evidence of flow breakdown, see (among others) Dong and Mahmas-

sani (2009), Kim et al. (2010), Chen et al. (2014), Chen and Ahn (2015), Luo et al. (2015), Qian et al.

(2017), Kontorinaki et al. (2017), and Geistefeldt and Shojaat (2019). There is a parallel literature on

“phantom traffic jams” that explores how variations in speeds of cars following each other can lead

to breakdown (Sugiyama et al., 2008; Wilson and Ward, 2011). While there is broad acceptance

that breakdown occurs and is probabilistic, there is debate over the magnitude of the breakdown

and the probability of it occurring. For example, Doig et al. (2013) cautions that sometimes what

appears to be flow breakdown is actually the result of unobserved congestion on a downstream

link.
3Tolls vary by day and by hour. Tolls are reviewed and adjusted every six months. Tolls are

increased or decreased depending on whether observed volumes are greater than or less than the

target flow. See the detailed policy at https://www.91expresslanes.com/wp-content/uploads/

2014/04/TollPolicy.pdf.
4Data is from a database maintained by the U.S. Transportation Research Board’s Standing

Committee on Managed Lanes, as of July 2018. An earlier report by the Federal Highway Ad-

ministration (2016) found that 47 (23%) of the 210 toll highway facilities in the United States as of

January 1, 2015, excluding bridges and tunnels, had toll schedules that varied by time of day or

traffic conditions. Of the 47 with tolls that varied by time of day, two-thirds had prices that were

on a preset schedule.
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the lanes, because for dynamic tolls to be effective drivers need to have the ability

to immediately choose an alternate route, or cancel or delay their trip.5,6

We find two important results. First, tolls should be higher, and maximum

flow lower, than we might naı̈vely expect. We use as the naı̈ve benchmark the toll

schedule which maximizes expected throughput.7 Increasing the toll to reduce the

maximum flow rate below that which maximizes expected throughput has a cost:

it increases the length of the peak period. However, it has two benefits: it reduces

the probability of breakdown, and it reduces the severity of congestion on days

breakdown occurs by spreading out when drivers depart.

Second, tolling leaves homogeneous drivers better off, even before the resulting

revenue is used. Furthermore, providing that the probability of breakdown when

the road is untolled is not too high, the improvement in drivers’ private costs

occurs despite a reduction in the average flow rate relative to when no tolls were

charged. This is due to drivers valuing the reduction in uncertainty and travel time

more than they dislike paying the toll. Leaving drivers better off is important as a

major barrier to implementing tolling is the concern that it hurts drivers.8 While

drivers are, in reality, heterogeneous, this result highlights that accounting for the

value drivers place on reliability improves the welfare consequences of tolling.

5The exception is I-66 in Virginia. This facility was originally only for high-occupancy vehicles

during peak periods. Solo drivers can now pay dynamic tolls to use the facility.
6 The purpose of our tolls is to smooth traffic flow and reduce the chance that interactions

between drivers leads to breakdown. Another tool for doing so is ramp metering. Ramp metering

and tolling are complements rather than substitutes. Tolling smooths traffic flow at a macro level

by incentivizing drivers to modify the times they leave home, while ramp metering smooths traffic

flow at the micro level by physically preventing drivers from entering the road. Tolling solves two

problems with ramp metering. The first is that ramp metering can lead to large queues off the

highway, which while likely better than large queues on the highway, still has a large social cost.

The second is that ramp metering inefficiently penalizes drivers entering the highway in the urban

core relative to the suburbs.
7We use this as our benchmark for two reasons. First, it is regularly discussed when setting

policy, and second, in the standard bottleneck model, the toll schedule which maximizes social

welfare also maximizes throughput.
8For example, Lindsey and Verhoef (2008) argue “most likely, these losses are the root of the

longstanding opposition to congestion tolling”. See Hall (2018) for a longer discussion of this.
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We simulate our model using parameter values from Lorenz and Elefteriadou

(2001), U.S. Department of Transportation (2016), and Hall (2019b). Our simulations

suggest that the socially optimal maximum departure rate is fourteen percent below

that which maximizes expected throughput, with the average toll more than three

times those which maximize expected throughput. These tolls reduce private costs

by almost ten percent.

While our model is of a single link, the problem of endogenous non-recurrent

congestion applies equally to networks. Charging time-varying tolls smooths

entry to a network, reducing the probability of flow breakdown, as well as its

consequences, throughout the network. This is especially applicable to downtown

traffic congestion.9

2 Literature Review

The paper contributes to two literatures. First, it builds on a literature analyzing

congestion mitigation policies, such as tolling or information, in the face of un-

certainty. Within this literature, we relate most closely to an influential paper by

Arnott et al. (1999), and an innovative paper by Fosgerau and Lindsey (2013).10

The former uses the bottleneck model with exogenous supply and demand shocks

to show that providing imperfect information can reduce social welfare. The latter

analyzes the effect of traffic crashes that are modeled as exogenous supply shocks

that can happen at any point during the day. Tolling can improve social welfare by

reducing the cost of a crash, since there are fewer drivers on the road at a given

time. We build on this work by allowing for endogenous supply shocks, which

allows us to show tolling helps by re-arranging traffic flow to both reduce the

probability and consequences of the supply shock.

9For examples of papers directly modeling downtown traffic congestion, see Arnott (2013) and

Fosgerau (2015).
10Other papers in this literature include Noland and Small (1995), Noland (1997), and Lindsey

(1999). Empirical papers estimating the value of reliability include Small et al. (2005) and Bento

et al. (2017).
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The paper is also closely related to Zhu et al. (2017). Their model has a random

element to the queuing time at a bottleneck that increases with the total number of

drivers. They analyze implementation of a uniform toll using numerical examples.

A higher uniform toll reduces total overall demand and the variability in travel time.

The current paper differs by solving for equilibrium analytically, demonstrating

that flow should be reduced below that which maximizes expected throughput,

and concluding that it is possible to make all drivers better off.

The paper also contributes to a second literature concerning the welfare con-

sequences of tolling. This literature finds that changes in the departure rate and

changes in private cost are negatively correlated. For example, in the traditional

static model adding tolls increases private costs while reducing departures (e.g.

Walters, 1961), and in the standard bottleneck model adding tolls leaves the average

departure rate and private costs unchanged (Arnott et al., 1993). In models with

hypercongestion, adding tolls increases the average departure rate and reduces

private costs (Fosgerau and Small, 2013; Hall, 2018). Our contribution is to high-

light the value of reliability, and show that this makes it possible to reduce private

costs while reducing the average departure rate.

3 Model

Our model introduces probabilistic flow breakdown into the standard bottleneck

congestion model of Vickrey (1969) and Arnott et al. (1990, 1993). This model is

dynamic, and since drivers have preferences over arrival times, disliking arriving

early or late, it allows drivers to be risk averse. Having risk averse drivers matters

because a major cost of probabilistic flow breakdown is that it increases uncertainty.

In common with the standard model, a single link connects where people live

to where they work. There are no alternative routes or modes. The only source of

congestion is a bottleneck. For simplicity, travel time before and after the bottleneck

and vehicle operating costs are normalized to zero. Consequently, the departure

rate of drivers from home is identical to the inflow rate into the bottleneck. The

terms “departure rate” and “inflow” are used synonymously, using the former
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term in the modeling, and the latter when describing policy options for toll road

operators.

Each morning the maximum bottleneck capacity value, denoted by s, is drawn

from a distribution with a continuous cumulative distribution function of P(s) and

a probability density function of p(s). This distribution is non-degenerate and has

a lower bound of sB. The subscript B indicates a “bad” or post-breakdown state.

Let r(t) denote the departure rate of drivers from home at time t. As soon as r(t)

surpasses s, interaction between drivers causes the flow to break down and the

capacity of the bottleneck falls to sB. It remains at this level until the resulting

queue dissipates, at which point the highway capacity reverts to s.

The paper is concerned with equilibria where breakdown is not an everyday

occurrence. If breakdown were a daily occurrence, the model would be equivalent

to the standard bottleneck model but with decreased bottleneck capacity when a

queue forms (as in Hall (2018)). To make the model interesting P(s) should only

equal 1 for values of s greater than the largest departure rate. This restriction is

not imposed on the derivations, although discussion of the results often takes it as

given.

There is a mass N of homogeneous drivers in single-occupant vehicles. The

number of drivers is perfectly inelastic. Drivers have a common desired arrival

time at work, denoted as t∗. Drivers choose when to depart from home to minimize

their expected trip costs.

Let tS and tE denote the start and end of the period of departures. Further

define r̄(t) = maxx∈[tS,t] r(x) as the largest departure rate that has already occurred.

If r̄(t) ≤ s, breakdown has not occurred, there has been no queuing, and travel

time, denoted as T, is zero. However, if r̄(t) > s, breakdown has occurred, and the

queue evolves according to

dQ(t, s)
dt

= r (t)− sB,

where Q(t, s) represents the number of vehicles in the queue, and travel time is

given by

T(t, s) =
Q(t, s)

sB
. (1)
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Drivers’ expected trip costs are the sum of the cost of travel time, the cost of an

early or late arrival at work, and any toll payments. The expected cost is described

by the following function

c(t) =
∫ ∞

sB

[αT(t, s) + D(t + T(t, s))] dp(s) + τ(t), (2)

where α is the hourly cost of travel time, D represents the cost of arriving early

or late, and τ(t) is the toll. We follow the standard bottleneck model in assuming

schedule delay costs are piecewise-linear, so

D(x) =

−β(x− t∗) x ≤ t∗,

γ(x− t∗) x > t∗;

with β and γ being the hourly cost of being early or late. Consistent with the

literature, we assume β < α to avoid a mass of drivers departing at the same time.

Drivers have rational expectations, and in deciding when to depart are aware of

the probability of breakdown and its effects.11 However, on any given day, drivers

do not observe the maximum bottleneck capacity that is drawn. They cannot

decide to stay home or deviate from their chosen departure time if breakdown

either has occurred or is about to occur.

4 Equilibrium without tolls

This section describes the stochastic user equilibrium in the absence of tolls. The

superscript U (for untolled) indicates equilibrium values. As is usual in these

models, there are two equilibrium conditions. The first is that supply equals

demand. The number of people who want to travel equals the number who

actually travel. The second is that no driver can find a profitable time deviation.

This implies that the trip cost is the same for all departure times that people choose,

and is not any lower at any times that people do not choose.

11It may be that the distribution of capacity varies with some observable signal, such as the

weather or the season. In this case, P(s) is the cumulative distribution function conditional on that

signal, and all of our results carry through within each information state.
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To preview the results, the departure rate from home is non-increasing across

the peak period, the period of time when drivers are on the road. Consequently,

when the value of s is drawn each morning, either breakdown happens immediately

or it does not happen at all. A non-increasing departure rate further implies it is

not possible for the highway to recover and then break down again. As a result,

drivers have either a good day when breakdown does not occur at all, or a bad

day when the bottleneck is at capacity sB for the entire peak period.

In the following subsections, we characterize the departure rate, the interval

over which drivers depart, and equilibrium trip costs.

4.1 Equilibrium departure rates

In this subsection we prove that departure rates are non-increasing over the

period when drivers depart and characterize the departure rate. The intuition for

departure rates being non-increasing starts with the equilibrium requirement that

all drivers must be indifferent between all departure times that are actually chosen.

Because different departure times lead to different expected schedule delay costs,

expected travel times must vary to keep drivers indifferent. Expected schedule

delay costs are U-shaped, being high for very early departures, low for departures

that are early sometimes and late sometimes, and high for very late departures. To

keep drivers indifferent between departure times, expected travel time costs must

have an inverse U-shape, reaching their peak when expected schedule delay costs

are the lowest. Thus, the first derivative of travel times is non-increasing, and since

the departure rate is proportional to the first derivative of travel times, this implies

the departure rate is non-increasing. This is formalized in the following lemma.

Lemma 1. The departure rate is non-increasing after the first departure:

r′(t) ≤ 0 ∀ t ≥ tS.

Proof. The proof is in three steps. The first step is deriving an expression for the

second difference of trip costs during the time that agents are departing. Consider
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four times at which drivers depart, ta < tb < tc < td. To reduce notational clutter,

assume tb − ta = td − tc. To simplify notation, define

∆Db(s) = D(tb + T(tb, s))− D(ta + T(ta, s)),

∆Dd(s) = D(td + T(td, s))− D(tc + T(tc, s)),

∆Tb(s) = T(tb, s)− T(ta, s), and

∆Td(s) = T(td, s)− T(tc, s).

With this notation, the change in the trip cost between ta and tb can be written as

c(tb)− c(ta) =
∫ ∞

sB

[α∆Tb(s) + ∆Db(s)] dp(s).

Comparing the change in trip costs between tc and td to that between tb and ta

produces

[c(td)− c(tc)]− [c(tb)− c(ta)] =∫ ∞

sB

{α [∆Td(s)− ∆Tb(s)] + ∆Dd(s)− ∆Db(s)} dp(s). (3)

The second step is to impose the equilibrium constraint that the expected cost

at each departure time actually chosen is the same. Hence (3) equals zero.

The third step is to show that the convexity of D means that for (3) to equal

zero, the departure rate must be non-increasing after the first departure. Because

D is weakly convex, its average slope between tc and td is weakly greater than its

average slope between ta and tb. Letting ω(s) be the average slope between ta and

tb,

ω(s) =
∆Db(s)

tb − ta + ∆Tb(s)
,

and

∆Dd(s) ≥ ω(s) (td − tc + ∆Td(s)) .

These two equations imply that

∆Dd(s)− ∆Db(s) ≥ ω(s) [∆Td(s)− ∆Tb(s)] . (4)
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Imposing that (3) equals zero and substituting in (4) yields

0 ≥
∫ ∞

sB

{α [∆Td(s)− ∆Tb(s)] + ω(s) [∆Td(s)− ∆Tb(s)]} dp(s) =∫ ∞

sB

(α + ω(s)) [∆Td(s)− ∆Tb(s)] dp(s) (5)

By assumption, α + D′(x) > 0 for all x, so α + ω(s) > 0. Thus, for (5) to be

non-positive, we need ∆Td(s)− ∆Tb(s) ≤ 0. However, if r(t) is increasing over

(ta, td) then ∆Td(s)− ∆Tb(s) ≥ 0 for all s, with the inequality strict for s ≤ r̄(td).

Thus, r(t) cannot be increasing.

Once we know the departure rate is non-increasing, then we know that break-

down either happens at the start of the peak period, or not at all (i.e., r̄(t) is

constant for t ≥ tS). Given this, we simplify our notation for travel time by defin-

ing T(t) = T(t, s)∀s < r(tS), the travel time that occurs on days when breakdown

occurs. This allows us to write the expected trip cost as

c(t) = P(r(tS)) [αT(t) + D(t + T(t)− t∗)] + [1− P(r(tS))] D(t− t∗) (6)

We can now derive conditions for the timing of the first (tS) and last (tE)

departures. Since drivers prefer to arrive at t∗, in equilibrium tS ≤ t∗ ≤ tE.

Furthermore, the last departure occurs at the first time (weakly) later than t∗ such

that, even in the absence of any other departures, the trip cost is increasing in

departure time. This can occur for two reasons. The first is that once travel times

on bad days return to zero, there is no benefit to drivers from further delaying

their departure. The second is that marginal expected schedule delay costs have

grown large enough that they are greater than the expected time savings from

leaving later. An unfortunate implication is that there are two equilibrium cases,

depending on which condition for the last departure time applies. These conditions

are formalized in the following lemma.

Lemma 2. When there is no toll,

tS ≤ t∗, and

tE = min
{

t|t ≥ t∗ and
(

T(t) = 0 or P(r(tS)) <
D′(t)

α + D′(t)

)}
.
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Proof. First, we prove tS ≤ t∗. Assume by way of contradiction that the first

departure occurs after t∗, then a driver departing at t∗ has no travel time on a bad

day, and no schedule delay on either a good or bad day. Thus, c(t∗) = 0 and since

c(tS) ≥ 0, departing at t∗ would be a profitable deviation.

Next, we prove tE ≥ t∗. Assume by way of contradiction that tE < t∗. This

implies T(t∗) < T(tE), D(t∗) < D(tE), and D(t∗ + T(t∗)) < D(tE + T(t∗)), and so

c(t∗) < c(tE), and thus departing at t∗ is a profitable deviation.

Finally, we derive conditions on the last departure time. The last departure

occurs at the first time where c′(t) > 0 when r(t) = 0 and t ≥ t∗. To find when

c′(t) > 0 when r(t) = 0 and t ≥ t∗, differentiate (6) and note that

r(t) = 0⇒ T′(t) =

0 if T(t) = 0, and

−1 if T(t) > 0.

Doing so yields

c′(t) =

P(r(tS)) [−α] + [1− P(r(tS))] D′(t) if T(t) > 0, and

D′(t) if T(t) = 0;

⇒ c′(t) > 0⇔
(

T(t) = 0 or P(r(tS)) <
D′(t)

α + D′(t)

)
.

Given a non-increasing departure rate and the conditions for the timing of the

first and last departures, we can derive equilibrium departure rates.

Lemma 3. When there is no toll, the departure rate exists, is unique, and, for departure

times actually chosen, is defined by

r(t) = sB

(
1− P(r(tS)D′(t + T(t)) + [1− P(r(tS))] D′(t− t∗)

P(r(tS)[α + D′(t + T(t))]

)
. (7)

Proof. Equilibrium requires that c′(t) = 0 for all departure times actually chosen.

Differentiating (6) gives

c′(t) = P(r(tS))
[
αT′(t) + D′(t + T(t))(1 + T′(t))

]
+ [1− P(r(tS))] D′(t)
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⇒ T′(t) = −P(r(tS)D′(t + T(t)) + [1− P(r(tS))] D′(t)
P(r0E)[α + D′(t + T(t))]

.

Using the technology of the bottleneck, described in equation (1), when r′(t) >

sB or T(t) > 0,

T′(t) =
r(t)− sB

sB

and so

r(t) = sB

(
1− P(r(tS)D′(t + T(t)) + [1− P(r(tS))] D′(t)

P(r(tS)[α + D′(t + T(t))]

)
. (8)

This equation implicitly defines r(tS) and explicitly defines r(t) for t > tS.

To show that a unique solution to (8) exists for tS, note that the first driver to

depart never faces any congestion, and so (8) simplifies to

r(tS) = sB

(
1− D′(t)

P(r(tS))[α + D′(t)]

)
.

Note that the left-hand side is a continuous, unbounded, and increasing function

of r(tS), and the right-hand side is a continuous and decreasing function of r(tS).

Thus, by the intermediate value theorem, a solution exists, and furthermore it is

unique.

Note that (7) simplifies to the standard departure rates in the standard bottle-

neck model when the probability of breakdown is one (cf. Arnott et al., 1993).

Further note that by Lemma 2 and Lemma 3,

r(tS) = sB

(
1 +

β

P(r(tS))[α− β)]

)
> sB.

Consequently, the probability of breakdown is greater than zero in equilibrium.

4.2 Equilibrium trip costs and total social cost

We now solve for equilibrium trip costs and total social costs. Given the departure

rate, determined using the equilibrium requirement that the cost is the same for all
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departure times, we now use the requirement that supply equals demand on both

good and bad days to find the first and last departure times. With piecewise-linear

schedule delay costs, a straightforward linear system of equations determines these

departure times. After solving this system of equations, we find the equilibrium

trip cost by evaluating the trip cost at the time of the first departure.

Proposition 1. When there is no toll, the first departure occurs at

tU
S = t∗ − N

sB

γ̂

β + γ̂
, (9)

the equilibrium trip cost is

c̄U =
N
sB

βγ̂

β + γ̂
, (10)

and the total social cost is

TSCU =
N2

sB

βγ̂

β + γ̂
; (11)

where

γ̂ = min{P(r(tS))(α + γ), γ}.

The proof for this proposition is in Appendix A.

These results have an important implication: the equilibrium travel cost, as

well as the time of the first and last departure, do not depend on the probability of

breakdown when we are in the case where the last departure occurs when travel

times on bad days have returned to zero. This case occurs when

P(r(tS)) ≥
γ

α + γ
=

γ/α

1 + γ/α
,

so that the probability of breakdown is large relative to drivers’ willingness to

exchange arriving late for travel time. When this case applies, the only way the

technology of the highway matters is through the capacity after breakdown occurs.

Consequently, the duration of the peak period and the equilibrium trip cost are

the same whether breakdown occurs every day (as would occur in the standard

bottleneck model) or when the probability is large, but less than one. In this case,

the existence of ”good days” does not reduce trip costs or shrink the period over

which drivers depart.
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5 Equilibrium with tolls

Tolling is now introduced. Specifically, equilibrium is characterized for a toll road

operator that chooses a maximum inflow rate to the facility, r̂. Within this model,

a maximum inflow rate is the same as a maximum departure rate from home. As

discussed in the introduction, this second-best toll scheme is analyzed because it

accords with actual practice. First-best tolling is less analytically tractable, and

less amenable to practical application. That said, it is likely that the first-best

departure rate would increase the social welfare gains by having the departure rate

be increasing at the start of the peak period. This would mean that breakdown,

should it occur, is likely to happen later in the peak period and thus affect fewer

drivers.

The toll road operator chooses r̂ to maximize social welfare. It achieves this by

minimizing drivers’ expected travel and schedule delay costs. The tolls paid by

drivers are treated as transfers from drivers to the road operator.

As was the case in the no-toll equilibrium, breakdown either occurs immediately

at the start of the peak period or not at all. Given this, the total social cost of travel

(TSC) can be written as

TSC = P(r̂)
∫ tE

tS

[αTB(t) + D(t + TB(t))] r(t) dt + [1− P(r̂)]
∫ tE

tS

D(t)r(t) dt (12)

The toll road operator charges a toll if, and only if, it is needed to keep the

departure rate from going above its target maximum. We assume the toll at the

start of the peak period is zero, τ(tS) = 0. Once the toll returns to zero, it stays at

zero. Let t0 be the time when tolls return to zero.

The following lemma allows us to reduce the number of cases we need to

consider from eight to two.12

Lemma 4. If the toll is chosen to minimize total social cost then the maximum departure

rate is binding for all t ∈ [tS, t∗]. Furthermore tS < t∗.
12The eight possible cases differ along four dimensions: first, either tS < t∗ or tS ≥ t∗, second,

if tS < t∗, either tE < t∗ or tE ≥ t∗, third, if tE ≥ t∗ either t0 < t∗ or t0 > t∗, and fourth, either

T(tE) = 0 or T(tE) > 0.
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Proof. Assume by way of contradiction that tS > t∗. Shifting all departure times

earlier so tS = t∗ reduces all drivers’ schedule delay on both good and bad days,

and thus reduces social costs.

Assume, by way of contradiction, that the maximum departure rate isn’t

binding for all t ∈ [tS, t∗]. Consider the alternate maximum departure rate equal

to the average departure rate during [tS, t∗]. This alternate departure rate reduces

travel time on bad days and schedule delay on good days for all drivers except the

first and, perhaps, the last. Furthermore, it reduces the probability of breakdown.

Therefore, the alternate maximum departure rate reduces total social cost. This is

a contradiction.

The two remaining cases differ by whether or not there is a period of time

when the departure rate is below r̂. The logic is exactly the same as that used

in Lemma 2. When the toll is zero, drivers stop departing either (1) when travel

times on bad days return to zero or (2) when the marginal expected schedule

delay costs outweigh the expected travel time savings from leaving later. Given

piecewise-linear schedule delay costs and knowing that the maximum departure

rate is binding at least until t∗ (Lemma 4), the second reason for drivers to stop

departing binds either immediately once tolls return to zero, or does not bind at

all. Thus, if P(r̂) < γ/(α + γ), the departure rate is never below r̂. Otherwise,

there will be a period of time when it is.

5.1 Toll schedule

For a given maximum departure rate, the toll schedule is determined by the

equilibrium requirement that all drivers are indifferent between departure times

that are actually chosen. Drivers’ trip costs are

c(t) = P(r̂) [αT(t) + D(t + T(t))] + [1− P(r̂)] D(t) + τ(t).
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Solving c′(t) = 0 for τ′(t) yields

τ′(t) = −
[
[1− P(r̂)] D′(t)

+ P(r̂)
(

D′(t + T(t)) +
[
α + D′(t + T(t))

] r̂− sB

sB

)]
. (13)

This yields a concave toll schedule, with tolls climbing at the start of the peak

period (as long as r̂ < rU(tS)) and falling at the end of the peak period.

We can compare this toll to that in the standard bottleneck model. In the

standard bottleneck model the toll is set to eliminate congestion, and so τ′(t) =

−D′(t), which is the same as (13) when the probability of breakdown is zero or

one.13

When the probability of breakdown is strictly between zero and one, the toll

climbs slower and falls faster than in the standard bottleneck model. The reason it

does so is that the toll varies in order to keep drivers indifferent between departure

times that are actually chosen. In the standard bottleneck model, the toll is lower

away from t∗ to compensate drivers for their schedule delay costs. When the

probability of breakdown is strictly between zero and one, there is congestion on

days breakdown occurs, and the amount of congestion is higher for later departure

times. As a result, the toll climbs slower and falls faster in order to compensate

drivers for their expected travel time costs.

Further note that as the maximum departure rate is reduced, tolls climb at a

faster rate, and fall at a slower rate.

Lemma 5. When the toll is non-zero, the slope of the toll schedule is decreasing in the

maximum departure rate.
13When the probability of breakdown is one the optimal r̂ = sB, and T(t) = 0.
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Proof. Differentiating (13) with respect to r̂ yields

dτ′(t)
dr̂

= −
[

p(r̂)
([

D′(t + T(t))− D′(t)
]
+
[
α + D′(t + T(t))

] r̂− sB

sB

)

+ P(r̂)

( [
α + D′(t + T(t))

] 1
sB

+ D′′(t + T(t))
dT(t)

dr̂
r̂

sB

)]
. (14)

Because D is weakly convex, D′(t + T(t))− D′(t) > 0 and D′′(t + T(t)) > 0 and

because β < α, α + D′(t + T(t)) > 0. Therefore (14) is less than zero.

This implies that when holding the start of the peak period fixed, a reduction

in the maximum departure rate increases the average and maximum toll, and the

length of time a toll is charged.

5.2 Trip costs and total social cost

We now solve for private trip costs and total social costs. We do so by integrating

the expression for total social costs, while imposing the supply equals demand

constraint. This gives us the time period when the maximum departure rate is

binding. We then solve for tS and r̂ that maximize social welfare. We denote by

superscript W objects associated with the welfare-maximizing toll.

Proposition 2. When a toll is charged to impose a maximum departure rate, the first

departure occurs at

tW
S = t∗ − N

r̂
γ

β + γ
ω1(r̂),

the equilibrium trip cost is

c̄W =
N
r̂

βγ

β + γ
ω1(r̂),

the equilibrium total social cost is

TSCW =
N2

2r̂
βγ

β + γ
ω2(r̂),

and the maximum departure rate, r̂, is the solution to

r̂ = ω2(r̂)
(

dω2(r̂)
dr̂

)−1

;
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where

ω1(r̂) =

ξ1 if P(r̂) < γ
α+γ

ξ1/(1− ξ2) if P(r̂) ≥ γ
α+γ

,

ω2(r̂) =

ξ1(1 + ξ2) if P(r̂) < γ
α+γ

ξ1/(1− ξ2) if P(r̂) ≥ γ
α+γ

,

ξ1 = 1 +
(

P(r̂)(α + γ)

γ

)
r̂− sB

sB
, and

ξ2 = P(r̂)
r̂− sB

sB

(
r̂− sB

r̂

[
γ− P(r̂)[α + γ]

β

]
+

α

β

)
.

The proof for this proposition is in Appendix B.

Note that if either P(r̂) = 0 or P(r̂) = 1, and r̂ = sB, the expressions for c̄W , tW
S ,

and TSCW all simplify to their values in the standard bottleneck model.

6 Optimal departure rate does not maximize expected

throughput

The paper has two important theoretical results. In this section we show that

the social welfare-maximizing maximum departure rate is lower than that which

maximizes expected throughput. Then in the next section, we show that even with

non-negative tolls, the welfare of all drivers is improved by the charging of tolls.

We characterize the socially optimal maximum departure rate by comparing it

to a benchmark. This benchmark is the maximum departure rate that results in the

highest expected throughput while the maximum is binding. Expected throughput

is given by the weighted average of outflow from the bottleneck on good and bad

days, and is given by

[1− P(r)] r + P(r)sB.

Using the superscript F to denote expected throughput (or flow) maximizing
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equilibrium values, the maximum departure rate is implicitly defined by

rF = sB +
1− P

(
rF)

p(rF)
.

For the purposes of this equilibrium, expected throughput is defined over the

period when the maximum departure rate is binding. In the event that any

drivers depart later when the maximum is not binding, they do not enter into the

calculation of the expected throughput.14

The first key result of this paper is that the road operator should restrict the

departure rate below that which would maximize expected throughput. While

reducing the departure rate increases the length of the peak period, it has two ben-

efits. First, it reduces the probability of breakdown. Second, it reduces the negative

consequences of breakdown by spreading out when drivers depart. Congestion is

less on days when breakdown occurs.

Proposition 3. The maximum departure rate that maximizes social welfare is less than

that which maximizes expected throughput, and is greater than sB.

Proof. We first show the maximum departure rate which maximizes social welfare

is less than that which maximizes expected throughput.

First note that if the expected throughput maximizing departure rate is high

enough that neither of the cases solved for in this paper applies, then by Lemma 4,

we know the socially optimal maximum departure rate is lower than that which

maximizes expected throughput.

Next, we evaluate the first-order condition for r = rF. If it is positive, then

reducing r below rF reduces total social cost. Evaluating (34) when P(rF) <

14When P(r̂) < γ/(α + γ), the maximum departure rate is binding for all drivers, and so rF

maximizes throughput over the entire peak period. If there is a period when the toll is not binding,

we presume that the tolling authority is interested in maximizing throughput during the period

when tolls apply.
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γ/(α + γ):

dTSCW(r̂)
dr̂

∣∣∣
r=rF

=
N2

2

{(
[1− P(r̂]2 + sB p(r̂)

)
α + [1− P(r̂)]2γ

}
×
(

α · 2P(r̂)
{
[1− P(r̂)]

[
1− 2P(r̂) + [P(r̂)]2 + p(r̂)sB

]}
+ β · sB p(r̂)

{
1− P(r̂) + p(r̂)sB

}
+ γ

{
− 2 [P(r̂)]4 + 6 [P(r̂)]3 − 6 [P(r̂)]2

+ P(r̂)[2− p(r̂)sB] + p(r̂)sB[1 + p(r̂)sB]

})

×
{

s2
B [1− P(r̂) + p(r̂)sB]

3 (β + γ)
}−1

(15)

Each term in brackets is positive, so (15) is positive.

Next, evaluating (34) when P(rF) ≥ γ/(α + γ):

dTSCW(r̂)
dr̂

∣∣∣
r=rF

=
N2sBβ2 [p(rF)

]3
2

×
[

α

([
1− P(rF)

]2
+ p(rF)sB

)
+ γ

[
1− P(rF)

]2
]

×
{

p(rF)sB(1 + p(rF)sB)β +
[

P(rF)
]3 (

P(rF)− 3
)
(α + γ)

− P(rF)
[
α + γ + p(rF)sB(α + β)

]
+
[

P(rF)
]2 [(

3 + p(rF)sB

)
α + 3γ

]}−2

. (16)

Each term is positive, so (16) is positive.

Next, for any r̂ > rF, reducing r̂ increases both expected throughput and

reduces the probability of breakdown, both of which reduces total social cost.

Thus, it is never optimal to have r > rF.

Finally, we show the departure rate which maximizes social welfare is greater
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than sB. When r = sB,

dTSCW(r)
dr

∣∣∣
r=sB

= −1
2

(
N
sB

)2 βγ

β + γ
< 0,

and so increasing r above sB reduces social cost. Note that having r below sB

increases schedule delay while yielding no benefit in reduced travel times or

reduced probability of departure, and so is never optimal.

Reducing the maximum departure rate increases the period of time the max-

imum departure rate is binding, and thus the period of time a non-zero toll is

charged. Lemma 5 tells us that reducing the maximum departure rate increases

the slope of the toll schedule at any given point in time. As a result, as long as the

start of the peak period does not change too much, the social welfare maximizing

toll schedule has a larger average and maximum toll than the expected throughput

maximizing toll schedule.15

7 Adding tolls reduces private costs

We now evaluate the welfare consequences of tolling. We find that by accounting

for the value of reliability in a structural model of congestion, there is a non-

negative toll schedule that reduces drivers’ costs, even if the toll revenue is not

used productively.16 Moreover, the welfare benefits will be even larger if the toll

revenues are used to pay for highway maintenance, perhaps offsetting gas taxes or

license fees, or are transferred and used productively outside of the road operator.

This is even possible when tolling reduces the average departure rate.

15If the period of time when the toll is charged differs greatly, then the result that the slope of

the toll schedule is greater when maximizing social welfare at any given point in time does not

provide a meaningful bound on the toll schedules. Given that drivers wish to arrive close to t∗,

such a difference in when tolls are charged between welfare-maximizing and expected-throughput-

maximizing is unlikely. In our numerical simulations in Section 8, we find that the social welfare

maximizing toll is on average more than triple the expected throughput maximizing toll.
16While in principle toll road operators could set negative toll rates at certain times, the only

example of negative tolls we are aware of is in the Netherlands, where they have experimented

with paying drivers to avoid the peak when there is road construction (Knockaert et al., 2012).
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Proposition 4. There exist non-negative tolls that make all drivers better off before using

the toll revenue. Furthermore, this is possible while decreasing the average departure rate

if, when the road was untolled, the probability of breakdown is low enough: P(rU(tU
S )) <

γ/(β + γ).

Proof. The proof proceeds by considering both cases for equilibrium when the

road is untolled.

Case 1. First, consider the case where T
(
tU
E
)
= 0. Let tS = tU

S + ε for an arbitrarily

small ε > 0. The first driver thus has less schedule delay, and since the first driver

never faces any congestion, and since his toll is, by assumption, zero, he is better

off.

We next show the tolls are non-negative. Set a constant departure rate, so that

r = N/(tE − tS), by (13),

τ(tE) =
∫ tE

tS

τ(t)dt =
(

tE − tU
E

)
[(α + γ) P(r)− γ]− [(α + γ) P(r) + β] ε.

Choosing tE such that τ(tE) = 0 yields

tE = tU
E −

β + (α + γ)P(r)
γ− (α + γ) P(r)

× ε.

Because (13) is concave, this implies the toll schedule is non-negative. Thus, there

exists a non-negative toll that makes all drivers better off when T
(
tU
E
)
= 0.

Case 2. Next, consider the case where T
(
tU
E
)
> 0, which occurs when P(rU(tU

S )) <

γ/(β + γ). Let tS = tU
S + ε for an arbitrarily small ε > 0, and let tE = tU

E + 2ε.

The first driver thus has less schedule delay, and since the first driver never

faces any congestion, and since her toll is, by assumption, zero, she is better off.

Furthermore, we have increased the length of the period of departures, and so

thus have decreased the average departure rate.

Next, we show tolls are non-negative. Set a constant departure rate, so that

r = N/(tE − tS), by (13),

τ(tE) =
∫ tE

tS

τ(t)dt =
(

P(rU(tU
S ))− P(r)

) N
sB

β(α + γ)

β + P(rU(tU
S ))(α + γ)

− [β + 2γ− P(r)(α + γ)] ε.
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This is greater than zero for an arbitrarily small ε > 0. Because (13) is concave,

this implies the toll schedule is non-negative. Thus, there exists a non-negative toll

that makes all drivers better off when T
(
tU
E
)
> 0.

This result stands in contrast to the existing literature, where the socially

optimal departure rate and private costs are negatively correlated. In the traditional

static model adding tolls increases private costs while reducing departures (e.g.

Walters, 1961). In the standard bottleneck model adding tolls leaves the average

departure rate and private costs unchanged (Arnott et al., 1993). In models with

hypercongestion, adding tolls increases the average departure rate and reduces

private costs (Fosgerau and Small, 2013; Hall, 2018). Our result shows it is possible

to decrease both the average departure rate and private costs, because of the value

that drivers derive from a reduction in uncertainty.

An important caveat on this second result is that it is derived assuming drivers

are homogeneous, and Hall (2018) shows that allowing for heterogeneous pref-

erences makes it difficult for pricing all of the lanes of the highway to help all

drivers prior to using the toll revenue. This result does, however, point to the

value of accounting for reliability in assessing the distributional consequences of

tolling. Furthermore, in Hall (2018) the set of drivers most hurt by tolling are the

inflexible poor, drivers who are willing to tolerate a large amount of congestion

to arrive on-time, but have low values of time. There are two reasons to believe

that accounting for reliability especially helps these drivers, and so makes it easier

to generate a Pareto improvement. First, it is the inflexible who suffer the most

from the lack of reliability, since arriving early or late is especially costly for them.

This means they benefit the most from the improvement in reliability caused by

tolling. Second, the main reason these drivers are hurt by tolling is that they are

displaced from the peak by flexible drivers with higher values of time. However,

once we account for uncertainty in travel times, the inflexible poor are likely to be

departing early to avoid the risk of arriving late on days when breakdown occurs.

This means there is less scope for displacement, and that any displacement will be

less damaging.
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8 Simulations

To illustrate our results, we take parameter values from the literature and simulate

equilibrium with and without tolls.

8.1 Setup

We make the following assumptions for driver preferences. For the cost of travel

time we use the U.S. Department of Transportation (2016) recommended value of

$14.10, adjusted using the consumer price index to be in 2019 dollars. This gives

us α = $15.19 per hour.

For the cost of time early, β, we follow the recommendation of Hall (2019b) and

assume β = 0.1× α.

For the cost of time late, γ, we consider two possible values so we can illustrate

equilibrium outcomes for both cases when the road is untolled. First, we follow

the recommendation of Hall (2019b) and assume γ = β. As a result, when the

road is untolled, T(tE) = 0. Second, we choose γ = 6× β so that in the untolled

equilibrium T(tE) > 0.

Without loss of generality, we let the desired arrival time, t∗, be zero. As a

result, we can interpret time as t− t∗.

We assume the mass of drivers is such that on a bad day it takes three hours

for all drivers to use the highway: N = 3× sB. In making this assumption, we are

focusing our attention on less congested road segments. Three hours may sound

long, however, in many congested cities the length of the peak period is closer to

eight hours (cf. Hall, 2019a).

We base the probability of breakdown on the estimates of Lorenz and Elef-

teriadou (2001). They use data from two isolated bottlenecks on Highway 401

in Toronto, Canada, to estimate the probability of breakdown as a function of

flows in the prior fifteen minutes non-parametrically, as well as throughput after
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Figure 1: Probability of breakdown

Notes: Based on estimates from Lorenz and Elefteriadou (2001). Departure rate measured in

vehicles per hour per lane.

breakdown occurs.17 We approximate Lorenz and Elefteriadou’s (2001) estimates

of the probability of breakdown reported in their Figure 7 using a beta distribution

and choose sB to match their estimate of throughput after breakdown reported

in their Figure 8. Specifically, we fit a beta distribution over the range from 1,600

to 2,400 vehicles per hour per lane (vphpl). The lower end of this range marks

the traffic volume below which breakdown cannot occur, and is the same as sB.

The upper end marks the volume at which breakdown is certain to occur. In

addition, we choose the parameters of this distribution so that P(1, 900) = 0.09,

and P(2, 200) = 0.60. The resulting distribution is similar to what we would get if

we based the probability of breakdown on estimates from Geistefeldt and Shojaat

(2019). Our probability of breakdown function is plotted in Figure 1.

8.2 Results

Given these parameter values, we solve for equilibrium when the road is free and

priced. For both sets of parameter values, the tolled equilibrium is in the case

where T(tE) > 0, and so the maximum departure rate is always binding. This is

because adding the toll reduces the probability of breakdown so much that the

17An isolated bottleneck is one where traffic at the bottleneck is not affected by a downstream

bottleneck. They also estimate probabilities based on 1 and 5 minute flows.
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marginal expected schedule delay costs from leaving a little bit later outweigh the

expected travel time savings from leaving later. As mentioned earlier, when γ = β

the untolled equilibrium is in the T(tE) = 0 case, and when γ = 6× β the untolled

equilibrium is in the T(tE) > 0 case.

Figure 2 plots the equilibrium departure rates both when the road is untolled

and when it is tolled. The upper part of the figure is for when γ = β, and the

lower part for when γ = 6× β. In both cases, adding tolls smooths the rate at

which drivers depart from home, decreasing it at the start and increasing it at the

end.

More details on the simulation results are presented in Table 1. The first row in

the table reports that the reduction in the departure rate at the start of the peak

period reduces the probability of breakdown by 35 percentage points. As a result,

breakdown goes from occurring once or twice a week to occurring quarterly.18

As Proposition 4 proved, this reduction in the probability of breakdown, as

well as the reduction in the consequences of breakdown, helps drivers. We can

evaluate the welfare effects of tolling graphically using Figure 2 and focusing on

the first driver to depart. When the road is free, the first driver to depart faces no

congestion (by virtue of being the first to depart) and pays no toll. Her only cost

is due to arriving earlier than desired. When the road is tolled, she continues to

face no congestion and pays no toll (by virtue of being the first to depart), but now

departs later and so has less schedule delay than before. She is better off. Since all

drivers are identical, if the first driver is better off, all drivers are better off, and so

adding the toll helps all drivers, even before using the toll revenue.

The combined effects of the reduction in the probability of breakdown and

the reduction in the consequences of breakdown can be seen by comparing the

travel times in Table 1. Tolling reduces the consequences of a bad day by reducing

the average and maximum travel time on a bad day by 32–56 percent. Since it

also reduces the probability of breakdown, average travel time is reduced by 98

18Recall that we have chosen our parameter values to focus attention on less congested road

segments. On the most congested roads, breakdown occurs almost daily, while on less congested

roads it is less common.
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Figure 2: Departure rates

Notes: Time measured in hours from desired arrival time. Departure rate measured in vehicles per

hour per lane.
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Table 1: Simulation results

Case 1: γ = β Case 2: γ = 6× β

Free Tolled Change Free Tolled Change

Probability of breakdown 0.362 0.011 -97% 0.362 0.017 -95%

Average departure rate (vphpl) 1,600 1,748 +9.3% 1,876 1,772 -5.6%

Average throughput (vphpl) 1,600 1,747 +9.2% 1,776 1,769 -0.40%

Per trip costs

Social $2.78 $1.06 -53% $3.89 $1.81 -54%

Private $2.78 $2.11 -7.5% $3.89 $3.54 -8.8%

Travel time (minutes)

Average 4.44 0.08 -98% 7.23 0.15 -98%

Average on a bad day 12.27 7.64 -38% 19.98 8.74 -56%

Maximum on a bad day 22.61 15.27 -32% 26.51 17.49 -34%

Toll

Average — $1.04 — — $1.74 —

Maximum — $2.08 — — $3.44 —

Notes: Average departure rate and throughput are the averaged across time and breakdown state.

Average travel time and average toll are the averages measured across drivers. The average travel

time and toll across time and across drivers differ by less than five percent.
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percent.19

Further consistent with Proposition 4, Figure 2b shows visually that when the

untolled equilibrium is such that T(tE) > 0, adding these tolls reduces the average

departure rate and lengthens the period over which drivers depart. In this case,

tolling reduces the average departure rate by 104 vphpl, and even reduces average

throughput by 7 vphpl. Despite this, and in contrast to existing results in the

literature, tolling still reduces private costs.

Consistent with Proposition 3, the welfare-maximizing maximum departure

rate is lower than the departure rate which maximizes expected throughput. The

departure rate which maximizes expected throughput is 2,039 vphpl, and achieves

an expected throughput (across good and bad days) of 1,921 vphpl. In contrast,

when the road is free the maximum departure rate is 2,091 vphpl, and when the

road is tolled the maximum (and constant) departure rate is 1,748 or 1,772 vphpl

(depending on the case). While increasing the maximum departure rate above

the social optimum would increase expected throughput, doing so reduces social

welfare since drivers are risk averse over arrival times.

Figure 3 shows this visually. It plots the total social cost per trip as a function

of the maximum departure rate.20 The figure shows that while setting the toll to

maximize expected throughput reduces total social cost relative to the road being

untolled, we more than triple the social welfare gains by charging the toll that

maximizes total social welfare.

Figure 4 compares the toll schedule which maximizes social welfare to that

which maximizes expected throughput. Consistent with our discussion in Section

6, the tolls that maximize social welfare are higher. The average and maximum

tolls are both more than three times higher when maximizing social welfare rather

than expected throughput. For these parameter values, the expected throughput

maximizing departure rate is not binding for all departures, and the toll returns to

19In interpreting this number it is useful to remember that this is the excess travel time due to

congestion.
20The figure is for the case where γ = 6× β, and is fundamentally the same for the case where

γ = β.
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Figure 3: Total social cost per trip vs. maximum departure rate

Notes: This figure is plotted for Case 2: γ = 6× β. Maximum departure rate measured in vehicles

per hour per lane. Creating this figure requires solving for equilibrium in cases further from the

optimum which were not reported in the paper but are available in the replication files.

zero prior to the last departure, which in this case occurs at t∗ (i.e., 0).

Figure 4 also shows that when expected throughput maximizing tolls are

charged, the earliest departure is 6 minutes earlier than when welfare maximizing

tolls are charged. In addition, the last departure is 23 minutes earlier than when

welfare maximizing tolls are charged. The result of maximizing expected through-

put is that everyone departs over a shorter interval, however, to help mitigate the

uncertainty, they also leave earlier.

Table 1 also reports the magnitudes of the social and private welfare gains from

tolling. Given our parameter values, private costs are reduced by 7.5-8.8 percent.

If the typical commuter makes two trips on each of the 250 working days in a year,

this amounts to 175–335 dollars per commuter per year, depending on the case.

The social welfare gains are much larger. Total social costs of congestion fall by

53–54 percent, and are equivalent to 860–1,040 dollars per commuter per year.

9 Conclusion

Unpredictable travel times impose significant costs on drivers, and are estimated

to account for 30–70 percent of the total cost of congestion (Small et al., 2005; Bento
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throughput

Notes: This figure is plotted for Case 2: γ = 6× β.

et al., 2017). Due to this unpredictability, drivers choose to depart earlier to reduce

the risk of being late. On good days they arrive unnecessarily early and on bad

days they suffer the consequences of arriving late. While some sources of the

unpredictability are exogenous, such as weather, others are endogenous, such as

crashes and flow breakdown, and the probability that they occur is increasing in

the traffic flow.

This paper analyzes how to implement tolls in the presence of endogenous

non-recurring congestion. We find two important results. First, tolls should be im-

plemented to restrict inflow to the facility below the rate that maximizes expected

throughput. Our simulations suggest that expected throughput should be a little

more than ten percent lower than the maximum possible, which requires charging

tolls that are, on average, more than three times as large. This is worthwhile

because by smoothing the rate at which drivers enter a congestible link, decreasing

it at the start of the peak period and increasing it at the end, these tolls reduce

both the probability of breakdown and the severity of congestion when breakdown

occurs. Smoothing entry in this way increases traffic reliability. Because drivers

value reliability, it is worthwhile to sacrifice some expected capacity by reducing

inflow to the facility.
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Second, weakly positive tolls exist that make drivers better off. In our simula-

tions, private costs decrease by almost ten percent. Drivers are better off since the

increase in reliability means they no longer need to leave as early. Social and pri-

vate welfare would be further enhanced if the toll revenues are used productively

or offset other funding instruments such as the tax on gasoline. Making drivers

better off matters because it can help overcome the political barriers to congestion

pricing.
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A Proof of Proposition 1

Proof. The requirement that supply equals demand on good days and bad gives

us the following two equilibrium requirements:∫ tE

tS

r (t) dt = N, and (17)

sB (tE + T(tE)− tS) = N. (18)

Once we have solved for tS we find equilibrium trip costs by evaluating the trip

cost at the start of the peak period:

c̄U = c(tS) = D(tS). (19)

With the assumption of piecewise-linear schedule delay costs, by Lemma 3:

r(t) = sB



1 + β
P(r(tS))(α−β)

if tS ≤ t < tM,

1 + (1−P(r(tS)))β−P(r(tS))γ
P(r(tS))(α+γ)

if tM ≤ t < t∗, and

1− γ
P(r(tS))(α+γ)

if t∗ ≤ t ≤ tE, and

0 otherwise.

(20)

Equation (20) introduces a new variable, tM, which is the time when drivers

go from always arriving early to only arriving early on good days. As such, tM is

defined by

tM + T(tM) = t∗, (21)

⇔ tM + (tM − tS)
r(tS)− sB

sB
= t∗. (22)

Starting with the case where T(tE) = 0,

(17)⇔ r(tS)(tM − tS) + r(tM)(t∗ − tM) + r(tt∗)(tE − t∗) = N, (23)

(18)⇔ sB (tE − tS) = N. (24)
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Equations (19), (20), (22), and (24) define a linear system of equations, which

yields, in part, the following:

c̄ =
N
sB

βγ

β + γ
, (25)

tS = t∗ − N
sB

γ

β + γ
, and (26)

tE = t∗ +
N
sB

β

β + γ
.

A piecewise-linear schedule delay function implies that in the case where

T(tE) > 0, the last departure must occur at t∗, and that

(17)⇔ r(tS)(tM − tS) + r(tM)(t∗ − tM) = N, (27)

(18)⇔ sB (t∗ + T(t∗)− tS) = N. (28)

Likewise, (19), (20), (22), (27), and (28) define a linear system of equations,

which yields, in part, the following:

tS = t∗ − N
sB

P(r(tS)) (α + γ)

β + P(r(tS)) (α + γ)
(29)

c̄ =
N
sB

P(r(tS))(α + γ)β

β + P(r(tS))(α + γ)
. (30)

Lemma 2 implies the last departure occurs when travel times, on bad days, are

still positive when

P(r(tS)) <
γ

α + γ

⇒ P(r(tS)) (α + γ) < γ.

As a result, (10) nests (25) and (30), and (9) nests (26) and (29).

Total social cost is the sum of private costs, and so TSCU = N · c̄U.

B Proof of Proposition 2

Proof. We have two cases to consider.
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Case 1. First consider the case where tE = t0, and so there is not a period when

the departure rate is below the maximum. This occurs when P(r̂) < γ/(α + γ).

As when solving for equilibrium when the road is free, we use the requirement

that supply equals demand on good days to solve for tE. This requirement is given

by (17).

Since the maximum departure rate is always binding:

r(t) =

r̂ if tS ≤ t ≤ t0, and

0 otherwise.
(31)

To use (31), we must solve for t0, which is the time the toll returns to zero, and

is the solution to

0 =
∫ t0

tS

τ(t) dt. (32)

Solving this equation requires knowing the time when drivers go from always

arriving early to only arriving early on good days, tM, which is defined by (21).

Equations (17), (21), (32), and tE = t0 are a linear system of equations which

define tS, tM, t0, and tE. Solving this system of equations gives

tS = t∗ − N
r̂

γ

β + γ
ξ1,

tM = t∗ − N
r̂

γ

β + γ
ξ1

(
1− sB

r̂

)
, and

tE = t∗ +
N
r̂

(
1− γ

β + γ
ξ1

)
.

Substituting these into (12) and solving the integral yields

TSC(r̂) =
N2

2r̂
βγ

β + γ
ξ1(1 + ξ2).

We find the equilibrium trip cost by calculating the trip cost of the first driver

to depart. Since all drivers face the same trip cost in equilibrium, this is everyone’s

trip cost. The first driver to depart does not pay a toll, does not incur travel time,

and always arrives at tS, thus

c̄ =
N
r̂

βγ

β + γ
ξ1.
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Case 2. Next, consider the case where tE > t0, and so there is a period when the

departure rate is below the maximum. This occurs when P(r̂) ≥ γ/(α + γ).

Solving for equilibrium in this case is largely the same. We continue to use the

requirement that supply equals demand on good days to solve for tE.

Given the assumption of piecewise-linear schedule delay costs, Lemma 4, which

tells us the maximum departure rate is binding at least till t∗, and the departure

rate when there is no toll from Lemma 3:

r(t) =


r̂ if tS ≤ t ≤ t0,

sB

(
1− γ

P(r̂)(α+γ)

)
if t0 < t ≤ tE and

0 otherwise.

As before we must solve for t0 and tM using (21) and (32).

Equations (17), (21), (32), are a linear system of equations which define tM, t0,

and tE. Solving this system of equations gives

tM = tS +
sB

r̂
(t∗ − tS),

t0 = tS − (t∗ − tS)
β + γ

γ
ξ−1

1 , and

tE = tS +
N
sB

P(r̂)(α + γ)− (β + γ)(t∗ − tS)

P(r̂)α− [1− P(r̂)] γ
.

Substituting these into (12) and solving the integral yields

TSC(tS, r̂) = (t∗ − tS)βN + (t∗ − tS)
2 β + γ

2

× r̂sBγ + P(r̂)(r̂− sB)[P(r̂)[r− sB](α + γ)− [r̂− sB]γ− r̂α]

sBγ + P(r̂)[r̂− sB](α + γ)
. (33)

Taking the first-order condition with respect to tS and solving yields

tS = t∗ − N
r̂

γ

β + γ

(
ξ1

1− ξ2

)
.

Once again we find the equilibrium trip cost by calculating the trip cost of the

first driver to depart, which yields

c̄ =
N
r̂

βγ

β + γ

(
ξ1

1− ξ2

)
.
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Substituting tS into (33) and simplifying gives

TSC =
N2

2r̂
βγ

β + γ

(
ξ1

1− ξ2

)
.

Finally, to find the optimal r̂ we solve the first-order condition for total social

costs,

dTSC
dr̂

= 0

⇔ N2

2r̂2
βγ

β + γ

(
ω2(r̂)− r̂

dω2(r̂)
dr̂

)
= 0 (34)

⇔ ω2(r̂) = r̂
dω2(r̂)

dr̂
.
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