Economics D10-1: Lecture 4

Classical Demand Theory: Preference-based approach to consumer behavior (MWG 3)

Logical structure of the preference-based approach

- Assumptions on preferences:
 - Substantive
 - · Rational
 - Complete
 - Transitive
 - Tractability
 - Monotonic
 - Continuous
 - Convex
 - Convenient special cases
 - Homothetic
 - Quasi-linear

- Utility function representation and equivalencies
 - Existence of continuous, increasing function u representing preferences
 - Quasi-concavity of u
 - Linear homogeneity of u
 - Quasi-linearity of u
- Testable implications of utility maximization:
 - Law of Compensated Demand
 - Slutsky symmetry

Consumer Preferences: Rationality and Desirability

- Binary *preference relation* = on consumption set X.
- Rationality: a preference relation = is *rational* if it is
 - Complete: $\forall x,y \in X$, either x = y or y = x, or both.
 - Transitive: $\mathbf{x} = \mathbf{y}$ and $\mathbf{y} = \mathbf{z} \Rightarrow \mathbf{x} = \mathbf{z}$
- Desirability assumptions:
 - Monotonicity: = is *monotone* on X if, for $\mathbf{x}, \mathbf{y} \in X$, $\mathbf{y} >> \mathbf{x}$ implies $\mathbf{y} > \mathbf{x}$.
 - Strong monotonicity: = is *strongly monotone* if $\mathbf{y} = \mathbf{x}$ and $\mathbf{y} ? \mathbf{x}$ imply that $\mathbf{y} > \mathbf{x}$.
 - Local nonsatiation: = is *locally nonsatiated* if for every $\mathbf{x} \in X$ and $\varepsilon > 0 \exists \mathbf{y} \in X \text{ s.t.} \hat{\mathbf{o}} \mathbf{y} \mathbf{x} \hat{\mathbf{o}} = \varepsilon$ and $\mathbf{y} > \mathbf{x}$.

Consumer Preferences: other properties

- <u>Convexity</u>: Let X be a convex set. The preference relation = is *convex* if, $\forall x \in X$, the upper contour set $\{y \in X: y = x\}$ is convex
- Strict convexity: Let X be a convex set. The preference relation = is strictly convex if, $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X$, $\mathbf{y} = \mathbf{x}$, $\mathbf{z} = \mathbf{x}$, and \mathbf{y} ? \mathbf{z} implies $\mathbf{t}\mathbf{y} + (1 \mathbf{t})\mathbf{z} > \mathbf{x}$ for all $0 < \mathbf{t} < 1$.
- <u>Homotheticity</u>: A monotone preference relation = on $X=\Re^{L}_{+}$ is *homothetic* if $\mathbf{x} = \mathbf{y} \Leftrightarrow t\mathbf{x} = t\mathbf{y}$ for all t=0.
- Quasilinearity: The monotone preference relation = on $X = (-\infty, \infty) \times \Re^{L-1}_+$ is *quasilinear* with respect to commodity 1 if $\mathbf{x} \cdot \mathbf{y} \Leftrightarrow (\mathbf{x} + t\mathbf{e}_1) \cdot \mathbf{y} + t\mathbf{e}_1$, where $\mathbf{e}_1 = (1, 0, ..., 0)$.

Consumer Preferences: Continuity

- Continuity (Alternative Definition):
 - The preference relation = is *continuous* if, $\forall \mathbf{x} \in \mathbf{X} = \mathfrak{R}^{L}_{+}$, the "at least as good as sets" =(\mathbf{x})={ $\mathbf{z} \in \mathbf{X}$: $\mathbf{z} = \mathbf{x}$ } and the "no better than sets" =(\mathbf{x})={ $\mathbf{z} \in \mathbf{X}$: $\mathbf{x} = \mathbf{z}$ } are closed in \mathfrak{R}^{L}_{+} . (Equivalently, define the "better than" and "worse than" sets to open in \mathfrak{R}^{L}_{+} .)
- Lexicographic (strict) preference ordering L.
 - For all $\mathbf{x}, \mathbf{y} \in X = \Re^L_+$, $\mathbf{x} L \mathbf{y}$ if $x_1 > y_1$, or if $x_1 = y_1$ and $x_2 > y_2$, or if $x_i = y_i$ for $i = 1, ..., k-1 \le L-1$ and $x_k > y_k$.
- L is not continuous.

Consumer Preferences: utility function representations

- <u>Definition</u>: The utility function $u:X \to \Re$ represents = if, $\forall x,y \in X$, $u(x) \ge u(y) \Leftrightarrow x = y$.
- Theorem: The preference ordering = on R^L₊ can be represented by a continuous utility function u:R^L₊→R if it is rational, monotone, and continuous.
- <u>Proof</u>:
 - (i) Let $\mathbf{e} = (1, 1, ..., 1)$. Define $\mathbf{u}(\mathbf{x})$ so that $\mathbf{u}(\mathbf{x})\mathbf{e} \gg \mathbf{x}$. (The completeness, monotonicity, and continuity of = ensures that this number exists and is unique for every \mathbf{x} .)
 - (ii) Let $\mathbf{x} = \mathbf{y}$. Then, by construction, $\mathbf{u}(\mathbf{x})\mathbf{e} = \mathbf{u}(\mathbf{y})\mathbf{e}$. By monotonicity, $\mathbf{u}(\mathbf{x}) \geq \mathbf{u}(\mathbf{y})$. Let $\mathbf{u}(\mathbf{x}) \geq \mathbf{u}(\mathbf{y})$. Again by construction, $\mathbf{x} \gg \mathbf{u}(\mathbf{x})\mathbf{e} = \mathbf{u}(\mathbf{y})\mathbf{e} \gg \mathbf{y}$. Then, by transitivity, $\mathbf{x} = \mathbf{y}$.

Consumer Preferences: continuity of the utility function

• Proof (cond.):

(iii) For continuity of u, we need to show that the inverse image sets under u of every open ball in \Re_+ are open in \Re^L_+ . Now,

```
u^{-1}((a,b)) = \{ \mathbf{x} \in \mathfrak{R}^{L}_{+} : \ a < u(\mathbf{x}) < b \}
= \{ \mathbf{x} \in \mathfrak{R}^{L}_{+} : \ a\mathbf{e} < u(\mathbf{x})\mathbf{e} < b\mathbf{e} \}
= \{ \mathbf{x} \in \mathfrak{R}^{L}_{+} : \ a\mathbf{e} < \mathbf{x} < b\mathbf{e} \}
= > (a\mathbf{e}) \cap > (b\mathbf{e})
```

By the continuity of =, the above sets are open in $\mathfrak{R}^{\rm L}_{_+}\!,$ as is there intersection.