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Abstract

We consider equilibrium selection in 2x2 bimatrix (both
symmetric and asymmetric) games with two strict Nash equilibria by
embedding it in a dynamic random matching game played by a
continuum of anonymous agents. Unlike in the evolutionary game
literature, we assume that the players are rational, seeking to
maximize the expected discounted payoffs; but they are instead
restricted to make a short run commitment when choosing actions.
Modelling the friction this way yields the equilibrium dynamics,
whose stationary states correspond to the Nash outcomes of the
original game. Our selection is based on differential stability
properties of the stationary states. It is shown that, as
friction becomes arbitrarily small, a strict Nash outcome becomes
uniguely absorbing and globally accessible if and only if it
satisfies the Harsanyi and Selten (1988) notion of risk-dominance
eriterion. Our approach thus supplies another support for risk-
dominance in addition to those given in the literature.
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1. Introduction

We approach the problem of equilibrium selection in 2x2 bimatrix (both
symmetric and asymmetric) games with two strict Nash equilibria. This class
of games, which contains pure coordination games and the battle of the sexes
as special cases, is not only important in its own right, but also captures a
variety of economic problems in their essentials. Examples include adoption
of new technologies (Farrell and Saloner 1985), bank runs (Diamond and Dybvig
1985}, choice among alternative currencies as a medium of exchange (Matsuyama,
Kiyotaki, and Matsui 1993), geographical distribution of cities (Krugman
1991a, 1991b), Keynesian macroeconomics {(Cooper and John 1988), and econcmic
development (Murphy, Shleifer and Vishny 1989; Matsuyama 1991, 1992b). In
spite of its central role in game theory and economics, the literature offers
very few formal approaches to the problem of equilibrium selection. For
instance, the most solution concepts proposed in the literature on refinements
of Nash equilibria, such as the strategic stability of Kohlberg and Mertens
(1986), have nothing to say about selection among strict Nash equilibria.

Our approach to this problem is to examine the stability of strict Nash
equilibria in an explicitly dynamic context. To this end, we consider the
society consisting of a continuum of anonymous agents and each agent plays the
game repeatedly with an opponent randomly chosen from the population. All
players maximize the expected discounted payoffs with one restriction; they
need to make a short-run commitment to the action they chose. The opportunity
to switch actions arrives stochastically; it follows a Poisson process, which
is identical and independent across players. By modelling some friction this
way, this dynamic game generates nontrivial equilibrium paths of the behavior
patterns in the soclety, whose stationary states correspond to the Nash

equilibrium outcome of the original game.



The stability properties of stationary states, of course, depend on the
degree of friction, defined by the expected duration of commitment the players
have to make. For example, suppose that the initial behavior patterns are in
the neighborhood of a strict Nash equilibrium of the original game, say (L,L)
in Figure 1. One can show that, in the presence of large friction, an
equilibrium path is unique and the behavior patterns always converge to (L,L).
In this sense, any strict Nash is an absorbing state with sufficiently large
friction. When friction is small, however, (L,L) may be fragile in that
another equilibrium path exists, along which the behavior patterns move away
from (L,L) and converge to (R,R). In other words, beliefs that the "band
wagon" effects will induce all players to switch from L to R in the future may
be consistent, thereby upsetting (L,L). The possibility of such a self-
fulfilling prophecy itself should not be a surprise at all, given the
multiplicity of Nash equilibria of the original game.l

What may be surprising is that the two stationary states, corresponding
to the two strict Nash equilibria of the original game, possess different
stability properties for a small degree of friction. A seemingly minor (and
natural) perturbation of the original game thus help to discriminate between
the two strict Nash equilibria of the original game. More specifically, we
will show the following results. First, for generic 2x2 bimatrix games, one

of the strict Nash equilibria becomes uniquely absorbing (that is, it is the

1t is worth noting that the dynamic nature of the game is mnot at all
responsible for the multiplicity; because of our anonymity assumption, the
logic of the folk theorem does not apply here. As a matter of fact, it is
straightforward to show that, if the original 2x2 bimatrix game has a unique
Nash equilibrium, the equilibirum path of the dynamic game is unique for any
initial condition and the behavior pattern converges to the unique Nash
equilibrium. The multiplicity of equilibrium paths is thus entirely due to
the multiplicity of Nash equilibria of the original 2x2 games,



only absorbing state) and all other states become fragile, as friction becomes
arbitrarily small. Second, this uniquely absorbing state has additional

stability property, which we call globally accessible; that is, for any

initial behavior patterns, there exists an equilibrium path along which the
behavior patterns converge to it. We view that these two properties, taken
together, make the uniquely absorbing state a natural choice among strict Nash

equilibria.2

Interestingly enough, a strict Nash equilibrium outcome is
uniquely absorbing (and globally accessible) if and only if it is risk-
dominant in the sense of Harsanyi and Selten (1988). Thus, our selection
criterion coincides with their risk-dominance criterion for 2x2 bimatrix
games .

Harsanyi and Selten offer two justifications of the risk dominance
criterion. The one is an axiomatic derivation, based on the following three
axioms; 1) invariance with respect to isomorphisms, ii) best-reply invariance,
and iii) payoff monotonicity (1988, Ch. 3). The other relies on the tracing
procedure (Ch. 4). In an attempt to offer a dynamic story of equilibrium
selection, Kandori, Mailath and Rob (1993) consider evolutionary models with
constant flow of mutations, which generate Markov processes in the behavior

3

patterns. It turns out that the stationary distribution of the Markov
processes attaches probability one to the risk dominant outcome in the limit

as the rate of mutation goes to zero. In this work, the convergence to a

strict Nash equilibrium is studied in the context of repeated play by myopic

Zye are perfectly aware that some readers may not find both properties
convincing. They do not need to. We offer two distinctive justifications; it
suffices if the reader finds one of them convincing.

3See also Foster and Young (1990), and for some recent extensions,
Ellison (1992), Fudenberg and Harris (1992), Kandori and Rob (1992), Young
(1993).



players.a Their selection criterion coincides with the risk-dominance
criterion, because the risk dominant outcome has a larger basin of attraction.
On the other hand, our approach is based on the rational calculations by

players.5

The risk dominant outcome 1s absorbing because deviating from it
implies a payoff loss even under the best possible scenario; the risk deminant
outcome is globally accessible for a small degree of friction because,
starting from the risk dominated outcome, there exist consistent conjectures
with which deviating from it leads to a gain in the expected payocffs. One
major strength of our approach over Kandori—Mailath—Rob, other than our
rationality assumption, is that the risk dominant outcome 1is an inescapable
cne in our model, while the society will escape the risk dominant outcome with
probability one in their model. The major weakness of our approach is that
the society could escape from the risk-deminated outcome, but it could also
stay there forever,

Recently, we become aware c¢f the work by Carlsson and van Damme (1989).

They propose to analyze a 2x2 bimatrix game with two strict Nash equilibria as

being drawn randomly from the entire class of 2x2 himatrix games, and the two

aMany studies on evolutionary games also address the question of how a
particular equilibrium will emerge in a dynamic context; see, for example,
Boylan (1990), Canning (1989), Friedman (1991), Fudenberg and Kreps (1988},
Gilboa and Matsui (1991), Matsui (1992), Matsuyama (1992c), Milgrom and
Roberts (1990, 1991), Swinkels (1993), and Taylor and Jonker (1978). These
studies do not, however, offer an equilibrium selection criterion, since all
strict Nash equilibria share the same dynamic properties in their models. It
is the presence of constant flow of mutations that enables Kandori, Mailath,
and Rob to select the risk-dominant outcome.

SSome mention should be made of Kalai and Lehrer (1991). They consider
an infinite repetition of a stage game between fixed players. Players have
some priors over the opponents’ repeated game strategies and try to maximize
their expected discounted payoffs. They show that in spite of discrepancy in
their initial beliefs, the actual sequence of actions converges to that of
Nash equilibrium. Any Nash equilibrium appears as an outcome; their
motivation is not to tell a story of equilibrium selection.



players are not completely sure of the game they are playing. Using iterated
dominance, €Carlsson and van Damme show that the fact that two strict Nash
exist is not a part of common knowledge forces the players to coordinate on
the risk dominant equilibrium.

We view these alternative approaches for the risk dominance criterion
complementary. The two justifications given by Harsanyi and Selten and the
one by Carlsson and van Damme are quite convincing when the two players play
the game only once in an isolated situation. However, 2x2 bimatrix games with
strict Nash equilibria are often used in economics as a model for coordination
problems in aggregate economic activities, as indicated in the opening
paragraph. The approaches based on dynamic games played by anonymous agents--
myopic in the case of Kandori, Mailath and Rob, and rational in our case--,
seem more appropriate in this context. Although each may have its own merits
and drawbacks, these alternative justifications jointly provide a strong
support for the risk-dominance criterion. It is certainly remarkable that
such different approaches lead to the same selection criterion.

In section 2, we deal with symmetric games played by the homogeneous
population. Asymmetric games played by the heterogeneous population are

considered in section 3. Some concluding remarks are given in section 4,

2. Svmmetric Games

In this section, we restrict our attention to the symmetric game given
in Figure 1. This game has two strict Nash equilibria, (L,L) and (R,R), as
well as one mixed strategy equilibrium in which each player chooses L with
probability u = (d-c)/{(a-b)+(d-c)}. Instead of analyzing this game in
isolation, we envisien that this game is played repeatedly in a society with a

continuum of identical anonymous plavers. At every point in time, each player



is matched to form a pair with another player, randomly drawn from the
population, and they play the game anonymously. All players are highly
rational and choose a strategy to maximize the expected discounted payoffs.
Because of the anonymity, they are engaged in this maximization without taking
into account strategic considerations such as reputation and retaliation.

The key assumption is that no player can switch actions at every point
in time. Every player needs to make a commitment to a particular action in
the shert run. Following Matsuyama (1991, 1992a, b, ¢), we assume that the
opportunity to switch actions arrives randomly; it follows the Poisson process
with p being the mean arrival rate. Furthermore, it is assumed that the
process is independent across the players and there is no aggregate
uncertainty.6 The stratepy distribution in the society as of time t can be
thus described as x[L] + (1-x.)[R], where %, is the fraction of the players
that are committed to action L as of time t. We simply call x, the behavior
pattern in the society. Because of the restriction imposed above, X changes
continuously over time and the rate of change in %, belongs to [-px¢,
p(l-x;)]. Furthermore, any feasible path necessarily satisfies xoe'pt < X =
1l - (l—xo)e—pt, where the initial condition, xg, is given exogenously, or "by
history."

When the opportunity to switch arrives, players choose the action which
results in the higher expected discounted payoffs, knowing the future path of
x as well as their own inability of switching actions continuously. Since the

strategy distribution as of time t is x¢[L] + (l-x;)[R], the value of playing

There are some technical problems concerning the law of large numbers
with a continuum of i.i.d. random variables, as first pointed out by Feldman
and Gilles (1985) and Judd (1985)}. Boylan (1992) and Gilboa and Matsui (1992)
discuss these issues In the context of random matching games and offer some
possible solutions.



action L instead of R as of time t is equal to
laxpte(l-x ) ) = {(bx+d(l-x¢)) = {(a-b)+(d-c)} (xp—pn)

and thus players, given the opportunity, commit to play L if V. > 0 and to

play R if V. < 0 and are indifferent if Vi = 0, where
Ve = (p+9)JE(Xt+s—#)e_(p+8)sds ) (1)

with # > 0 being the discount rate. Therefore, (x,}7., is an equilibrium path

from xg if its right-hand derivative exists and satisfies

+ [p(l—xt)} if Vt>0' )
d .
6 e toexe L p(oxe)] i V-0, (@)
{-px¢) if V. <0,

for all t e {0,«). Equation (2) states that all players currently playing
action R (resp. L), if given the opportunity, switch to L (resp. R), when Ve >
(resp. <) 0.

It is straightforward to show that x = 0, u, and 1 are the only
stationary states of the dynamics (1) and (2); that is, x ¢ [0,1] is a
stationary state if and only if it is a Nash equilibrium of the original game.
We use (1) and (2) to study the stability of the Nash equilibria.

Since there are generally multiple equilibrium paths from a given
initial condition, one need be specific about what the stability means. It is

thus necessary to introduce some terminologies.7

7Alternatively, we could have borrowed a variety of stability concepts in
the set-valued differential equations, such as "Absorbent Stable Sets (ASS)™
of Gilboa and Samet (1991). We have chosen to avoid introducing such a
formality, however, given the simple structure of our dynamics. One can show



Definitions;

i) X ¢ [0,1] is accessible from x' ¢ [0,1], 1if there exists an equilibrium
path from x' that reaches or converges to x. x € [0,1] is globally
accessible if it is accessible from any x' € [0,1].

ii) x ¢ [0,1] is absorbing if there is a neighborhood of %, U, such that any
equilibrium path from U converges to x. x € [0,1] is fragile if it is

not absorbing.

By definition, if an absorbing state, x, is globally accessible, then it is a
unique absorbing state in [0,1] and any state in [0,1]\{x} is fragile. The
definitions do not rule out the possibility that a state may be both fragile
and globally accessible, or that a state may be uniquely absorbing but not
globally accessible. As will be shown below, however, these situations never
exist and a state is uniquely absorbing if and only if it is globally
accessible in the dynamics considered in this paper.

Finally, define the degree of friction by § = 8/p, the expected duration

of the commitment (with the unit of time is normalized so that the discount

rate is equal to one).

Lemma 1.

a) x = 0 is globally accessible if and only if (1+6)/(2+8) = p < 1,
b) x = 1 is globally accessible if and only if 0 < u < 1/(2+68),

c) x = 0 is absorbing if and only if 1/(248) < p < 1,

d) x = 1 is absorbing if and only if 0 < g < (14+8)/(2+8).

Proof. See the appendix.

that any absorbing point, taken as a singleton set, is an ASS.



Lemma 1 implies that there exists at least one and at most two absorbing

states. Furthermore, a strict Nash is globally accessible if and only if it

8

is uniquely absorbing. In other words, if x = 1 is accessible from x = 0,
then x = 0 is not accessible from x = 1, and vice versa. Thus, Lemma 1 can be
rephrased as:

Proposition 1.

a) {R,R) is uniquely absorbing and globally accessible if (1+8)/(2+§) < u <

1; (L,L) is uniquely absorbing and globally accessible if 0 < u <
1/(2+8); both (L,L) and (R,R) are absorbing if 1/(2+§) < u <
(1+6)/(2+46).

b) For any g ¢ (0,1), beth (L,L) and (R,R) are absorbing for a sufficiently
large 6 > 0.

c) If w e (172, 1), (R,R) is uniquely absorbing and globally accessible for
a suffieciently small é§ > 0; If p ¢ (0,1/2), (L,L) is uniquely absorbing

and globally accessible for a sufficiently small & > 0.

Figure 2 illustrates Proposition 1. What b) states is that any strict Nash is
absorbing in the presence of large friction.? More interestingly, unless pg =
1/2, one strict Nash becomes fragile, while the other becomes globally

accessible, as friction goes to zero. If g > 1/2, there is an equilibrium

8The assumption of a positive discount rate is crucial for these results.
Note that (1) and (2} give a well defined dynamics, even with a negative
discount rate, as long as 1 + § > 0. TIf we were to allow a negative discount
rate, every state in [0,1] would become both fragile and globally accessible,
when (1+6)/(2+6) = p < 1/(2+6). (In the terminology of Gilboa and Samet, the
entire space, [0,1], becomes an Absorbent Stable Set.)

9In the limit as § goes to infinity, the dynamics (1) and (2) are
equivalent to the best response dynamics proposed in Gilboa and Matsui (1991);
see also Matsui (1990, 1991) and Matsuyama (1992c). Every strict Nash
equilibrium is absorbing in the best response dynamics.
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path that traverses from (L,L) to (R,R); that is, even if (L,L) is the initial
behavior patterns in this society, there exist consistent beliefs, with which
the behavior patterns converge to (R,R) and thereby upsetting (L,L). On the
other hand, if the initial behavior patterns are given by (R,R), no consistent
beliefs can upset this behavior patterns. In this sense, (R,R) dominates
(L,L) if 4 > 1/2. Likewise, (L,L) dominates (R,R} if p < 1/2.

It should be noted that the condition, g > 1/2, i1s equivalent to d - ¢ >
a — b; the deviation loss associated with (R,R) is larger than the deviation
loss at (L,L). That is, in the terminology of Harsanyi/Selten, (R,R) risk
dominates (L,L). Similarly, (L,L) risk-dominates (R,R) if p < 1/2. In sum, a
Nash equilibrium of the symmetric game given in Figure 1 is a unique absorbing
{and globally accessible) state in the presence of sufficiently small
friction, if and only if it satisfies the risk-dominant notion of
Harsanyi/Selten.

To grasp the intuition behind these results, it is useful to consider a
slightly more general game in which the payoff difference of playing L instead

of R is given by n(x(), where m is a strictly increasing function and

satisfies n(0) < 0 and #(1l) > 0. (The pairwise random matching game is a
special case in which n({x) = x - u.) The outcome (L,L) can be upset when the
players have an incentive to deviate for a feasible path from x = 1. Because

of the monctonicity of w, the incentive te deviate is the strongest if all

players are anticipated to switch from L to R in the future, or x. = e Pt
Thus, the condition for x = 1 being fragile is

Vo = (p+9)fg”(e_pt)e'(p+9)tdt =0 . (3)

As seen from this expression, an increase in the expected duration of the
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commitment {a small p) has the two opposite effects. On one hand, it reduces
the effective discount rate; the players are more concerned about the future
when making decisions. On the other hand, it reduces the rate of change in
the behavior patterns so that the current strategy distribution becomes more
important in calculating the expected discounted payoffs. The strictly
positive discount rate, f# > 0, implies that the second effect always dominates

the first, since {(3) can be rewritten to:

Vo - (1+6)jéw(x)x5dx <0, (4)

by letting x = e Pt Condition (4) means that the expected discounted payoff
of choosing action L when all other players are anticipated to swicth from L
to R is given by the weighted average of m. Note that, as x moves from 1 to
0, the players attach more weight to a higher value of x with a large degree
of friction, § = #/p. In the limit as § goes to infinity, Vg = n(1l) > 0 so
that (4) is violated; or (L,L) becomes absorbing with a sufficiently large
friction.

Similarly, starting from x = 0, the incentive to deviate is the
strongest when all players are anticipated to switch from R to L in the
future, or x = 1 - e Pt so that the condition for x = 0 being fragile is

given by

<3
o
|

~ (p+5)Jgﬂ(l—e_pt)e—(p+0)tdt > 0

or

Vg (l+6)féw(x)(1—x)5dx >0 . (5)

Thus, as x moves from O to 1, the players attach more weight to a lower value
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of x with a large degree of friction, & = 6/p. In the limit as § goes to
infinity, Vg = n(0) < 0 so that (5) is violated; or (R,R) becomes ahsorbing
with a sufficiently large friction.

The two conditions, (4) and (5), are mutually exclusive for any é > 0 so
that at least one of the two strict Nash outcomes is absorbing. Furthermore,

in the limit as § goes to zero, (4) and (5) become

Jéﬂ(x)dx <0, (6)

and

Jén(x)dx >0 (7)

respectively. For the pairwise random matching game, n(x) = x - p and (6) and
(7) are equal to u > 1/2 and p < 1/2, respectively. This shows why only one
strict Nash outcome remains absorbing as the friction goes to zero for generic
games. When the expected duration of the commitments becomes extremely small
and the behavior patterns can move between 0 and 1 arbitrarily fast (but are
not able to jump between them), all that matters is the average payoff
differences. If action L performs better than R on average, then (L,L) is
absorbing, while (R,R) is fragile. Note that the uniqueness of the absorbing
state in the limit does not depend on the linearity of the payoff differences.
The above discussion also peints out the significant difference between
the logic behind our result and that of Kandori, Mailath and Reb (1993).
Recall that their model is based on the repeated play by myopic players and
the éonstant flow of mutations, so that the stationary distribution of the
behavior patterns depends on the size of the basins of attraction. Their

selection criterion coincides with the Harsanyi/Selten risk-dominance
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criterion, because the risk dominant outcome has a larger basin of attracticn.
On the other hand, we rely on the rational calculations by players. Our
selection criterion coincides with the Harsanyi/Selten criterion because
deviating from the risk dominant outcome always implies a payoff loss, whereas
there exist consistent conjectures with which deviating from the risk

dominated cutcome leads to a gain in the expected payoffs.lo

3. Asvmmetric Games

In this section, we extend our analysis to the class of asymmetric games
given in Figure 3. Again, there are two strict Nash equilibria, (Ll’LZ) and
(R1,R9}, and one mixed strategy Nash equilibrium in which player i plays L
with probability By = (dj—cj)/[(aj—bj)+(dj—cj)}, where i # j. As in the
previous section, we consider the random matching framework, but the players
are now divided into two groups of equal size, 1 and 2. Each player from

group 1 (player 1) is randomly matched with a player from group 2 (player 2)
to play the game under the same restriction with the previous case. Let xJ
(1 = 1,2) denote the fractions of players i who play L; as of time t. Then,

the equilibrium dynamics of the behavior patterns {{x;,x’)}}7., are described

by
{pl1-x:)} if vis>o,
d‘xl . . .
dtc € [-px; , p(l1-x7)] if Vi =0, (8)
{-px/} if vi<o,

lOMatsuyama (1992b) considers a dynamic extension of the coordination
game with nonlinear payoff differences and appeals to the equilibrium
selection criterion proposed in this paper. Because of the nonlinearity, the

selection could be different if the approach by Kandori, Mailath and Rob were
adopted.



14

where

Vt,:l = (p"‘e)j’o—(}(t{s_pj) e—(p"BJSdS ' (ia j.r: 1, 2, i+ j) (9)

as well as the initial condition, (x;,x3).

As before, the set of staticonary states of (8) and (9) is {(0,0),
(Bo,p1), (1,1)}, which is identical to the set of Nash equilibria of the

original game. The definitions of accessible, globally accessible, absorbing,

and fragile, can be directly extended into the dynamics on [0,1]2.
To state the properties of (0,0) and (1,1), or equivalently (Ry,R9) and
(L1,Ly), let us define the following partition of (0,1)2 = A{(§) + B(&) + C(§)

(see Figure 4j):

ACSY = {(u1,89) € (0,1)%: pp = Fglup) ),
B(8) = ((up.pp) € (0,121 1 = pp > Fg(l-py) ),
C(8) = ((up.pp) € (0,1)2: 1 = Fg(l-pp) < pp < Fglup) ) ,
whgre
. 1+
£ (X)), If0<CX< s
Fﬁ(X) =
-1 ¢ l+6
Eg(X), 1f2+asX<l,
and

£(X) =1 - (2+5)°(1_f§)“°.

Simple algebra shows that Fg(X) is strictly decreasing, strictly concave and

Limg o Fy (X) - 1, limg,Fy(X) = 0, Fb(;:g] - 18 Fé(éig) - -1,

lLemma 2.

a) (0,0) is globally accessible if and only 1if (up,pp) € A(S).
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b) (1,1) is globally accessible if and only if (1, 09) € B(S).

c) (0,0) is absorbing if and only if (uq.,p9) ¢ (O,l)z\B(S) = A(§) + C{8).
d) (1,1) is absorbing if and only if (uq,up) ¢ (0,1)2\A(6) = B(&) + C(§).
Proof. See the appendix.

Again, Lemma 2 implies that there is at least one and at most two absorbing
state and that a state is uniquely absorbing if and only if it is globally
accessible. Thus, one can rephrase it as:

Proposition 2.

a) (R1.,R9) is uniquely absorbing and globally accessible if (pq,p9) € A(8);
(L1,Ly) 1is uniquely absorbing and globally accessible if (p1.,p7) € B(&);
Both (Rq,Rp) and (Ly,Ly) avre absorbing if (uy,p9) ¢ C(&).

b) For any (uy.p9) € (0,1)2, both (Ry,Rp) and (L1,Ly) are absorbing for a
sufficiently large § > 0.

c) If py + pp <1, (L1,Lp) 1is uniquely absorbing and globally accessible
for a sufficiently small § > 0. TIf py + pp > 1, (R1,Ry) is uniquely

absorbing and globally accessible for a sufficiently small é > 0.

Proof:
a) This follows directly from Lemma 2.
b) Note that limg,, Fg(X) =1 for 0 < X < 1 monotonically., Thus, C(w) =

(0,12, from which b) follows from a).
c) For any § > 0, F6(X) > 1 - X and 1im6ﬂ0 Fo(X) = 1 - X for 0 <X <1,
Therefore, (u1,pp) € A(S) for a sufficiently small 6 > O if uy + pp > 1, and

(p1,49) € B(§) for a sufficiently small § > 0 if pq + pop < 1. Q.E.D.

Figure 4 illustrates Proposition 2a). It shows that, for a given &, if the
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unique mixed strategy equilibrium is close to (Lj,Lp), then (Rl,Rz) is
absorbing. That is, for any initial behavior patterns, there is an
equilibrium path that converges to (Rj,Rp), and, if any initial behavior
patterns are in the neighborhood of (Ry,Rp), any equilibrium path converges to
(R1,Rp}. Similarly, for a given §, if the unique mixed strategy equilibrium
is sufficiently close to (Ry,Rp), then (Ly,Lp) is absorbing. If the unique
mixed strategy equilibrium belongs to C(§), on the other hand, both strict
Nash equilibria are absorbing. These regions, A{(6) and B(§) shrink as §
becomes large, and, in the limit as friction goes to infinity, disappear.
Thus, as Proposition 2b) states, in the presence of large friction, both
strict Nash equilibria become absorbing. Proposition 2c¢), on the other hand,
states that, as friction goes to zeroc, one strict Nash equilibrium becomes
fragile and the other becomes globally accessible. Proposition 2c¢) also
states that (Ly,L;) becomes absorbing if pq + py < 1, which is equivalent to
(1-p1) (1-p2) > pqup, or (ayj-by)(as-by) > (dy-cyi{(dg-cy); that is, the product
of deviation losses associated with (Lj,Lp) is larger than the product of
deviation losses at (Rl,Rz). That is, (Lp,Lp) is absorbing in the presence of
small friction if and only if it is risk-dominant in the sense of Harsanyi-
Selten.

The basic intuition behind these results is analogous to the case of the
symmetric case, but the fact that the behavior pattern is represented in a two
dimensional state space introduces one complication, which deserves some
emphasis. When the society moves from a neighborhoond of the risk dominated
outcome to the risk dominant one, one group of players may not start switching
immediately to the risk dominant strategy. For example, suppose that (Ry,Rp)

is risk dominant (g; + po > 1), and hence it is uniquely absorbing and
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globally accessible for a sufficiently small 6 > 0. Furthermore, suppose p <
1/2. Then, as illustrated in Figure 5, an equilibrium path from a
neighborhood of the risk dominated outcome, (L1.,Ly), to the risk dominant
outcome needs to be designed such that, at an initial stage, group 2 players
switeh to Ry, while group 1 players continue to play L. An equilibrium path
to (Ry,Rp) thus cannot be monotone. Group 2 has to act as a leader, in order
to make group 1 willing to change. This property has significant implications
for coordination problems. For example, such a sequencing may turn out to be
critical when designing a successful economic reform program for transitions

from socialist economies towards free market econcmies.

4, Concluding Remarks

We have considered equilibrium selection in 2x2 bimatrix games with two
strict Nash equilibria by embedding it in a dynamic random matching framework
played by a continuum of anonymous agents. Unlike in the evolutionary game
literature, the players are assumed to be rational, seeking to maximize the
expected discounted payoffs. They are instead restricted to make a short run
commitment when choosing actions. Modelling the friction this way yields the
equilibrium dynamics, whose stationary states correspond to the Nash
equilibrium outcomes of the original game. Our selection is based on
differential stability properties of the stationary states. As friction

becomes arbitrarily small, a strict Nash equilibrium outcome becomes uniquely

absorbing and globally accessible if and only if it satisfies the Harsanyi and
Selten (1988) notion of risk-dominance criterion. Our approach thus supplies

another support for risk-dominance in addition to those given in the existing

literature.

One weakness of our approach is that, if the initial position of the
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society is at the risk dominated Nash equilibrium, then playing it forever is
a legitimate equilibrium path in our dynamic game. We are not sure whether
this weakness is any more serious than the weaknesses of alternative
approaches, because our selection is based on the stability properties of
equilibrium paths. Nevertheless, it would be nice to be able to eliminate
altogether the chance of the risk dominated equilibrium being played forever.
One possibility would be to introduce some stochastic shocks on the beliefs,
such as sunspots, so that there are always some probability that the society
would follow any equilibrium path. Then, eventually, the society would be
trapped into the absorbing region of the risk dominant outcome, from which it
is unable to escape. Many economists may find an approach based on random
shocks due to sunspots combined with the rationality of players more
satisfactory than an approach based on the random shocks due to mutations
combined with the myopia of players.

Restricting the ability of players to change actions may also be useful
for dealing with other problems in game theory. For example, in repeated
games, one might expect that such a restriction should be able to marrow down
the set of equilibrium payoffs, thereby providing a partial resolution for the
folk theorem. A complete characterization of the equilibrium set may be quite
difficult because one need to drop the anonymity of players, the assumption
that greatly simplifies our analysis. However, any progress in this direction

would be highly desirable.
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Appendix

Proof of lLemma 1. To prove the "if" part of a) and the "only if" part of d),

it suffices to demonstrate that, if (1+6)/(246) <= u < 1, a feasible path from
x =1tox =0, % = e Pl satisfies the equilibrium condition, that is Ve = 0

for all t along this path. This can be checked as follows:

Ve = (p+9)rg{e"l’(“s) —pre (P*P)syg - e‘Pt[%%]-p <0,

To prove the "if" part of d) and the "only if" part of a), it suffices to
prove that, if 0 < pu < (1+8)/(2+§), the equilibrium path is unique and
converges to x = 1 for xg sufficiently close to 1. Note that any feasible

path from x5 satisfies %, > xoe'pt. Therefore, if u(2+6)/(146) < xg < 1,

Vo = (p+9)J.8{Xoe_pS -u}e_(p+8)sds = xo[%%i] -u>0 .

This implies Xp = %X < 1, and Ve > 0 for all t. Thus, % =1 - (l-xo)e—pt,
and limg,oxe = 1. This proves a) and d). The proof of b) and c¢) follows

similarly, due to the symmetry, Q.E.D.

Proof of Lemma 2. The proof is divided into three parts.

Part 1. Proof that (0,0) is globally accessible if (uq.,p9) € A(&):
Without loss of generality, we assume py = p5, which can be further
divided into the two cases: L1-A) (1+8)/(24§) < Bl < pg, and 1-B) fa(ﬂl) < po,

and (1+68}/(2+8) > pq.
1-4)  (1+6)/(2+8) = py = pg: it suffices to show (x;,xZ) = (x;eP:, xZePt) is
an equilibrium path for any (xd,x3) e [0,1]2, which can be checked as

follows: for i, j =1, 2, 1 = j,



+

vi (P*G)J‘E{Xge_p(us) -pi)e (P*¥)Sqs - Xge-pt[%—tg]‘#i <0.
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1-B) fg(p1) < po, and (1+46)/(2+6) > pp: If x¢ = p1(2+6)/(1+8), one can show

(xi,x2) = (x(eP', xZeP) is an equilibrium path converging toe (0,0), as in 1-

A). Suppose x; > #1(2+6)/(1+6). We show that a feasible path from (xg . %2)

to (0,0), defined by

1
Xy =

1-(1-x5) e Pt if e<T,
and X; = x5e’P

[1 - (1-x,) e PT} o plz-D ifeeT,

where T satisfies xlePT = pl( )< 1, is an equilibrium path. First,

+

V% ) (p+9).[glx(%e_p(t+5) ~upre” (Pr)sgg - X%e_pt[%%]_#l ,

so that v > 0 if t < T; =0 if t = T: < 0 if t > T. Second, let y, be
defined by

1 if £t < T,

Ve e pleD ift=T,

Lil]
——

Note that y. is nonincreasing and y, = x; for all t. Therefore,

VE = (p+9)f;{x%+s - pz}e_(P+3)Sds < (p+9)IE{Yt+s - lee_(p+g)sds

<(p+) [gtys - mpye (PHP)%as =1 -y - L oom(@r0)T

1+§
1 [AL[[2+6
=1 - - = f - =0,
B2 T 5w —ZXO [m] s(H1) ~ w2

Part 2. Proof that (1,1) is absorbing if (wy,p9) € B(&) + C(&).
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Without loss of generality, we assume py < pg < fg(up), which implies pq

< (1+8)/(2+8). First, note that, for any feasible path, if xZ >

p1(248)/(1+6), then xZ, > x2e® , and

V% > (p+9)Jg{x%e“PS_pl}e—(P+9)Sds = x%[%;g]-p1> 0 .

This implies that, for xz > B (2+46) /(148), v > 0 for all t < T, where T

satisfies xfe T = pl(i:g)< 1. Thus,
. 1-({1-x7) ePt if £ < T,
X 2 )
[1 ~ (1-x5) e PT] gPlE"T if £ =2 T,
for all t > 0. Since the right hand side is continuous in %2, one can choose

x¢ sufficiently close to 1 so that, for any €1 > 0,

2 o _ )
Vg = (P+9)I0{y5 Spore (PHSag — g =1 -y - 7%36 (p+®)T _ 4

S -y - Lo|[PL|[248 -
#2 755 | 2|1+ -

Therefore, for any ey > 0, by choosing x¢ sufficiently close to 1,

2
Vo = fg(u) —pp - €1 - €2 >0.

This shows that there exists a neighborhood of (1,1) such that Ve, V& > 0,
thus (l1,1) is absorbing.
Part 3.

From Part 1 and Part 2, a) and d) follow immediately. b} and c¢) can be proved

similarly, due to the symmetry. Q.E.D.
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Figure 2:

A: (R,R) is uniquely absorbing and globally accessible.
B: (L,L) is uniquely absorbing and globally accessible.
C; Both (R,R) and (L,L) are absorbing.
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AS): (R[, RZ) is uniquely absorbing and globally accessible,
B(&): (L;, Ly} is uniquely absorbing and globally accessible.

c(8): Both (R Ry} and (Lf’ L2) are absorbing.
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