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LOVE-FOR-VARIETY
 

Abstract

We study how love-for-variety, -- productivity (or utility) gains from increasing variety of
differentiated inputs (or consumer goods) --, depends on the underlying demand structure. Under
general symmetric homothetic demand systems, substitutability across goods and love-for-variety
can be both expressed as functions of the variety of available goods, V, only. Since the
homotheticity alone imposes little restrictions on the properties of these two functions, we turn to
three classes of homothetic demand systems, H.S.A., HDIA, and HIIA, which are pairwise disjoint
with the sole exception of CES. For each of these three classes, we establish the three main
results. First, substitutability is increasing in V, if and only if Marshall’s 2nd law of demand (the
price elasticity of demand for each good is increasing in its price) holds. Second, increasing
(decreasing) substitutability implies diminishing (increasing) love-for-variety, but the converse is
not true. Third, love-for-variety is constant, if and only if substitutability is constant, which occurs
only under CES within the three classes. These classes thus offer a tractable way of capturing the
intuition that gains from increasing variety is diminishing, if different goods are more substitutable
when more variety is available.
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Abstract 
 

We study how love-for-variety, -- productivity (or utility) gains from 
increasing variety of differentiated inputs (or consumer goods) --, depends 
on the underlying demand structure. Under general symmetric homothetic 
demand systems, substitutability across goods and love-for-variety can be 
both expressed as functions of the variety of available goods, 𝑉𝑉, only. 
Since the homotheticity alone imposes little restrictions on the properties 
of these two functions, we turn to three classes of homothetic demand 
systems, H.S.A., HDIA, and HIIA, which are pairwise disjoint with the 
sole exception of CES. For each of these three classes, we establish the 
three main results. First, substitutability is increasing in 𝑉𝑉, if and only if 
Marshall’s 2nd law of demand (the price elasticity of demand for each 
good is increasing in its price) holds. Second, increasing (decreasing) 
substitutability implies diminishing (increasing) love-for-variety, but the 
converse is not true. Third, love-for-variety is constant, if and only if 
substitutability is constant, which occurs only under CES within the three 
classes. These classes thus offer a tractable way of capturing the intuition 
that gains from increasing variety is diminishing, if different goods are 
more substitutable when more variety is available. 
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1.  Introduction 

Love-for-variety1 captures the idea that producers (or consumers) can achieve 

higher level of productivity (or utility) when they have access to a wider variety of 

differentiated inputs (or consumer goods). It is a natural consequence of the convexity of 

the production technologies (or preferences). It represents productivity (or utility) gains 

from increasing variety of inputs (or consumer goods) and hence forms the basis for 

willingness to pay for new inputs (or consumer goods); e.g., Dixit and Stiglitz (1977), 

Krugman (1980), Ethier (1982), and Romer (1987). As such, love-for-variety plays a 

central role in many fields of economics, as Matsuyama (1995) pointed out, most 

prominently in economic growth (Grossman and Helpman 1993, Gancia and Zilibotti 

2005, and Acemoglu 2008), international trade (Helpman and Krugman 1985), and 

economic geography (Fujita, Krugman, and Venables 1999). Even though commonly 

discussed in monopolistic competition settings, the concept of love-for-variety is also 

useful in other contexts, such as gains from trade in Armington-type competitive models, 

where goods produced in different countries are distinct from each other.   

In spite of its importance, however, little is known about how love-for-variety 

depends on the underlying production (or utility) function, and, in particular, how love-

for-variety changes as a wider variety of goods becomes available. In a standard 

treatment, e.g., Matsuyama (1995, Sec.3A), the analytical expression for love-for-variety 

is obtained under CES with gross substitutes.2  It is equal to 1 (𝜎𝜎 − 1)⁄ , where 𝜎𝜎 > 1 

represents both the (constant) elasticity of substitution across different goods and the 

(constant) price elasticity of demand for each good. Even though this expression exhibits 

the appealing property that love-for-variety is smaller when different goods are more 

substitutable and the price elasticity of demand for each good is higher (i.e., a larger 𝜎𝜎), it 

also exhibits the property many find less appealing; that is, love-for-variety is constant. It 

seems implausible to think that productivity (or utility) gains enjoyed by producers (or 

 
1Different authors called this concept differently; e.g., “the desirability of variety” (Dixit and Stiglitz 1977), 
“love of variety” (Helpman and Krugman 1985, sec. 6.2), “taste for variety” (Benassy 1996), etc. In the 
context of input variety, Ethier (1982) called it “gains from an increased division of labor” and Romer 
(1987) “increasing returns due to specialization.” We call “love-for-variety,” as in Parenti et.al. (2017) and 
Thisse and Ushchev (2020), since it seems most common in the recent literature. 
2CES is also assumed in most empirical assessment of love-for-variety; see e.g., Feenstra (1994), Bils and 
Klenow (2001), and Broda and Weinstein (2006). A few exceptions include Feenstra and Weinstein (2017), 
which use translog. 
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consumers) from having access to more variety of inputs (or consumer goods) are 

independent of how much variety they have already access to.3  Of course, constant love-

for-variety may be an artifact of the CES demand system. But the question is then: under 

which non-CES demand systems should we expect love-for-variety to diminish as more 

variety becomes available?  This is the question we address in this paper. 

In Section 2, we first recall some general properties of symmetric CRS production 

functions and symmetric homothetic demand systems for different inputs that they 

generate.4 Then, we show that both substitutability across differentiated inputs and love-

for-variety can be expressed as functions of variety of available inputs 𝑉𝑉 only, as 𝜎𝜎(𝑉𝑉) 

and ℒ(𝑉𝑉), respectively. It turns out that the properties of these two functions, particularly 

their relation to each other, can be quite complex under general symmetric homothetic 

demand systems. Moreover, whether Marshall’s 2nd law of demand holds or not (the price 

elasticity of demand for each input is increasing in its own price or not) tells us little 

about the properties of these two functions.  

Since the homothetic restriction is not strong enough to offer much insight, we 

turn to three classes of homothetic demand systems in Section 3: H.S.A. (Section 3.1), 

HDIA (Section 3.2), and HIIA (Section 3.3).5 These three subsections are written in a 

self-contained way so that they can be read independently in any order. The three classes 

are pairwise disjoint with the sole exception of CES, as depicted in Figure 1. For each of 

these three classes, we establish the three main results, also illustrated in Figure 2. First, 

the substitutability, 𝜎𝜎(𝑉𝑉), is increasing in 𝑉𝑉, if and only if Marshall’s 2nd law of demand 

holds. Second, increasing (decreasing) substitutability 𝜎𝜎′(𝑉𝑉) > (<)0, implies 

 
3Perhaps due to this unappealing feature of love-for-variety under CES, some may prefer “the ideal variety 
approach,” e.g., Helpman and Krugman (1985, sec. 6.3), in which consumers are heterogenous in taste, and 
each consumer buys the only variety closest to his/her ideal variety. Despite each consumer buys only one 
variety, increasing variety is beneficial in that each consumer finds a variety closer to the ideal variety on 
average as product variety increases, and yet the benefit of adding variety is diminishing, as the product 
space becomes congested. In spite of such appealing feature, the ideal variety approach has not been used 
widely in applied general equilibrium models due to its intractability.   
4 It should be noted that homothetic and symmetric demand systems are not so restrictive as they may 
seem, because one can nest them into a nonhomothetic and/or asymmetric upper-tier demand system. In 
other words, homothetic symmetric non-CES can serve as building blocks to construct such nonhomothetic 
and/or asymmetric non-CES. Moreover, one of the messages of this paper is that homotheticity and 
symmetry are not strong enough that one needs to look for tighter restrictions. 
5H.S.A., HDIA, and HIIA stand for Homothetic Single Aggregator, Homothetic Direct Implicit Additivity, and 
Homothetic Indirect Implicit Additivity. Matsuyama (2023; 2025) discuss the relation between these three and other 
classes of non-CES demand systems in detail. 
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diminishing (increasing) love-for-variety ℒ′(𝑉𝑉) < (>)0, but the converse is not true. 

Third, love-for-variety is constant, ℒ′(𝑉𝑉) = 0, if and only if substitutability is constant, 

𝜎𝜎′(𝑉𝑉) = 0, which occurs only under CES within these three classes. These three classes 

thus offer a tractable way of capturing the intuition that gains from increasing variety is 

diminishing, if different goods are more substitutable when more variety is available.6  

We offer some concluding remarks in Section 4. All technical materials, including 

the proofs of lemmas, are in Appendices. 

Before proceeding, it should be pointed out that this paper is all about the demand 

side for expanding variety. As such, the results are relevant regardless of what is assumed 

on the supply side, whether it is modelled as the central planner’s problem, perfect 

competition, oligopolistic competition, or monopolistic competition with or without 

heterogeneous firms and with or without multi-product firms. Thus, the three classes of 

demand systems should be a useful building block in many models across many different 

fields, particularly in international trade, economic growth, and economic geography, 

wherever gains from endogenous variety are of central importance. 

 

2. Symmetric homothetic demand systems 

In what follows, we discuss a general symmetric homothetic demand system in 

the context of the producer’s demand for differentiated inputs. Consider a monotone, 

strictly quasi-concave, symmetric CRS production function, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱). Here, 𝐱𝐱 =

{𝑥𝑥𝜔𝜔;𝜔𝜔 ∈ Ω�} is the input quantity vector, defined over Ω�, a continuum of the set of all 

potential inputs, which is divided into the set of available inputs, Ω ⊂ Ω�, and the set of 

unavailable inputs, Ω�\Ω. That is, 𝑥𝑥𝜔𝜔 = 0 for 𝜔𝜔 ∈ Ω�\Ω.  We let the Lebesgue measure of 

Ω denoted by 𝑉𝑉 ≡ |Ω|. Our goal is to study the effect of changing 𝑉𝑉 on productivity. To 

this end, it is necessary to assume that each input is inessential. That is, 𝑥𝑥𝜔𝜔 = 0 for 𝜔𝜔 ∈

Ω�\Ω does not imply 𝑋𝑋(𝐱𝐱) = 0, so that it is possible to produce a positive output, even 

when some potential inputs are unavailable.  

 

 
6As such, they can be valuable alternatives to those who find “the ideal variety approach” more appealing than the 
love-for-love approach under CES despite that the former is less tractable. We thank Jim Markusen for pointing this 
out. 
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2.1. Duality Theory: A Refresher  

Let us first recall some key results from the duality theory; see, e.g., Mas-Colell et 

al. (1995), and Jehle and Reny (2012). Let 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝜔𝜔 ∈ Ω�} denote the input price 

vector, such that 𝑝𝑝𝜔𝜔 = ∞ for 𝜔𝜔 ∈ Ω�\Ω and 𝑝𝑝𝜔𝜔 < ∞ for 𝜔𝜔 ∈ Ω. The non-essentiality of 

inputs ensures that the unit cost function corresponding to this production function,  

 𝑃𝑃(𝐩𝐩) ≡ min
𝐱𝐱
�𝐩𝐩𝐩𝐩 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑

⬚
Ω �𝑋𝑋(𝐱𝐱) ≥ 1�, (1) 

is well-defined, even though 𝑝𝑝𝜔𝜔 = ∞ for 𝜔𝜔 ∈ Ω�\Ω. Furthermore, it also satisfies the 

monotonicity, strict quasi-concavity, linear homogeneity, and symmetry. The first-order 

condition of the minimization problem in eq.(1) yields the inverse demand curve for 𝜔𝜔: 

 
𝑝𝑝𝜔𝜔 = 𝑃𝑃(𝐩𝐩)

𝜕𝜕𝜕𝜕(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

;     𝜔𝜔 ∈ Ω. 
(2) 

Alternatively, from the duality theorem, we can instead start from a monotonic, strict 

quasi-concave, linear homogeneous, and symmetric unit cost function, 𝑃𝑃(𝐩𝐩), from which 

the CRS production function 𝑋𝑋(𝐱𝐱) is derived as follows: 

 𝑋𝑋(𝐱𝐱) ≡ min
𝐩𝐩
�𝐩𝐩𝐩𝐩 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑

⬚
Ω �𝑃𝑃(𝐩𝐩) ≥ 1�, (3) 

which satisfies the monotonicity, strict quasi-concavity, and symmetry. The first-order 

condition of the minimization problem in eq.(3) yields the demand curve: 

 
𝑥𝑥𝜔𝜔 =

𝜕𝜕𝜕𝜕(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑋𝑋(𝐱𝐱);     𝜔𝜔 ∈ Ω. 
(4) 

This is also known as Shepherd’s lemma. The duality theorem thus allows us to use either 

𝑋𝑋(𝐱𝐱) or 𝑃𝑃(𝐩𝐩) as the primitive of the CRS technology.  

From either eq.(3) or eq.(4), the Euler’s theorem on linear homogeneity functions 

implies that  

𝐩𝐩𝐩𝐩 ≡ � 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
⬚

Ω
= 𝑃𝑃(𝐩𝐩) ��

𝜕𝜕𝜕𝜕(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
⬚

Ω
� = �� 𝑝𝑝𝜔𝜔

𝜕𝜕𝜕𝜕(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑑𝑑𝑑𝑑
⬚

Ω
�𝑋𝑋(𝐱𝐱) = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱). 

(5) 

This identity means that the total cost of inputs is equal to the total value of output. 

 

2.2. Budget Share, Price Elasticity of Demand and the 2nd Law of Demand  

From eq.(2), the budget share of 𝜔𝜔 can be written as a homogeneous function of 

degree 0 in 𝐱𝐱 as: 
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𝑠𝑠𝜔𝜔 ≡

𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =

𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

≡ 𝑠𝑠∗(𝑥𝑥𝜔𝜔;𝐱𝐱) = 𝑠𝑠∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ );   𝜔𝜔 ∈ Ω. 
(6) 

From eq.(4), it can also be written as a homogeneous function of degree 0 in 𝐩𝐩 as: 

 
𝑠𝑠𝜔𝜔 ≡

𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =

𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

≡ 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝑠𝑠(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ );  𝜔𝜔 ∈ Ω. 
(7) 

In what follows, we assume that different inputs are gross substitutes; that is, the 

budget share of each input goes down as its price goes up (and its quantity goes down) 

along its demand curve.  

𝜕𝜕 ln 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

=
𝜕𝜕 ln 𝑠𝑠(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ )

𝜕𝜕 ln𝑝𝑝𝜔𝜔
< 0 ⟺

𝜕𝜕 ln 𝑠𝑠∗(𝑥𝑥𝜔𝜔;𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

=
𝜕𝜕 ln 𝑠𝑠∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ )

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
> 0. 

From the eq.(6) and eq.(7), the price elasticity of demand for 𝜔𝜔 can be written both as a 

function of the prices and as a function of the quantities as follows: 

𝜁𝜁𝜔𝜔 ≡ −
𝜕𝜕 ln 𝑥𝑥𝜔𝜔
𝜕𝜕 ln𝑝𝑝𝜔𝜔

= 1 −
𝜕𝜕 ln 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

≡ 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) > 1; 
(8) 

𝜁𝜁𝜔𝜔 ≡ − �
𝜕𝜕 ln 𝑝𝑝𝜔𝜔
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

�
−1

= �1 −
𝜕𝜕 ln 𝑠𝑠∗(𝑥𝑥𝜔𝜔;  𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
�
−1

≡ 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) = 𝜁𝜁∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ )  > 1. 
(9) 

Both functions are homogeneous of degree 0 and gross substitutability implies that they 

are both greater than one. 

Marshall’s 2nd law of demand states that the price elasticity of demand for each 

input goes up as its price goes up (and its quantity goes down) along its demand curve.  

Definition: Marshall’s 2nd Law of demand holds if and only if  

𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

=
𝜕𝜕𝜕𝜕(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ )

𝜕𝜕𝑝𝑝𝜔𝜔
> 0 ⟺

𝜕𝜕𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

=
𝜕𝜕𝜁𝜁∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ )

𝜕𝜕𝑥𝑥𝜔𝜔
< 0. 

If the opposite inequality holds, we shall say that anti-2nd law holds. CES is clearly the 

borderline case. 

 Note that eqs.(6)-(9) show that the budget share of 𝜔𝜔 ∈ Ω, 𝑠𝑠𝜔𝜔, and its price 

elasticity of demand, 𝜁𝜁𝜔𝜔, are both functions of 𝐩𝐩 𝑝𝑝𝜔𝜔⁄  or 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ . Even though symmetry 

implies that they are invariant of permutation, the budget share and the price elasticity 

still depend on the entire distribution of the prices (or the quantities) normalized by its 

own price (or its own quantity), which is infinite dimensional. This suggests that the 
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cross-product interactions could be complicated under general homothetic symmetric 

demand systems. 

 

2.3 Unit Quantity and Price Vectors  

 To further characterize homothetic symmetric demand systems, it is useful to 

define the unit quantity vector, 𝟏𝟏Ω ≡ {(1Ω)𝜔𝜔;𝜔𝜔 ∈ Ω�} and the unit price vector, 𝟏𝟏Ω−1 ≡

{(1Ω−1)𝜔𝜔;𝜔𝜔 ∈ Ω�}, as follows: 

(1Ω)𝜔𝜔 ≡ �1 for 𝜔𝜔 ∈
0 for 𝜔𝜔 ∈ ΩΩ�\Ω ;           (1Ω−1)𝜔𝜔 ≡ �1 for 𝜔𝜔 ∈

∞ for 𝜔𝜔 ∈ ΩΩ�\Ω  , 

which satisfies ∫ (1Ω)𝜔𝜔𝑑𝑑𝑑𝑑
⬚
Ω = ∫ (1Ω−1)𝜔𝜔𝑑𝑑𝑑𝑑

⬚
Ω = |Ω| ≡ 𝑉𝑉.  Then, symmetric quantity and 

price patterns among all the available inputs are expressed as: 

𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω;    𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, 

where 𝑥𝑥 > 0 and 𝑝𝑝 > 0 are scalars. 

 

2.4 Substitutability Measure Across Different Goods  

Since 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) are both homogenous of degree zero, the price 

elasticity at symmetric patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1 or 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω, is 𝜁𝜁(1;𝟏𝟏Ω−1) = 𝜁𝜁∗(1;𝟏𝟏Ω), which 

is independent of 𝑝𝑝 or 𝑥𝑥, and can be written as 𝜎𝜎(𝑉𝑉), a function of 𝑉𝑉 only. Moreover, 

Appendix A shows that 𝜎𝜎(𝑉𝑉) is equal to the Allen-Uzawa elasticity of substitution 

between every pair of inputs at the symmetric patterns.7 Thus, we use the following 

definition for the substitutability across different inputs in the presence of available 

variety of inputs 𝑉𝑉:   

Definition: The substitutability measure is defined by 

 𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁(1;𝟏𝟏Ω−1) = 𝜁𝜁∗(1;𝟏𝟏Ω) > 1. (10) 
 

In general, 𝜎𝜎(𝑉𝑉) can be nonmonotonic in 𝑉𝑉. We shall call the case of 𝜎𝜎′(𝑉𝑉) > (<)0 for 

all 𝑉𝑉 > 0, the case of increasing (decreasing) substitutability. 

 

2.5 Love-for-Variety Measure 

 
7 Since the set of available inputs is a continuum, there is no point of looking into the Morishima elasticity 
of substitution. 
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Love-for-variety is commonly measured as the productivity gains from a higher 𝑉𝑉 

under the symmetric quantity patterns, 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω, while holding the total amounts of 

inputs, 𝑥𝑥𝑥𝑥, constant. That is,  

    
𝑑𝑑 ln𝑋𝑋(𝐱𝐱)
𝑑𝑑 ln𝑉𝑉

�
𝐱𝐱=𝑥𝑥𝟏𝟏Ω,𝑥𝑥𝑥𝑥=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

=     
𝑑𝑑 ln 𝑥𝑥𝑥𝑥(𝟏𝟏Ω)

𝑑𝑑 ln𝑉𝑉
�

 𝑥𝑥𝑥𝑥=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0, 

which is positive due to the strict quasi-concavity of 𝑋𝑋(𝐱𝐱) and could depend solely on 𝑉𝑉. 

This definition is essentially the same with the one proposed by Benassy (1996, eq.(2)) 

for what he called “taste for variety,” even though he applied it only for CES demand 

systems with externalities. 

Alternatively, we could also measure love-for-variety as the rate of decline in the 

unit cost under symmetric price patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, while holding the price of each 

input, 𝑝𝑝, constant. That is,  

−  
𝑑𝑑 ln𝑃𝑃(𝐩𝐩)
𝑑𝑑 ln𝑉𝑉

�
𝐩𝐩=𝑝𝑝𝟏𝟏Ω

−1,   𝑝𝑝=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
= −  

𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

> 0, 

which is also positive due to the monotonicity of 𝑃𝑃(𝐩𝐩) and could depend solely on 𝑉𝑉.   

These two measures of love-for-variety are indeed identical. To see this, inserting 

𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1 and 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω into eq.(5) yields 𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝(𝟏𝟏Ω−1)𝑥𝑥𝑥𝑥(𝟏𝟏Ω), so that 

𝑃𝑃(𝟏𝟏Ω−1)𝑋𝑋(𝟏𝟏Ω) = 𝑉𝑉 ⟹ −  
𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0. 

Hence, we use them interchangeably as the love-for-variety measure. 

Definition. The love-for-variety measure is defined by: 

ℒ(𝑉𝑉) ≡ −  
𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0. 
 

 

 

 

(11) 

In general, ℒ(𝑉𝑉) can be nonmonotonic in 𝑉𝑉. We shall call the case of  ℒ′(𝑉𝑉) < (>)0 for 

all 𝑉𝑉 > 0, the case of diminishing (increasing) love-for-variety.  

 

2.6. Standard CES with gross substitutes  

In the case of standard CES with gross substitutes, 

𝑋𝑋(𝐱𝐱) = 𝑍𝑍 �� 𝑥𝑥𝜔𝜔
1−1𝜎𝜎𝑑𝑑𝑑𝑑

⬚

Ω
�

𝜎𝜎
𝜎𝜎−1

⟺ 𝑃𝑃(𝐩𝐩) =
1
𝑍𝑍
�� 𝑝𝑝𝜔𝜔1−𝜎𝜎𝑑𝑑𝑑𝑑

⬚

Ω
�

1
1−𝜎𝜎

, 
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where 𝜎𝜎 > 1 is the (constant) elasticity of substitution parameter and 𝑍𝑍 is the TFP 

parameter, it is easy to verify: 

𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) = 𝜎𝜎 > 1;  𝜎𝜎(𝑉𝑉) = 𝜎𝜎 > 1;  ℒ(𝑉𝑉) =
1

𝜎𝜎 − 1
> 0. 

Thus, under CES, the price elasticity of demand for each input is everywhere constant 

and equal to 𝜎𝜎. Obviously, this implies that our substitutability measure, which is equal to 

the price elasticity evaluated at the symmetric patterns, 𝜎𝜎(𝑉𝑉), is also equal to 𝜎𝜎, and 

independent of 𝑉𝑉. Moreover, the love-for-variety measure, ℒ(𝑉𝑉), is also independent of 

𝑉𝑉,  and depends solely on the single parameter, 𝜎𝜎, with a one-to-one inverse relation 

between the two. Perhaps for these reasons, some authors have incorrectly claimed that 

𝜎𝜎(𝑉𝑉) is constant only under CES, and/or that 𝜎𝜎(𝑉𝑉) is the inverse measure of love-for-

variety, even under general homothetic demand systems. 

 

2.7. Modified CES a la Benassy (1996): A Digression 

Before proceeding to explore love-for-variety under non-CES demand systems, 

let us briefly digress to discuss an attempt to break the tight relation between 𝜎𝜎(𝑉𝑉) and 

ℒ(𝑉𝑉) by modifying CES by Benassy (1996). He proposed to generalize CES as: 

𝑋𝑋(𝐱𝐱) = 𝑍𝑍(𝑉𝑉) �� 𝑥𝑥𝜔𝜔
1−1𝜎𝜎𝑑𝑑𝑑𝑑

⬚

Ω
�

𝜎𝜎
𝜎𝜎−1

⟺ 𝑃𝑃(𝐩𝐩) =
1

𝑍𝑍(𝑉𝑉)
�� 𝑝𝑝𝜔𝜔1−𝜎𝜎𝑑𝑑𝑑𝑑

⬚

Ω
�

1
1−𝜎𝜎

, 

by making TFP a function of 𝑉𝑉 as 𝑍𝑍(𝑉𝑉), justified by some sorts of direct externalities 

from 𝑉𝑉 to TFP.  Under such modified CES, 

𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) = 𝜎𝜎 > 1;  𝜎𝜎(𝑉𝑉) = 𝜎𝜎 > 1;  ℒ(𝑉𝑉) =
1

𝜎𝜎 − 1
+
𝜕𝜕 ln𝑍𝑍(𝑉𝑉)
𝜕𝜕 ln𝑉𝑉

. 

This demand system is still CES, as it features the constant price elasticity and the 

constant substitutability.  Yet this modification allows the gap between the observed love-

for-variety and the love-for-variety implied by CES demand to be “accounted for” by 

𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄ , the term we would call ‘the Benassy residual,” in analogy with the 

Solow residual in the growth accounting. In addition, Benassy (1996) assumed that 

𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄ = 𝜈𝜈 − 1 (𝜎𝜎 − 1)⁄ ,  so that ℒ(𝑉𝑉) = 𝜈𝜈, which can be chosen 

independently from 𝜎𝜎(𝑉𝑉) = 𝜎𝜎. If we assume instead 𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄  is another 

parameter independent of 𝜎𝜎(𝑉𝑉) = 𝜎𝜎, ℒ(𝑉𝑉) is still inversely related to 𝜎𝜎(𝑉𝑉) = 𝜎𝜎. Even if 
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one believed in the presence of such direct externalities from 𝑉𝑉 to TFP, one should note 

that any estimate of the Benassy residual hinges on the assumption of CES. In any case, 

introducing the Benassy residual does not address our question; that is, how ℒ(𝑉𝑉) 

depends on 𝑉𝑉 under homothetic non-CES demand systems, in particular, when we expect 

ℒ(𝑉𝑉) to be diminishing in 𝑉𝑉. 

 For the remainder of the paper, we assume that TFP is independent of 𝑉𝑉 for 

simplicity, since adding the Benassy residual would be straightforward.   

 

2.8. General Cases 

 The relation between the price elasticity, 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), substitutability, 

𝜎𝜎(𝑉𝑉), and love-for-variety, ℒ(𝑉𝑉), can be quite complex under general homothetic demand 

systems. First, whether Marshall’s 2nd law holds or not in general tells us little about the 

sign of the derivative of 𝜎𝜎(𝑉𝑉). This should not be surprising because the former is about 

how 𝜁𝜁(𝑝𝑝𝜔𝜔;𝑝𝑝𝟏𝟏Ω−1) or 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝑥𝑥𝟏𝟏Ω) responds to a change in 𝑝𝑝𝜔𝜔 or 𝑥𝑥𝜔𝜔 , while the latter is 

about how 𝜁𝜁(𝑝𝑝;𝑝𝑝𝟏𝟏Ω−1) = 𝜁𝜁(1;𝟏𝟏Ω−1) or 𝜁𝜁∗(𝑥𝑥; 𝑥𝑥𝟏𝟏Ω) = 𝜁𝜁∗(1;𝟏𝟏Ω) responds to a change in 𝑉𝑉 

through its effect on 𝟏𝟏Ω−1 or 𝟏𝟏Ω. Second, as shown in Appendix B, there exists a 

parametric family of homothetic non-CES demand systems in which 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are 

both independent of 𝑉𝑉, and they move in the same direction as one of the parameters 

changes. More generally, with both 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) being functions of 𝑉𝑉, one cannot 

expect 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) to always move in the opposite direction as 𝑉𝑉 varies.  In short, 

“almost anything goes” under general homothetic symmetric demand systems. 

 

3. Three Classes of Homothetic Symmetric Demand Systems 

Nevertheless, it is intuitive to think that, when different inputs are more 

substitutable, the price elasticity of demand for each input should be larger, and the love-

for-variety measure should be smaller. Unfortunately, homotheticity (and symmetry) 

alone is not restrictive enough to capture this intuition: one need to find some additional 

restrictions to capture this intuition. To this end, we turn to three classes of homothetic 

symmetric demand systems, H.S.A., HDIA, and HIIA. These three classes are useful for 

two reasons. First, they are pairwise disjoint with the sole exception of CES, as seen in 

Figure 1. Thus, they offer three alternative ways of departing from CES, while keeping 
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CES as a special case. Second, each of the three classes generates the demand system 

with the property that the price elasticity of demand for each input can be expressed as 

𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁(𝑝𝑝𝜔𝜔 𝒜𝒜(𝐩𝐩)⁄ ) and 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔 𝒜𝒜∗(𝐱𝐱)⁄ ). That is, the price elasticity is 

a function of a single variable, 𝑝𝑝𝜔𝜔 𝒜𝒜(𝐩𝐩)⁄  or 𝑥𝑥𝜔𝜔 𝒜𝒜∗(𝐱𝐱)⁄ , where 𝒜𝒜(𝐩𝐩) or 𝒜𝒜∗(𝐱𝐱) is the 

linear homogeneous aggregator in 𝐩𝐩 or in 𝐱𝐱, whose value serves as a sufficient statistic 

that captures the interdependence of price elasticities across different inputs.8 Thus, in 

these three classes, the price elasticity responds to an increase in 𝑝𝑝𝜔𝜔 and to a decline in 

𝒜𝒜(𝐩𝐩) in the same way, and hence also to an increase in 𝑉𝑉 in the symmetric price patterns. 

Or equivalently, the price elasticity responds to a decline in 𝑥𝑥𝜔𝜔 and to an increase in 

𝒜𝒜∗(𝐱𝐱) in the same way, and hence also to an increase in 𝑉𝑉 at the symmetric quantity 

patterns. This feature imposes the tight restriction between 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉), as 

summarized in Table, which enables us to establish the following three results for each of 

the three classes. First, Marshall’s 2nd law is equivalent to increasing substitutability, 

𝜎𝜎′(𝑉𝑉) > 0. Second, both Marshall’s 2nd law and increasing (decreasing) substitutability 

𝜎𝜎′(𝑉𝑉) > (<)0 are sufficient but not necessary for diminishing (increasing) love-for-

variety, ℒ′(𝑉𝑉) < (>)0. Third, ℒ(𝑉𝑉) is constant if and only if it is CES. See also Figure 2. 

 We now explain each of the three classes in great detail in the next three sections. 

Because these three sections are written in a self-contained way, they may be read 

independently in any order. 

 

3.1.  The HSA class. 

A homothetic symmetric demand system belongs to H.S.A. (Homothetic Single 

Aggregator) if there exists a function of a single variable, 𝑠𝑠:ℝ++ → ℝ+, which is 𝐶𝐶2 and 

strictly decreasing as long as 𝑠𝑠(𝑧𝑧) > 0, with lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and lim𝑧𝑧→𝑧̅𝑧𝑠𝑠(𝑧𝑧) = 0, 

where 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0}, such that the budget share of 𝜔𝜔 ∈ Ω can be written as: 

𝑠𝑠𝜔𝜔 =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

= 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�, 

(12) 

where 𝐴𝐴(𝐩𝐩) is defined implicitly by the adding-up constraint, 

 
8Recall that, in general, the price elasticity of each input depends on 𝐩𝐩 𝑝𝑝𝜔𝜔⁄  or 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ , the entire distribution 
of the prices (or quantities) normalized by its own price (or quantity) as shown in eq.(8) and eq.(9). 
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� 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑

⬚

Ω
≡ 1. 

(13) 

By construction, 𝐴𝐴(𝐩𝐩) is linear homogenous in 𝐩𝐩 for any fixed Ω and that the budget 

shares of all inputs are added up to one. CES with gross substitutes is a special case 

where 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 (𝜎𝜎 > 1). Translog unit cost function is another special case, where 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾max{− ln(𝑧𝑧 𝑧𝑧̅⁄ ) , 0}, where 𝑧𝑧̅ < ∞.9  The CoPaTh family10 of H.S.A. is given by  

𝑠𝑠(𝑧𝑧) = 𝛾𝛾max��𝜎𝜎 − (𝜎𝜎 − 1)𝑧𝑧
1−𝜌𝜌
𝜌𝜌 �

𝜌𝜌
1−𝜌𝜌

, 0�, 

where 0 < 𝜌𝜌 < 1, with 𝑧𝑧̅ = (1 − 1 𝜎𝜎⁄ )−
𝜌𝜌

1−𝜌𝜌 → ∞ and 𝑠𝑠(𝑧𝑧) → 𝛾𝛾𝑧𝑧1−𝜎𝜎, as 𝜌𝜌 ↗ 1.  

Symmetric H.S.A. have been recently applied to a variety of monopolistic competition 

models.11 

Eqs.(12)-(13) state that the budget share of 𝜔𝜔 ∈ Ω is decreasing in its normalized 

price, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ , which is defined as its own price, 𝑝𝑝𝜔𝜔 , divided by the common 

price aggregator, 𝐴𝐴(𝐩𝐩).  Note that the budget share function, 𝑠𝑠(∙), is the primitive of 

H.S.A., while 𝐴𝐴(𝐩𝐩) is not, as it is derived from 𝑠𝑠(∙), using eq.(13). The monotonicity of 

𝑠𝑠(∙), combined with the assumptions, lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and lim𝑧𝑧→𝑧̅𝑧𝑠𝑠(𝑧𝑧) = 0, ensures that 

𝐴𝐴(𝐩𝐩) is defined uniquely by eq.(13) for any 𝑉𝑉 ≡ |Ω| > 0. 𝐴𝐴(𝐩𝐩) is independent of 𝜔𝜔, and 

thus captures “the average price” against which the prices of all inputs in Ω are measured. 

In other words, one could keep track of all the cross-price effects in the demand system 

by looking at a single aggregator, 𝐴𝐴(𝐩𝐩), which is the key feature of H.S.A.12 Note also 

 
9For 𝑠𝑠:ℝ++ → ℝ+, satisfying the above conditions, a class of the budget share functions, 𝑠𝑠𝛾𝛾(𝑧𝑧) ≡ 𝛾𝛾𝛾𝛾(𝑧𝑧) for 𝛾𝛾 > 0, 
generate the same demand system with the same common price aggregator. This can be seen by reindexing the inputs, 
as 𝜔𝜔′ = 𝛾𝛾𝛾𝛾, so that ∫ 𝑠𝑠𝛾𝛾(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑⬚

Ω  = ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔′ 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝜔𝜔′⬚
Ω = 1.  In this sense, 𝑠𝑠𝛾𝛾(𝑧𝑧) ≡ 𝛾𝛾𝛾𝛾(𝑧𝑧) for 𝛾𝛾 > 0 are all 

equivalent. Note also that a class of the budget share functions, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝜆𝜆) for 𝜆𝜆 > 0, generate the same demand 
system, with 𝐴𝐴𝜆𝜆(𝐩𝐩) = 𝜆𝜆𝜆𝜆(𝐩𝐩), because 𝑠𝑠𝜆𝜆(𝑝𝑝𝜔𝜔 𝐴𝐴𝜆𝜆(𝐩𝐩)⁄ ) = 𝑠𝑠(𝜆𝜆 𝑝𝑝𝜔𝜔 𝐴𝐴𝜆𝜆(𝐩𝐩)⁄ ) = 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ). In this sense, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝜆𝜆) 
for 𝜆𝜆 > 0 are all equivalent. 
10CoPaTh stands for Constant Pass-Through; it is so named, since, when a monopolistic competitive firm faces the 
demand curve generated by this family, its pricing behavior features a constant pass-through rate, 0 < 𝜌𝜌 < 1, and it 
converges to CES, as 𝜌𝜌 ↗ 1. Matsuyama and Ushchev (2020b) developed the CoPaTh family of demand systems 
within H.S.A., HDIA, and HIIA.  
11See, e.g., Baqaee, Farhi, and Sangani (2024), Fujiwara and Matsuyama (2022), Grossman, Helpman, and Luillier 
(2023), Matsuyama and Ushchev (2020a, 2020b, 2022a, 2022b). A large literature on monopolistic competition models 
under translog demand systems, which follows Feenstra (2003), may be also added to this list, because a symmetric 
translog unit cost function is a special case of symmetric H.S.A. with gross substitutes. 
12In contrast, that 𝑠𝑠(∙) is independent of 𝜔𝜔 is not a defining feature of H.S.A., but due to the assumption that the 
underlying production function is symmetric. Generally, the H.S.A. class of the production functions is defined by the 
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that we allow for the possibility of 𝑧𝑧̅ < ∞, in which case 𝑧𝑧̅𝐴𝐴(𝐩𝐩) is the choke price, at 

which demand for a variety goes to zero. If 𝑧𝑧̅ = ∞, the choke price does not exist and 

demand for each input always remains positive for any positive price vector. 

The price elasticity of 𝜔𝜔 ∈ Ω can be written as a function of 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄  as 

𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 1 −
𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)
𝑠𝑠(𝑧𝑧𝜔𝜔) ≡  𝜁𝜁𝑆𝑆(𝑧𝑧𝜔𝜔) =  𝜁𝜁𝑆𝑆 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� > 1, 

where 𝜁𝜁𝑆𝑆: (0, 𝑧𝑧̅) → (1,∞) is 𝐶𝐶1 for 𝑧𝑧 ∈ (0, 𝑧𝑧̅), and lim
𝑧𝑧→𝑧̅𝑧

 𝜁𝜁𝑆𝑆(𝑧𝑧) = ∞ if 𝑧𝑧̅ < ∞.13  It turns 

out to be convenient to introduce another function, 𝐻𝐻: (0, 𝑧𝑧̅) → ℝ+, 

𝐻𝐻(𝑧𝑧) ≡ �
𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
𝑧̅𝑧

𝑧𝑧

> 0, 

so that  

 
𝜁𝜁𝑆𝑆(𝑧𝑧) ≡ 1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) ≡ −

𝑧𝑧𝐻𝐻′′(𝑧𝑧)
𝐻𝐻′(𝑧𝑧) > 1. 

(14) 

In general, 𝜁𝜁𝑆𝑆(∙) can be nonmonotonic. Under CES, it is constant, 𝜁𝜁𝑆𝑆′(⋅) = 0. Marshall’s 

2nd law, 𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔;𝐩𝐩) 𝜕𝜕𝑝𝑝𝜔𝜔 > 0,⁄  holds if and only if 𝜁𝜁𝑆𝑆′(⋅) > 0.  This condition is satisfied 

both by translog with 𝜁𝜁𝑆𝑆(𝑧𝑧𝜔𝜔) = 1 − [ln(𝑧𝑧𝜔𝜔 𝑧𝑧̅⁄ )]−1  and by CoPaTh with 𝜁𝜁𝑆𝑆(𝑧𝑧𝜔𝜔) =

�1 − (1 − 1/𝜎𝜎)𝑧𝑧𝜔𝜔(1−𝜌𝜌) 𝜌𝜌⁄ �
−1

= �1 − (𝑧𝑧𝜔𝜔 𝑧𝑧̅⁄ )(1−𝜌𝜌) 𝜌𝜌⁄ �
−1

. 

After deriving 𝐴𝐴(𝐩𝐩) from 𝑠𝑠(∙), the unit cost function, 𝑃𝑃(𝐩𝐩), can be obtained by 

integrating eq.(12), which yields 

ln �
𝐴𝐴(𝐩𝐩)
𝑐𝑐𝑐𝑐(𝐩𝐩)� = � � �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
𝑧̅𝑧

𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄

� 𝑑𝑑𝑑𝑑
⬚

Ω
≡ � 𝐻𝐻 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�𝑑𝑑𝑑𝑑

⬚

Ω

≡ � 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�Φ�

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�𝑑𝑑𝑑𝑑

⬚

Ω
 

(15) 

where  

 
property that the budget share of 𝜔𝜔 is given by 𝑠𝑠𝜔𝜔(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ), where 𝐴𝐴(𝐩𝐩) is the unique solution to 
∫ 𝑠𝑠𝜔𝜔(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑⬚
Ω = 1. Note that 𝑠𝑠𝜔𝜔(∙) may depend on 𝜔𝜔 but 𝐴𝐴(∙) does not. 

13Conversely, from any 𝐶𝐶1 function 𝜁𝜁𝑆𝑆: (0, 𝑧𝑧)̅ → (1 + 𝜀𝜀,∞), satisfying lim
𝑧𝑧→𝑧̅𝑧

𝜁𝜁𝑆𝑆(𝑧𝑧) = ∞ if 𝑧𝑧̅ < ∞, one could 

reverse-engineer as 𝑠𝑠(𝑧𝑧) = 𝛾𝛾 exp �∫ [1 − 𝜁𝜁𝑆𝑆(𝜉𝜉)]𝑑𝑑𝑑𝑑 𝜉𝜉⁄𝑧𝑧
𝑧𝑧0

� > 0; 𝑧𝑧0, 𝑧𝑧 ∈ (0, 𝑧𝑧)̅, where 𝛾𝛾 = 𝑠𝑠(𝑧𝑧0) is a positive 
constant. One could thus use 𝜁𝜁𝑆𝑆(∙) instead of 𝑠𝑠(∙), as a primitive of symmetric H.S.A. with gross 
substitutes. 
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Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
𝑧̅𝑧

𝑧𝑧

≡ −
𝐻𝐻(𝑧𝑧)
𝑧𝑧𝐻𝐻′(𝑧𝑧) > 0 

and 𝑐𝑐 is a positive constant, which is proportional to TFP.14 The unit cost function, 𝑃𝑃(𝐩𝐩), 

satisfies the linear homogeneity, monotonicity, and strict quasi-concavity, and so does the 

corresponding production function, 𝑋𝑋(𝐱𝐱). This follows from Matsuyama and Ushchev 

(2017; Proposition 1-i)) and guarantees the integrability (in the sense of Samuelson 1950 

and Hurwicz and Uzawa 1971) of H.S.A. demand systems. It is important to note that, 

with the sole exception of CES, 𝐴𝐴(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄  is not constant and depends on 𝐩𝐩. 15  This 

can be verified by differentiating eq.(13) to yield 

𝜕𝜕 ln𝐴𝐴(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

=
𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)

∫ 𝑠𝑠′(𝑧𝑧𝜔𝜔′)𝑧𝑧𝜔𝜔′𝑑𝑑𝜔𝜔′⬚
Ω

=
[𝜁𝜁𝑆𝑆(𝑧𝑧𝜔𝜔) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔)

∫ [𝜁𝜁𝑆𝑆(𝑧𝑧𝜔𝜔′) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔′)𝑑𝑑𝜔𝜔′⬚
Ω

 

which differs from 

𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

= 𝑠𝑠(𝑧𝑧𝜔𝜔), 

unless 𝜁𝜁𝑆𝑆(𝑧𝑧) is independent of 𝑧𝑧, or equivalently, 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 with 𝜁𝜁𝑆𝑆(𝑧𝑧) = 𝜎𝜎 > 1. 

This should not come as a surprise. After all, 𝐴𝐴(𝐩𝐩) is the “average input price”, which 

captures the cross-product effects in the demand system, while 𝑃𝑃(𝐩𝐩) is the inverse 

measure of TFP, which captures the productivity (or welfare) effects of price changes. 

There is no reason to think a priori that they should move together.   

We are now ready to derive the substitutability and love-for-variety measures 

under H.S.A. For symmetric price patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, eq.(13) is simplified to  

𝑠𝑠 �
1

𝐴𝐴(𝟏𝟏Ω−1)�𝑉𝑉 = 1 ⟹
1

𝐴𝐴(𝟏𝟏Ω−1) = 𝑠𝑠−1 �
1
𝑉𝑉
� 

Hence, from eq.(14), the substitutability measure is given by: 

 
14The constant term in eq.(15), which appears by integrating eq.(12), cannot be pinned down. First, 𝐴𝐴(𝐩𝐩), 
the “average input price”, depends on the unit of measurement of inputs, but not on the unit of 
measurement of the final good. In contrast, 𝑃𝑃(𝐩𝐩) is the cost of producing one unit of the final good, when 
the input prices are given by 𝐩𝐩. Hence, it depends not only on the unit of measurement of inputs but also on 
that of the final good. Second, a change in TFP, though it affects 𝑃𝑃(𝐩𝐩), leaves the budget share of each 
input, and hence 𝐴𝐴(𝐩𝐩), unaffected. 
15This holds more generally, that is, for asymmetric H.S.A., as well as H.S.A. with gross complements, as 
shown in Matsuyama and Ushchev (2017; Proposition 1-iii). 
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𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁(1;𝟏𝟏𝛺𝛺−1) = 𝜁𝜁𝑆𝑆 �𝑠𝑠−1 �

1
𝑉𝑉
�� = −

𝑧𝑧𝐻𝐻′′(𝑧𝑧)
𝐻𝐻′(𝑧𝑧) �

𝑧𝑧=𝑠𝑠−1(1 𝑉𝑉⁄ )
> 1. 

(16) 

For the love-for-variety measure, from eq. (15),   

− ln[𝑃𝑃(𝟏𝟏Ω−1)] = ln �𝑐𝑐𝑠𝑠−1 �
1
𝑉𝑉
�� + Φ�𝑠𝑠−1 �

1
𝑉𝑉
�� ⟹ 

−  
𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

= −�
𝑑𝑑[ln 𝑧𝑧 + Φ(𝑧𝑧)]

𝑑𝑑 ln 𝑧𝑧
𝑑𝑑 ln 𝑠𝑠(𝑧𝑧)
𝑑𝑑 ln 𝑧𝑧

� ��
𝑧𝑧=𝑠𝑠−1(1 𝑉𝑉⁄ )

= Φ�𝑠𝑠−1 �
1
𝑉𝑉
�� 

so that 

ℒ(𝑉𝑉) ≡ −  
𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

= Φ�𝑠𝑠−1 �
1
𝑉𝑉
�� = −

𝐻𝐻(𝑧𝑧)
𝑧𝑧𝐻𝐻′(𝑧𝑧)�

z=𝑠𝑠−1(1 V⁄ )
. (17)16 

 

Since 𝑠𝑠−1(1 𝑉𝑉⁄ ) is increasing in 𝑉𝑉, eqs.(16)-(17) imply  

𝜁𝜁𝑆𝑆′(∙) ⋛ 0 ⟺ 𝜎𝜎′(⋅) ⋛ 0;       Φ′(∙) ⋛ 0 ⟺ ℒ′(⋅) ⋛ 0. 

The next lemma shows the relation between the following two functions: 

𝜁𝜁𝑆𝑆(𝑧𝑧) ≡ 1 −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) ≡ −

𝑧𝑧𝐻𝐻′′(𝑧𝑧)
𝐻𝐻′(𝑧𝑧) > 1;  and Φ(𝑧𝑧) ≡

1
𝑠𝑠(𝑧𝑧)�

𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
𝑧̅𝑧

𝑧𝑧

≡ −
𝐻𝐻(𝑧𝑧)
𝑧𝑧𝐻𝐻′(𝑧𝑧) > 0. 

Lemma S:  

𝑧𝑧Φ′(𝑧𝑧)
Φ(𝑧𝑧) = 𝜁𝜁𝑆𝑆(𝑧𝑧) − 1 −

1
Φ(𝑧𝑧) = 𝜁𝜁𝑆𝑆(𝑧𝑧) −�𝜁𝜁𝑆𝑆(𝜉𝜉)𝑤𝑤(𝜉𝜉; 𝑧𝑧)𝑑𝑑𝜉𝜉

𝑧𝑧

𝑧𝑧

. 

where 𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧) ≡ −𝐻𝐻′(𝜉𝜉)/𝐻𝐻(𝑧𝑧), which satisfies ∫ 𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧)𝑑𝑑𝜉𝜉𝑧𝑧
𝑧𝑧 = 1. Hence,  

𝜁𝜁𝑆𝑆′(𝑧𝑧) ⋛ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧)  ⟹Φ′(𝑧𝑧) ⋚ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧). 

The opposite is not true in general. However,  

𝜁𝜁𝑆𝑆′(𝑧𝑧) = 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) ⟺Φ′(𝑧𝑧) = 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧). 

The proof of Lemma S is in Appendix D. By combining Lemma S, eq.(16) and eq.(17),  

Proposition S.  For 𝑠𝑠(𝑧𝑧0)𝑉𝑉0 = 1, 

𝜁𝜁𝑆𝑆′(𝑧𝑧) ⋛ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) ⟺ 𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞); 

Φ′(𝑧𝑧) ⋚ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) ⟺ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

Moreover,  

 
16Moreover, by evaluating eq.(15) at the symmetric price patterns, we can show that ℒ(𝑉𝑉) = ln � 𝐴𝐴�𝟏𝟏Ω

−1�
𝑐𝑐𝑐𝑐�𝟏𝟏Ω

−1�
�. 
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𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞) ⟹ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

The opposite is not true in general.  However,  

𝜎𝜎′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞) ⟺ ℒ′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

In particular, if 𝑧𝑧0 → 0 implies 𝑠𝑠(𝑧𝑧0) → ∞,𝑉𝑉0 → 0 so that Marshall’s 2nd Law, 𝜁𝜁𝑆𝑆′(⋅) >

0 for all 𝑧𝑧 < 𝑧𝑧, is equivalent to increasing substitutability, 𝜎𝜎′(⋅) > 0 for all 𝑉𝑉 > 0, both 

of which imply diminishing love-for-variety, ℒ′(⋅) < 0 for all 𝑉𝑉 > 0.17 The converse is 

not true. Diminishing love-for-variety for all 𝑉𝑉 > 0 does not necessarily imply increasing 

substitutability or Marshall’s 2nd Law globally. However, constant love-for-variety, 

ℒ′(⋅) = 0 for all 𝑉𝑉 > 0, implies both constant substitutability, 𝜎𝜎′(⋅) = 0 for all 𝑉𝑉 > 0, 

and constant price elasticity 𝜁𝜁′(⋅) =  0 for all 𝑧𝑧 < 𝑧𝑧 = ∞, under H.S.A., which occurs 

only under CES. 

Before proceeding, it should be pointed out that there exists an alternative (but 

equivalent) definition of H.S.A. For the sake of completeness, we discuss this alternative 

in Appendix C.   

 

3.2. The HDIA class 

A homothetic symmetric demand system for differentiated inputs belongs to 

HDIA (Homothetic Direct Implicit Additivity) with gross substitutes if it is generated by 

the cost minimization of the competitive industry whose CRS production function, 𝑋𝑋 =

𝑋𝑋(𝐱𝐱) ≡ 𝑍𝑍𝑋𝑋�(𝐱𝐱) can be defined implicitly by: 

 
 � 𝜙𝜙 �

𝑍𝑍𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)

� 𝑑𝑑𝑑𝑑
⬚

Ω
= � 𝜙𝜙�

𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�𝑑𝑑𝑑𝑑
⬚

Ω
≡ 1. 

(18) 

here 𝜙𝜙(⋅): ℝ+ → ℝ+ is 𝐶𝐶3, with 𝜙𝜙′(𝓎𝓎) > 0 > 𝜙𝜙′′(𝓎𝓎), −𝓎𝓎𝜙𝜙′′(𝓎𝓎) 𝜙𝜙′(𝓎𝓎)⁄ < 1 for ∀𝓎𝓎 ∈

(0,∞) and 𝜙𝜙(0) = 0 and 𝜙𝜙(∞) = ∞, and independent of 𝑍𝑍 > 0, the TFP parameter. 

Note that, unlike eq.(13), the adding-up constraint of the H.S.A, eq.(18) defines the 

production function 𝑋𝑋(𝐱𝐱) directly.18 CES with gross substitutes is a special case where 

𝜙𝜙(𝓎𝓎) = (𝓎𝓎)1−1 𝜎𝜎⁄  (𝜎𝜎 > 1). The CoPaTh family of HDIA is given by  

 
17This generalizes the case of translog, 𝑠𝑠(𝑧𝑧) = 𝛾𝛾max{− ln(𝑧𝑧 𝑧𝑧̅⁄ ) , 0}, where 𝜎𝜎(𝑉𝑉) = 1 + 𝛾𝛾𝛾𝛾 and ℒ(𝑉𝑉) = 1 (2𝛾𝛾𝛾𝛾)⁄ . 
18This means that, unlike H.S.A. but similar to HIIA defined in the next section, we do not need to worry about the 
integrability of HDIA. Note also that 𝑋𝑋�(𝐱𝐱) = 𝑋𝑋(𝐱𝐱) 𝑍𝑍⁄  defined by eq.(18) is invariant of TFP, 𝑍𝑍 > 0, by construction. 
Thus, an increase in 𝑍𝑍 causes a proportionate increase in 𝑋𝑋(𝐱𝐱). This allows us to examine the effect of TFP without 
shifting 𝜙𝜙(⋅). Alternatively, we could have defined 𝑋𝑋(𝐱𝐱) by ∫ 𝜙𝜙(𝑥𝑥𝜔𝜔 𝑋𝑋(𝐱𝐱)⁄ )𝑑𝑑𝑑𝑑⬚

Ω = 1, as in Matsuyama and Ushchev 
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𝜙𝜙(𝓎𝓎) = � �1 +
1

𝜎𝜎 − 1
(𝜉𝜉)

1−𝜌𝜌
𝜌𝜌 �

𝜌𝜌
𝜌𝜌−1

𝑑𝑑𝑑𝑑
𝓎𝓎

0
, 

for 0 < 𝜌𝜌 < 1, which converges to CES with 𝜌𝜌 ↗ 1. Symmetric HDIA defined as above 

may be viewed as an extension of the Kimball (1995) aggregator in that the set of 

available inputs Ω is not fixed, and in particular, its Lebesgue measure, 𝑉𝑉 ≡ |Ω|, is a 

variable. 

From the cost minimization problem, eq.(1), subject to eq.(18), we obtain the 

inverse demand curve, 

 
𝑝𝑝𝜔𝜔 = 𝐵𝐵(𝐩𝐩)𝜙𝜙′ �

𝑍𝑍𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)� = 𝐵𝐵(𝐩𝐩)𝜙𝜙′ �

𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�, 
(19) 

and hence the demand curve,  

𝑥𝑥𝜔𝜔 = (𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

�𝑋𝑋�(𝐱𝐱) = (𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

�
𝑋𝑋(𝐱𝐱)
𝑍𝑍

, 

where 𝐵𝐵(𝐩𝐩) is defined by: 

� 𝜙𝜙�(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

��𝑑𝑑𝑑𝑑
⬚

Ω
≡ 1. 

This shows that the choke price is equal to 𝐵𝐵(𝐩𝐩)𝜙𝜙′(0) if 𝜙𝜙′(0) < ∞, and that there is no 

choke price if 𝜙𝜙′(0) = ∞.  The unit cost function is: 

𝑃𝑃(𝐩𝐩) =
𝑃𝑃�(𝐩𝐩)
𝑍𝑍

≡
1
𝑍𝑍
� 𝑝𝑝𝜔𝜔(𝜙𝜙′)−1 �

𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)�𝑑𝑑𝑑𝑑

⬚

Ω
. 

Clearly, both 𝐵𝐵(𝐩𝐩) and 𝑃𝑃�(𝐩𝐩) are linear homogenous in 𝐩𝐩, and independent of 𝑍𝑍 >

0. Hence, an increase in TFP, 𝑍𝑍, causes a proportional decline in the unit cost function, 

𝑃𝑃(𝐩𝐩) = 𝑃𝑃�(𝐩𝐩) 𝑍𝑍⁄ .    

The budget share, 𝑠𝑠𝜔𝜔 = 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝑠𝑠∗(𝑥𝑥𝜔𝜔;𝐱𝐱), is: 

 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =

𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)� = 𝜙𝜙′ �

𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�
𝑥𝑥𝜔𝜔
𝐶𝐶∗(𝐱𝐱). 

(20) 

where  

𝐶𝐶∗(𝐱𝐱) ≡ � 𝜙𝜙′ �
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
⬚

Ω
 

 
(2017). Though mathematically equivalent, this definition requires that 𝜙𝜙(⋅) would no longer be independent of TFP, 
which would make it harder to show that 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are independent of TFP. 
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is linear homogenous in 𝐱𝐱 and independent of 𝑍𝑍 > 0, and satisfies the identity  

 𝑃𝑃�(𝐩𝐩)
𝐵𝐵(𝐩𝐩) = �

𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)�𝑑𝑑𝑑𝑑

⬚

Ω
= � 𝜙𝜙′ �

𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

𝑑𝑑𝑑𝑑
⬚

Ω
=
𝐶𝐶∗(𝐱𝐱)
𝑋𝑋�(𝐱𝐱)

. 
(21) 

Eqs.(20)-(21) show that the budget share under HDIA is a function of the two relative 

prices, 𝑝𝑝𝜔𝜔 𝑃𝑃�(𝐩𝐩)⁄  and 𝑝𝑝𝜔𝜔 𝐵𝐵(𝐩𝐩)⁄ , or a function of the two relative quantities, 𝑥𝑥𝜔𝜔 𝑋𝑋�(𝐱𝐱)⁄  and 

𝑥𝑥𝜔𝜔 𝐶𝐶∗(𝐱𝐱)⁄ , unless 𝑃𝑃�(𝐩𝐩) 𝐵𝐵(𝐩𝐩)⁄ = 𝐶𝐶∗(𝐱𝐱) 𝑋𝑋�(𝐱𝐱)⁄  is a positive constant, which occurs if and 

only if it is CES. Thus, HDIA and H.S.A. do not overlap with the sole exception of 

CES.19 

 From the inverse demand curve, eq.(19), the price elasticity of demand can be 

written as a function of a single variable, 𝓎𝓎𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝑋𝑋�(𝐱𝐱)⁄  as: 

 
𝜁𝜁𝜔𝜔 = 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝒙𝒙) = −

𝜙𝜙′(𝓎𝓎𝜔𝜔)
𝓎𝓎𝜙𝜙′′(𝓎𝓎𝜔𝜔) ≡ 𝜁𝜁𝐷𝐷(𝓎𝓎𝜔𝜔) = 𝜁𝜁𝐷𝐷 �

𝑥𝑥𝜔𝜔
𝑋𝑋�(𝒙𝒙)

� > 1 
(22) 

where 𝜁𝜁𝐷𝐷(𝓎𝓎) > 1 ensures gross substitutability.  Using eq.(19), it can also be written as a 

function of 𝑝𝑝𝜔𝜔 𝐵𝐵(𝐩𝐩) = 𝜙𝜙′(𝓎𝓎𝜔𝜔)⁄  as: 

𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁𝐷𝐷 �(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)�� > 1. 

Under CES, 𝜁𝜁𝐷𝐷′(⋅) = 0. Marshall’s 2nd law, 𝜕𝜕𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) 𝜕𝜕𝑥𝑥𝜔𝜔 < 0,⁄  holds if and only if 

𝜁𝜁𝐷𝐷′(⋅) < 0, the condition satisfied by CoPaTh, with 𝜁𝜁𝐷𝐷(𝓎𝓎) = 1 + (𝜎𝜎 − 1)(𝓎𝓎)
𝜌𝜌−1
𝜌𝜌 . 

We are now ready to derive the substitutability and love-for-variety measures 

under HDIA.  For symmetric quantity patterns, 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω, eq.(18) is simplified to 

𝜙𝜙�
1

𝑋𝑋�(𝟏𝟏Ω)
�𝑉𝑉 = 1 ⟹

1
𝑋𝑋�(𝟏𝟏Ω)

= 𝜙𝜙−1 �
1
𝑉𝑉
�. 

Hence, from eq.(22), the substitutability measure is given by: 

 
𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁∗(1;𝟏𝟏𝛺𝛺) =  𝜁𝜁𝐷𝐷 �𝜙𝜙−1 �

1
𝑉𝑉
�� = −

𝜙𝜙′(𝓎𝓎)
𝓎𝓎𝜙𝜙′′(𝓎𝓎)�

𝓎𝓎=𝜙𝜙−1(1 𝑉𝑉⁄ )
> 1. 

(23) 

The love-for-variety measure under HDIA is given by: 

ℒ(𝑉𝑉) ≡
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 =
1

ℰ𝜙𝜙�𝜙𝜙−1(1 𝑉𝑉⁄ )�
− 1 ≡

𝜙𝜙(𝓎𝓎)
𝓎𝓎𝜙𝜙′(𝓎𝓎)�

𝓎𝓎=𝜙𝜙−1(1 𝑉𝑉⁄ )
− 1 > 0 

(24) 

 
19This statement is a special case of Proposition 2-(ii) in Matsuyama and Ushchev (2017).  
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where  

0 < ℰ𝜙𝜙(𝓎𝓎) ≡
𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) < 1. 20 

Since 𝜙𝜙−1(1 𝑉𝑉⁄ ) is decreasing in 𝑉𝑉, eqs.(23)-(24) imply  

𝜁𝜁𝐷𝐷′(∙) ⋚ 0 ⟺ 𝜎𝜎′(⋅) ⋛ 0;     ℰ𝜙𝜙′ (∙) ⋛ 0 ⟺ ℒ′(∙) ⋛ 0, 

The next lemma shows the relation between the following two functions: 

𝜁𝜁𝐷𝐷(𝓎𝓎) ≡ −
𝜙𝜙′(𝓎𝓎)
𝓎𝓎𝜙𝜙′′(𝓎𝓎) > 1    and    0 < ℰ𝜙𝜙(𝓎𝓎) ≡

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) < 1. 

Lemma D:  

𝓎𝓎ℰ𝜙𝜙′ (𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 −

1
𝜁𝜁𝐷𝐷(𝓎𝓎) − ℰ𝜙𝜙(𝓎𝓎) = � �

1
𝜁𝜁𝐷𝐷(𝜉𝜉)�𝑤𝑤

𝐷𝐷(𝜉𝜉;𝓎𝓎)𝑑𝑑𝑑𝑑
𝓎𝓎

 0
−

1
𝜁𝜁𝐷𝐷(𝓎𝓎). 

where 𝑤𝑤𝐷𝐷(𝜉𝜉;𝓎𝓎) ≡ 𝜙𝜙′(𝜉𝜉) 𝜙𝜙(𝓎𝓎)⁄ > 0, which satisfies  ∫  𝑤𝑤𝐷𝐷(𝜉𝜉;  𝓎𝓎)𝓎𝓎
0 𝑑𝑑𝑑𝑑 = 1.  Hence, 

𝜁𝜁𝐷𝐷′(𝓎𝓎) ⋚ 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0)  ⟹ ℰ𝜙𝜙′ (𝓎𝓎) ⋚ 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0). 

The opposite is not true in general. However,  

𝜁𝜁𝐷𝐷′(𝓎𝓎) = 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0)  ⟺ ℰ𝜙𝜙′ (𝓎𝓎) = 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0). 

The proof of Lemma D is in Appendix D. By combining Lemma D, eq.(23) and eq.(24),  

Proposition D: For 𝜙𝜙(𝓎𝓎0)𝑉𝑉0 = 1, 

𝜁𝜁𝐷𝐷′(𝓎𝓎) ⋚ 0 ∀𝓎𝓎 ∈ (0,𝓎𝓎0) ⟺ 𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞); 

ℰ𝜙𝜙′ (𝓎𝓎) ⋚ 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0) ⟺ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

Moreover, 

𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞)  ⟹ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

The opposite is not true in general. However,  

𝜎𝜎′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞)  ⟺ ℒ′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

In particular, as 𝓎𝓎0 → ∞, 𝑉𝑉0 → 0 so that Marshall’s 2nd Law, 𝜁𝜁𝐷𝐷′(⋅) < 0 for all 𝓎𝓎 > 0,  is 

equivalent to increasing substitutability, 𝜎𝜎′(⋅) > 0 for all 𝑉𝑉 > 0, both of which imply 

diminishing love-for-variety, ℒ′(⋅) < 0 for all 𝑉𝑉 > 0. The converse is not true. 

Diminishing love-for-variety for all 𝑉𝑉 > 0 does not necessarily imply increasing 

 
20Moreover, by evaluating eq.(21) at the symmetric price and quantity patterns, one can show that  
𝑃𝑃��𝟏𝟏Ω−1�
𝐵𝐵(𝟏𝟏Ω−1) =

𝐶𝐶∗(𝟏𝟏Ω)
𝑋𝑋�(𝟏𝟏Ω)

= � ℰ𝜙𝜙 �
1

𝑋𝑋�(𝟏𝟏Ω)
�𝜙𝜙 �

1
𝑋𝑋�(𝟏𝟏Ω)

�𝑑𝑑𝑑𝑑
⬚

Ω
= ℰ𝜙𝜙 �𝜙𝜙−1 �

1
𝑉𝑉�� ⟹ ℒ(𝑉𝑉) =

𝐵𝐵�𝟏𝟏Ω−1�
𝑃𝑃�(𝟏𝟏Ω−1)

− 1 =
𝑋𝑋�(𝟏𝟏Ω)
𝐶𝐶∗(𝟏𝟏Ω) − 1. 
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substitutability or Marshall’s 2nd Law globally. However, constant love-for-variety, 

ℒ′(⋅) = 0 for all 𝑉𝑉 > 0, implies both constant substitutability, 𝜎𝜎′(⋅) = 0 for all 𝑉𝑉 > 0, 

and constant price elasticity 𝜁𝜁𝐷𝐷′(⋅) = 0 for all 𝓎𝓎 > 0 under HDIA, which occurs only 

under CES. 

 

3.3.  The HIIA class.  

A homothetic symmetric demand system for differentiated inputs belongs to HIIA 

(Homothetic Indirect Implicit Additivity) with gross substitutes if it is generated by the 

cost minimization of the competitive industry whose unit cost function, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) =

𝑃𝑃�(𝐩𝐩) 𝑍𝑍⁄ , can be defined implicitly by: 

 
� 𝜃𝜃 �

𝑝𝑝𝜔𝜔
𝑍𝑍𝑍𝑍(𝐩𝐩)

� 𝑑𝑑𝑑𝑑
⬚

Ω
= � 𝜃𝜃 �

𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�𝑑𝑑𝑑𝑑
⬚

Ω
= 1, 

(25) 

where 𝜃𝜃: ℝ++ → ℝ+ is 𝐶𝐶3, with 𝜃𝜃′(𝓏𝓏) < 𝜃𝜃′′(𝓏𝓏), and −𝓏𝓏𝜃𝜃′′(𝓏𝓏) 𝜃𝜃′(𝓏𝓏)⁄ > 1, for 𝜃𝜃(𝓏𝓏) >

0 with lim𝓏𝓏→0 𝜃𝜃(𝓏𝓏) = ∞ and  lim𝓏𝓏→𝓏̅𝓏 𝜃𝜃(𝓏𝓏) = 0, where 𝓏̅𝓏 ≡ inf{𝓏𝓏 > 0|𝜃𝜃(𝓏𝓏) = 0}, and it 

is independent of 𝑍𝑍 > 0.  If 𝓏̅𝓏 < ∞, the choke price is equal to 𝑃𝑃�(𝐩𝐩)𝓏̅𝓏 = 𝑍𝑍𝑍𝑍(𝐩𝐩)𝓏̅𝓏, and 

lim
𝓏𝓏→𝓏𝓏

𝜃𝜃′(𝓏𝓏) = 0. If 𝓏̅𝓏 = ∞, the choke price does not exist and demand for each input 

always remains positive for any positive price vector. Note that, unlike eq.(13), the 

adding-up constraint of the H.S.A, eq.(25) defines the unit cost function 𝑃𝑃(𝐩𝐩) directly.21 

CES with gross substitutes is a special case where 𝜃𝜃(𝓏𝓏) = (𝓏𝓏)1−𝜎𝜎 (𝜎𝜎 > 1).  The CoPaTh 

family of HIIA is given by  

𝜃𝜃(𝓏𝓏) = 𝜎𝜎
𝜌𝜌

1−𝜌𝜌 � �(𝜉𝜉)
𝜌𝜌−1
𝜌𝜌 − 1�

𝜌𝜌
1−𝜌𝜌

𝑑𝑑𝑑𝑑
1

𝓏𝓏 𝓏̅𝓏⁄
 

for 𝓏𝓏 < 𝓏̅𝓏 = (1 − 1 𝜎𝜎⁄ )− 𝜌𝜌
1−𝜌𝜌;  0 < 𝜌𝜌 < 1, which converges to CES as 𝜌𝜌 ↗ 1. 

 The minimization problem, eq.(3), subject to eq.(25) leads to the demand curve 

 
𝑥𝑥𝜔𝜔 = −𝐵𝐵∗(𝐱𝐱)𝜃𝜃′ �

𝑝𝑝𝜔𝜔
𝑍𝑍𝑍𝑍(𝐩𝐩)� = −𝐵𝐵∗(𝐱𝐱)𝜃𝜃′ �

𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

� > 0  
(26) 

 
21This means that, unlike H.S.A. but similar to HDIA defined in the previous section, we do not need to worry about 
the integrability of HIIA. Note also that 𝑃𝑃�(𝐩𝐩) = 𝑍𝑍𝑍𝑍(𝐩𝐩) defined by eq.(25) is invariant of TFP, 𝑍𝑍 > 0, by construction. 
Thus, an increase in 𝑍𝑍 causes a proportionate decline in 𝑃𝑃(𝐩𝐩). This allows us to examine the effect of TFP without 
shifting 𝜃𝜃(⋅). Alternatively, we could define 𝑃𝑃(𝐩𝐩) by ∫ 𝜃𝜃(𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑⬚

Ω = 1, as in Matsuyama and Ushchev (2017). 
Though mathematically equivalent, this definition requires that 𝜃𝜃(⋅) would no longer be independent of TFP, which 
would make it harder to show that 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are independent of TFP. 
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for 𝓏𝓏 < 𝓏̅𝓏, and hence the inverse demand curve,  

𝑝𝑝𝜔𝜔 = 𝑃𝑃�(𝐩𝐩)(−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)� = 𝑍𝑍𝑍𝑍(𝐩𝐩)(−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)�, 

where 𝐵𝐵∗(𝐱𝐱) > 0 is defined by 

� 𝜃𝜃 �(−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)��𝑑𝑑𝑑𝑑
⬚

Ω
≡ 1. 

Thus, the choke price is 𝑃𝑃�(𝐩𝐩)𝓏̅𝓏 = 𝑍𝑍𝑍𝑍(𝐩𝐩)𝓏̅𝓏, if 𝓏̅𝓏 < ∞. The production function is 

𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = 𝑍𝑍𝑋𝑋�(𝐱𝐱) ≡ 𝑍𝑍� (−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)
� 𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑

⬚

Ω
. 

Clearly, both 𝐵𝐵∗(𝐱𝐱) and 𝑋𝑋�(𝐱𝐱) are linear homogeneous in 𝐱𝐱 and independent of 𝑍𝑍 > 0, by 

construction.  Thus, an increase in TFP, 𝑍𝑍, causes a proportional increase in 𝑋𝑋(𝐱𝐱) =

𝑍𝑍𝑋𝑋�(𝐱𝐱). 

The budget share is 

𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =

𝑝𝑝𝜔𝜔
𝐶𝐶(𝐩𝐩) �−𝜃𝜃

′ �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�� = (−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)�
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

, 
(27) 

where 

𝐶𝐶(𝐩𝐩) ≡ � 𝑝𝑝𝜔𝜔 �−𝜃𝜃′ �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

��𝑑𝑑𝑑𝑑
⬚

Ω
> 0 

is linear homogenous in 𝐩𝐩, and independent of 𝑍𝑍 > 0 and satisfies the identity, 

𝐶𝐶(𝐩𝐩)
𝑃𝑃�(𝐩𝐩)

= �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�−𝜃𝜃′ �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�� 𝑑𝑑𝑑𝑑
⬚

Ω
= � (−𝜃𝜃′)−1 �

𝑥𝑥𝜔𝜔
𝐵𝐵∗(𝐱𝐱)�

𝑥𝑥𝜔𝜔
𝐵𝐵∗(𝐱𝐱)𝑑𝑑𝑑𝑑

⬚

Ω
=
𝑋𝑋�(𝐱𝐱)
𝐵𝐵∗(𝐱𝐱). 

(28) 

Eqs.(27)-(28) show that the budget share under HIIA is a function of the two relative 

prices, 𝑝𝑝𝜔𝜔 𝑃𝑃�(𝐩𝐩)⁄  and 𝑝𝑝𝜔𝜔 𝐶𝐶(𝐩𝐩)⁄ , or a function of the two relative quantities, 𝑥𝑥𝜔𝜔 𝑋𝑋�(𝐱𝐱)⁄  and 

𝑥𝑥𝜔𝜔 𝐵𝐵∗(𝐱𝐱)⁄ , unless 𝐶𝐶(𝐩𝐩) 𝑃𝑃�(𝐩𝐩)⁄ = 𝑋𝑋�(𝐱𝐱) 𝐵𝐵∗(𝐱𝐱)⁄  is a positive constant, which occurs if and 

only if it is CES. Thus, HIIA and H.S.A. do not overlap with the sole exception of CES.22 

Furthermore, by comparing the expressions for the budget share under HDIA and the 

budget share under HIIA, one could see that HDIA and HIIA do not overlap with the sole 

exception of CES.23 

 
22This statement is a special case of Proposition 3-(ii) in Matsuyama and Ushchev (2017).    
23This statement is a special case of Proposition 4-(iii) in Matsuyama and Ushchev (2017). 
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From the demand curve, eq.(26), the price elasticity of demand can be written as a 

function of a single variable, 𝓏𝓏𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ as: 

 
𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝒑𝒑) = −

𝓏𝓏𝜔𝜔𝜃𝜃′′(𝓏𝓏𝜔𝜔)
𝜃𝜃′(𝓏𝓏𝜔𝜔)  ≡  𝜁𝜁𝐼𝐼(𝓏𝓏𝜔𝜔) = 𝜁𝜁𝐼𝐼 �

𝑝𝑝𝜔𝜔
𝑃𝑃(𝒑𝒑)� > 1, 

(29) 

where 𝜁𝜁𝐼𝐼(𝓏𝓏) > 1 ensures gross substitutability. Using eq.(26), it can also be written as a 

function of 𝑥𝑥𝜔𝜔 𝐵𝐵∗(𝐱𝐱)⁄ = −𝜃𝜃′(𝓏𝓏𝜔𝜔) as: 

𝜁𝜁𝜔𝜔 ≡ 𝜁𝜁∗(𝑥𝑥𝜔𝜔;  𝐱𝐱)  = 𝜁𝜁𝐼𝐼 �(−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)�� > 1. 

Under CES, 𝜁𝜁𝐼𝐼′(⋅) = 0. Marshall’s 2nd law, 𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔;𝐩𝐩) 𝜕𝜕𝑝𝑝𝜔𝜔 > 0,⁄  holds if and only if 

𝜁𝜁𝐼𝐼′(⋅) > 0, the condition satisfied by CoPaTh with 𝜁𝜁𝐼𝐼(𝓏𝓏𝜔𝜔) = �1 − (1 −

1 𝜎𝜎⁄ )(𝓏𝓏𝜔𝜔)(1−𝜌𝜌) 𝜌𝜌⁄ �
−1

= �1 − (𝓏𝓏𝜔𝜔 𝓏̅𝓏⁄ )(1−𝜌𝜌) 𝜌𝜌⁄ �
−1

. 

We are now ready to derive the substitutability and love-for-variety measures 

under HIIA. For symmetric price patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, eq.(25) is simplified to  

𝜃𝜃 �
1

𝑃𝑃�(𝟏𝟏Ω−1)
�𝑉𝑉 = 1 ⟹

1
𝑃𝑃�(𝟏𝟏Ω−1)

= 𝜃𝜃−1 �
1
𝑉𝑉
�. 

Hence, from eq.(29), the substitutability measure under HIIA is given by: 

 
𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁(1;𝟏𝟏𝛺𝛺−1) =  𝜁𝜁𝐼𝐼 �𝜃𝜃−1 �

1
𝑉𝑉
�� = −

𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) �

𝓏𝓏=𝜃𝜃−1(1 𝑉𝑉⁄ )
> 1. 

(30) 

The love-for-variety measure under HIIA is given by:  

 
ℒ(𝑉𝑉) ≡ −  

𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

=
1

ℰ𝜃𝜃�𝜃𝜃−1(1 𝑉𝑉⁄ )�
≡ −

𝜃𝜃(𝓏𝓏)
𝓏𝓏𝜃𝜃′(𝓏𝓏)�

𝓏𝓏=𝜃𝜃−1(1 𝑉𝑉⁄ )
> 0. 

(31) 

where  

ℰ𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) > 0. 24 

Since 𝜃𝜃−1(1 𝑉𝑉⁄ ) is increasing in 𝑉𝑉, eqs.(30)-(31) imply  

𝜁𝜁𝐼𝐼′(∙) ⋛ 0 ⟺ 𝜎𝜎′(⋅) ⋛ 0;     ℰ𝜃𝜃′ (∙) ⋚ 0 ⟺ ℒ′(⋅) ⋛ 0. 

The next lemma shows the relation between the following two functions: 

 
24Moreover, by evaluating eq.(28) at the symmetric price and quantity patterns, one can show that  

𝐶𝐶�𝟏𝟏Ω−1�
𝑃𝑃�(𝟏𝟏Ω−1)

=
𝑋𝑋�(𝟏𝟏Ω)
𝐵𝐵∗(𝟏𝟏Ω) = � ℰ𝜃𝜃 �

1
𝑃𝑃�(𝟏𝟏Ω−1)

�𝜃𝜃 �
1

𝑃𝑃�(𝟏𝟏Ω−1)
�𝑑𝑑𝑑𝑑

⬚

Ω
= ℰ𝜃𝜃 �𝜃𝜃−1 �

1
𝑉𝑉�� ⟹ ℒ(𝑉𝑉) =

𝑃𝑃��𝟏𝟏Ω−1�
𝐶𝐶(𝟏𝟏Ω−1) =

𝐵𝐵∗(𝟏𝟏Ω)
𝑋𝑋�(𝟏𝟏Ω)

. 
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𝜁𝜁𝐼𝐼(𝓏𝓏)  ≡ −
𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 1     and     ℰ𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) > 0. 

Lemma I:  

𝓏𝓏ℰ𝜃𝜃′ (𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏)  = ℰ𝜃𝜃(𝓏𝓏) + 1 − 𝜁𝜁𝐼𝐼(𝓏𝓏) = � 𝜁𝜁𝐼𝐼(𝜉𝜉)𝑤𝑤𝐼𝐼(𝜉𝜉;𝓏𝓏)𝑑𝑑𝑑𝑑

𝓏𝓏

𝓏𝓏 
− 𝜁𝜁𝐼𝐼(𝓏𝓏). 

where 𝑤𝑤𝐼𝐼(𝜉𝜉;𝓏𝓏) ≡ −𝜃𝜃′(𝜉𝜉) 𝜃𝜃(𝓏𝓏)⁄ > 0, which satisfies  ∫  𝑤𝑤𝐼𝐼(𝜉𝜉;𝓏𝓏)𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑 = 1.  

𝜁𝜁𝐼𝐼′(𝓏𝓏) ⋛ 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏)    ⟹    ℰ𝜃𝜃′ (𝓏𝓏) ⋛ 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). 

The opposite is not true in general.  However,  

𝜁𝜁𝐼𝐼′(𝓏𝓏) = 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏)    ⟺    ℰ𝜃𝜃′ (𝓏𝓏) = 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). 

The proof of Lemma I is in Appendix D. By combining Lemma I, eq.(30), and eq.(31),  

Proposition I:  For 𝜃𝜃(𝓏𝓏0)𝑉𝑉0 = 1, 

𝜁𝜁𝐼𝐼′(𝓏𝓏) ⋛ 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏)  ⟺ 𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞); 

ℰ𝜃𝜃′ (𝓏𝓏) ⋛ 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏) ⟺ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

Moreover,  

𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞) ⟹ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞).  

The opposite is not true in general. However, 

𝜎𝜎′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞) ⟺ ℒ′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞). 

In particular, as 𝓏𝓏0 → 0,𝑉𝑉0 → 0 so that Marshall’s 2nd Law, 𝜁𝜁𝐼𝐼′(⋅) < 0 for all 𝓏𝓏 < 𝓏𝓏,  is 

equivalent to increasing substitutability, 𝜎𝜎′(⋅) > 0 for all 𝑉𝑉 > 0, both of which imply 

diminishing love-for-variety, ℒ′(⋅) < 0 for all 𝑉𝑉 > 0. The converse is not true. 

Diminishing love-for-variety for all 𝑉𝑉 does not necessarily imply increasing 

substitutability or Marshall’s 2nd Law globally. However, constant love-for-variety, 

ℒ′(⋅) = 0 for all 𝑉𝑉 > 0, implies both constant substitutability, 𝜎𝜎′(⋅) = 0 for all 𝑉𝑉 > 0, 

and constant price elasticity 𝜁𝜁𝐼𝐼′(⋅) = 0 for all 𝓏𝓏 < 𝓏𝓏 = ∞, under HIIA, which occurs only 

under CES. 

 

4. Concluding Remarks 

In this paper, we studied how love-for-variety is determined by the underlying 

demand structure. Under general symmetric homothetic demand systems, both 

substitutability across different goods and love-for-variety are expressed as functions of 
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the variety of available goods 𝑉𝑉 only, as 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉).  Since the homotheticity alone 

imposes little restrictions on their properties of these two functions, we turn to three 

classes of homothetic demand systems, H.S.A., HDIA, and HIIA, which are pairwise 

disjoint with the sole exception of CES. For each of these three classes, we establish the 

three main results. First, substitutability is increasing in 𝑉𝑉, if and only if Marshall’s 2nd 

law of demand holds. Second, increasing (decreasing) substitutability implies 

diminishing (increasing) love-for-variety, but the converse is not true. Third, love-for-

variety is constant, if and only if substitutability is constant, which occurs only under 

CES within these three classes. The key results are also illustrated in Figure 2.  

These three classes thus offer a tractable way of capturing the intuition that gains from 

increasing variety is diminishing, if different goods are more substitutable when a wider 

variety of goods are available.  
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Figure 1:  
Three classes of homothetic symmetric 
demand systems with gross substitutes 
 
 

 

 

 

 

Table: Price elasticity, substitutability and love-for-variety under the three classes. 

 Price Elasticity: 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) Substitutability: 𝜎𝜎(𝑉𝑉) Love-for-Variety: ℒ(𝑉𝑉) 
H.S.A. 𝜁𝜁𝜔𝜔 = 𝜁𝜁𝑆𝑆 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝜎𝜎(𝑉𝑉) = 𝜁𝜁𝑆𝑆 �𝑠𝑠−1 �

1
𝑉𝑉
�� ℒ(𝑉𝑉) =

1
 ℰ𝐻𝐻�𝑠𝑠−1(1 𝑉𝑉⁄ )�

  

𝜁𝜁𝑆𝑆(𝑧𝑧) ≡ −𝑧𝑧𝐻𝐻′′(𝑧𝑧)
𝐻𝐻′(𝑧𝑧) > 1,ℰ𝐻𝐻(𝑧𝑧) ≡ −𝑧𝑧𝐻𝐻′(𝑧𝑧)

𝐻𝐻(𝑧𝑧) > 0 with 𝐻𝐻(𝑧𝑧) > 0 decreasing and convex. 

HDIA 
𝜁𝜁𝜔𝜔 = 𝜁𝜁𝐷𝐷 �(𝜙𝜙′)−1 �

𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

�� 𝜎𝜎(𝑉𝑉) = 𝜁𝜁𝐷𝐷 �𝜙𝜙−1 �
1
𝑉𝑉
� � ℒ(𝑉𝑉) =

1
ℰ𝜙𝜙(𝜙𝜙−1(1 𝑉𝑉⁄ ) )

− 1 

𝜁𝜁𝐷𝐷(𝓎𝓎) ≡ − 𝜙𝜙′(𝓎𝓎)
𝓎𝓎𝜙𝜙′′(𝓎𝓎) > 1; 0 < ℰ𝜙𝜙(𝓎𝓎) ≡ 𝓎𝓎𝜙𝜙′(𝓎𝓎)

𝜙𝜙(𝓎𝓎) < 1 with 𝜙𝜙(𝓎𝓎) > 0 increasing and concave. 

HIIA 
𝜁𝜁𝜔𝜔 = 𝜁𝜁𝐼𝐼 �

𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

� 𝜎𝜎(𝑉𝑉) = 𝜁𝜁𝐼𝐼 �𝜃𝜃−1 �
1
𝑉𝑉
�� ℒ(𝑉𝑉) =

1
ℰ𝜃𝜃�𝜃𝜃−1(1 𝑉𝑉⁄ )�

 

𝜁𝜁𝐼𝐼(𝓏𝓏) ≡ − 𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 1; ℰ𝜃𝜃(𝓏𝓏) ≡ − 𝓏𝓏𝜃𝜃′(𝓏𝓏)

𝜃𝜃(𝓏𝓏) > 0 with 𝜃𝜃(𝓏𝓏) > 0 decreasing and convex. 

 
Figure 2:  The 2nd law, increasing substitutability, and diminishing love-for-variety 
under the three classes. 
 

The 2nd Law of Demand 
𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) is increasing in 𝑝𝑝𝜔𝜔 . 
𝜁𝜁(𝑥𝑥𝜔𝜔;𝐱𝐱) is decreasing in 𝑥𝑥𝜔𝜔 . 

  

  Diminishing Love-for-Variety 
ℒ′(𝑉𝑉) < 0 for all 𝑉𝑉 > 0. 

Increasing Substitutability  
𝜎𝜎′(𝑉𝑉) > 0 for all 𝑉𝑉 > 0. 
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Appendix A:  Allen-Uzawa elasticity of substation at the symmetric patterns under 

general symmetric homothetic demand systems. 

The Allen-Uzawa elasticity of substitution between two inputs, 𝜔𝜔,𝜔𝜔′ ∈ Ω, are given by: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝜔𝜔 ,𝑝𝑝𝜔𝜔′ ,𝐩𝐩) =
𝑃𝑃(𝐩𝐩)𝑃𝑃𝜔𝜔𝜔𝜔′(𝑝𝑝𝜔𝜔,𝑝𝑝𝜔𝜔′ ,𝐩𝐩)
𝑥𝑥(𝑝𝑝𝜔𝜔,𝐩𝐩)𝑥𝑥(𝑝𝑝𝜔𝜔′ ,𝐩𝐩) , 

where 𝑥𝑥(𝑝𝑝𝜔𝜔,𝐩𝐩) is the demand for 𝜔𝜔 per unit of output, while the functions 

𝑃𝑃𝜔𝜔𝜔𝜔′(𝑝𝑝𝜔𝜔,𝑝𝑝𝜔𝜔′ ,𝐩𝐩) are the ``second cross-derivatives’’ of 𝑃𝑃(𝐩𝐩). The second-order Taylor 

approximation of 𝑃𝑃(𝐩𝐩) is 

𝑃𝑃(𝐩𝐩 + 𝛼𝛼𝐡𝐡) = 𝑃𝑃(𝐩𝐩) + 𝛼𝛼� 𝑥𝑥(𝑝𝑝𝜔𝜔 ,𝐩𝐩)ℎ𝜔𝜔𝑑𝑑𝑑𝑑
⬚

Ω
+
𝛼𝛼2

2
�

𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔,𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

ℎ𝜔𝜔2 𝑑𝑑𝑑𝑑
⬚

Ω

+
𝛼𝛼2

2
� � 𝑃𝑃𝜔𝜔𝜔𝜔′(𝑝𝑝𝜔𝜔,𝑝𝑝𝜔𝜔′ ,𝐩𝐩)ℎ𝜔𝜔ℎ𝜔𝜔′

⬚

Ω
𝑑𝑑𝑑𝑑𝑑𝑑𝜔𝜔′

⬚

Ω
+ 𝑜𝑜(𝛼𝛼2), 

where 𝐡𝐡 is a function over Ω, and 𝛼𝛼 is a scalar.  The linear homogeneity of 𝑃𝑃(𝐩𝐩) implies 

the following identity: 

�
𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔,𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑝𝑝𝜔𝜔2 𝑑𝑑𝑑𝑑
⬚

Ω
+ � � 𝑃𝑃𝜔𝜔𝜔𝜔′(𝑝𝑝𝜔𝜔,𝑝𝑝𝜔𝜔′ ,𝐩𝐩)𝑝𝑝𝜔𝜔𝑝𝑝𝜔𝜔′

⬚

Ω

⬚

Ω
𝑑𝑑𝑑𝑑𝑑𝑑𝜔𝜔′ = 0. 

By setting (𝑝𝑝𝜔𝜔 ,𝐩𝐩) = (1,𝟏𝟏Ω−1) and (𝑝𝑝𝜔𝜔 ,𝑝𝑝𝜔𝜔′ ,𝐩𝐩) = (1,1,𝟏𝟏Ω−1) in the identity, we obtain: 

�
𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔,𝟏𝟏Ω−1)

𝜕𝜕𝑝𝑝𝜔𝜔
��
𝑝𝑝𝜔𝜔=1

�� 𝑑𝑑𝑑𝑑
⬚

Ω
�

�����
=𝑉𝑉

+ 𝑃𝑃𝜔𝜔𝜔𝜔′(1,1,𝟏𝟏Ω−1) �� � 𝑑𝑑𝑑𝑑𝑑𝑑𝜔𝜔′
⬚

Ω

⬚

Ω���������
=𝑉𝑉2

� = 0. 

Using the definition of 𝜎𝜎(𝑉𝑉), 

𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁(1;𝟏𝟏Ω−1) = − �
𝜕𝜕 ln 𝑥𝑥(𝑝𝑝𝜔𝜔,𝑝𝑝𝟏𝟏Ω−1)

𝜕𝜕 ln𝑝𝑝𝜔𝜔
��
𝑝𝑝𝜔𝜔=𝑝𝑝

  ⟹    
𝜕𝜕𝜕𝜕(𝑝𝑝𝜔𝜔,𝟏𝟏Ω−1)

𝜕𝜕𝑝𝑝𝜔𝜔
�
𝑝𝑝𝜔𝜔=1

= −𝜎𝜎(𝑉𝑉)𝑥𝑥(1,𝟏𝟏Ω−1), 

the above identity can be further rewritten as: 

𝑃𝑃𝜔𝜔𝜔𝜔′(1,1,𝟏𝟏Ω−1) =
𝜎𝜎(𝑉𝑉)
𝑉𝑉

𝑥𝑥(1,𝟏𝟏Ω−1). 
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Moreover, by setting 𝐩𝐩 = 𝑃𝑃(𝟏𝟏Ω−1) in 𝑃𝑃(𝐩𝐩) = ∫ 𝑥𝑥(𝑝𝑝𝜔𝜔,𝐩𝐩)𝑝𝑝𝜔𝜔𝑑𝑑𝑑𝑑
⬚
Ω , 

𝑃𝑃(𝟏𝟏Ω−1) = 𝑉𝑉𝑉𝑉(1,𝟏𝟏Ω−1). 

Thus, the Allen-Uzawa elasticity of substitution evaluated at a symmetric outcome: 

𝐴𝐴𝐴𝐴𝐴𝐴𝜔𝜔𝜔𝜔′(1,1,𝟏𝟏Ω−1) =
𝑃𝑃(𝟏𝟏Ω−1)𝑃𝑃𝜔𝜔𝜔𝜔′(1,1,𝟏𝟏Ω−1)

[𝑥𝑥(1,𝟏𝟏Ω−1)]2 =
𝑉𝑉𝑉𝑉(1,𝟏𝟏Ω−1)𝜎𝜎(𝑉𝑉)

𝑉𝑉 𝑥𝑥(1,𝟏𝟏Ω−1)
[𝑥𝑥(1,𝟏𝟏Ω−1)]2 = 𝜎𝜎(𝑉𝑉). 

 

Appendix B: 𝝈𝝈(𝑽𝑽) and 𝓛𝓛(𝑽𝑽) under Geometric Means of CES 

This appendix shows that there exists a class of homothetic non-CES demand 

systems in which 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are independent of 𝑉𝑉. Moreover, within this class, they 

exist a parametric family in which that 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) move in the same direction as one 

of the parameters changes. 

Consider the symmetric CRS production function, 𝑋𝑋(𝐱𝐱), defined by a weighted 

geometric mean of symmetric CES production functions with different 𝜎𝜎 ∈ (1,∞): 

ln𝑋𝑋(𝐱𝐱) ≡ � ln𝑋𝑋(𝐱𝐱;𝜎𝜎) 𝑑𝑑𝑑𝑑(𝜎𝜎)
∞

1
, 

where 

[𝑋𝑋(𝐱𝐱;𝜎𝜎)]1−
1
𝜎𝜎 ≡ � 𝑥𝑥𝜔𝜔

1−1𝜎𝜎
⬚

Ω
𝑑𝑑𝑑𝑑 

and 𝐹𝐹(⋅) is a c.d.f. of 𝜎𝜎 ∈ (1,∞),  

� 𝑑𝑑𝑑𝑑(𝜎𝜎)
∞

1
= 1. 

Proposition B: Consider the homothetic demand system generated by a weighted 

geometric mean of symmetric CES production functions. Then, 

i) The substitutability measure, 𝜎𝜎(𝑉𝑉), is independent of 𝑉𝑉 and given by:  

𝜎𝜎(𝑉𝑉) =
1

𝐸𝐸𝐹𝐹(1 𝜎𝜎⁄ ) > 1; 

ii) The love-for-variety measure, ℒ(𝑉𝑉), is independent of 𝑉𝑉 and given by  

ℒ(𝑉𝑉) = 𝐸𝐸𝐹𝐹 �
1

𝜎𝜎 − 1
� > 0; 
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iii) The range of 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) is given by:  

0 <
1

𝜎𝜎(𝑉𝑉) − 1
≤ ℒ(𝑉𝑉) < ∞, 

where the equality holds if and only if 𝐹𝐹 is degenerate. 

 

Proof.  The inverse demand for variety 𝜔𝜔 ∈ Ω is 

𝑝𝑝𝜔𝜔 = 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝜕𝜕(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

= 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)�
𝑥𝑥𝜔𝜔

−1𝜎𝜎

[𝑋𝑋(𝐱𝐱;𝜎𝜎)]1−
1
𝜎𝜎
𝑑𝑑𝑑𝑑(𝜎𝜎)

∞

1

= 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)� 𝑥𝑥𝜔𝜔
−1𝜎𝜎𝑑𝑑𝐹𝐹∗(𝐱𝐱;𝜎𝜎)

∞

1
, 

where 𝑑𝑑𝐹𝐹∗(𝐱𝐱;𝜎𝜎) ≡ 𝑑𝑑𝑑𝑑(𝜎𝜎) [𝑋𝑋(𝐱𝐱;𝜎𝜎)]1−
1
𝜎𝜎⁄ .  Thus, the price elasticity of demand, 

𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), as a function of the quantities, satisfies 

1
𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) ≡ −

𝜕𝜕 ln𝑝𝑝𝜔𝜔
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

=
∫ 1

𝜎𝜎 𝑥𝑥𝜔𝜔
−1𝜎𝜎𝑑𝑑𝐹𝐹∗(𝐱𝐱;𝜎𝜎)∞

1

∫ 𝑥𝑥𝜔𝜔
−1𝜎𝜎𝑑𝑑𝐹𝐹∗(𝐱𝐱;𝜎𝜎)∞

1

< 1. 

By evaluating this at the symmetric quantity patterns 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω, 

1
𝜎𝜎(𝑉𝑉) ≡

1
𝜁𝜁∗(𝑥𝑥; 𝑥𝑥𝟏𝟏Ω) ≡

∫ 1
𝜎𝜎 𝑥𝑥

−1𝜎𝜎 𝑑𝑑𝑑𝑑(𝜎𝜎)

[𝑋𝑋(𝑥𝑥𝟏𝟏Ω;𝜎𝜎)]1−
1
𝜎𝜎

∞
1

∫ 𝑥𝑥−
1
𝜎𝜎 𝑑𝑑𝑑𝑑(𝜎𝜎)

[𝑋𝑋(𝑥𝑥𝟏𝟏Ω;𝜎𝜎)]1−
1
𝜎𝜎

∞
1

=
∫ 𝑥𝑥−

1
𝜎𝜎

𝑉𝑉𝑥𝑥1−
1
𝜎𝜎

∞
1

𝑑𝑑𝑑𝑑(𝜎𝜎)
𝜎𝜎

∫ 𝑥𝑥−
1
𝜎𝜎

𝑉𝑉𝑥𝑥1−
1
𝜎𝜎

∞
1 𝑑𝑑𝑑𝑑(𝜎𝜎)

= �
𝑑𝑑𝑑𝑑(𝜎𝜎)
𝜎𝜎

∞

1

= 𝐸𝐸𝐹𝐹 �
1
𝜎𝜎
� < 1. 

This proves i).    

 Next, from ln𝑋𝑋(𝟏𝟏Ω) ≡ ∫ ln𝑋𝑋(𝟏𝟏Ω;𝜎𝜎) 𝑑𝑑𝑑𝑑(𝜎𝜎)∞
1 = ∫ ln𝑉𝑉 𝜎𝜎

𝜎𝜎−1
𝑑𝑑𝑑𝑑(𝜎𝜎)∞

1 =

𝐸𝐸𝐹𝐹 �
𝜎𝜎

𝜎𝜎−1
� ln𝑉𝑉, 

ℒ(𝑉𝑉) ≡ −
𝑑𝑑 ln𝓎𝓎(𝑉𝑉)
𝑑𝑑 ln𝑉𝑉

− 1 =
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 = 𝐸𝐸𝐹𝐹 �
𝜎𝜎

𝜎𝜎 − 1
� − 1 = 𝐸𝐸𝐹𝐹 �

1
𝜎𝜎 − 1

� > 0. 

This proves ii).  

For iii), Jensen’s inequality implies 

ℒ(𝑉𝑉) = 𝐸𝐸𝐹𝐹 �
1 𝜎𝜎⁄

1 − 1 𝜎𝜎⁄
� ≥

𝐸𝐸𝐹𝐹(1 𝜎𝜎⁄ )
1 − 𝐸𝐸𝐹𝐹(1 𝜎𝜎⁄ ) =

1 𝜎𝜎(𝑉𝑉)⁄
1 − 1 𝜎𝜎(𝑉𝑉)⁄ =

1
𝜎𝜎(𝑉𝑉) − 1

, 
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where the lower bound is reached if and only if 𝐹𝐹 is degenerate. Next, consider the Pareto 

distribution of 𝜎𝜎: 

𝐹𝐹(𝜎𝜎) = 1 − �
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎

�
𝛼𝛼

, 𝜎𝜎 ≥ 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 ≡
𝛼𝛼𝜎𝜎0
𝛼𝛼 + 1

> 1, 

where 𝜎𝜎0 > 1 and 𝛼𝛼 > 1 (𝜎𝜎0 − 1)⁄ . The distribution and density of 𝑥𝑥 = 1 𝜎𝜎⁄  are given 

by: 

𝐺𝐺(𝑥𝑥) = (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥)𝛼𝛼;  𝑔𝑔(𝑥𝑥) = 𝛼𝛼(𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚)𝛼𝛼𝑥𝑥𝛼𝛼−1, 𝑥𝑥 ∈ �0,
1

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
�. 

Thus,  

1
𝜎𝜎(𝑉𝑉) = 𝔼𝔼𝐹𝐹 �

1
𝜎𝜎
� = 𝔼𝔼𝐺𝐺(𝑥𝑥) = 𝛼𝛼(𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚)𝛼𝛼 � 𝑥𝑥𝛼𝛼

1 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚⁄

0
𝑑𝑑𝑑𝑑 =

1
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼
𝛼𝛼 + 1

=
1
𝜎𝜎0

< 1; 

ℒ(𝑉𝑉) = 𝔼𝔼𝐹𝐹 �
1

𝜎𝜎 − 1
� = 𝔼𝔼𝐺𝐺 �

𝑥𝑥
1 − 𝑥𝑥

� = 𝔼𝔼𝐺𝐺 ��𝑥𝑥𝑘𝑘
∞

𝑘𝑘=1

�  = �𝔼𝔼𝐺𝐺(𝑥𝑥𝑘𝑘)
∞

𝑘𝑘=1

= �𝛼𝛼(𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚)𝛼𝛼 � 𝑥𝑥𝛼𝛼+𝑘𝑘−1
1 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚⁄

0
𝑑𝑑𝑑𝑑

∞

𝑘𝑘=1

 

= �
𝛼𝛼

𝛼𝛼 + 𝑘𝑘
�

1
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘∞

𝑘𝑘=1

= �
𝛼𝛼

𝛼𝛼 + 𝑘𝑘
�
𝛼𝛼 + 1
𝛼𝛼

�
𝑘𝑘

�
1
𝜎𝜎0
�
𝑘𝑘∞

𝑘𝑘=1

= �
(1 + 1 𝛼𝛼⁄ )𝑘𝑘

1 + 𝑘𝑘 𝛼𝛼⁄
�

1
𝜎𝜎0
�
𝑘𝑘∞

𝑘𝑘=1

 

Holding 𝜎𝜎(𝑉𝑉) = 𝜎𝜎0 constant, ℒ(𝑉𝑉) is monotonically decreasing in 𝛼𝛼 because 

𝑑𝑑 ln �(1 + 1 𝛼𝛼⁄ )𝑘𝑘
1 + 𝑘𝑘 𝛼𝛼⁄ �

𝑑𝑑 ln𝛼𝛼
= −

𝛼𝛼𝑘𝑘(𝑘𝑘 − 1)
(𝛼𝛼 + 1)(𝛼𝛼 + 𝑘𝑘) ≤ 0. 

Moreover,  

lim
𝛼𝛼→∞

�
(1 + 1 𝛼𝛼⁄ )𝑘𝑘

1 + 𝑘𝑘 𝛼𝛼⁄
�

1
𝜎𝜎0
�
𝑘𝑘∞

𝑘𝑘=1

= ��
1
𝜎𝜎0
�
𝑘𝑘∞

𝑘𝑘=1

=
1

𝜎𝜎0 − 1
=

1
𝜎𝜎(𝑉𝑉) − 1

; 
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lim
𝛼𝛼→1 (𝜎𝜎0−1)⁄

�
(1 + 1 𝛼𝛼⁄ )𝑘𝑘

1 + 𝑘𝑘 𝛼𝛼⁄
�

1
𝜎𝜎0
�
𝑘𝑘∞

𝑘𝑘=1

= �
1

1 + (𝜎𝜎0 − 1)𝑘𝑘

∞

𝑘𝑘=1

> �
𝑑𝑑𝑑𝑑

1 + (𝜎𝜎0 − 1)𝑧𝑧

∞

1

=
ln[1 + (𝜎𝜎0 − 1)𝑧𝑧]

(𝜎𝜎0 − 1) �
1

∞

= ∞, 

from which  

1
𝜎𝜎(𝑉𝑉) − 1

≤ ℒ(𝑉𝑉) < ∞. 

This completes the proof. ∎ 

We are now ready to construct a parametric family of the distribution, 𝐹𝐹𝛼𝛼, in 

which 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are independent of 𝑉𝑉 and move in the same direction as 𝛼𝛼 varies.   

𝐹𝐹𝛼𝛼(𝜎𝜎) = 1 − �
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎

�
𝛼𝛼

,
1
𝜎𝜎
≤

1
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

≡
1 + 𝛼𝛼
𝛼𝛼

ℎ(𝛼𝛼) < 1. 

Then, following the same step in the proof of Part iii) of Proposition, 

1
𝜎𝜎(𝑉𝑉) = 𝔼𝔼𝐹𝐹𝛼𝛼 �

1
𝜎𝜎
� =

1
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼
𝛼𝛼 + 1

= ℎ(𝛼𝛼);  ℒ(𝑉𝑉) = 𝔼𝔼𝐹𝐹𝛼𝛼 �
1

𝜎𝜎 − 1
�

= �
(1 + 1 𝛼𝛼⁄ )𝑘𝑘

1 + 𝑘𝑘 𝛼𝛼⁄
�ℎ(𝛼𝛼)�

𝑘𝑘
∞

𝑘𝑘=1

 

with 

𝑑𝑑 ln �(1 + 1 𝛼𝛼⁄ )𝑘𝑘
1 + 𝑘𝑘 𝛼𝛼⁄ �ℎ(𝛼𝛼)�

𝑘𝑘
�

𝑑𝑑 ln𝛼𝛼
= 𝛼𝛼𝑘𝑘 �

ℎ′(𝛼𝛼)
ℎ(𝛼𝛼)

−
(𝑘𝑘 − 1)

(𝛼𝛼 + 1)(𝛼𝛼 + 𝑘𝑘)�. 

Fix ℎ0(𝛼𝛼), which is increasing in 𝛼𝛼, and satisfies 0 < ℎ0(𝛼𝛼) < 1, and whose derivative is 

bounded.  Then, for 0 < 𝑐𝑐 < 1, consider ℎ(𝛼𝛼, 𝜀𝜀) ≡ (1 − 𝜀𝜀)𝑐𝑐 + 𝜀𝜀ℎ0(𝛼𝛼).  When 𝜀𝜀 =

0,𝜎𝜎(𝑉𝑉) is constant, while ℒ(𝑉𝑉) is decreasing in 𝛼𝛼. But, for a positive but sufficiently 

small 𝜀𝜀, 𝜎𝜎(𝑉𝑉) is decreasing, while ℒ(𝑉𝑉) continues to be decreasing in 𝛼𝛼 by continuity. 
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Appendix C. An Alternative (and Equivalent) specification of the HSA class.  

There exists an alternative (but equivalent) definition of H.S.A.. That is, a 

homothetic symmetric demand system belongs to H.S.A. (Homothetic Single Aggregator) 

if there exists a function of a single variable, 𝑠𝑠∗:ℝ++ → ℝ+ which is 𝐶𝐶2 with 0 <

ℰ𝑠𝑠∗(𝑦𝑦) ≡ 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1, 𝑠𝑠∗(0) = 0 and 𝑠𝑠∗(∞) = ∞, such that the budget share of 

𝜔𝜔 ∈ Ω can be written as: 

 
𝑠𝑠𝜔𝜔 =

𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

= 𝑠𝑠∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(x)�, 

(32) 

where 𝐴𝐴∗(𝐱𝐱) is defined implicitly and uniquely by the adding-up constraint: 

 
� 𝑠𝑠∗ �

𝑥𝑥𝜔𝜔
𝐴𝐴∗(x)�𝑑𝑑𝑑𝑑

⬚

𝛺𝛺
≡ 1 

(33) 

By construction, 𝐴𝐴∗(𝐱𝐱) is linear homogenous in 𝐱𝐱 for any fixed Ω and The budget share 

of each input is a function of its normalized quantity, 𝑦𝑦𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄ , defined as its own 

quantity 𝑥𝑥𝜔𝜔 divided by the common quantity aggregator 𝐴𝐴∗(𝐱𝐱). The budget shares of all 

inputs are added to up to one. 

The price elasticity of 𝜔𝜔 ∈ Ω can be written as a function of 𝑦𝑦𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄  as: 

𝜁𝜁𝜔𝜔 = 𝜁𝜁∗(𝑥𝑥𝜔𝜔;𝐱𝐱) = �1 −
𝑦𝑦𝜔𝜔𝑠𝑠∗′(𝑦𝑦𝜔𝜔) 
𝑠𝑠∗(𝑦𝑦𝜔𝜔) �

−1

≡ 𝜁𝜁𝑆𝑆∗(𝑦𝑦𝜔𝜔) = 𝜁𝜁𝑆𝑆∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(x)� > 1, 

where 𝜁𝜁𝑆𝑆∗: (0,∞) → (1,∞) is 𝐶𝐶1. Note that the assumption, 0 < ℰ𝑠𝑠∗(𝑦𝑦) ≡

𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1 ensures 𝜁𝜁𝑆𝑆∗(𝑦𝑦𝜔𝜔) > 1,  that is, gross substitutability.25  It turns out to 

be convenient to introduce another function, 𝐻𝐻∗:ℝ++ → ℝ+, 

𝐻𝐻∗(𝑦𝑦) ≡ �
𝑠𝑠∗(𝜉𝜉∗)
𝜉𝜉∗

𝑦𝑦

0

𝑑𝑑𝜉𝜉∗, 

so that 

 
𝜁𝜁𝑆𝑆∗(𝑦𝑦) ≡ �1 −

𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 
𝑠𝑠∗(𝑦𝑦) �

−1

≡ −
𝐻𝐻∗′(𝑦𝑦) 
𝑦𝑦𝐻𝐻∗′′(𝑦𝑦)

> 1. 
(34) 

 
25Conversely, from any continuously differentiable 𝜁𝜁∗: (0,∞) → (1,∞), one could reverse-engineer as 𝑠𝑠∗(𝑦𝑦) =
𝛾𝛾∗ exp �∫ �1 − 1

𝜁𝜁∗(𝜉𝜉∗)�
𝑑𝑑𝜉𝜉∗

𝜉𝜉∗
𝑦𝑦
𝑦𝑦0

� > 0, where 𝛾𝛾∗ = 𝑠𝑠∗(𝑦𝑦0) is a positive constant. Thus, we could also use 𝜁𝜁∗(∙) instead of 
𝑠𝑠∗(∙) as a primitive of symmetric H.S.A. with gross substitutes.  
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In general, 𝜁𝜁𝑆𝑆∗(∙) can be nonmonotonic. Under CES, given by 𝑠𝑠∗(𝑦𝑦) = 𝛾𝛾1 𝜎𝜎⁄ (𝑦𝑦)1−1 𝜎𝜎⁄ ,  it 

is constant, 𝜁𝜁𝑆𝑆∗′(𝑦𝑦) = 0.  Marshall’s 2nd law, 𝜕𝜕𝜕𝜕(𝑥𝑥𝜔𝜔;𝐱𝐱) 𝜕𝜕𝑥𝑥𝜔𝜔 < 0,⁄  holds if and only if 

𝜁𝜁𝑆𝑆∗′(⋅) < 0. The choke price exists if and only if lim
𝑦𝑦→0

𝑠𝑠∗′(𝑦𝑦) < ∞, which implies 

lim
𝑦𝑦→0

𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ = 1 and hence lim
𝑦𝑦→0

𝜁𝜁𝑆𝑆∗(𝑦𝑦) = ∞. Translog corresponds to 𝑠𝑠∗(𝑦𝑦), 

defined implicitly by 𝑠𝑠∗ exp(𝑠𝑠∗ 𝛾𝛾⁄ ) ≡ 𝑧𝑧̅𝑦𝑦, for 𝑧𝑧̅ < ∞.  CoPaTh corresponds to 𝑠𝑠∗(𝑦𝑦) =

�1
𝜎𝜎

+ �1 − 1
𝜎𝜎
� 𝑦𝑦−

1−𝜌𝜌
𝜌𝜌 �

− 𝜌𝜌
1−𝜌𝜌

= �1 − 𝑧𝑧̅−
1−𝜌𝜌
𝜌𝜌 + (𝑦𝑦𝑧𝑧̅)−

1−𝜌𝜌
𝜌𝜌 �

− 𝜌𝜌
1−𝜌𝜌

 with 𝑧𝑧̅ = 𝑠𝑠∗′(0) = �1 − 1
𝜎𝜎
�
− 𝜌𝜌
1−𝜌𝜌. 

After deriving 𝐴𝐴∗(𝐱𝐱) from 𝑠𝑠∗(∙), the production function, 𝑋𝑋(𝐱𝐱), can be obtained 

by integrating eq.(32), which yields 

ln �
𝑋𝑋(𝐱𝐱)
𝑐𝑐∗𝐴𝐴∗(𝐱𝐱)� = �

⎣
⎢
⎢
⎢
⎡
�

𝑠𝑠∗(𝜉𝜉∗)
𝜉𝜉∗

𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)

0

𝑑𝑑𝜉𝜉∗

⎦
⎥
⎥
⎥
⎤
𝑑𝑑𝜔𝜔

⬚

Ω

≡ � 𝐻𝐻∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)�𝑑𝑑𝜔𝜔

⬚

Ω

≡ � 𝑠𝑠∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)�Φ

∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)�𝑑𝑑𝜔𝜔

⬚

Ω

 

(35) 

where 𝑐𝑐∗ is a positive constant, which is proportional to TFP and 

Φ∗(𝑦𝑦) ≡
1

𝑠𝑠∗(𝑦𝑦)�
𝑠𝑠∗(𝜉𝜉∗)
𝜉𝜉∗

𝑦𝑦

0

𝑑𝑑𝜉𝜉∗ ≡
𝐻𝐻∗(𝑦𝑦)
𝑦𝑦𝐻𝐻∗′(𝑦𝑦)

> 1, 

where the inequality follows from ℰ𝑠𝑠∗(𝑦𝑦) ≡ 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1, which implies that 

𝑠𝑠∗(𝑦𝑦) 𝑦𝑦⁄  is decreasing in 𝑦𝑦, and hence 𝐻𝐻∗(𝑦𝑦) is concave. 

Note that 𝑋𝑋(𝐱𝐱) 𝐴𝐴∗(𝐱𝐱)⁄  is constant, if and only if it is CES.  To see this, 

differentiating eq.(33) yields, 

𝜕𝜕 ln𝐴𝐴∗(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

=
𝑦𝑦𝜔𝜔𝑠𝑠∗

′(𝑦𝑦𝜔𝜔)

∫ 𝑠𝑠∗′(𝑦𝑦𝜔𝜔′)𝑦𝑦𝜔𝜔′𝑑𝑑𝜔𝜔′⬚
Ω

=
�1 − 1

𝜁𝜁∗(𝑦𝑦𝜔𝜔)� 𝑠𝑠
∗(𝑦𝑦𝜔𝜔)

∫ �1 − 1
𝜁𝜁∗(𝑦𝑦𝜔𝜔′)� 𝑠𝑠

∗(𝑦𝑦𝜔𝜔′)𝑑𝑑𝜔𝜔′⬚
Ω

, 

which differs from  

𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

= 𝑠𝑠∗(𝑦𝑦𝜔𝜔), 

unless 𝜁𝜁∗(𝑦𝑦𝜔𝜔) is constant. 

For symmetric quantity patterns, 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω, eq.(33) is simplified to 
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𝑠𝑠∗ �
1

𝐴𝐴∗(𝟏𝟏Ω)�𝑉𝑉 = 1 ⟹
1 

𝐴𝐴∗(𝟏𝟏Ω) = 𝑠𝑠∗−1 �
1
𝑉𝑉
�. 

Hence, from eq.(34), the substitutability measure is given by: 

 
𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁∗(1;𝟏𝟏𝛺𝛺) = 𝜁𝜁𝑆𝑆∗ �𝑠𝑠∗−1 �

1
𝑉𝑉
�� = −

𝐻𝐻∗′(𝑦𝑦) 
𝑦𝑦𝐻𝐻∗′′(𝑦𝑦)

�
𝑦𝑦=𝑠𝑠∗−1(1 𝑉𝑉⁄ )

> 1 
(36) 

For the love-for-variety measure, from eq.(35),  

ln𝑋𝑋(𝟏𝟏Ω) = ln 𝑐𝑐∗ + Φ∗ �𝑠𝑠∗−1 �
1
𝑉𝑉
�� − ln 𝑠𝑠∗−1 �

1
𝑉𝑉
� ⟹ 

𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

= �
𝑑𝑑[ln𝑦𝑦 − Φ∗(𝑦𝑦)]

𝑑𝑑 ln 𝑦𝑦
𝑑𝑑 ln 𝑠𝑠∗(𝑦𝑦)
𝑑𝑑 ln 𝑦𝑦

� �
y=𝑠𝑠∗−1(1 𝑉𝑉⁄ )

= Φ∗ �𝑠𝑠∗−1 �
1
𝑉𝑉
�� 

so that 

ℒ(𝑉𝑉) ≡
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 = Φ∗ �𝑠𝑠∗−1 �
1
𝑉𝑉
�� − 1 =

𝐻𝐻∗(𝑦𝑦)
𝑦𝑦𝐻𝐻∗′(𝑦𝑦)

�
y=𝑠𝑠∗−1(1 𝑉𝑉⁄ )

− 1 
(37)26 

Since 𝑠𝑠∗−1(1 𝑉𝑉⁄ ) is decreasing in 𝑉𝑉, eqs.(36)-(37) imply  

𝜁𝜁𝑆𝑆∗′(∙) ⋚ 0 ⟺ 𝜎𝜎′(⋅) ⋛ 0; Φ∗′(⋅) ⋛ 0 ⟺ ℒ′(⋅) ⋚ 0, 

The next lemma shows the relation between the following two functions:  

𝜁𝜁𝑆𝑆∗(𝑦𝑦) ≡ �1 −
𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 
𝑠𝑠∗(𝑦𝑦) �

−1

≡ −
𝐻𝐻∗′(𝑦𝑦) 
𝑦𝑦𝐻𝐻∗′′(𝑦𝑦)

> 1; Φ∗(𝑦𝑦) ≡
1

𝑠𝑠∗(𝑦𝑦)�
𝑠𝑠∗(𝜉𝜉∗)
𝜉𝜉∗

𝑦𝑦

0

𝑑𝑑𝜉𝜉∗ ≡
𝐻𝐻∗(𝑦𝑦)
𝑦𝑦𝐻𝐻∗′(𝑦𝑦)

> 1. 

Lemma S* 

𝑦𝑦Φ∗′(𝑦𝑦)
Φ∗(𝑦𝑦) =

1
Φ∗(𝑦𝑦) − 1 +

1
𝜁𝜁𝑆𝑆∗(𝑦𝑦) =

1
𝜁𝜁𝑆𝑆∗(𝑦𝑦) −� �

1
𝜁𝜁𝑆𝑆∗(𝜉𝜉∗)

�  𝑤𝑤∗(𝜉𝜉∗;𝑦𝑦)𝑑𝑑𝜉𝜉∗
𝑦𝑦

0

. 

where 𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦) ≡ 𝐻𝐻∗′(𝜉𝜉∗) 𝐻𝐻∗(𝑦𝑦)⁄ > 0, which satisfies ∫ 𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦)𝑑𝑑𝜉𝜉∗𝑦𝑦
0 = 1. Hence, 

𝜁𝜁𝑆𝑆∗′(𝑦𝑦) ⋚ 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0) ⟹Φ∗′(𝑦𝑦) ⋛ 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0). 

The opposite is not true in general.  However, 

𝜁𝜁𝑆𝑆∗′(𝑦𝑦) = 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0)  ⟺Φ∗′(𝑦𝑦) = 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0). 

The proof of Lemma S* is in Appendix D. By combining Lemma S*, eq.(36) and eq.(37)  

Proposition S*: For 𝑠𝑠∗(𝑦𝑦0)𝑉𝑉0 = 1, 

 
26 Moreover, by evaluating eq.(35) at the symmetric quantity patterns, ℒ(𝑉𝑉) = ln � 𝑋𝑋(𝟏𝟏Ω)

𝑐𝑐∗𝐴𝐴∗(𝟏𝟏Ω)
� − 1. 
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𝜁𝜁𝑆𝑆∗′(𝑦𝑦) ⋚ 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0) ⟺ 𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞ ); 

Φ∗′(𝑦𝑦) ⋛ 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0) ⟺ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞ ). 

Moreover, 

𝜎𝜎′(𝑉𝑉) ⋛ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞ ) ⟹ ℒ′(𝑉𝑉) ⋚ 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞ ). 

The opposite is not true in general.  However, 

𝜎𝜎′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞ ) ⟺ ℒ′(𝑉𝑉) = 0,∀𝑉𝑉 ∈ (𝑉𝑉0,∞ ). 

In particular, if 𝑦𝑦0 → ∞ implies 𝑠𝑠∗(𝑦𝑦0) → ∞,𝑉𝑉0 → 0 so that Marshall’s 2nd Law, 

𝜁𝜁𝑆𝑆∗′(⋅) < 0 for all 𝑦𝑦 > 0, is equivalent to increasing substitutability, 𝜎𝜎′(⋅) > 0 for all 

𝑉𝑉 > 0, both of which imply diminishing love-for-variety, ℒ′(⋅) < 0 for all 𝑉𝑉 > 0. The 

converse is not true. Diminishing love-for-variety for all 𝑉𝑉 > 0 does not necessarily 

imply increasing substitutability or Marshall’s 2nd Law globally. However, constant love-

for-variety, ℒ′(⋅) = 0 for all 𝑉𝑉 > 0, implies both constant substitutability, 𝜎𝜎′(⋅) = 0 for 

all 𝑉𝑉 > 0, and constant price elasticity 𝜁𝜁𝑆𝑆∗′(⋅) = 0 for all 𝑦𝑦 > 0 under H.S.A., which 

occurs only under CES. 

Indeed, these two definitions of H.S.A. are equivalent.27  The isomorphism 

between the two is given by the one-to-one mapping between 𝑠𝑠(𝑧𝑧) ⟷ 𝑠𝑠∗(𝑦𝑦), defined by:  

𝑠𝑠∗(𝑦𝑦) = 𝑠𝑠 �
𝑠𝑠∗(𝑦𝑦)
𝑦𝑦

� ;          𝑠𝑠(𝑧𝑧) = 𝑠𝑠∗ �
𝑠𝑠(𝑧𝑧)
𝑧𝑧
�. 

Differentiating either of these two equalities yields the identity, 

𝜁𝜁𝑆𝑆∗(𝑦𝑦) ≡ �1 −
𝑑𝑑 ln 𝑠𝑠∗(𝑦𝑦)
𝑑𝑑 ln 𝑦𝑦

�
−1

= 𝜁𝜁𝑆𝑆(𝑧𝑧) ≡ 1 −
𝑑𝑑 ln 𝑠𝑠(𝑧𝑧)
𝑑𝑑 ln 𝑧𝑧

> 1, 

which shows that 0 < ℰ𝑠𝑠∗(𝑦𝑦) ≡ 𝑑𝑑 ln 𝑠𝑠∗(𝑦𝑦)
𝑑𝑑 ln𝑦𝑦

< 1 is equivalent to ℰ𝑠𝑠(𝑧𝑧) ≡ 𝑑𝑑 ln 𝑠𝑠(𝑧𝑧)
𝑑𝑑 ln𝑧𝑧

< 0.  

Furthermore, the normalized quantity, 𝑦𝑦𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄ , and the normalized price, 𝑧𝑧𝜔𝜔 ≡

𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ , are negatively related as  

𝑧𝑧𝜔𝜔 =
𝑠𝑠∗(𝑦𝑦𝜔𝜔)
𝑦𝑦𝜔𝜔

⟺ 𝑦𝑦𝜔𝜔 =
𝑠𝑠(𝑧𝑧𝜔𝜔)
𝑧𝑧𝜔𝜔

, 

𝑑𝑑𝑦𝑦𝜔𝜔
𝑦𝑦𝜔𝜔

= −𝜁𝜁(𝑧𝑧𝜔𝜔)
𝑑𝑑𝑧𝑧𝜔𝜔
𝑧𝑧𝜔𝜔

⟺
𝑑𝑑𝑧𝑧𝜔𝜔
𝑧𝑧𝜔𝜔

 = −
1

𝜁𝜁∗(𝑦𝑦𝜔𝜔)
𝑑𝑑𝑦𝑦𝜔𝜔
𝑦𝑦𝜔𝜔

 

and 

 
27This isomorphism has been shown for the broader class of H.S.A., which allows for asymmetry as well as gross 
complements; see Matsuyama and Ushchev (2017, sec. 3, Remark 3).  
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𝑧𝑧𝜔𝜔𝜁𝜁𝑆𝑆′(𝑧𝑧𝜔𝜔)
𝑦𝑦𝜔𝜔𝜁𝜁𝑆𝑆∗

′(𝑦𝑦𝜔𝜔)
= −𝜁𝜁𝑆𝑆(𝑧𝑧𝜔𝜔) = −𝜁𝜁𝑆𝑆∗(𝑦𝑦𝜔𝜔) < 0. 

In addition, if lim
𝑦𝑦→0

𝑠𝑠∗′(𝑦𝑦) < ∞, then lim
𝑦𝑦→0

𝜁𝜁𝑆𝑆∗(𝑦𝑦) = ∞ and 

lim
𝑦𝑦→0

𝑠𝑠∗(𝑦𝑦)
𝑦𝑦

= lim
𝑦𝑦→0

𝑠𝑠∗′(𝑦𝑦) = 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0} < ∞ 

is the (normalized) choke price. 

Moreover,  
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝐴𝐴(𝐩𝐩)𝐴𝐴∗(𝐱𝐱)
= 𝑦𝑦𝜔𝜔𝑧𝑧𝜔𝜔 = 𝑠𝑠(𝑧𝑧𝜔𝜔) = 𝑠𝑠∗(𝑦𝑦𝜔𝜔) =

𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)

 

hence we have the identity, 

𝑐𝑐 exp �� 𝑠𝑠(𝑧𝑧𝜔𝜔)Φ(𝑧𝑧𝜔𝜔)𝑑𝑑𝑑𝑑
⬚

Ω
� = 𝑐𝑐 exp �� 𝐻𝐻(𝑧𝑧𝜔𝜔)𝑑𝑑𝑑𝑑

⬚

Ω
� =

𝐴𝐴(𝐩𝐩)
𝑃𝑃(𝐩𝐩) =

𝑋𝑋(𝐱𝐱)
𝐴𝐴∗(𝐱𝐱)

= 𝑐𝑐∗ exp �� 𝑠𝑠∗(𝑦𝑦𝜔𝜔)Φ∗(𝑦𝑦𝜔𝜔)
⬚

Ω

𝑑𝑑𝑑𝑑� = 𝑐𝑐∗ exp �� 𝐻𝐻∗(𝑦𝑦𝜔𝜔)
⬚

Ω

𝑑𝑑𝑑𝑑� 

which is a positive constant if and only if it is CES.  Furthermore, using 

𝑠𝑠(𝜉𝜉) = 𝑠𝑠∗(𝜉𝜉∗) = 𝜉𝜉𝜉𝜉∗ →  
𝑑𝑑𝜉𝜉∗

𝜉𝜉∗
= �

𝜉𝜉𝑠𝑠′(𝜉𝜉) 
𝑠𝑠(𝜉𝜉) − 1�

𝑑𝑑𝑑𝑑
𝜉𝜉
→ 𝑠𝑠∗(𝜉𝜉∗)

𝑑𝑑𝜉𝜉∗

𝜉𝜉∗
= �𝑠𝑠′(𝜉𝜉) −

𝑠𝑠(𝜉𝜉)
𝜉𝜉
� 𝑑𝑑𝑑𝑑 

𝜉𝜉 = 𝑧𝑧 ⟷ 𝜉𝜉∗ = 𝑦𝑦;  𝜉𝜉 = 𝑧𝑧 ⟷ 𝜉𝜉∗ = 0, 

we have 

Φ∗(𝑦𝑦) −Φ(𝑧𝑧) ≡
1

𝑠𝑠∗(𝑦𝑦)�
𝑠𝑠∗(𝜉𝜉∗)
𝜉𝜉∗

𝑑𝑑𝜉𝜉∗
𝑦𝑦

0

−
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧𝑧

𝑧𝑧

=
1

𝑠𝑠(𝑧𝑧)��𝑠𝑠′(𝜉𝜉) −
𝑠𝑠(𝜉𝜉)
𝜉𝜉
� 𝑑𝑑𝑑𝑑

𝑧𝑧

𝑧𝑧

−
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧𝑧

𝑧𝑧

= 1. 

Since 𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧) = 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄

∫ [𝑠𝑠(𝜉𝜉′) 𝜉𝜉′⁄ ]𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉′

⟺ 𝑠𝑠(𝑧𝑧)Φ(𝑧𝑧)𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧) = 𝑠𝑠(𝜉𝜉)
𝜉𝜉

 and 𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦) =

𝑠𝑠∗(𝜉𝜉∗) 𝜉𝜉∗⁄

∫ �𝑠𝑠∗�𝜉𝜉∗′� 𝜉𝜉∗′� �𝑦𝑦
0 𝑑𝑑𝜉𝜉∗′

⟺ 𝑠𝑠∗(𝑦𝑦)Φ∗(𝑦𝑦)𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦) = 𝑠𝑠∗(𝜉𝜉∗)
𝜉𝜉∗

, this implies 

𝜉𝜉𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧)
𝜉𝜉∗𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦) =

Φ∗(𝑦𝑦)
Φ(𝑧𝑧) = 1 +

1
Φ(𝑧𝑧) =

Φ∗(𝑦𝑦)
Φ∗(𝑦𝑦)− 1

, 
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ln �
𝑐𝑐
𝑐𝑐∗
� = �[𝑠𝑠∗(𝑦𝑦𝜔𝜔)Φ∗(𝑦𝑦𝜔𝜔) − 𝑠𝑠(𝑧𝑧𝜔𝜔)Φ(𝑧𝑧𝜔𝜔)]𝑑𝑑𝑑𝑑

⬚

Ω

= �[𝐻𝐻∗(𝑦𝑦𝜔𝜔) − 𝐻𝐻(𝑧𝑧𝜔𝜔)]𝑑𝑑𝑑𝑑
⬚

Ω

= � 𝑠𝑠(𝑧𝑧𝜔𝜔)𝑑𝑑𝑑𝑑
⬚

Ω

= 1. 

and  

ℒ(𝑉𝑉) = Φ�𝑠𝑠−1(1 𝑉𝑉⁄ )� = Φ∗�𝑠𝑠∗−1(1 𝑉𝑉⁄ )� − 1. 
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Appendix D. Proofs of Lemmas S, D, I, and S*. 

Proof of Lemma S: Let 𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧) ≡ −𝐻𝐻′(𝜉𝜉)
𝐻𝐻(𝑧𝑧) > 0, which satisfies ∫  𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧)𝑧𝑧

𝑧𝑧 𝑑𝑑𝑑𝑑 = 1,  

because 𝐻𝐻(𝑧𝑧) = 0.  Then, because 𝑧𝑧𝐻𝐻′(𝑧𝑧) = −𝑠𝑠(𝑧𝑧) = 0,   

�[𝜁𝜁𝑆𝑆(𝜉𝜉)− 1]𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧)𝑑𝑑𝑑𝑑
𝑧𝑧

𝑧𝑧

=
∫ [𝜉𝜉𝐻𝐻′′(𝜉𝜉) + 𝐻𝐻′(𝜉𝜉)]𝑑𝑑𝑑𝑑𝑧𝑧
𝑧𝑧

𝐻𝐻(𝑧𝑧) =
∫ 𝑑𝑑[𝜉𝜉𝐻𝐻′(𝜉𝜉)]𝑧𝑧
𝑧𝑧

𝐻𝐻(𝑧𝑧) = −
𝑧𝑧𝐻𝐻′(𝑧𝑧)
𝐻𝐻(𝑧𝑧) =

1
Φ(𝑧𝑧). 

Thus,  

𝑧𝑧Φ′(𝑧𝑧)
Φ(𝑧𝑧) =

𝑧𝑧𝐻𝐻′(𝑧𝑧)
𝐻𝐻(𝑧𝑧) − 1 −

𝑧𝑧𝐻𝐻′′(𝑧𝑧)
𝐻𝐻′(𝑧𝑧) = 𝜁𝜁𝑆𝑆(𝑧𝑧) − 1 −

1
Φ(𝑧𝑧) = 𝜁𝜁𝑆𝑆(𝑧𝑧) −�𝜁𝜁𝑆𝑆(𝜉𝜉)𝑤𝑤𝑆𝑆(𝜉𝜉; 𝑧𝑧)𝑑𝑑𝑑𝑑

𝑧𝑧

𝑧𝑧

, 

from which  

𝜁𝜁𝑆𝑆′(𝑧𝑧) ⋛ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧)  ⟹Φ′(𝑧𝑧) ⋚ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧). 

Furthermore, Φ′(𝑧𝑧) = 0 for 𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) implies 𝜁𝜁𝑆𝑆(𝑧𝑧) = 1 + 1 Φ(𝑧𝑧)⁄ , which is hence 

constant and thus 𝜁𝜁𝑆𝑆′(𝑧𝑧) = 0 for 𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧).  This completes the proof. ∎ 

 

Proof of Lemma D. Let 𝑤𝑤𝐷𝐷(𝜉𝜉;𝓎𝓎) ≡ 𝜙𝜙′(𝜉𝜉) 𝜙𝜙(𝓎𝓎)⁄ > 0, satisfying ∫ 𝑤𝑤𝐷𝐷(𝜉𝜉;  𝓎𝓎)𝓎𝓎
0 𝑑𝑑𝑑𝑑 = 1. 

Then,  

� �1 −
1

𝜁𝜁𝐷𝐷(𝜉𝜉)�𝑤𝑤
𝐷𝐷(𝜉𝜉;𝓎𝓎)𝑑𝑑𝑑𝑑

𝓎𝓎

 0
=
∫ [𝜉𝜉𝜙𝜙′′(𝜉𝜉) + 𝜙𝜙′(𝜉𝜉)]𝑑𝑑𝑑𝑑𝓎𝓎

 0
𝜙𝜙(𝓎𝓎) =

∫ 𝑑𝑑[𝜉𝜉𝜙𝜙′(𝜉𝜉)]𝓎𝓎
 0
𝜙𝜙(𝓎𝓎) =

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) ≡ ℰ𝜙𝜙(𝓎𝓎). 

Thus,  

𝓎𝓎ℰ𝜙𝜙′ (𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 −

1
𝜁𝜁𝐷𝐷(𝓎𝓎) − ℰ𝜙𝜙(𝓎𝓎) = � �

1
𝜁𝜁𝐷𝐷(𝜉𝜉)�𝑤𝑤

𝐷𝐷(𝜉𝜉;𝓎𝓎)𝑑𝑑𝑑𝑑
𝓎𝓎

 0
−

1
𝜁𝜁𝐷𝐷(𝓎𝓎), 

 

from which 

𝜁𝜁𝐷𝐷′(𝓎𝓎) ⋚ 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0)  ⟹ ℰ𝜙𝜙′ (𝓎𝓎) ⋚ 0,∀𝓎𝓎 ∈ (0,𝓎𝓎0). 

Furthermore, ℰ𝜙𝜙′ ( 𝓎𝓎) = 0 for 𝓎𝓎 ∈ (0,𝓎𝓎0) implies 𝜁𝜁𝐷𝐷(𝓎𝓎) = 1 �1 − ℰ𝜙𝜙(𝓎𝓎)�⁄ , which is 

hence constant, and thus 𝜁𝜁𝐷𝐷′(𝓎𝓎) = 0 for 𝓎𝓎 ∈ (0,𝓎𝓎0). This completes the proof. ∎ 
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Proof of Lemma I: The proof is analogous to that of Lemma S. Let 𝑤𝑤𝐼𝐼(𝜉𝜉;𝓏𝓏) ≡

−𝜃𝜃′(𝜉𝜉) 𝜃𝜃(𝓏𝓏)⁄ > 0, which satisfies ∫  𝑤𝑤𝐼𝐼(𝜉𝜉;𝓏𝓏)𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑 = 1, because 𝜃𝜃(𝓏𝓏) = 0.  Then, 

because 𝓏𝓏𝜃𝜃′(𝓏𝓏) = 0,28 

� [𝜁𝜁𝐼𝐼(𝜉𝜉)− 1]𝑤𝑤𝐼𝐼(𝜉𝜉; 𝓏𝓏)𝑑𝑑𝑑𝑑
𝓏𝓏

𝓏𝓏 
=
∫ [𝜃𝜃′(𝜉𝜉) + 𝜉𝜉𝜃𝜃′′(𝜉𝜉)]𝑑𝑑𝑑𝑑𝓏𝓏
𝓏𝓏 

𝜃𝜃(𝓏𝓏) =
∫ 𝑑𝑑[𝜉𝜉𝜃𝜃′(𝜉𝜉)]𝓏𝓏
𝓏𝓏 

𝜃𝜃(𝓏𝓏) = −
𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) ≡ ℰ𝜃𝜃(𝓏𝓏). 

Thus,  

𝓏𝓏ℰ𝜃𝜃′ (𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏)  = ℰ𝜃𝜃(𝓏𝓏) + 1 − 𝜁𝜁𝐼𝐼(𝓏𝓏) = � 𝜁𝜁𝐼𝐼(𝜉𝜉)𝑤𝑤𝐼𝐼(𝜉𝜉;𝓏𝓏)𝑑𝑑𝑑𝑑

𝓏𝓏

𝓏𝓏 
− 𝜁𝜁𝐼𝐼(𝓏𝓏), 

from which  

𝜁𝜁𝐼𝐼′(𝓏𝓏) ⋛ 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏)    ⟹    ℰ𝜃𝜃′ (𝓏𝓏) ⋛ 0,∀𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). 

Furthermore, ℰ𝜃𝜃′ (𝓏𝓏) = 0 for 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏) implies 𝜁𝜁𝐼𝐼(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏), which is hence 

constant and thus 𝜁𝜁𝐼𝐼′(𝓏𝓏) = 0 for 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). This completes the proof. ∎ 

 

Proof of Lemma S*:  The proof is analogous to that of Lemma D. Let 𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦) ≡

𝐻𝐻∗′(𝜉𝜉∗) 𝐻𝐻∗(𝑦𝑦)⁄ > 0, satisfying ∫ 𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦)𝑑𝑑𝜉𝜉∗𝑦𝑦
0 = 1.  Then, 

� �1 −
1

𝜁𝜁𝑆𝑆∗(𝜉𝜉∗)�  𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦)𝑑𝑑𝜉𝜉∗
𝑦𝑦

0

=
∫ [𝜉𝜉∗𝐻𝐻∗′′(𝜉𝜉∗) + 𝐻𝐻∗′(𝜉𝜉)]𝑑𝑑𝜉𝜉∗𝑦𝑦
0

𝐻𝐻∗(𝑦𝑦) =
∫ 𝑑𝑑[𝜉𝜉∗𝐻𝐻∗′(𝜉𝜉∗)]𝑦𝑦
0

𝐻𝐻∗(𝑦𝑦) =
𝑦𝑦𝐻𝐻∗′(𝑦𝑦)
𝐻𝐻∗(𝑦𝑦)

=
1

Φ∗(𝑦𝑦). 

Thus,  

𝑦𝑦Φ∗′(𝑦𝑦)
Φ∗(𝑦𝑦) =

𝑦𝑦𝐻𝐻∗′(𝑦𝑦)
𝐻𝐻∗(𝑦𝑦) − 1 −

𝑦𝑦𝐻𝐻∗′′(𝑦𝑦)
𝐻𝐻∗′(𝑦𝑦)

=
1

Φ∗(𝑦𝑦) − 1 +
1

𝜁𝜁𝑆𝑆∗(𝑦𝑦) =
1

𝜁𝜁𝑆𝑆∗(𝑦𝑦) −�
𝑤𝑤𝑆𝑆∗(𝜉𝜉∗;𝑦𝑦)
𝜁𝜁𝑆𝑆∗(𝜉𝜉∗)  𝑑𝑑𝜉𝜉∗

𝑦𝑦

0

, 

from which  

𝜁𝜁𝑆𝑆∗′(𝑦𝑦) ⋚ 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0) ⟹Φ∗′(𝑦𝑦) ⋛ 0,∀𝑦𝑦 ∈ (0,𝑦𝑦0). 

Furthermore, Φ∗′(𝑦𝑦) = 0, for 𝑦𝑦 ∈ (0,𝑦𝑦0) implies 𝜁𝜁𝑆𝑆∗(𝑦𝑦) = Φ∗(𝑦𝑦) [Φ∗(𝑦𝑦) − 1]⁄ , which 

is hence constant and thus 𝜁𝜁𝑆𝑆∗′(𝑦𝑦) = 0 for 𝑦𝑦 ∈ (0,𝑦𝑦0). This completes the proof. ∎ 

 
28For 𝓏𝓏 < ∞, this follows from 𝜃𝜃′(𝓏𝓏) = 0. For 𝓏𝓏 = ∞, suppose the contrary, so that there exists 𝓏𝓏0 >
0 such that, for all 𝓏𝓏 > 𝓏𝓏0, −𝓏𝓏𝜃𝜃′(𝓏𝓏) > 𝑐𝑐 > 0. Then, 𝜃𝜃(𝓏𝓏0) = − lim

𝑥𝑥→∞
∫ 𝜃𝜃′(𝜉𝜉)𝑑𝑑𝑑𝑑𝑥𝑥
𝓏𝓏0

=

− lim
𝑥𝑥→∞

∫ 𝜉𝜉𝜃𝜃′(𝜉𝜉)𝑑𝑑𝑑𝑑 𝜉𝜉⁄𝑥𝑥
𝓏𝓏0

> lim
𝑥𝑥→∞

∫ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜉𝜉⁄𝑥𝑥
𝓏𝓏0

= ∞, a contradiction. 
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