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Abstract 
 
Introduction: This paper investigates whether motor vehicle driver behavior changes when there 
are more bicycles on the road. Method: Data on trips on a rapidly expanding public bike share 
scheme in Chicago are combined with speed violations captured by a network of 79 cameras. 
Using weekly data from July 2014 to December 2016, violations at 26 sites where there was a 
considerable increase in bicycle traffic are compared with a control group of 53 locations where 
rental bicycles are not available. Results: An increase in rental bicycle usage is statistically 
related to a reduction in the number of speeding violations, with an estimated elasticity of -0.04. 
Conclusion: The increased presence of bicyclists makes at least some motorists drive more 
cautiously. Practical Application: This research provides some insight into the mechanism 
behind the observed reduction in crash rates as bicyclists become more numerous. Some 
motorists moderate their speeds allowing more time to avoid collisions and a reduction in the 
severity of the vehicle-bicyclist collisions that still occur. 
  

 
1 There  are  no  known  conflicts  of  interest associated  with  this publication and  there  has been no financial 
support for this work that could have influenced its outcome. 
2 This work was performed while Klieger was a student at Northwestern University. 
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Highlights 
 
• Investigates behavioral explanations for the bicycle safety-in-numbers effect. 
• Data on 79 speed cameras locations in the City of Chicago, 2014-2016. 
• 26 treatment locations saw increased public bike share traffic. 
• Motor vehicle speed violations fell at these locations relative to a control group. 
• Estimated elasticity between rental bike usage and speed violations is -0.04. 
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1. Introduction 
 

Cycling is a particularly risky mode of transportation. Elvik (2009) using Norwegian data 
from 1998 to      2005 found that cyclists were 7.5 times more likely to sustain an injury per 
kilometer of travel than were automobile occupants. Moreover, non-fatal bicycle-involved 
collisions are likely to be under-reported because, unlike automobiles, bicycles do not have the 
same insurance requirements (Elvik and Mysen, 1999). Physics tells us that cyclists suffer worse 
outcomes in a motor vehicle-bicycle collision relative to automobile occupants. 

 
 Nonetheless, one ray of hope for proponents of cycling has been the safety-in-numbers 

hypothesis. This hypothesis argues that as bicycle usage increases, there is a less than 
proportional increase in the occurrence of collisions with motor vehicles. One possible 
explanation is that the greater presence of cyclists results in drivers having a greater awareness of 
these other road users and consequently taking more care to avoid collisions. 

 
This work investigates the issue by combining two data sets from Chicago. The first is an 

extraordinarily detailed database on the details of every trip made using the public bike share 
program (see Fishman et al., 2013, for a review of the literature on bike share schemes). The 
Chicago scheme, known by the tradename “Divvy,” has expanded rapidly in recent years both in 
its geographical coverage and in its popularity. The second data set measures motor vehicle 
driver behavior using speed violations detected by enforcement cameras that were installed 
citywide near parks and schools. This paper investigates whether speed violations decrease at 
locations with increased shared bicycle usage relative to locations that were not served by the 
bike share program. 

 
2. Literature Review 

 
2.1 Safety-in-Numbers Literature 
 

There are several recent meta-analyses that report on almost fifty individual studies that 
examine whether increased pedestrian and/or bicycle traffic result in a less than proportionate 
increase in collisions with motor vehicles (Elvik, 2017; Elvik and Bjørnskau, 2017; Elvik and 
Goel, 2019). The majority of the studies look for the effect on a micro-level, examining a cross-
section of individual pedestrian crossings or intersections. Others, however, look at a more 
macro level such as at the number of crashes in a traffic zone or municipality.3 In general, all of 
the papers demonstrate some degree of a safety-in-numbers effect and that the effect weakens 
with a larger number of pedestrians or cyclists. 
 

Much of the literature is cross-sectional in nature with comparisons of collision rates at 
different locations. Such analyses have difficulty untangling two competing explanations.  One is 
a pure safety-in-numbers explanation. As the number of cyclists on the road increase “the larger 

 
3 Of direct relevance to this paper, Tasic et al. (2017) used macroscopic data on 801 Census tracts in Chicago. Data 
on the rates of collisions between bicycles or pedestrians and motor vehicles are compared with estimates of walking 
and bicycle trips provided by the metropolitan planning agency. A strong safety-in-numbers effect was observed for 
both pedestrians and bicyclists. 
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is the number of ‘living warning signs’ and the greater the consideration shown them by 
motorists” (Brüde and Larsson, 1993). The alternative explanation is that cyclists utilize streets 
where the infrastructure is more conducive to safe cycling. Consequently, the highest bicycle 
traffic is observed in locations where the collision rate is the lowest. This is referred to as the 
numbers-in-safety hypothesis. 

 
Cross-sectional studies can account for the numbers-in-safety effect by including 

variables on highway design such as the speed limit and the presence of protected bicycle lanes. 
However, a time-series analysis of locations where bicycle traffic varies, but the infrastructure 
remains the same, is better for isolating the safety-in-numbers effect. 

 
2.2 Theoretical Behavioral Literature 

 
Authors have postulated theoretical models that provide intuition for the safety-in-

numbers hypothesis. Jacobsen et al. (2015) argue that changes in motorist behavior must be the 
dominant explanation. This explanation becomes more convincing when paired with theories of 
driver psychology, and the empirical testing of these theories in driving simulators (Ranney, 
1994). A widely cited theoretical model by Wilde (1982) utilizes the economics concept of risk 
homeostasis. In broad terms, this model hypothesizes that drivers have some target level of risk 
that they wish to bear in return for the benefits of driving from A to B. When the increased 
presence of cyclists leads to a higher risk of a collision, drivers compensate with actions that 
might include reducing speed and more reconnoitering. 

 
Risk homeostasis combined with the zero risk theory (Näätänen & Summala, 1976) led to 

the Task-Capability Interface (TCI) model (Fuller, 2005). The TCI model measures the output of 
an individual driver’s performance in terms of “task demand” and “capability.”  While driving, 
any individual driver balances the difficulty of their tasks, such as making a tight turn or 
overtaking, with their individual capability. If capability exceeds task difficulty, driving is easy 
and drivers perform well. If task difficulty exceeds capability, the driver’s performance falters 
and they fail the task. For example, this may result in a motorist veering off the road or running a 
stop sign.  

 
As drivers do not wish to crash, they compensate with actions that lower the difficulty 

when it approaches their personal capability. In laboratory studies to test the TCI model, Fuller et 
al. (2008) found that on every type of roadway there was a close relationship between ratings of 
task difficulty and driver speed. In other words, drivers compensate for the potential difficulty 
caused by the presence of cyclists by either slowing down or by taking other actions such as 
curtailing conversations with passengers.  

 
Another possible mechanism is discussed by Michon (1985) and van der Molen and 

Bӧtticher (1987). Their models argue that as cyclists become more numerous then motorists 
become more skilled in tasks such as recognizing how the cyclist may act, and in maneuvering 
around them. As a result, collision risks decrease. The problem with such an explanation is that 
skills learned in higher cycling locations should also manifest themselves when the motorist 
encounters a cyclist at a location with low bicycle volumes.  
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3. Theoretical Model 
 
This paper is in the spirit of the risk homeostasis and Task-Capability Interface 

framework. We argue that each individual driver, denoted by subscript i, has a target level of 
risk. They then traverse the highway network at time t and encounter various locations, 
subscripted by a. We assume that this target risk, which we denote by a bar above the risk 
variable, applies equally at all parts of the network 

 
Given the personal target level of risk, drivers balance their inherent capabilities, the 

nature of the highway infrastructure at a particular location, the presence of other road users, and 
environmental factors such as the weather (that is presumed to be the same at all locations within 
the city at a given time), with the intensity with which they drive. This is described in equation 
(1). 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑅𝑅𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑅𝑅𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑜𝑜𝑐𝑐ℎ𝑖𝑖𝑖𝑖 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖) (1) 

 
While driving intensity encompasses both speed selection and other actions such as greater 
reconnoitering, this paper utilizes data on speed. We also focus on the presence of bicycles as a 
particular type of other road users. Consequently, the equation can be rearranged as 

 

 𝑅𝑅𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑔𝑔�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 , 𝑅𝑅𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑅𝑅𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖�. (2) 

 
Presuming that the presence of more bicycles makes the driving task more difficult, and reducing 
speed makes the driving task easier, we should find a negative relationship between bicycle 
presence and motor vehicle speed. 
 
4. Empirical Application 
 
 We do not have data on the speed of each individual vehicle at each location. Rather we 
only know the number of speeding violations captured by the speed camera. Consequently, the 
number of violations found at location a at time t is based on equation (2) but with additional 
variables representing the average annual daily (motor vehicle) traffic (AADT), and the posted 
speed limit that triggers the camera.  
 

 𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖
= ℎ�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 , 𝑅𝑅𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑅𝑅𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖, 𝑅𝑅𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠 𝑐𝑐𝑅𝑅𝑙𝑙𝑅𝑅𝑐𝑐𝑖𝑖𝑖𝑖� 

(3) 

 
Chicago has four distinct seasons. Winter months are not favorable to bicycling. Motor 

vehicle traffic volumes also vary by season. Moreover, cameras located in school zones are not 
permitted to issue violations during school vacations. Consequently, the empirical analysis 
compares violations in a given week with those a year earlier. While one could compare 
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equivalent days (the second Tuesday in August, for example) from one year to the next, we 
decided to use a week rather than an individual day as the unit of analysis. We did so primarily to 
reduce the random noise in the number of violations and rental bicycle usage from day to day. At 
some locations, the number of daily speeding violations can be in the single digits. 

 
In our application, equation (3) is simplified because variables such as the nature of the 

infrastructure and the speed limit do not change between the initial period and the same week a 
year later. Further simplification is possible by utilizing a difference-in-differences approach 
(Angrist and Pischke, 2009, chapter 5). In these types of models, changes in a particular outcome 
for a set of observations that receive a particular treatment are compared with the changes 
observed in a control group that did not receive treatment. For example, the well-known paper by 
Card and Kreuger (1994) investigated whether an increase in the minimum wage in New Jersey 
in 1992 led to a decline in employment in fast food restaurants. Their paper compared 
employment before and after the change in New Jersey with the experience over the same period 
in neighboring Pennsylvania where the minimum wage did not change. 

 
In our analysis, we compare a treatment group of 26 speed cameras where there was a 

change in the rental bicycle usage in the vicinity with 53 control group locations where rental 
bikes are not available. The comparison with a control group allows the analysts to take into 
account seasonal fluctuations in traffic motor vehicle volumes and weather conditions.  

 
Consequently, equation (3) can be simplified and the count of violations at location a in 

week t=52 can be written as 
 

 𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖52
= 𝑅𝑅 �𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖0, �

𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖52
𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖0

� , �
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅 𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐52
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅 𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐0

��. 

(4) 

 
The first term on the right-hand side, the count of violations a year earlier (in period t=0), 
implicitly measures factors in equation (3) that have not changed during the year such as the 
capability of drivers, their target risk preferences, the speed limit and road geometry. The second 
term measures the treatment as measured by the proportional change in rental bicycle usage at 
the location. The final term captures weather, exogenous effects on traffic volumes such as 
gasoline prices, and any other general exogenous time trends. 
 
 The specific functional form is taken to be multiplicative 

 

 𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖52

= 𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖0 �
𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖52
𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖0

�
𝛽𝛽1
�
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅 𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐52
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅 𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐0

�
𝛽𝛽2

. 

(5) 

 
Dividing by violations in period 0 and taking logarithms, produces the equation to be estimated 
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𝑐𝑐𝑖𝑖 � 
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖52
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖0

�

= 𝛽𝛽1𝑐𝑐𝑖𝑖 �
𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖52
𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖0

� +  𝛽𝛽2𝑐𝑐𝑖𝑖 �
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅 𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐52
𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑐𝑐 𝑜𝑜𝑓𝑓 𝑣𝑣𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅 𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐0

�. 

(6) 

 
5. Data 
 
5.1 Study Period 
 

Data were collected for 130 weeks. The first week starts Sunday July 6, 2014, and the 
final week starts Sunday December 25, 2016. Because the analysis looks at changes from one 
week to the equivalent week a year earlier, the maximum number of observations used in the 
regression for any location is 78. 
 
 5.2 Location Selection 
 

Speed enforcement cameras were installed by the City of Chicago starting in August 
2013 with the express purpose of protecting children. By law, they can only be located within an 
eighth of a mile of a school or park. Enforcement hours are 7am to 7pm on Mondays through 
Fridays for cameras in school zones and from 6am to 11pm daily for cameras near parks. All of 
the locations are on streets with a 30mph posted limit that is reduced to 20mph in school zones. 
This is a separate program from the installation of cameras to enforce violations of red lights at 
signalized intersections. 
 
 The program envisioned as many as 300 cameras, but only 150 were operational by the 
end of 2016. While the City did target locations with a history of crashes, high vehicle counts 
and known high speeds, political considerations dictated that they were installed in all areas of 
the City. Each of the six traffic regions within the City had to receive at least 10% of the cameras 
(City of Chicago, 2018). The exact latitude and longitude is known for each camera. At 42 
locations, a pair of cameras is in operation facing in opposite directions. In these locations, data 
from each pair were combined. In other locations, a single camera can capture both directions. 
Nine locations were found to have relatively few violations, defined as an average over the 130 
weeks of 25 or fewer a week, resulting in considerable noise in the violation counts. These 
locations were excluded from the analysis. The net result was 99 possible locations.  
 
5.3 Violation Data 
 

Data are available on the number of daily speed violations. They are aggregated into a 
weekly violation count. Abnormalities in the data were observed. These may have been due to 
mechanical malfunctions or because cameras in school zones cannot issue citations during school 
vacations. In addition, highway maintenance may result in traffic reduction due to lane closures, 
and possibly the obstruction of the camera’s view. A rule was adopted whereby observations for 
a particular week at a particular location were dropped from the data set if zero violations were 
recorded, or if the number of violations was less than a quarter of the median non-zero weekly 
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violations at that location. Because the violations data are heavily left (negatively) skewed, the 
second rule excluded relatively few non-zero observations. 
 
5.4 Bicycle Usage Data 
 
 Data are not generally available on volumes of private bicycle traffic. However, the 
public bike share program in Chicago makes available a detailed log of every trip taken. The 
system began operation in August 2013. It expanded rapidly, increasing its geographic coverage 
within the city, the density of docking stations and the number of bicycles. By the end of 2016, 
about 6,000 bicycles were available from 580 docking stations. 
 

Riders buy either a daily pass or an annual membership. In either case, users are allowed 
unlimited rides. At the time of the study, bicycles had to be returned to a docking station within 
30 minutes to avoid assessment of steep penalty charges. Users taking longer rides have 
incentives to check-in at intermediate docking stations. 

 
For each of the 9 million trips logged between July 2014 and December 2016, the origin 

and destination stations, and the date and time are recorded. The exact latitude and longitude are 
known for each docking station. Trip data were aggregated up to the same weekly format as the 
violations data. The start and end coordinates of every trip were imported into ArcMap.  

 
One option is to use a routing algorithm to assign the likely route that the cyclist takes. 

However, this may not predict the route taken by all cyclists. Chicago is flat and the streets are 
arranged in a grid pattern with few diagonal roads. Therefore, excepting cases where the origin 
and destination are on the same street, cyclists have multiple possible routings with similar travel 
times to get from A to B.4 

 
Consequently, an alternative methodology was used by drawing a straight line from 

origin to destination. The weekly volume of bicycle trips each week at a camera location is not 
just determined by whether or not the straight line passes through the exact location of the 
camera. A 500-foot radius circle was constructed in ArcMap around the camera. This is 
equivalent to about three-quarters of a city block. Figure 1 illustrates how bicycle volumes were 
calculated, using just three trips for purposes of clarity. The length of each trip that lies within 
the 500-foot radius circle was measured and a summation made of the trips segments that 
intersect the circle in that week. This produces a measure of total weekly trip segment length 
within the circle that is measured in feet. This measure is then divided by the circle area (pi times 
5002) to produce a rental bike trip density measure. Inherently trips that likely pass the camera 
directly are given a higher weight. 

 

 
4 The problem is somewhat mitigated because the thirty-minute rental limit forces users to check in frequently, 
breaking up longer or complex trips. 
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Figure 1: Calculation of Bicycle Trip Density 

 
 

5.5 Treatment Group versus Control Group 
 

Of the 99 possible locations, the control group consists of 53 locations that did not record 
any rental bike trips in any of the 130 weeks. 

 
The treatment group consists of two subgroups. The first subgroup comprises 14 

locations that had rental bike presence in all, or nearly all, possible weeks (there were some 
weeks at three locations with zero bike usage associated with the aftermath of heavy 
snowstorms).5   

 
The second treatment subgroup comprises 12 locations where bicycle presence started 

part way through the study period. This was the result of the geographical expansion of the 
Divvy system. Locations were treated as being part of the treatment group when they 
consistently recorded trips in both of weeks t and week t-52. These locations averaged 36 weeks 
in the treatment group. 

 
The remaining 20 locations had a random mix of weeks when bike trips were recorded 

and weeks when they were not. These locations are neither in the treatment nor in the control 
groups. The full listing of camera locations and the groups in which they are classified is in an 
appendix. 

 
5.6 Sample Size 
 
 In theory, there could be 2,252 observations in the treatment group. This consists of 78 
observations for the 14 locations where bike trips were recorded in nearly all weeks, and an 
average of 36.17 weeks for the 12 locations where the Divvy scheme started part way through 
the study period. However, observations were dropped either because there were zero trips in 

 
5 Data were excluded from the regression analysis for weeks at locations where there was zero rental bike trip 
density in either or both of week t and week t-52. One location recorded zero trips in one week, one had two zero-
trip weeks and one recorded three zero-trip weeks. 
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either week t or t-52 or if there were zero or an abnormally low number of violations in either 
week t or t-52. Consequently, the final treatment data set contained 1,198 observations. 
 
6. Results 
 
6.1 Descriptive Statistics 
 
 The Divvy system has proved to be very popular, and usage has grown as the system 
developed. The average year-over-year increase in weekly trip density in the treatment group is 
78.6%. Perhaps surprisingly, the year-over-year increase is practically identical for both 
treatment locations that are in the data set for all weeks (78.5%) and those that subsequently 
joined the treatment group (78.9%). However, there is considerable variability by location and 
over time. While the ratio of bicycle trip density in period t to t-52 is 1.786 on average, the 
standard error is 2.669. 
 

Speeding violations detected at the control group locations are generally declining over 
time. Speed cameras were introduced relatively recently, and Chicagoans might be getting used 
to their presence and adjusting their speeds to avoid violation notices. The year-over-year decline 
averages 3.9%. However, as with bicycle trip usage, there is considerable variation. Even when 
averaged over the 53 locations in the control group, the year-over-year changes in the weekly 
violations ranged from an 80% increase to a 33% decrease. This variation reflects extreme 
weather events and the fact that holidays fall in different weeks in different years. 
 
6.2 Regression Results 
 
 Three regressions were conducted. The first was an unconstrained OLS estimation. The 
second was a correction to robust standard errors based on clustering by week. The third was a 
constrained version of the second regression with the coefficient on the control group variable set 
equal to one. This presumes that the factors that affected the control group, such as changes in 
automobile traffic volume and weather, had a similar effect on speed violations in the treatment 
group as they did within the control group. 
 
 The results are shown in Table 1. A notable feature is that the explanatory power of the 
unconstrained regression, where a traditional R2 can be calculated, is very low. Inherently, there 
is considerable noise in both the bicycle usage and violations data by camera and by week. 
However, the statistical significance of the variables is strong. 
 

The coefficient on the change in violations in the control group is 0.76 in the 
unconstrained regressions. This implies that the change in violations over time is less 
pronounced at the treatment group locations than at the control group locations (the reader 
should remember that generally speed violations have been declining over time). A t-test is 
conducted relative to the null-hypothesis that the coefficient is one, implying that that exogenous 
weather and traffic effects are the same at the treatment and control groups. The null hypothesis 
is rejected, albeit that the level of significance is greater than 5% when robust standard errors are 
based on clustering by week. In the third regression, we enforce the constraint that exogenous 
weather and traffic effects are the same at the treatment and control groups. 
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Table 1:  Regression Results on the Logarithm of the Year-over-Year Change in Weekly 
Speed Violations at the 26 Treatment Group Sites with t Statistics in Parentheses 
 
 Unconstrained OLS Unconstrained OLS 

with Robust Standard 
Errors based on 

Clustering by Week 

OLS with Coefficient 
on Control Group 

Change Constrained 
to 1, and Robust 

Standard Errors based 
on Clustering by 

Week 
Ln of Year-over-Year 
Change in Weekly 
Rental Bicycle Trip 
Density 

-0.038 (1.64) -0.038 (2.16) -0.041 (2.51) 

Ln of Year-over-Year 
Change in Weekly 
Speed Violations at 
Control Group Sites 

0.763 (2.43)# 0.763 (1.85)# 1 

Number of 
Observations 

1198 1198 1198 

F 31.58 18.12 6.28 
Adjusted R2 0.049   
# t-test conducted on null hypothesis that coefficient equals 1 
 
 All three regressions produce a similar estimated elasticity of rental bicycle usage on 
violations. The estimated coefficient is approximately -0.04 in all regressions. Given the 
logarithmic functional form, the estimated coefficients can be interpreted as point elasticities. 
However, calculating robust standard errors by clustering by week improves statistical 
significance. Clustering in the unconstrained regression improves the statistical significance of 
the bicycle usage variable from the 10% level to the 5% level, and when the regression is 
constrained, the significance further improves to almost the 1% level. 
 
7. Concluding Comments 
 
7.1 Insights into Driver Behavior  
 
 Unlike many studies of the safety-in-numbers hypothesis, this study has a time-series 
component and is not purely cross-sectional. Consequently, we are observing how drivers’  
behavior changes over time as the number of bicycles increases. Moreover, we are comparing 
that change in behavior to a control group of locations in other parts of the city where rental 
bikes are not available. 
 
  Our analysis finds that a small change in rental bicycle usage reduces speeding violations 
with an elasticity of 0.04. The reader is reminded that this is a point elasticity appropriate for 
measuring the effect of small changes in bicycle usage. The rapid expansion of the bike share 
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program has led to annual increases in bicycle use density approaching 80%. Large changes such 
as these call for an arc elasticity. Using the constrained regression, and holding the exogenous 
effects constant, the effect of an increase of 80% in rental bicycle use density is a 2.4% reduction 
in speeding violations. Expressed in a different way, for the typical treatment location that 
records about 300 speeding violations a week, a reduction of this magnitude reduces the number 
of violations by about eight. 
 
 In summary, we find that the increased presence of bicyclists makes at least some 
motorists drive more cautiously. The proportion of drivers exceeding the posted limit declines, 
albeit modestly. A theoretical explanation is that the presence of bicyclists makes the driving 
task more difficult, and drivers compensate by reducing speed. 
 
7.2 Implications for Safety 
 
 Of course, society is ultimately interested in the implications for safety. There is a 
growing literature to support the safety-in-numbers hypothesis. Our results show evidence for a 
possible mechanism behind the safety-in-numbers effect. Decreased speeds allow motorists to 
more easily avoid collisions, and reduce the severity of the vehicle-bicyclist collisions that still 
occur. The treatment locations in this analysis are on roads with posted limits of 20mph in school 
zones, and 30mph otherwise. The literature (see Tefft, 2013, for pedestrians and Nie and Yang, 
2014, for bicyclists) clearly shows that the risk to vulnerable road users increases greatly at 
speeds around and above 30mph. Even if the number of collisions does not decrease, the severity 
does. Of course, moderation of vehicle speeds has safety benefits not just to bicyclists but also to 
pedestrians and other motorists. 
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Appendix:  Classification of Camera Locations 
 

Camera Address(es) 
(all within the City of Chicago) 

Group 

536 E Morgan Dr  Treatment Group for all weeks 
115 N Ogden Ave Treatment Group for all weeks 
140 / 141 N Ashland Ave Treatment Group for all weeks 
449 / 450 N Columbus Dr Treatment Group for all weeks 
1226 / 1229 N Western Ave Treatment Group for all weeks 
1635 / 1638 N Ashland Ave Treatment Group for all weeks 
2432 / 2443 N Ashland Ave Treatment Group for all weeks 
2448 N Clybourn Ave Treatment Group for all weeks 
3111 / 3130 N Ashland Ave Treatment Group for all weeks 
629 / 630 S State St Treatment Group for all weeks 
2928 S Halsted St Treatment Group for all weeks 
14 / 19 W Chicago Ave Treatment Group for all weeks 
1142 W Irving Park Rd Treatment Group for all weeks 
2329 W Division St Treatment Group for all weeks 
1111 N Humboldt Blvd Treatment group from week 95 
4433 / 4436 N Western Ave Treatment group from week 95 
5885 N Ridge Ave Treatment group from week 97 
6523 N Western Ave Treatment group from week 97 
2108 / 2115 S Western Ave Treatment group from week 92 
5330 S Cottage Grove Ave Treatment group from week 90 
1440 W Cermak Rd Treatment group from week 92 
2549 W Addison St Treatment group from week 95 
2705 / 2712 W Irving Park Rd Treatment group from week 95 
3034 W Foster Ave Treatment group from week 97 
3100 W Augusta Blvd Treatment group from week 96 
3809 / 3810 W Belmont Ave Treatment group from week 97 
57 / 62 E 95th St Control group 
2109 E 87th St Control group 
3535 / 3542 E 95th St Control group 
1754 N Pulaski Rd Control group 
3115 / 3116 N Narragansett Ave Control group 
4123 N Central Ave Control group 
4909 N Cicero Ave Control group 
5120 N Pulaski Rd Control group 
5739 N Northwest Hwy Control group 
6125 N Cicero Ave Control group 
1110 / 1117 S Pulaski Rd Control group 
4925 S Archer Ave Control group 
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4929 / 5030 S Pulaski Rd Control group 
5025 S Western Ave Control group 
5428 / 5433 S Pulaski Rd Control group 
5520 / 5529 S Western Ave Control group 
5532 S Kedzie Ave Control group 
6818 / 6909 S Kedzie Ave Control group 
7518 S Vincennes Ave Control group 
7738 / 7739 S Western Ave Control group 
7826 / 7833 S Pulaski Rd Control group 
8318 / 8345 S Ashland Ave Control group 
9618 S Ewing Ave Control group 
10318 S Indianapolis Control group 
11144 / 11153 S Vincennes Ave Control group 
341 / 346 W 76th St Control group 
445 W 127th St Control group 
1315 / 1334 W Garfield Blvd Control group 
1507 W 83rd St Control group 
2416 W 103rd St Control group 
2513 W 55th St Control group 
2550 / 2603 W 79th St Control group 
3450 W 71st St Control group 
3832 /  3851 W 79th St Control group 
3843 W 111th St Control group 
4040 / 4045 W 55th St Control group 
4042 / 4053 W North Ave Control group 
4042 W Roosevelt Rd Control group 
4124 W Foster Ave Control group 
4620 W Belmont Ave Control group 
4674 / 4707 W Peterson Ave Control group 
4831 W Lawrence Ave Control group 
4843 W Fullerton Ave Control group 
5432 W Lawrence Ave Control group 
5440 W Grand Ave Control group 
5446 / 5509 W Fullerton Ave Control group 
5454 W Irving Park Rd Control group 
5471 W Higgins Rd Control group 
5816 W Jackson Blvd Control group 
6226 W Irving Park Rd Control group 
6247 / 6250 W Fullerton Ave Control group 
6443 / 6514 W Belmont Ave Control group 
6510 W Bryn Mawr Ave Control group 
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215 E 63rd St Neither group 
1901 E 75th St Neither group 
732 N Pulaski Rd Neither group 
3230 N Milwaukee Ave Neither group 
3521 / 3534 N Western Ave Neither group 
324 S Kedzie Ave Neither group 
506 / 515 S Central Ave Neither group 
3200 S Archer Ave Neither group 
3843 S Western Blvd Neither group 
5420 S Racine Ave Neither group 
6330 S Martin Luther King Dr Neither group 
7422 S Jeffery Blvd Neither group 
2080 W Pershing Rd Neither group 
2900 W Ogden Ave Neither group 
2912 / 2917 W Roosevelt Rd Neither group 
3047 W Jackson Blvd Neither group 
3137 W Peterson Ave Neither group 
3646 W Madison St Neither group 
3655 W Jackson Blvd Neither group 
4040 / 4041 W Chicago Ave Neither group 
324 E Illinois St Not in analysis - low speeding violations 
4429 / 4436 N Broadway Not in analysis - low speeding violations 
4432 N Lincoln Ave Not in analysis - low speeding violations 
18 W Superior St Not in analysis - low speeding violations 
2326 / 2335 W Cermak Rd Not in analysis - low speeding violations 
2417 W 103rd St Not in analysis - low speeding violations 
2440 / 2445 W 51st St Not in analysis - low speeding violations 
2721 W Montrose Ave Not in analysis - low speeding violations 
3212 / 3217 W 55th St Not in analysis - low speeding violations 
 


