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a b s t r a c t 

A significant cost of traffic congestion is unreliable travel times. A major source of this unreliability is that 

when roads are congested, interactions between drivers can lead to capacity unexpectedly falling. For example, 

collisions can close lanes and aggressive lane changers can slow traffic. This paper analyzes how tolls should be set 

when accounting for such endogenous reliability. We find tolls should be higher and maximum flow lower than 

we might naïvely expect; and that such tolls make homogeneous drivers better off, even before the toll revenue 

is used. Simulations suggest the socially optimal maximum departure rate is 15% below that which maximizes 

expected throughput, and that tolling reduces private costs by almost 10%. 
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1 Much of the literature on the relationship between traffic flow and crash 

risk finds a U-shaped relationship, with the minimum risk when flow is 

around half of capacity (around 1000 vphpl). Zhou and Sisiopiku (1997) and 
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. Introduction 

Traffic congestion is a serious problem for cities worldwide. In the

nited States, 41% of mayors report that traffic congestion is one of

heir top three problems ( Bloomberg Philanthropies, 2018 ). More than

alf of the time lost to traffic congestion is due to non-recurring con-

estion; that is, congestion caused by crashes, bad weather, and other

hocks ( Dowling et al., 2004; Kwon et al., 2006 ). Non-recurring con-

estion leads to unpredictable travel times. Due to this unpredictability,

rivers have to depart earlier than they would prefer. On good days they

rrive with time to spare and on bad days they suffer the consequences

f arriving late for work or an important appointment. This lack of reli-

bility accounts for between 30 and 70% of the total cost of congestion

 Small et al., 2005; Bento et al., 2017 ). 

While some of the shocks which cause non-recurring congestion are

xogenous, such as bad weather, others shocks are endogenous. For

ndogenous shocks, their probability of occurring increases with traf-

c flow (the number of vehicles passing a given point per lane per
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erau, Robin Lindsey, Kenneth Small, a Co-Editor (Gilles Duranton), two anony- 
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our). For example, the rate at which crashes occur per vehicle-mile

raveled more than doubles as the flow increases from 1500 to 2000

ehicles per hour per lane (vphpl) ( Kononov et al., 2012 ). 1 Further-

ore, as traffic flow increases the probability that a small shock leads

o a collapse in outflow also increases. Transportation engineers call

his collapse “flow breakdown ” or a “capacity drop ”. Numerous types

f small shocks can cause flow breakdown, including vehicles weaving

etween lanes, excessively slow vehicles, aggressive driving, tailgating,

nd sharp braking. Lorenz and Elefteriadou (2001) estimate that as flow

ncreases from 1900 to 2200 vphpl the probability of breakdown in-

reases by 50 percentage points. The magnitude of the breakdown ap-

ears to be quite large, with documented declines in capacity of 25%

 Persaud et al., 1998 ). 2 
ononov et al. (2012) find evidence that the high risk of a crash at low levels of 

ow is driven by observations from late at night when the majority of crashes 

nvolve alcohol, drugs, or falling asleep. 
2 For further discussion and evidence of flow breakdown, see (among others) 

ong and Mahmassani (2009) ; Kim et al. (2010) ; Chen et al. (2014) ; Chen and 

hn (2015) ; Luo et al. (2015) ; Qian et al. (2017) ; Kontorinaki et al. (2017) , and 

eistefeldt and Shojaat (2019) . There is a parallel literature on “phantom traffic 

ams ” that explores how variations in speeds of cars following each other can 

ead to breakdown ( Sugiyama et al., 2008; Wilson and Ward, 2011 ). While there 

s broad acceptance that breakdown occurs and is probabilistic, there is debate 

ver the magnitude of the breakdown and the probability of it occurring. For 

xample, Doig et al. (2013) cautions that sometimes what appears to be flow 
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This paper’s contribution is to analyze how to implement tolls in

he face of this endogenous non-recurring congestion. We do so by ex-

ending the bottleneck model of dynamic congestion ( Vickrey, 1969;

rnott et al., 1993 ) to allow for an endogenous probability of break-

own, where the probability is increasing in the flow. 

To keep the analysis tractable, we limit the space of possible toll

chedules to a commonly observed class of tolls: Preset toll schedules

hat vary by time of day to keep traffic flow from exceeding a target

aximum. For example, California’s SR-91 Express Lanes have a stated

aximum average flow of 1600 vphpl. 3 Other facilities implicitly have

 maximum flow target because they aim to achieve a set minimum av-

rage vehicle speed. The majority of facilities in the United States with

ime-varying tolls have a preset schedule. 4 These tolls are anticipatory,

nd differ from dynamic tolls which respond in real time to realized traf-

c levels. Dynamic tolls, with one exception, have only been used when

ricing a portion of the lanes, because for dynamic tolls to be effec-

ive drivers need to have the ability to immediately choose an alternate

oute, or cancel or delay their trip. 5 , 6 

We find two important results. First, tolls should be higher, and max-

mum flow lower, than we might naïvely expect. We use as the naïve

enchmark the toll schedule which maximizes expected throughput. 7 

ncreasing the toll to reduce the maximum flow rate below that which

aximizes expected throughput has a cost: It increases the length of the

eak period. However, it has two benefits: It reduces the probability of

reakdown, and it reduces the severity of congestion on days breakdown

ccurs by spreading out when drivers depart. 

Second, tolling leaves homogeneous drivers better off, even before

he resulting revenue is used. Furthermore, providing that the probabil-

ty of breakdown when the road is untolled is not too high, the improve-

ent in drivers’ private costs occurs despite a reduction in the average

ow rate relative to when no tolls were charged. This is due to drivers

aluing the reduction in uncertainty and travel time more than they

islike paying the toll. Leaving drivers better off is important as a ma-

or barrier to implementing tolling is the concern that it hurts drivers. 8 
reakdown is actually the result of unobserved congestion on a downstream 

ink. 
3 Tolls vary by day and by hour. Tolls are reviewed and adjusted every 

ix months. Tolls are increased or decreased depending on whether observed 

olumes are greater than or less than the target flow. See the detailed policy at 

ttps://www.91expresslanes.com/wp-content/uploads/2014/04/TollPolicy.pdf . 
4 Data is from a database maintained by the U.S. Transportation Research 

oard’s Standing Committee on Managed Lanes, as of July 2018. An earlier 

eport by the Federal Highway Administration (2016) found that 47 (23%) of the 

10 toll highway facilities in the United States as of January 1, 2015, excluding 

ridges and tunnels, had toll schedules that varied by time of day or traffic 

onditions. Of the 47 with tolls that varied by time of day, two-thirds had prices 

hat were on a preset schedule. 
5 The exception is I-66 in Virginia. This facility was originally only for high- 

ccupancy vehicles during peak periods. Solo drivers can now pay dynamic tolls 

o use the facility. 
6 The purpose of our tolls is to smooth traffic flow and reduce the chance that 

nteractions between drivers leads to breakdown. Another tool for doing so is 

amp metering. Ramp metering and tolling are complements rather than substi- 

utes. Tolling smooths traffic flow at a macro level by incentivizing drivers to 

odify the times they leave home, while ramp metering smooths traffic flow at 

he micro level by physically preventing drivers from entering the road. Tolling 

olves two problems with ramp metering. The first is that ramp metering can 

ead to large queues off the highway, which while likely better than large queues 

n the highway, still has a large social cost. The second is that ramp metering 

nefficiently penalizes drivers entering the highway in the urban core relative 

o the suburbs. 
7 We use this as our benchmark for two reasons. First, it is regularly dis- 

ussed when setting policy, and second, in the standard bottleneck model, the 

oll schedule which maximizes social welfare also maximizes throughput. 
8 For example, Lindsey and Verhoef (2008) argue “most likely, these 

osses are the root of the longstanding opposition to congestion tolling ”. See 

all (2018) for a longer discussion of this. 
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hile drivers are, in reality, heterogeneous, this result highlights that

ccounting for the value drivers place on reliability improves the wel-

are consequences of tolling. 

We simulate our model using parameter values from Lorenz and

lefteriadou (2001) , U.S. Department of Transporation (2016) , and

all (2019b) . Our simulations suggest that the socially optimal max-

mum departure rate is 14% below that which maximizes expected

hroughput, with the average toll more than three times those which

aximize expected throughput. These tolls reduce private costs by al-

ost 10%. 

While our model is of a single link, the problem of endogenous non-

ecurrent congestion applies equally to networks. Charging time-varying

olls smooths entry to a network, reducing the probability of flow break-

own, as well as its consequences, throughout the network. This is es-

ecially applicable to downtown traffic congestion. 9 

. Literature review 

The paper contributes to two literatures. First, it builds on a literature

nalyzing congestion mitigation policies, such as tolling or information,

n the face of uncertainty. Within this literature, we relate most closely

o an influential paper by Arnott et al. (1999) , and an innovative pa-

er by Fosgerau and Lindsey (2013) . 10 The former uses the bottleneck

odel with exogenous supply and demand shocks to show that provid-

ng imperfect information can reduce social welfare. The latter analyzes

he effect of traffic crashes that are modeled as exogenous supply shocks

hat can happen at any point during the day. Tolling can improve social

elfare by reducing the cost of a crash, since there are fewer drivers

n the road at a given time. We build on this work by allowing for

ndogenous supply shocks, which allows us to show tolling helps by re-

rranging traffic flow to both reduce the probability and consequences

f the supply shock. 

The paper is also closely related to Zhu et al. (2017) . Their model

as a random element to the queuing time at a bottleneck that increases

ith the total number of drivers. They analyze implementation of a uni-

orm toll using numerical examples. A higher uniform toll reduces total

verall demand and the variability in travel time. The current paper

iffers by solving for equilibrium analytically, demonstrating that flow

hould be reduced below that which maximizes expected throughput,

nd concluding that it is possible to make all drivers better off. 

The paper also contributes to a second literature concerning the wel-

are consequences of tolling. This literature finds that changes in the de-

arture rate and changes in private cost are negatively correlated. For

xample, in the traditional static model adding tolls increases private

osts while reducing departures (e.g. Walters, 1961 ), and in the stan-

ard bottleneck model adding tolls leaves the average departure rate

nd private costs unchanged ( Arnott et al., 1993 ). In models with hy-

ercongestion, adding tolls increases the average departure rate and re-

uces private costs ( Fosgerau and Small, 2013; Hall, 2018 ). Our contri-

ution is to highlight the value of reliability, and show that this makes

t possible to reduce private costs while reducing the average departure

ate. 

. Model 

Our model introduces probabilistic flow breakdown into the

tandard bottleneck congestion model of Vickrey (1969) and

rnott et al. (1990, 1993) . This model is dynamic, and since drivers

ave preferences over arrival times, disliking arriving early or late,

t allows drivers to be risk averse. Having risk averse drivers matters
9 For examples of papers directly modeling downtown traffic congestion, see 

rnott (2013) and Fosgerau (2015) . 
10 Other papers in this literature include Noland and Small (1995) , Noland 

1997) , and Lindsey (1999) . Empirical papers estimating the value of reliability 

nclude Small et al. (2005) and Bento et al. (2017) . 

https://www.91expresslanes.com/wp-content/uploads/2014/04/TollPolicy.pdf
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ecause a major cost of probabilistic flow breakdown is that it increases

ncertainty. 

In common with the standard model, a single link connects where

eople live to where they work. There are no alternative routes or

odes. The only source of congestion is a bottleneck. For simplicity,

ravel time before and after the bottleneck and vehicle operating costs

re normalized to zero. Consequently, the departure rate of drivers from

ome is identical to the inflow rate into the bottleneck. The terms “de-

arture rate ” and “inflow ” are used synonymously, using the former

erm in the modeling, and the latter when describing policy options for

oll road operators. 

Each morning the maximum bottleneck capacity value, denoted by s ,

s drawn from a distribution with a continuous cumulative distribution

unction of P ( s ) and a probability density function of p ( s ). This distri-

ution is non-degenerate and has a lower bound of s B . The subscript B

ndicates a “bad ” or post-breakdown state. Let r ( t ) denote the departure

ate of drivers from home at time t . As soon as r ( t ) surpasses s , inter-

ction between drivers causes the flow to break down and the capacity

f the bottleneck falls to s B . It remains at this level until the resulting

ueue dissipates, at which point the highway capacity reverts to s . 

The paper is concerned with equilibria where breakdown is not an

veryday occurrence. If breakdown were a daily occurrence, the model

ould be equivalent to the standard bottleneck model but with de-

reased bottleneck capacity when a queue forms (as in Hall, 2018 ).

o make the model interesting P ( s ) should only equal 1 for values of

 greater than the largest departure rate. This restriction is not imposed

n the derivations, although discussion of the results often takes it as

iven. 

There is a mass N of homogeneous drivers in single-occupant vehi-

les. The number of drivers is perfectly inelastic. Drivers have a common

esired arrival time at work, denoted as t ∗ . Drivers choose when to de-

art from home to minimize their expected trip costs. 

Let t S and t E denote the start and end of the period of departures.

urther define 𝑟̄ ( 𝑡 ) = max 𝑥 ∈[ 𝑡 𝑆 ,𝑡 ] 𝑟 ( 𝑥 ) as the largest departure rate that

as already occurred. If 𝑟̄ ( 𝑡 ) ≤ 𝑠, breakdown has not occurred, there has

een no queuing, and travel time, denoted as T , is zero. However, if

̄ ( 𝑡 ) > 𝑠, breakdown has occurred, and the queue evolves according to 

𝑑𝑄 ( 𝑡, 𝑠 ) 
𝑑𝑡 

= 𝑟 ( 𝑡 ) − 𝑠 𝐵 , 

here Q ( t, s ) represents the number of vehicles in the queue, and travel

ime is given by 

 ( 𝑡, 𝑠 ) = 

𝑄 ( 𝑡, 𝑠 ) 
𝑠 𝐵 
. (1)

Drivers’ expected trip costs are the sum of the cost of travel time,

he cost of an early or late arrival at work, and any toll payments. The

xpected cost is described by the following function 

( 𝑡 ) = ∫
∞

𝑠 𝐵 

[ 𝛼𝑇 ( 𝑡, 𝑠 ) + 𝐷( 𝑡 + 𝑇 ( 𝑡, 𝑠 )) ] 𝑑𝑝 ( 𝑠 ) + 𝜏( 𝑡 ) , (2)

here 𝛼 is the hourly cost of travel time, D represents the cost of arriving

arly or late, and 𝜏( t ) is the toll. We follow the standard bottleneck model

n assuming schedule delay costs are piecewise-linear, so 

( 𝑥 ) = 

{ 

− 𝛽( 𝑥 − 𝑡 ∗ ) 𝑥 ≤ 𝑡 ∗ , 

𝛾( 𝑥 − 𝑡 ∗ ) 𝑥 > 𝑡 ∗ ; 

ith 𝛽 and 𝛾 being the hourly cost of being early or late. Consistent with

he literature, we assume 𝛽 < 𝛼 to avoid a mass of drivers departing at

he same time. 

Drivers have rational expectations, and in deciding when to depart

re aware of the probability of breakdown and its effects. 11 However, on
11 It may be that the distribution of capacity varies with some observable sig- 

al, such as the weather or the season. In this case, P ( s ) is the cumulative distri- 

ution function conditional on that signal, and all of our results carry through 

ithin each information state. 

W  

w

𝑐

ny given day, drivers do not observe the maximum bottleneck capacity

hat is drawn. They cannot decide to stay home or deviate from their

hosen departure time if breakdown either has occurred or is about to

ccur. 

. Equilibrium without tolls 

This section describes the stochastic user equilibrium in the absence

f tolls. The superscript U (for untolled) indicates equilibrium values. As

s usual in these models, there are two equilibrium conditions. The first

s that supply equals demand. The number of people who want to travel

quals the number who actually travel. The second is that no driver can

nd a profitable time deviation. This implies that the trip cost is the

ame for all departure times that people choose, and is not any lower at

ny times that people do not choose. 

To preview the results, the departure rate from home is non-

ncreasing across the peak period, the period of time when drivers are

n the road. Consequently, when the value of s is drawn each morn-

ng, either breakdown happens immediately or it does not happen at

ll. A non-increasing departure rate further implies it is not possible

or the highway to recover and then break down again. As a result,

rivers have either a good day when breakdown does not occur at all,

r a bad day when the bottleneck is at capacity s B for the entire peak

eriod. 

In the following subsections, we characterize the departure rate, the

nterval over which drivers depart, and equilibrium trip costs. 

.1. Equilibrium departure rates 

In this subsection we prove that departure rates are non-increasing

ver the period when drivers depart and characterize the departure rate.

he intuition for departure rates being non-increasing starts with the

quilibrium requirement that all drivers must be indifferent between all

eparture times that are actually chosen. Because different departure

imes lead to different expected schedule delay costs, expected travel

imes must vary to keep drivers indifferent. Expected schedule delay

osts are U-shaped, being high for very early departures, low for depar-

ures that are early sometimes and late sometimes, and high for very

ate departures. To keep drivers indifferent between departure times,

xpected travel time costs must have an inverse U-shape, reaching their

eak when expected schedule delay costs are the lowest. Thus, the first

erivative of travel times is non-increasing, and since the departure

ate is proportional to the first derivative of travel times, this implies

he departure rate is non-increasing. This is formalized in the following

emma. 

emma 1. The departure rate is non-increasing after the first departure: 

 

′( 𝑡 ) ≤ 0 ∀ 𝑡 ≥ 𝑡 𝑆 . 

roof. The proof is in three steps. The first step is deriving an expression

or the second difference of trip costs during the time that agents are de-

arting. Consider four times at which drivers depart, t a < t b < t c < t d . To

educe notational clutter, assume 𝑡 𝑏 − 𝑡 𝑎 = 𝑡 𝑑 − 𝑡 𝑐 . To simplify notation,

efine 

Δ𝐷 𝑏 ( 𝑠 ) = 𝐷( 𝑡 𝑏 + 𝑇 ( 𝑡 𝑏 , 𝑠 )) − 𝐷( 𝑡 𝑎 + 𝑇 ( 𝑡 𝑎 , 𝑠 )) , 

𝐷 𝑑 ( 𝑠 ) = 𝐷( 𝑡 𝑑 + 𝑇 ( 𝑡 𝑑 , 𝑠 )) − 𝐷( 𝑡 𝑐 + 𝑇 ( 𝑡 𝑐 , 𝑠 )) , 

Δ𝑇 𝑏 ( 𝑠 ) = 𝑇 ( 𝑡 𝑏 , 𝑠 ) − 𝑇 ( 𝑡 𝑎 , 𝑠 ) , and 

Δ𝑇 𝑑 ( 𝑠 ) = 𝑇 ( 𝑡 𝑑 , 𝑠 ) − 𝑇 ( 𝑡 𝑐 , 𝑠 ) . 

ith this notation, the change in the trip cost between t a and t b can be

ritten as 

( 𝑡 𝑏 ) − 𝑐( 𝑡 𝑎 ) = ∫
∞

𝑠 

[
𝛼Δ𝑇 𝑏 ( 𝑠 ) + Δ𝐷 𝑏 ( 𝑠 ) 

]
𝑑𝑝 ( 𝑠 ) . 
𝐵 
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omparing the change in trip costs between t c and t d to that between t b 
nd t a produces 

𝑐( 𝑡 𝑑 ) − 𝑐( 𝑡 𝑐 ) 
]
− 

[
𝑐( 𝑡 𝑏 ) − 𝑐( 𝑡 𝑎 ) 

]
= ∫

∞

𝑠 𝐵 

{
𝛼
[
Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) 

]
+ Δ𝐷 𝑑 ( 𝑠 ) − Δ𝐷 𝑏 ( 𝑠 ) 

}
𝑑𝑝 ( 𝑠 ) . (3)

The second step is to impose the equilibrium constraint that the ex-

ected cost at each departure time actually chosen is the same. Hence

3) equals zero. 

The third step is to show that the convexity of D means that for

3) to equal zero, the departure rate must be non-increasing after the

rst departure. Because D is weakly convex, its average slope between

 c and t d is weakly greater than its average slope between t a and t b .

etting 𝜔 ( s ) be the average slope between t a and t b , 

 ( 𝑠 ) = 

Δ𝐷 𝑏 ( 𝑠 ) 
𝑡 𝑏 − 𝑡 𝑎 + Δ𝑇 𝑏 ( 𝑠 ) 

, 

nd 

𝐷 𝑑 ( 𝑠 ) ≥ 𝜔 ( 𝑠 ) 
(
𝑡 𝑑 − 𝑡 𝑐 + Δ𝑇 𝑑 ( 𝑠 ) 

)
. 

hese two equations imply that 

𝐷 𝑑 ( 𝑠 ) − Δ𝐷 𝑏 ( 𝑠 ) ≥ 𝜔 ( 𝑠 ) 
[
Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) 

]
. (4)

Imposing that (3) equals zero and substituting in (4) yields 

 ≥ ∫
∞

𝑠 𝐵 

{
𝛼
[
Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) 

]
+ 𝜔 ( 𝑠 ) 

[
Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) 

]}
𝑑𝑝 ( 𝑠 ) 

= ∫
∞

𝑠 𝐵 

( 𝛼 + 𝜔 ( 𝑠 ) ) 
[
Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) 

]
𝑑𝑝 ( 𝑠 ) (5)

y assumption, 𝛼 + 𝐷 

′( 𝑥 ) > 0 for all x , so 𝛼 + 𝜔 ( 𝑠 ) > 0 . Thus, for (5) to be

on-positive, we need Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) ≤ 0 . However, if r ( t ) is increasing

ver ( t a , t d ) then Δ𝑇 𝑑 ( 𝑠 ) − Δ𝑇 𝑏 ( 𝑠 ) ≥ 0 for all s , with the inequality strict

or 𝑠 ≤ 𝑟̄ ( 𝑡 𝑑 ) . Thus, r ( t ) cannot be increasing. □

Once we know the departure rate is non-increasing, then we know

hat breakdown either happens at the start of the peak period, or not at

ll (i.e., 𝑟̄ ( 𝑡 ) is constant for t ≥ t S ). Given this, we simplify our notation

or travel time by defining 𝑇 ( 𝑡 ) = 𝑇 ( 𝑡, 𝑠 )∀𝑠 < 𝑟 ( 𝑡 𝑆 ) , the travel time that

ccurs on days when breakdown occurs. This allows us to write the

xpected trip cost as 

( 𝑡 ) = 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 
[
𝛼𝑇 ( 𝑡 ) + 𝐷( 𝑡 + 𝑇 ( 𝑡 ) − 𝑡 ∗ ) 

]
+ 

[
1 − 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 

]
𝐷( 𝑡 − 𝑡 ∗ ) (6)

We can now derive conditions for the timing of the first ( t S ) and

ast ( t E ) departures. Since drivers prefer to arrive at t ∗ , in equilib-

ium t S ≤ t ∗ ≤ t E . Furthermore, the last departure occurs at the first time

weakly) later than t ∗ such that, even in the absence of any other depar-

ures, the trip cost is increasing in departure time. This can occur for two

easons. The first is that once travel times on bad days return to zero,

here is no benefit to drivers from further delaying their departure. The

econd is that marginal expected schedule delay costs have grown large

nough that they are greater than the expected time savings from leav-

ng later. An unfortunate implication is that there are two equilibrium

ases, depending on which condition for the last departure time applies.

hese conditions are formalized in the following lemma. 

emma 2. When there is no toll, 

𝑡 𝑆 ≤ 𝑡 ∗ , and 

 𝐸 = min 
{ 

𝑡 |𝑡 ≥ 𝑡 ∗ and 

( 

𝑇 ( 𝑡 ) = 0 or 𝑃 ( 𝑟 ( 𝑡 𝑆 )) < 
𝐷 

′( 𝑡 ) 
𝛼 + 𝐷 

′( 𝑡 ) 

) } 

. 

roof. First, we prove t S ≤ t ∗ . Assume by way of contradiction that the

rst departure occurs after t ∗ , then a driver departing at t ∗ has no travel

ime on a bad day, and no schedule delay on either a good or bad day.

hus, 𝑐( 𝑡 ∗ ) = 0 and since c ( t S ) ≥ 0, departing at t ∗ would be a profitable

eviation. 
Next, we prove t E ≥ t ∗ . Assume by way of contradiction that

 E < t 
∗ . This implies T ( t ∗ ) < T ( t E ), D ( t ∗ ) < D ( t E ), and 𝐷( 𝑡 ∗ + 𝑇 ( 𝑡 ∗ )) <

( 𝑡 𝐸 + 𝑇 ( 𝑡 ∗ )) , and so c ( t ∗ ) < c ( t E ), and thus departing at t ∗ is a profitable

eviation. 

Finally, we derive conditions on the last departure time. The last

eparture occurs at the first time where c ′ ( t ) > 0 when 𝑟 ( 𝑡 ) = 0 and t ≥ t ∗ .

o find when c ′ ( t ) > 0 when 𝑟 ( 𝑡 ) = 0 and t ≥ t ∗ , differentiate (6) and note

hat 

 ( 𝑡 ) = 0 ⇒ 𝑇 ′( 𝑡 ) = 

{ 

0 if 𝑇 ( 𝑡 ) = 0 , and 

−1 if 𝑇 ( 𝑡 ) > 0 . 

oing so yields 

𝑐 ′( 𝑡 ) = 

{ 

𝑃 ( 𝑟 ( 𝑡 𝑆 )) [ − 𝛼] + 

[
1 − 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 

]
𝐷 

′( 𝑡 ) if 𝑇 ( 𝑡 ) > 0 , 
𝐷 

′( 𝑡 ) if 𝑇 ( 𝑡 ) = 0; 

𝑐 ′( 𝑡 ) > 0 ⇔
( 

𝑇 ( 𝑡 ) = 0 or 𝑃 ( 𝑟 ( 𝑡 𝑆 )) < 
𝐷 

′( 𝑡 ) 
𝛼 + 𝐷 

′( 𝑡 ) 

) 

. 

□

Given a non-increasing departure rate and the conditions for the tim-

ng of the first and last departures, we can derive equilibrium departure

ates. 

emma 3. When there is no toll, the departure rate exists, is unique, and,

or departure times actually chosen, is defined by 

 ( 𝑡 ) = 𝑠 𝐵 

( 

1 − 

𝑃 ( 𝑟 ( 𝑡 𝑆 ) 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) + 

[
1 − 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 

]
𝐷 

′( 𝑡 − 𝑡 ∗ ) 
𝑃 ( 𝑟 ( 𝑡 𝑆 )[ 𝛼 + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 ))] 

) 

. (7)

roof. Equilibrium requires that 𝑐 ′( 𝑡 ) = 0 for all departure times actu-

lly chosen. Differentiating (6) gives 

𝑐 ′( 𝑡 ) = 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 
[
𝛼𝑇 ′( 𝑡 ) + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 ))(1 + 𝑇 ′( 𝑡 )) 
]
+ 

[
1 − 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 

]
𝐷 

′( 𝑡 ) 

𝑇 ′( 𝑡 ) = − 

𝑃 ( 𝑟 ( 𝑡 𝑆 ) 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) + 

[
1 − 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 

]
𝐷 

′( 𝑡 ) 
𝑃 ( 𝑟 0 𝐸 )[ 𝛼 + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 ))] 
. 

Using the technology of the bottleneck, described in equation (1) ,

hen r ′ ( t ) > s B or T ( t ) > 0, 

 

′( 𝑡 ) = 

𝑟 ( 𝑡 ) − 𝑠 𝐵 

𝑠 𝐵 

nd so 

 ( 𝑡 ) = 𝑠 𝐵 

( 

1 − 

𝑃 ( 𝑟 ( 𝑡 𝑆 ) 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) + 

[
1 − 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 

]
𝐷 

′( 𝑡 ) 
𝑃 ( 𝑟 ( 𝑡 𝑆 )[ 𝛼 + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 ))] 

) 

. (8)

his equation implicitly defines r ( t S ) and explicitly defines r ( t ) for t > t S .

To show that a unique solution to (8) exists for t S , note that the first

river to depart never faces any congestion, and so (8) simplifies to 

 ( 𝑡 𝑆 ) = 𝑠 𝐵 

( 

1 − 

𝐷 

′( 𝑡 ) 
𝑃 ( 𝑟 ( 𝑡 𝑆 ))[ 𝛼 + 𝐷 

′( 𝑡 )] 

) 

. 

ote that the left-hand side is a continuous, unbounded, and increasing

unction of r ( t S ), and the right-hand side is a continuous and decreasing

unction of r ( t S ). Thus, by the intermediate value theorem, a solution

xists, and furthermore it is unique. □

Note that (7) simplifies to the standard departure rates in the stan-

ard bottleneck model when the probability of breakdown is one (cf.

rnott et al., 1993 ). 

Further note that by Lemmas 2 and 3 , 

 ( 𝑡 𝑆 ) = 𝑠 𝐵 

( 

1 + 

𝛽

𝑃 ( 𝑟 ( 𝑡 𝑆 ))[ 𝛼 − 𝛽)] 

) 

> 𝑠 𝐵 . 

onsequently, the probability of breakdown is greater than zero in equi-

ibrium. 
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12 The eight possible cases differ along four dimensions: First, either t S < t 
∗ or 

t S ≥ t ∗ , second, if t S < t 
∗ , either t E < t 

∗ or t E ≥ t ∗ , third, if t E ≥ t ∗ either t 0 < t 
∗ or 

t 0 > t 
∗ , and fourth, either 𝑇 ( 𝑡 𝐸 ) = 0 or T ( t E ) > 0. 

13 When the probability of breakdown is one the optimal ̂𝑟 = 𝑠 𝐵 , and 𝑇 ( 𝑡 ) = 0 . 
.2. Equilibrium trip costs and total social cost 

We now solve for equilibrium trip costs and total social costs. Given

he departure rate, determined using the equilibrium requirement that

he cost is the same for all departure times, we now use the require-

ent that supply equals demand on both good and bad days to find

he first and last departure times. With piecewise-linear schedule de-

ay costs, a straightforward linear system of equations determines these

eparture times. After solving this system of equations, we find the

quilibrium trip cost by evaluating the trip cost at the time of the

rst departure. 

roposition 1. When there is no toll, the first departure occurs at 

 

𝑈 
𝑆 
= 𝑡 ∗ − 

𝑁 

𝑠 𝐵 

𝛾̂

𝛽 + ̂𝛾
, (9)

he equilibrium trip cost is 

̄ 𝑈 = 

𝑁 

𝑠 𝐵 

𝛽𝛾̂

𝛽 + ̂𝛾
, (10)

nd the total social cost is 

SC 

𝑈 = 

𝑁 

2 

𝑠 𝐵 

𝛽𝛾̂

𝛽 + ̂𝛾
; (11)

here 

̂ = min { 𝑃 ( 𝑟 ( 𝑡 𝑆 ))( 𝛼 + 𝛾) , 𝛾} . 

The proof for this proposition is in Appendix A . 

These results have an important implication: The equilibrium travel

ost, as well as the time of the first and last departure, do not depend

n the probability of breakdown when we are in the case where the last

eparture occurs when travel times on bad days have returned to zero.

his case occurs when 

 ( 𝑟 ( 𝑡 𝑆 )) ≥ 

𝛾

𝛼 + 𝛾
= 

𝛾∕ 𝛼
1 + 𝛾∕ 𝛼

, 

o that the probability of breakdown is large relative to drivers’ willing-

ess to exchange arriving late for travel time. When this case applies, the

nly way the technology of the highway matters is through the capacity

fter breakdown occurs. Consequently, the duration of the peak period

nd the equilibrium trip cost are the same whether breakdown occurs

very day (as would occur in the standard bottleneck model) or when

he probability is large, but less than one. In this case, the existence of

good days ” does not reduce trip costs or shrink the period over which

rivers depart. 

. Equilibrium with tolls 

Tolling is now introduced. Specifically, equilibrium is characterized

or a toll road operator that chooses a maximum inflow rate to the facil-

ty, 𝑟̂ . Within this model, a maximum inflow rate is the same as a max-

mum departure rate from home. As discussed in the introduction, this

econd-best toll scheme is analyzed because it accords with actual prac-

ice. First-best tolling is less analytically tractable, and less amenable to

ractical application. That said, it is likely that the first-best departure

ate would increase the social welfare gains by having the departure

ate be increasing at the start of the peak period. This would mean that

reakdown, should it occur, is likely to happen later in the peak period

nd thus affect fewer drivers. 

The toll road operator chooses 𝑟̂ to maximize social welfare. It

chieves this by minimizing drivers’ expected travel and schedule de-

ay costs. The tolls paid by drivers are treated as transfers from drivers

o the road operator. 

As was the case in the no-toll equilibrium, breakdown either occurs

mmediately at the start of the peak period or not at all. Given this, the

otal social cost of travel (TSC) can be written as 
SC = 𝑃 ( ̂𝑟 ) ∫
𝑡 𝐸 

𝑡 𝑆 

[
𝛼𝑇 𝐵 ( 𝑡 ) + 𝐷( 𝑡 + 𝑇 𝐵 ( 𝑡 )) 

]
𝑟 ( 𝑡 ) 𝑑𝑡 

+ [ 1 − 𝑃 ( ̂𝑟 ) ] ∫
𝑡 𝐸 

𝑡 𝑆 

𝐷( 𝑡 ) 𝑟 ( 𝑡 ) 𝑑𝑡 (12) 

The toll road operator charges a toll if, and only if, it is needed to

eep the departure rate from going above its target maximum. We as-

ume the toll at the start of the peak period is zero, 𝜏( 𝑡 𝑆 ) = 0 . Once the

oll returns to zero, it stays at zero. Let t 0 be the time when tolls return

o zero. 

The following lemma allows us to reduce the number of cases we

eed to consider from eight to two. 12 

emma 4. If the toll is chosen to minimize total social cost then the maxi-

um departure rate is binding for all t ∈ [ t S , t 
∗ ] . Furthermore t S < t 

∗ . 

roof. Assume by way of contradiction that t S > t 
∗ . Shifting all depar-

ure times earlier so 𝑡 𝑆 = 𝑡 ∗ reduces all drivers’ schedule delay on both

ood and bad days, and thus reduces social costs. 

Assume, by way of contradiction, that the maximum departure rate

sn’t binding for all t ∈ [ t S , t 
∗ ]. Consider the alternate maximum depar-

ure rate equal to the average departure rate during [ t S , t 
∗ ]. This al-

ernate departure rate reduces travel time on bad days and schedule

elay on good days for all drivers except the first and, perhaps, the last.

urthermore, it reduces the probability of breakdown. Therefore, the

lternate maximum departure rate reduces total social cost. This is a

ontradiction. □

The two remaining cases differ by whether or not there is a period

f time when the departure rate is below ̂𝑟 . The logic is exactly the same

s that used in Lemma 2 . When the toll is zero, drivers stop departing

ither (1) when travel times on bad days return to zero or (2) when the

arginal expected schedule delay costs outweigh the expected travel

ime savings from leaving later. Given piecewise-linear schedule delay

osts and knowing that the maximum departure rate is binding at least

ntil t ∗ ( Lemma 4 ), the second reason for drivers to stop departing binds

ither immediately once tolls return to zero, or does not bind at all. Thus,

f 𝑃 ( ̂𝑟 ) < 𝛾∕( 𝛼 + 𝛾) , the departure rate is never below ̂𝑟 . Otherwise, there

ill be a period of time when it is. 

.1. Toll schedule 

For a given maximum departure rate, the toll schedule is determined

y the equilibrium requirement that all drivers are indifferent between

eparture times that are actually chosen. Drivers’ trip costs are 

( 𝑡 ) = 𝑃 ( ̂𝑟 ) [ 𝛼𝑇 ( 𝑡 ) + 𝐷( 𝑡 + 𝑇 ( 𝑡 )) ] + [ 1 − 𝑃 ( ̂𝑟 ) ] 𝐷( 𝑡 ) + 𝜏( 𝑡 ) . 

olving 𝑐 ′( 𝑡 ) = 0 for 𝜏′ ( t ) yields 

′( 𝑡 ) = − 

[ 
[ 1 − 𝑃 ( ̂𝑟 ) ] 𝐷 ′( 𝑡 ) + 𝑃 ( ̂𝑟 ) 

( 

𝐷 ′( 𝑡 + 𝑇 ( 𝑡 )) + 

[
𝛼 + 𝐷 ′( 𝑡 + 𝑇 ( 𝑡 )) 

] 𝑟̂ − 𝑠 𝐵 

𝑠 𝐵 

) 

] 
. 

(13) 

This yields a concave toll schedule, with tolls climbing at the start

f the peak period (as long as 𝑟̂ < 𝑟 𝑈 ( 𝑡 𝑆 ) ) and falling at the end of the

eak period. 

We can compare this toll to that in the standard bottleneck model.

n the standard bottleneck model the toll is set to eliminate congestion,

nd so 𝜏′( 𝑡 ) = − 𝐷 

′( 𝑡 ) , which is the same as (13) when the probability of

reakdown is zero or one. 13 

When the probability of breakdown is strictly between zero and one,

he toll climbs slower and falls faster than in the standard bottleneck
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14 When 𝑃 ( ̂𝑟 ) < 𝛾∕( 𝛼 + 𝛾) , the maximum departure rate is binding for all 

drivers, and so r F maximizes throughput over the entire peak period. If there 

is a period when the toll is not binding, we presume that the tolling authority is 

interested in maximizing throughput during the period when tolls apply. 
odel. The reason it does so is that the toll varies in order to keep

rivers indifferent between departure times that are actually chosen.

n the standard bottleneck model, the toll is lower away from t ∗ to com-

ensate drivers for their schedule delay costs. When the probability of

reakdown is strictly between zero and one, there is congestion on days

reakdown occurs, and the amount of congestion is higher for later de-

arture times. As a result, the toll climbs slower and falls faster in order

o compensate drivers for their expected travel time costs. 

Further note that as the maximum departure rate is reduced, tolls

limb at a faster rate, and fall at a slower rate. 

emma 5. When the toll is non-zero, the slope of the toll schedule is de-

reasing in the maximum departure rate. 

roof. Differentiating (13) with respect to 𝑟̂ yields 

𝑑𝜏′( 𝑡 ) 
𝑑 ̂𝑟 

= − 

[ 

𝑝 ( ̂𝑟 ) 

( [
𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) − 𝐷 

′( 𝑡 ) 
]

+ 

[
𝛼 + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) 
] 𝑟̂ − 𝑠 𝐵 

𝑠 𝐵 

) 

+ 𝑃 ( ̂𝑟 ) 

( [
𝛼 + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) 
] 1 
𝑠 𝐵 

+ 𝐷 

′′( 𝑡 + 𝑇 ( 𝑡 )) 𝑑𝑇 ( 𝑡 ) 
𝑑 ̂𝑟 

𝑟̂ 

𝑠 𝐵 

) ] 

. (14)

ecause D is weakly convex, 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) − 𝐷 

′( 𝑡 ) > 0 and 𝐷 

′′( 𝑡 + 𝑇 ( 𝑡 )) >
 and because 𝛽 < 𝛼, 𝛼 + 𝐷 

′( 𝑡 + 𝑇 ( 𝑡 )) > 0 . Therefore (14) is less than

ero. □

This implies that when holding the start of the peak period fixed,

 reduction in the maximum departure rate increases the average and

aximum toll, and the length of time a toll is charged. 

.2. Trip costs and total social cost 

We now solve for private trip costs and total social costs. We do so

y integrating the expression for total social costs, while imposing the

upply equals demand constraint. This gives us the time period when

he maximum departure rate is binding. We then solve for t S and 𝑟̂ that

aximize social welfare. We denote by superscript W objects associated

ith the welfare-maximizing toll. 

roposition 2. When a toll is charged to impose a maximum departure

ate, the first departure occurs at 

 

𝑊 
𝑆 

= 𝑡 ∗ − 

𝑁 

𝑟̂ 

𝛾

𝛽 + 𝛾
𝜔 1 ( ̂𝑟 ) , 

he equilibrium trip cost is 

̄ 𝑊 = 

𝑁 

𝑟̂ 

𝛽𝛾

𝛽 + 𝛾
𝜔 1 ( ̂𝑟 ) , 

he equilibrium total social cost is 

 𝑆𝐶 𝑊 = 

𝑁 

2 

2 ̂𝑟 
𝛽𝛾

𝛽 + 𝛾
𝜔 2 ( ̂𝑟 ) , 

nd the maximum departure rate, 𝑟̂ , is the solution to 

̂ = 𝜔 2 ( ̂𝑟 ) 
( 

𝑑𝜔 2 ( ̂𝑟 ) 
𝑑 ̂𝑟 

) −1 
; 

here 

 1 ( ̂𝑟 ) = 

{ 

𝜉1 if 𝑃 ( ̂𝑟 ) < 𝛾
𝛼+ 𝛾

𝜉1 ∕(1 − 𝜉2 ) if 𝑃 ( ̂𝑟 ) ≥ 

𝛾

𝛼+ 𝛾
, 

 2 ( ̂𝑟 ) = 

{ 

𝜉1 (1 + 𝜉2 ) if 𝑃 ( ̂𝑟 ) < 𝛾
𝛼+ 𝛾

𝜉1 ∕(1 − 𝜉2 ) if 𝑃 ( ̂𝑟 ) ≥ 

𝛾

𝛼+ 𝛾
, 

𝜉1 = 1 + 

( 

𝑃 ( ̂𝑟 )( 𝛼 + 𝛾) 
𝛾

) 

𝑟̂ − 𝑠 𝐵 

𝑠 
, and 
𝐵 
𝜉2 = 𝑃 ( ̂𝑟 ) 
𝑟̂ − 𝑠 𝐵 

𝑠 𝐵 

( 

𝑟̂ − 𝑠 𝐵 

𝑟̂ 

[ 
𝛾 − 𝑃 ( ̂𝑟 )[ 𝛼 + 𝛾] 

𝛽

] 
+ 

𝛼

𝛽

) 

. 

The proof for this proposition is in Appendix B . 

Note that if either 𝑃 ( ̂𝑟 ) = 0 or 𝑃 ( ̂𝑟 ) = 1 , and ̂𝑟 = 𝑠 𝐵 , the expressions for

̄ 𝑊 , 𝑡 𝑊 
𝑆 
, and TSC 

W all simplify to their values in the standard bottleneck

odel. 

. Optimal departure rate does not maximize expected 

hroughput 

The paper has two important theoretical results. In this section we

how that the social welfare-maximizing maximum departure rate is

ower than that which maximizes expected throughput. Then in the next

ection, we show that even with non-negative tolls, the welfare of all

rivers is improved by the charging of tolls. 

We characterize the socially optimal maximum departure rate by

omparing it to a benchmark. This benchmark is the maximum depar-

ure rate that results in the highest expected throughput while the max-

mum is binding. Expected throughput is given by the weighted average

f outflow from the bottleneck on good and bad days, and is given by 

 1 − 𝑃 ( 𝑟 ) ] 𝑟 + 𝑃 ( 𝑟 ) 𝑠 𝐵 . 

sing the superscript F to denote expected throughput (or flow) max-

mizing equilibrium values, the maximum departure rate is implicitly

efined by 

 

𝐹 = 𝑠 𝐵 + 

1 − 𝑃 
(
𝑟 𝐹 

)
𝑝 
(
𝑟 𝐹 

) . 

or the purposes of this equilibrium, expected throughput is defined

ver the period when the maximum departure rate is binding. In the

vent that any drivers depart later when the maximum is not binding,

hey do not enter into the calculation of the expected throughput. 14 

The first key result of this paper is that the road operator should

estrict the departure rate below that which would maximize expected

hroughput. While reducing the departure rate increases the length of

he peak period, it has two benefits. First, it reduces the probability of

reakdown. Second, it reduces the negative consequences of breakdown

y spreading out when drivers depart. Congestion is less on days when

reakdown occurs. 

roposition 3. The maximum departure rate that maximizes social welfare

s less than that which maximizes expected throughput, and is greater than

 B . 

roof. We first show the maximum departure rate which maximizes

ocial welfare is less than that which maximizes expected throughput. 

First note that if the expected throughput maximizing departure rate

s high enough that neither of the cases solved for in this paper applies,

hen by Lemma 4 , we know the socially optimal maximum departure

ate is lower than that which maximizes expected throughput. 

Next, we evaluate the first-order condition for 𝑟 = 𝑟 𝐹 . If it is positive,

hen reducing r below r F reduces total social cost. Evaluating (B.4) when

 ( 𝑟 𝐹 ) < 𝛾∕( 𝛼 + 𝛾) : 

𝑑 TSC 

𝑊 ( ̂𝑟 ) 
𝑑 ̂𝑟 

|||𝑟 = 𝑟 𝐹 = 

𝑁 

2 

2 
{(

[1 − 𝑃 ( ̂𝑟 ] 2 + 𝑠 𝐵 𝑝 ( ̂𝑟 ) 
)
𝛼 + [1 − 𝑃 ( ̂𝑟 )] 2 𝛾

}
×

( 

𝛼 ⋅ 2 𝑃 ( ̂𝑟 ) 
{
[ 1 − 𝑃 ( ̂𝑟 ) ] 

[
1 − 2 𝑃 ( ̂𝑟 ) + [ 𝑃 ( ̂𝑟 ) ] 2 + 𝑝 ( ̂𝑟 ) 𝑠 𝐵 

]}
+ 𝛽 ⋅ 𝑠 𝐵 𝑝 ( ̂𝑟 ) 

{ 

1 − 𝑃 ( ̂𝑟 ) + 𝑝 ( ̂𝑟 ) 𝑠 𝐵 
} 
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c  
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c

 

s  

f  
+ 𝛾

{ 

− 2 [ 𝑃 ( ̂𝑟 ) ] 4 + 6 [ 𝑃 ( ̂𝑟 ) ] 3 − 6 [ 𝑃 ( ̂𝑟 ) ] 2 

+ 𝑃 ( ̂𝑟 )[2 − 𝑝 ( ̂𝑟 ) 𝑠 𝐵 ] + 𝑝 ( ̂𝑟 ) 𝑠 𝐵 [1 + 𝑝 ( ̂𝑟 ) 𝑠 𝐵 ] 
} 

) 

×
{ 

𝑠 2 
𝐵 

[
1 − 𝑃 ( ̂𝑟 ) + 𝑝 ( ̂𝑟 ) 𝑠 𝐵 

]3 ( 𝛽 + 𝛾) 
} −1 
. (15) 

ach term in brackets is positive, so (15) is positive. 

Next, evaluating (B.4) when 𝑃 ( 𝑟 𝐹 ) ≥ 𝛾∕( 𝛼 + 𝛾) : 

𝑑 TSC 

𝑊 ( ̂𝑟 ) 
𝑑 ̂𝑟 

|||𝑟 = 𝑟 𝐹 = 

𝑁 

2 𝑠 𝐵 𝛽
2 [𝑝 ( 𝑟 𝐹 ) ]3 
2 

×
[
𝛼

([
1 − 𝑃 ( 𝑟 𝐹 ) 

]2 + 𝑝 ( 𝑟 𝐹 ) 𝑠 𝐵 
)
+ 𝛾

[
1 − 𝑃 ( 𝑟 𝐹 ) 

]2 ]
×

{ 

𝑝 ( 𝑟 𝐹 ) 𝑠 𝐵 (1 + 𝑝 ( 𝑟 𝐹 ) 𝑠 𝐵 ) 𝛽 + 

[
𝑃 ( 𝑟 𝐹 ) 

]3 (
𝑃 ( 𝑟 𝐹 ) − 3 

)
( 𝛼 + 𝛾) 

− 𝑃 ( 𝑟 𝐹 ) 
[
𝛼 + 𝛾 + 𝑝 ( 𝑟 𝐹 ) 𝑠 𝐵 ( 𝛼 + 𝛽) 

]
+ 

[
𝑃 ( 𝑟 𝐹 ) 

]2 [(3 + 𝑝 ( 𝑟 𝐹 ) 𝑠 𝐵 
)
𝛼 + 3 𝛾

]} 

−2 . (16) 

ach term is positive, so (16) is positive. 

Next, for any 𝑟̂ > 𝑟 𝐹 , reducing 𝑟̂ increases both expected throughput

nd reduces the probability of breakdown, both of which reduces total

ocial cost. Thus, it is never optimal to have r > r F . 

Finally, we show the departure rate which maximizes social welfare

s greater than s B . When 𝑟 = 𝑠 𝐵 , 

𝑑 TSC 

𝑊 ( 𝑟 ) 
𝑑𝑟 

|||𝑟 = 𝑠 𝐵 = − 

1 
2 

( 

𝑁 

𝑠 𝐵 

) 2 
𝛽𝛾

𝛽 + 𝛾
< 0 , 

nd so increasing r above s B reduces social cost. Note that having r below

 B increases schedule delay while yielding no benefit in reduced travel

imes or reduced probability of departure, and so is never optimal. □

Reducing the maximum departure rate increases the period of time

he maximum departure rate is binding, and thus the period of time

 non-zero toll is charged. Lemma 5 tells us that reducing the maxi-

um departure rate increases the slope of the toll schedule at any given

oint in time. As a result, as long as the start of the peak period does

ot change too much, the social welfare maximizing toll schedule has a

arger average and maximum toll than the expected throughput maxi-

izing toll schedule. 15 

. Adding tolls reduces private costs 

We now evaluate the welfare consequences of tolling. We find that

y accounting for the value of reliability in a structural model of con-

estion, there is a non-negative toll schedule that reduces drivers’ costs,

ven if the toll revenue is not used productively. 16 Moreover, the wel-

are benefits will be even larger if the toll revenues are used to pay for

ighway maintenance, perhaps offsetting gas taxes or license fees, or

re transferred and used productively outside of the road operator. This

s even possible when tolling reduces the average departure rate. 
15 If the period of time when the toll is charged differs greatly, then the result 

hat the slope of the toll schedule is greater when maximizing social welfare 

t any given point in time does not provide a meaningful bound on the toll 

chedules. Given that drivers wish to arrive close to t ∗ , such a difference in 

hen tolls are charged between welfare-maximizing and expected-throughput- 

aximizing is unlikely. In our numerical simulations in Section 8 , we find that 

he social welfare maximizing toll is on average more than triple the expected 

hroughput maximizing toll. 
16 While in principle toll road operators could set negative toll rates at certain 

imes, the only example of negative tolls we are aware of is in the Netherlands, 

here they have experimented with paying drivers to avoid the peak when there 

s road construction ( Knockaert et al., 2012 ). 
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r  

t  
roposition 4. There exist non-negative tolls that make all drivers better off

efore using the toll revenue. Furthermore, this is possible while decreasing

he average departure rate if, when the road was untolled, the probability of

reakdown is low enough: 𝑃 ( 𝑟 𝑈 ( 𝑡 𝑈 
𝑆 
)) < 𝛾∕( 𝛽 + 𝛾) . 

roof. The proof proceeds by considering both cases for equilibrium

hen the road is untolled. 

Case 1. First, consider the case where 𝑇 
(
𝑡 𝑈 
𝐸 

)
= 0 . Let 𝑡 𝑆 = 𝑡 𝑈 

𝑆 
+ 𝜖 for

n arbitrarily small 𝜖 > 0. The first driver thus has less schedule delay,

nd since the first driver never faces any congestion, and since his toll

s, by assumption, zero, he is better off. 

We next show the tolls are non-negative. Set a constant departure

ate, so that 𝑟 = 𝑁∕( 𝑡 𝐸 − 𝑡 𝑆 ) , by (13) , 

( 𝑡 𝐸 ) = ∫
𝑡 𝐸 

𝑡 𝑆 

𝜏( 𝑡 ) 𝑑𝑡 = 

(
𝑡 𝐸 − 𝑡 𝑈 

𝐸 

)
[ ( 𝛼 + 𝛾) 𝑃 ( 𝑟 ) − 𝛾] − [ ( 𝛼 + 𝛾) 𝑃 ( 𝑟 ) + 𝛽] 𝜖. 

hoosing t E such that 𝜏( 𝑡 𝐸 ) = 0 yields 

 𝐸 = 𝑡 𝑈 
𝐸 
− 

𝛽 + ( 𝛼 + 𝛾) 𝑃 ( 𝑟 ) 
𝛾 − ( 𝛼 + 𝛾) 𝑃 ( 𝑟 ) 

× 𝜖. 

ecause (13) is concave, this implies the toll schedule is non-negative.

hus, there exists a non-negative toll that makes all drivers better off

hen 𝑇 
(
𝑡 𝑈 
𝐸 

)
= 0 . 

Case 2. Next, consider the case where 𝑇 
(
𝑡 𝑈 
𝐸 

)
> 0 , which occurs when

 ( 𝑟 𝑈 ( 𝑡 𝑈 
𝑆 
)) < 𝛾∕( 𝛽 + 𝛾) . Let 𝑡 𝑆 = 𝑡 𝑈 

𝑆 
+ 𝜖 for an arbitrarily small 𝜖 > 0, and

et 𝑡 𝐸 = 𝑡 𝑈 
𝐸 
+ 2 𝜖. The first driver thus has less schedule delay, and since

he first driver never faces any congestion, and since her toll is, by as-

umption, zero, she is better off. Furthermore, we have increased the

ength of the period of departures, and so thus have decreased the aver-

ge departure rate. 

Next, we show tolls are non-negative. Set a constant departure rate,

o that 𝑟 = 𝑁∕( 𝑡 𝐸 − 𝑡 𝑆 ) , by (13) , 

( 𝑡 𝐸 ) = ∫
𝑡 𝐸 

𝑡 𝑆 

𝜏( 𝑡 ) 𝑑𝑡 = 

(
𝑃 ( 𝑟 𝑈 ( 𝑡 𝑈 

𝑆 
)) − 𝑃 ( 𝑟 ) 

)𝑁 

𝑠 𝐵 

𝛽( 𝛼 + 𝛾) 
𝛽 + 𝑃 ( 𝑟 𝑈 ( 𝑡 𝑈 

𝑆 
))( 𝛼 + 𝛾) 

− [ 𝛽 + 2 𝛾 − 𝑃 ( 𝑟 )( 𝛼 + 𝛾) ] 𝜖. 

his is greater than zero for an arbitrarily small 𝜖 > 0. Because (13) is

oncave, this implies the toll schedule is non-negative. Thus, there exists

 non-negative toll that makes all drivers better off when 𝑇 
(
𝑡 𝑈 
𝐸 

)
> 0 . □

This result stands in contrast to the existing literature, where the

ocially optimal departure rate and private costs are negatively corre-

ated. In the traditional static model adding tolls increases private costs

hile reducing departures (e.g. Walters, 1961 ). In the standard bottle-

eck model adding tolls leaves the average departure rate and private

osts unchanged ( Arnott et al., 1993 ). In models with hypercongestion,

dding tolls increases the average departure rate and reduces private

osts ( Fosgerau and Small, 2013; Hall, 2018 ). Our result shows it is pos-

ible to decrease both the average departure rate and private costs, be-

ause of the value that drivers derive from a reduction in uncertainty. 

An important caveat on this second result is that it is derived as-

uming drivers are homogeneous, and Hall (2018) shows that allowing

or heterogeneous preferences makes it difficult for pricing all of the

anes of the highway to help all drivers prior to using the toll revenue.

his result does, however, point to the value of accounting for reliabil-

ty in assessing the distributional consequences of tolling. Furthermore,

n Hall (2018) the set of drivers most hurt by tolling are the inflexible

oor, drivers who are willing to tolerate a large amount of congestion to

rrive on-time, but have low values of time. There are two reasons to be-

ieve that accounting for reliability especially helps these drivers, and so

akes it easier to generate a Pareto improvement. First, it is the inflexi-

le who suffer the most from the lack of reliability, since arriving early

r late is especially costly for them. This means they benefit the most

rom the improvement in reliability caused by tolling. Second, the main

eason these drivers are hurt by tolling is that they are displaced from

he peak by flexible drivers with higher values of time. However, once
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Fig. 1. Probability of breakdown. Based on estimates from Lorenz and Elefteri- 

adou (2001) . Departure rate measured in vehicles per hour per lane. 

Fig. 2. Departure rates. Time measured in hours from desired arrival time. De- 

parture rate measured in vehicles per hour per lane. 
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e account for uncertainty in travel times, the inflexible poor are likely

o be departing early to avoid the risk of arriving late on days when

reakdown occurs. This means there is less scope for displacement, and

hat any displacement will be less damaging. 

. Simulations 

To illustrate our results, we take parameter values from the literature

nd simulate equilibrium with and without tolls. 

.1. Setup 

We make the following assumptions for driver preferences. For

he cost of travel time we use the U.S. Department of Transporta-

ion (2016) recommended value of $14.10, adjusted using the consumer

rice index to be in 2019 dollars. This gives us 𝛼 = $15 . 19 /h. 

For the cost of time early, 𝛽, we follow the recommendation of

all (2019b) and assume 𝛽 = 0 . 1 × 𝛼. 
For the cost of time late, 𝛾, we consider two possible values so we can

llustrate equilibrium outcomes for both cases when the road is untolled.

irst, we follow the recommendation of Hall (2019b) and assume 𝛾 = 𝛽.

s a result, when the road is untolled, 𝑇 ( 𝑡 𝐸 ) = 0 . Second, we choose

= 6 × 𝛽 so that in the untolled equilibrium T ( t E ) > 0. 

Without loss of generality, we let the desired arrival time, t ∗ , be zero.

s a result, we can interpret time as 𝑡 − 𝑡 ∗ . 

We assume the mass of drivers is such that on a bad day it takes

 hours for all drivers to use the highway: 𝑁 = 3 × 𝑠 𝐵 . In making this

ssumption, we are focusing our attention on less congested road seg-

ents. 3 hours may sound long, however, in many congested cities the

ength of the peak period is closer to 8 hours (cf. Hall, 2019a ). 

We base the probability of breakdown on the estimates of Lorenz and

lefteriadou (2001) . They use data from two isolated bottlenecks

n Highway 401 in Toronto, Canada, to estimate the probability of

reakdown as a function of flows in the prior fifteen minutes non-

arametrically, as well as throughput after breakdown occurs. 17 We

pproximate Lorenz and Elefteriadou’s (2001) estimates of the proba-

ility of breakdown reported in their Fig. 7 using a beta distribution

nd choose s B to match their estimate of throughput after breakdown

eported in their Fig. 8. Specifically, we fit a beta distribution over the

ange from 1600 to 2400 vehicles per hour per lane (vphpl). The lower

nd of this range marks the traffic volume below which breakdown can-

ot occur, and is the same as s B . The upper end marks the volume at

hich breakdown is certain to occur. In addition, we choose the pa-

ameters of this distribution so that 𝑃 (1900) = 0 . 09 , and 𝑃 (2200) = 0 . 60 .
he resulting distribution is similar to what we would get if we based

he probability of breakdown on estimates from Geistefeldt and Sho-

aat (2019) . Our probability of breakdown function is plotted in Fig. 1 . 

.2. Results 

Given these parameter values, we solve for equilibrium when the

oad is free and priced. For both sets of parameter values, the tolled

quilibrium is in the case where T ( t E ) > 0, and so the maximum depar-

ure rate is always binding. This is because adding the toll reduces the

robability of breakdown so much that the marginal expected schedule

elay costs from leaving a little bit later outweigh the expected travel

ime savings from leaving later. As mentioned earlier, when 𝛾 = 𝛽 the

ntolled equilibrium is in the 𝑇 ( 𝑡 𝐸 ) = 0 case, and when 𝛾 = 6 × 𝛽 the

ntolled equilibrium is in the T ( t E ) > 0 case. 

Fig. 2 plots the equilibrium departure rates both when the road is

ntolled and when it is tolled. The upper part of the figure is for when
17 An isolated bottleneck is one where traffic at the bottleneck is not affected 

y a downstream bottleneck. They also estimate probabilities based on 1 and 5 

inute flows. 

c

m

= 𝛽, and the lower part for when 𝛾 = 6 × 𝛽. In both cases, adding tolls

mooths the rate at which drivers depart from home, decreasing it at the

tart and increasing it at the end. 

More details on the simulation results are presented in Table 1 . The

rst row in the table reports that the reduction in the departure rate at

he start of the peak period reduces the probability of breakdown by 35

ercentage points. As a result, breakdown goes from occurring once or

wice a week to occurring quarterly. 18 

As Proposition 4 proved, this reduction in the probability of break-

own, as well as the reduction in the consequences of breakdown, helps

rivers. We can evaluate the welfare effects of tolling graphically using

ig. 2 and focusing on the first driver to depart. When the road is free,

he first driver to depart faces no congestion (by virtue of being the first

o depart) and pays no toll. Her only cost is due to arriving earlier than
18 Recall that we have chosen our parameter values to focus attention on less 

ongested road segments. On the most congested roads, breakdown occurs al- 

ost daily, while on less congested roads it is less common. 
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Table 1 

Simulation results. 

Case 1: 𝛾 = 𝛽 Case 2: 𝛾 = 6 × 𝛽

Free Tolled Change Free Tolled Change 

Probability of breakdown 0.362 0.011 − 97% 0.362 0.017 − 95% 

Average departure rate (vphpl) 1600 1748 + 9.3% 1876 1772 − 5.6% 

Average throughput (vphpl) 1600 1747 + 9.2% 1776 1769 − 0.4% 

Per trip costs 

Social $2.78 $1.06 − 53% $3.89 $1.81 − 54% 

Private $2.78 $2.11 − 7.5% $3.89 $3.54 − 8.8% 

Travel time (minutes) 

Average 4.44 0.08 − 98% 7.23 0.15 − 98% 

Average on a bad day 12.27 7.64 − 38% 19.98 8.74 − 56% 

Maximum on a bad day 22.61 15.27 − 32% 26.51 17.49 − 34% 

Toll 

Average — $1.04 — — $1.74 —

Maximum — $2.08 — — $3.44 —

Notes: Average departure rate and throughput are the averaged across time and breakdown 

state. Average travel time and average toll are the averages measured across drivers. The 

average travel time and toll across time and across drivers differ by less than 5%. 
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Fig. 3. Total social cost per trip vs. maximum departure rate. This figure is 

plotted for Case 2: 𝛾 = 6 × 𝛽. Maximum departure rate measured in vehicles 

per hour per lane. Creating this figure requires solving for equilibrium in cases 

further from the optimum which were not reported in the paper but are available 

in the replication files. 

Fig. 4. Toll schedule when maximizing social welfare vs. maximizing expected 

throughput. This figure is plotted for Case 2: 𝛾 = 6 × 𝛽. 
esired. When the road is tolled, she continues to face no congestion

nd pays no toll (by virtue of being the first to depart), but now departs

ater and so has less schedule delay than before. She is better off. Since

ll drivers are identical, if the first driver is better off, all drivers are

etter off, and so adding the toll helps all drivers, even before using the

oll revenue. 

The combined effects of the reduction in the probability of break-

own and the reduction in the consequences of breakdown can be seen

y comparing the travel times in Table 1 . Tolling reduces the conse-

uences of a bad day by reducing the average and maximum travel time

n a bad day by 32–56%. Since it also reduces the probability of break-

own, average travel time is reduced by 98%. 19 

Further consistent with Proposition 4, Fig. 2 (b) shows visually that

hen the untolled equilibrium is such that T ( t E ) > 0, adding these tolls

educes the average departure rate and lengthens the period over which

rivers depart. In this case, tolling reduces the average departure rate

y 104 vphpl, and even reduces average throughput by 7 vphpl. De-

pite this, and in contrast to existing results in the literature, tolling still

educes private costs. 

Consistent with Proposition 3 , the welfare-maximizing maximum de-

arture rate is lower than the departure rate which maximizes expected

hroughput. The departure rate which maximizes expected throughput

s 2039 vphpl, and achieves an expected throughput (across good and

ad days) of 1921 vphpl. In contrast, when the road is free the maximum

eparture rate is 2091 vphpl, and when the road is tolled the maximum

and constant) departure rate is 1748 or 1772 vphpl (depending on the

ase). While increasing the maximum departure rate above the social

ptimum would increase expected throughput, doing so reduces social

elfare since drivers are risk averse over arrival times. 

Fig. 3 shows this visually. It plots the total social cost per trip as a

unction of the maximum departure rate. 20 The figure shows that while

etting the toll to maximize expected throughput reduces total social

ost relative to the road being untolled, we more than triple the social

elfare gains by charging the toll that maximizes total social welfare. 

Fig. 4 compares the toll schedule which maximizes social wel-

are to that which maximizes expected throughput. Consistent with

ur discussion in Section 6 , the tolls that maximize social welfare are

igher. The average and maximum tolls are both more than three times

igher when maximizing social welfare rather than expected through-

ut. For these parameter values, the expected throughput maximiz-
19 In interpreting this number it is useful to remember that this is the excess 

ravel time due to congestion. 
20 The figure is for the case where 𝛾 = 6 × 𝛽, and is fundamentally the same for 

he case where 𝛾 = 𝛽. 

i  

t  

t

ng departure rate is not binding for all departures, and the toll re-

urns to zero prior to the last departure, which in this case occurs at

 

∗ (i.e., 0). 
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Fig. 4 also shows that when expected throughput maximizing tolls

re charged, the earliest departure is 6 min earlier than when welfare

aximizing tolls are charged. In addition, the last departure is 23 min

arlier than when welfare maximizing tolls are charged. The result of

aximizing expected throughput is that everyone departs over a shorter

nterval, however, to help mitigate the uncertainty, they also leave

arlier. 

Table 1 also reports the magnitudes of the social and private wel-

are gains from tolling. Given our parameter values, private costs are

educed by 7.5–8.8%. If the typical commuter makes two trips on each

f the 250 working days in a year, this amounts to 175–335 dollars per

ommuter per year, depending on the case. The social welfare gains are

uch larger. Total social costs of congestion fall by 53–54%, and are

quivalent to 860–1,040 dollars per commuter per year. 

. Conclusion 

Unpredictable travel times impose significant costs on drivers, and

re estimated to account for 30–70% of the total cost of congestion

 Small et al., 2005; Bento et al., 2017 ). Due to this unpredictability,

rivers choose to depart earlier to reduce the risk of being late. On good

ays they arrive unnecessarily early and on bad days they suffer the con-

equences of arriving late. While some sources of the unpredictability

re exogenous, such as weather, others are endogenous, such as crashes

nd flow breakdown, and the probability that they occur is increasing

n the traffic flow. 

This paper analyzes how to implement tolls in the presence of en-

ogenous non-recurring congestion. We find two important results.

irst, tolls should be implemented to restrict inflow to the facility be-

ow the rate that maximizes expected throughput. Our simulations sug-

est that expected throughput should be a little more than 10% lower

han the maximum possible, which requires charging tolls that are, on

verage, more than three times as large. This is worthwhile because

y smoothing the rate at which drivers enter a congestible link, de-

reasing it at the start of the peak period and increasing it at the end,

hese tolls reduce both the probability of breakdown and the severity

f congestion when breakdown occurs. Smoothing entry in this way in-

reases traffic reliability. Because drivers value reliability, it is worth-

hile to sacrifice some expected capacity by reducing inflow to the

acility. 

Second, weakly positive tolls exist that make drivers better off. In

ur simulations, private costs decrease by almost 10%. Drivers are bet-

er off since the increase in reliability means they no longer need to

eave as early. Social and private welfare would be further enhanced

f the toll revenues are used productively or offset other funding in-

truments such as the tax on gasoline. Making drivers better off mat-

ers because it can help overcome the political barriers to congestion

ricing. 

ppendix A. Proof of Proposition 1 

roof. The requirement that supply equals demand on good days and

ad gives us the following two equilibrium requirements: 

𝑡 𝐸 

𝑡 𝑆 

𝑟 ( 𝑡 ) 𝑑𝑡 = 𝑁, and (A.1)

 𝐵 

(
𝑡 𝐸 + 𝑇 ( 𝑡 𝐸 ) − 𝑡 𝑆 

)
= 𝑁. (A.2)

nce we have solved for t S we find equilibrium trip costs by evaluating

he trip cost at the start of the peak period: 

̄ 𝑈 = 𝑐( 𝑡 ) = 𝐷( 𝑡 ) . (A.3)
𝑆 𝑆 
With the assumption of piecewise-linear schedule delay costs, by

emma 3 : 

 ( 𝑡 ) = 𝑠 𝐵 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 + 

𝛽

𝑃 ( 𝑟 ( 𝑡 𝑆 ))( 𝛼− 𝛽) 
if 𝑡 𝑆 ≤ 𝑡 < 𝑡 𝑀 

, 

1 + 

(1− 𝑃 ( 𝑟 ( 𝑡 𝑆 ))) 𝛽− 𝑃 ( 𝑟 ( 𝑡 𝑆 )) 𝛾
𝑃 ( 𝑟 ( 𝑡 𝑆 ))( 𝛼+ 𝛾) 

if 𝑡 𝑀 

≤ 𝑡 < 𝑡 ∗ , 

1 − 

𝛾

𝑃 ( 𝑟 ( 𝑡 𝑆 ))( 𝛼+ 𝛾) 
if 𝑡 ∗ ≤ 𝑡 ≤ 𝑡 𝐸 , and 

0 otherwise . 

(A.4)

Eq. (A.4) introduces a new variable, t M 

, which is the time when

rivers go from always arriving early to only arriving early on good

ays. As such, t M 

is defined by 

 𝑀 

+ 𝑇 ( 𝑡 𝑀 

) = 𝑡 ∗ , (A.5)

𝑡 𝑀 

+ 

(
𝑡 𝑀 

− 𝑡 𝑆 
) 𝑟 ( 𝑡 𝑆 ) − 𝑠 𝐵 

𝑠 𝐵 
= 𝑡 ∗ . (A.6)

Starting with the case where 𝑇 ( 𝑡 𝐸 ) = 0 , 

 𝐴. 1) ⇔ 𝑟 ( 𝑡 𝑆 )( 𝑡 𝑀 

− 𝑡 𝑆 ) + 𝑟 ( 𝑡 𝑀 

)( 𝑡 ∗ − 𝑡 𝑀 

) + 𝑟 ( 𝑡 𝑡 ∗ )( 𝑡 𝐸 − 𝑡 ∗ ) = 𝑁, (A.7)

 𝐴. 2) ⇔ 𝑠 𝐵 
(
𝑡 𝐸 − 𝑡 𝑆 

)
= 𝑁. (A.8)

Eqs. (A.3) , (A.4), (A.6) , and (A.8) define a linear system of equations,

hich yields, in part, the following: 

̄ = 

𝑁 

𝑠 𝐵 

𝛽𝛾

𝛽 + 𝛾
, (A.9)

𝑡 𝑆 = 𝑡 ∗ − 

𝑁 

𝑠 𝐵 

𝛾

𝛽 + 𝛾
, and 

 𝐸 = 𝑡 ∗ + 

𝑁 

𝑠 𝐵 

𝛽

𝛽 + 𝛾
. (A.10) 

A piecewise-linear schedule delay function implies that in the case

here T ( t E ) > 0, the last departure must occur at t ∗ , and that 

 𝐴. 1) ⇔ 𝑟 ( 𝑡 𝑆 )( 𝑡 𝑀 

− 𝑡 𝑆 ) + 𝑟 ( 𝑡 𝑀 

)( 𝑡 ∗ − 𝑡 𝑀 

) = 𝑁, (A.11)

 𝐴. 2) ⇔ 𝑠 𝐵 
(
𝑡 ∗ + 𝑇 ( 𝑡 ∗ ) − 𝑡 𝑆 

)
= 𝑁. (A.12)

Likewise, (A.3), (A.4), (A.6), (A.11) , and (A.12) define a linear sys-

em of equations, which yields, in part, the following: 

 𝑆 = 𝑡 ∗ − 

𝑁 

𝑠 𝐵 

𝑃 ( 𝑟 ( 𝑡 𝑆 )) ( 𝛼 + 𝛾) 
𝛽 + 𝑃 ( 𝑟 ( 𝑡 𝑆 )) ( 𝛼 + 𝛾) 

(A.13)

̄ = 

𝑁 

𝑠 𝐵 

𝑃 ( 𝑟 ( 𝑡 𝑆 ))( 𝛼 + 𝛾) 𝛽
𝛽 + 𝑃 ( 𝑟 ( 𝑡 𝑆 ))( 𝛼 + 𝛾) 

. (A.14)

Lemma 2 implies the last departure occurs when travel times, on bad

ays, are still positive when 

𝑃 ( 𝑟 ( 𝑡 𝑆 )) < 
𝛾

𝛼 + 𝛾

𝑃 ( 𝑟 ( 𝑡 𝑆 )) ( 𝛼 + 𝛾) < 𝛾. 

s a result, (10) nests (A.9) and (A.14) , and (9) nests (A.10) and (A.13) .

Total social cost is the sum of private costs, and so TSC 

𝑈 = 𝑁 ⋅
̄ 𝑈 . □

ppendix B. Proof of Proposition 2 

roof. We have two cases to consider. 

Case 1. First consider the case where 𝑡 𝐸 = 𝑡 0 , and so there is not

 period when the departure rate is below the maximum. This occurs

hen 𝑃 ( ̂𝑟 ) < 𝛾∕( 𝛼 + 𝛾) . 
As when solving for equilibrium when the road is free, we use the

equirement that supply equals demand on good days to solve for t E .

his requirement is given by (A.1) . 
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Since the maximum departure rate is always binding: 

 ( 𝑡 ) = 

{ 

𝑟̂ if 𝑡 𝑆 ≤ 𝑡 ≤ 𝑡 0 , and 

0 otherwise. 
(B.1)

To use (B.1) , we must solve for t 0 , which is the time the toll returns

o zero, and is the solution to 

 = ∫
𝑡 0 

𝑡 𝑆 

𝜏( 𝑡 ) 𝑑𝑡. (B.2)

olving this equation requires knowing the time when drivers go from

lways arriving early to only arriving early on good days, t M 

, which is

efined by (A.5) . 

Eqs. (A.1) , (A.5), (B.2) , and 𝑡 𝐸 = 𝑡 0 are a linear system of equations

hich define t S , t M 

, t 0 , and t E . Solving this system of equations gives 

𝑡 𝑆 = 𝑡 ∗ − 

𝑁 

𝑟̂ 

𝛾

𝛽 + 𝛾
𝜉1 , 

 𝑀 

= 𝑡 ∗ − 

𝑁 

𝑟̂ 

𝛾

𝛽 + 𝛾
𝜉1 

(
1 − 

𝑠 𝐵 

𝑟̂ 

)
, and 

𝑡 𝐸 = 𝑡 ∗ + 

𝑁 

𝑟̂ 

( 

1 − 

𝛾

𝛽 + 𝛾
𝜉1 

) 

. 

Substituting these into (12) and solving the integral yields 

SC ( ̂𝑟 ) = 

𝑁 

2 

2 ̂𝑟 
𝛽𝛾

𝛽 + 𝛾
𝜉1 (1 + 𝜉2 ) . 

We find the equilibrium trip cost by calculating the trip cost of the

rst driver to depart. Since all drivers face the same trip cost in equilib-

ium, this is everyone’s trip cost. The first driver to depart does not pay

 toll, does not incur travel time, and always arrives at t S , thus 

̄ = 

𝑁 

𝑟̂ 

𝛽𝛾

𝛽 + 𝛾
𝜉1 . 

ase 2. Next, consider the case where t E > t 0 , and so there is a period

hen the departure rate is below the maximum. This occurs when 𝑃 ( ̂𝑟 ) ≥
∕( 𝛼 + 𝛾) . 

Solving for equilibrium in this case is largely the same. We continue

o use the requirement that supply equals demand on good days to solve

or t E . 

Given the assumption of piecewise-linear schedule delay costs,

emma 4 , which tells us the maximum departure rate is binding at least

ill t ∗ , and the departure rate when there is no toll from Lemma 3 : 

 ( 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑟̂ if 𝑡 𝑆 ≤ 𝑡 ≤ 𝑡 0 , 

𝑠 𝐵 

(
1 − 

𝛾

𝑃 ( ̂𝑟 )( 𝛼+ 𝛾) 

)
if 𝑡 0 < 𝑡 ≤ 𝑡 𝐸 and 

0 otherwise . 

As before we must solve for t 0 and t M 

using (A.5) and (B.2) . 

Eqs. (A.1) , (A.5), (B.2) , are a linear system of equations which define

 M 

, t 0 , and t E . Solving this system of equations gives 

 𝑀 

= 𝑡 𝑆 + 

𝑠 𝐵 

𝑟̂ 
( 𝑡 ∗ − 𝑡 𝑆 ) , 

𝑡 0 = 𝑡 𝑆 − ( 𝑡 ∗ − 𝑡 𝑆 ) 
𝛽 + 𝛾

𝛾
𝜉−1 1 , and 

𝑡 𝐸 = 𝑡 𝑆 + 

𝑁 

𝑠 𝐵 
𝑃 ( ̂𝑟 )( 𝛼 + 𝛾) − ( 𝛽 + 𝛾)( 𝑡 ∗ − 𝑡 𝑆 ) 

𝑃 ( ̂𝑟 ) 𝛼 − [ 1 − 𝑃 ( ̂𝑟 ) ] 𝛾
. 

Substituting these into (12) and solving the integral yields 

SC ( 𝑡 𝑆 , ̂𝑟 ) = ( 𝑡 ∗ − 𝑡 𝑆 ) 𝛽𝑁 + ( 𝑡 ∗ − 𝑡 𝑆 ) 2 
𝛽 + 𝛾

2 

×
𝑟̂ 𝑠 𝐵 𝛾 + 𝑃 ( ̂𝑟 )( ̂𝑟 − 𝑠 𝐵 )[ 𝑃 ( ̂𝑟 )[ 𝑟 − 𝑠 𝐵 ]( 𝛼 + 𝛾) − [ ̂𝑟 − 𝑠 𝐵 ] 𝛾 − ̂𝑟 𝛼] 

𝑠 𝐵 𝛾 + 𝑃 ( ̂𝑟 )[ ̂𝑟 − 𝑠 𝐵 ]( 𝛼 + 𝛾) 
. (B.3) 

Taking the first-order condition with respect to t S and solving yields 

 𝑆 = 𝑡 ∗ − 

𝑁 

𝑟̂ 

𝛾

𝛽 + 𝛾

( 

𝜉1 
1 − 𝜉

) 

. 

2 
Once again we find the equilibrium trip cost by calculating the trip

ost of the first driver to depart, which yields 

̄ = 

𝑁 

𝑟̂ 

𝛽𝛾

𝛽 + 𝛾

( 

𝜉1 
1 − 𝜉2 

) 

. 

Substituting t S into (B.3) and simplifying gives 

SC = 

𝑁 

2 

2 ̂𝑟 
𝛽𝛾

𝛽 + 𝛾

( 

𝜉1 
1 − 𝜉2 

) 

. 

Finally, to find the optimal 𝑟̂ we solve the first-order condition for

otal social costs, 

𝑑 TSC 

𝑑 ̂𝑟 
= 0 

𝑁 

2 

2 ̂𝑟 2 
𝛽𝛾

𝛽 + 𝛾

( 

𝜔 2 ( ̂𝑟 ) − ̂𝑟 
𝑑𝜔 2 ( ̂𝑟 ) 
𝑑 ̂𝑟 

) 

= 0 

⇔ 𝜔 2 ( ̂𝑟 ) = 𝑟̂ 
𝑑𝜔 2 ( ̂𝑟 ) 
𝑑 ̂𝑟 

. (B.4) 

□
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