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HOMOTHETIC NON-CES DEMAND SYSTEMS WITH
APPLICATIONS TO MONOPOLISTIC COMPETITION

 

Abstract

This article reviews homothetic non-CES demand systems and their implications when applied to
monopolistic competition, to offer the guidance to those looking for flexible and yet tractable ways
of departing from CES. Under general homothetic symmetric non-CES, two measures,
substitutability and love-for-variety, are introduced to identity the condition under which the
equilibrium product variety is excessive or insufficient. Because homotheticity and symmetry alone
impose little restriction to make further progress, we turn to the Homothetic Single Aggregator
(H.S.A.) class. H.S.A. is more flexible than CES and translog, which are its special cases, and yet
equally analytically tractable, because all cross-variety interactions are summarized by the single
aggregator. Under H.S.A., substitutability is increasing in product variety iff Marshall’s 2nd law
holds, which is a sufficient condition for love-for-variety to be diminishing in product variety and for
the equilibrium product variety to be excessive. Monopolistic competition under H.S.A. remains
tractable even under various forms of firm heterogeneity and in multi-market settings.
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Abstract: This article reviews homothetic non-CES demand systems and their implications 

when applied to monopolistic competition, to offer the guidance to those looking for flexible and 

yet tractable ways of departing from CES. Under general homothetic symmetric non-CES, two 

measures, substitutability and love-for-variety, are introduced to identity the condition under 

which the equilibrium product variety is excessive or insufficient. Because homotheticity and 

symmetry alone impose little restriction to make further progress, we turn to the Homothetic 

Single Aggregator (H.S.A.) class. H.S.A. is more flexible than CES and translog, which are its 

special cases, and yet equally analytically tractable, because all cross-variety interactions are 

summarized by the single aggregator. Under H.S.A., substitutability is increasing in product 

variety iff Marshall’s 2nd law holds, which is a sufficient condition for love-for-variety to be 

diminishing in product variety and for the equilibrium product variety to be excessive. 

Monopolistic competition under H.S.A. remains tractable even under various forms of firm 

heterogeneity and in multi-market settings. 

Keywords: Substitutability vs. Love-for-Variety; Equilibrium vs. Optimal; Homothetic Single 
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1.   Introduction 

We all know the CES demand system. It is ubiquitous in business cycle theory, economic 

growth, international trade, spatial economics, and other applied general equilibrium fields. We 

love using CES, because it has many knife-edge properties, which help to make it tractable. At 

the same time, these knife-edge properties make CES too restrictive for many applications. Of 

course, many researchers have tried some non-CES demand systems, but they typically look for 

alternatives, such as linear-quadratic or translog, which come with their own drawbacks and 

limitations. What is needed is to generalize CES by relaxing some of its knife-edge properties in 

order to have more flexibility without losing too much tractability of CES. 

Matsuyama (2023), “Non-CES Aggregators: A Guided Tour,” reviewed several classes 

of non-CES demand systems and offered some guidance to those looking for flexible and yet 

tractable ways of departing from CES. Due to the space limitation, however, it focused on non-

CES that are suited for applying to intersectoral demand systems, with special emphasis on 

nonhomotheticity and gross complementarities across sectors and the essentiality of goods and 

factors. 

This review instead focuses on applications of homothetic non-CES to demand systems 

for differentiated products within a monopolistic competitive (MC) industry with free entry and 

endogenous product variety. This necessitates some additional restrictions on the class of 

demand systems studied. They are:  

Endogenous range of inessential products: To allow for firms to enter or exit with their own 

products, demand systems need to be well-defined even when some products are unavailable or 

not yet invented. 

Gross substitutability across products: That is, the price elasticity of demand for each product is 

greater than one, or equivalently, the market share of each product is decreasing in its own price. 

This ensures that monopolistic competitive firms face a positive marginal revenue curve. 

I will further restrict to: 

Continuum of products: This not only helps tractability by making product variety a continuous 

variable. It also ensures that individual firms, unless they produce a positive measure of product 

varieties, cannot affect and hence do not worry about potential impacts of their action on the 

industry-level variables, one of the defining features of MC that distinguishes it from oligopoly.  
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Symmetric Demand Systems: This helps to highlight the supply-side heterogeneity across firms, 

such as productivity difference a la Melitz (2003), differential market access across firms that 

are based in different locations (as in many models of international trade and spatial economics), 

on the price setting a la Calvo (1983), and technology diffusion causing some but not all MC 

firms to face competitive fringes a la Judd (1985).   

The restriction of homotheticity and symmetry is imposed mostly due to the page 

limitation.1 Nevertheless, the reader should also note that homothetic and symmetric demand 

systems are not so restrictive as they may seem, because one can nest them into a nonhomothetic 

and/or asymmetric upper-tier demand system. In other words, homothetic symmetric non-CES 

can serve as building blocks to construct such nonhomothetic and/or asymmetric non-CES. 

Here’s the road map of this review. Section 2 offers a quick refresher on CES and its 

application to what I call the Dixit & Stiglitz (1977) environment, where MC firms are 

symmetric not only on the demand side but also on the supply side. Section 3 discusses general 

homothetic symmetric demand systems. Among others, this section introduces two measures, 

substitutability 𝜎𝜎(𝑉𝑉) and love-for-variety ℒ(𝑉𝑉), both as functions of product variety 𝑉𝑉. These 

two measures help to characterize the demand system. Section 4 applies these general demand 

systems to the Dixit-Stiglitz environment. It characterizes the symmetric equilibrium, under the 

assumption that it exists uniquely, and conducts comparative statics, which depends on 𝜎𝜎(𝑉𝑉), but 

not on ℒ(𝑉𝑉). On the other hand, the optimal allocation depends on ℒ(𝑉𝑉), but not on 𝜎𝜎(𝑉𝑉). By 

comparing the equilibrium and the optimum, this section identifies the sufficient and necessary 

condition under which the equilibrium product variety, 𝑉𝑉𝑒𝑒𝑒𝑒 , is excessive or insufficient relative 

to the optimal product variety, 𝑉𝑉𝑜𝑜𝑜𝑜. Yet, it is not possible to make further progress under general 

 
1There are at least two more reasons for focusing on homotheticity. First, most earlier studies of monopolistic 
competition under non-CES make use of nonhomothetic symmetric demand systems. For example, Dixit & Stiglitz 
(1977, Section II), Behrens & Murata (2007), Zhelobodko, et.al. (2012), Mrázová & Neary (2017), and Latzer et. al 
(2020) use the directly explicitly additive (DEA) class of nonhomothetic symmetric demand systems. The indirectly 
explicitly additive (IEA) class used by Bertoletti & Etro (2017) and Boucekkine et. al (2017) as well as the linear-
quadratic demand system used by Ottaviano et. al (2002) and Melitz & Ottaviano (2008) are also nonhomothetic 
unless it is CES. This literature has been reviewed by Parenti et. al (2017) and Thisse & Ushchev (2018). See also 
Melitz (2018), which reviewed the work using the DEA class. Second, a MC sector with homothetic demand 
systems remains tractable when it is embedded in a multi-sector model, because assuming homotheticity in every 
level of aggregation (except possibly at the highest level) allows for solving a model by using multi-stage budgeting 
procedure. In contrast, most MC models with nonhomothetic demand systems assume that there is only one sector. 
This is because solving a MC sector with nonhomothetic demand systems in a multi-sector setting requires some 
additional restriction, such as assuming that there is only one outside sector that produces a homogeneous good 
competitively, or every sector has the same parametric family of nonhomothetic demand systems with identical 
parameter values. 
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homothetic symmetric demand systems, because homotheticity and symmetry alone imposes 

little restriction on the relation between 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉), so that “almost anything goes.” 

Section 5 thus turns to the subclass of homothetic symmetric demand systems called 

homothetic single aggregator or H.S.A. This class of demand systems, which contains CES and 

translog (Feenstra 2003) as special cases, is characterized by the presence of a single price 

aggregator, a sufficient statistic, which captures everything one needs to know to understand the 

cross-variety interactions. Due to such a significant reduction in the dimensionality, H.S.A. is 

highly tractable yet more flexible than CES and translog. Moreover, it imposes tighter relations 

between 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉). Under H.S.A., Marshall’s 2nd law of demand (i.e., the price elasticity of 

demand is increasing in its own price) is equivalent to increasing substitutability 𝜎𝜎′(𝑉𝑉) > 0, both 

of which are sufficient for diminishing love-for-variety, ℒ′(𝑉𝑉) < 0. Armed with these results, 

Section 6 applies H.S.A. to the Dixit-Stiglitz environment. Under H.S.A., it is straightforward to 

show that the equilibrium is unique and symmetric. Moreover, the equilibrium product variety is 

excessive under diminishing love-for-variety. Therefore, Marshall’s 2nd law, and equivalently, 

increasing substitutability are sufficient for excessive product variety under H.S.A..2  

Then, Section 7 applies H.S.A. to the Melitz (2003) environment, where ex-ante 

symmetric firms learn their marginal costs after entry, drawn from a common distribution, and 

become ex-post heterogenous. Again, under H.S.A., it is straightforward to show that the 

equilibrium exists uniquely, and to conduct comparative statics. Section 8 discusses how H.S.A. 

can accommodate other types of firm heterogeneity. Appendix 1 explains why H.S.A. is more 

tractable than HDIA and HIIA. Appendix 2 lists some parametric families of H.S.A. for the 

quantitatively oriented reader who may want to use them for calibration and estimation. 

Before proceeding, some caveats should be mentioned. First, this is a review of non-CES 

and of their key implications when applied to monopolistic competition. My goal is to offer the 

guidance to those who are looking for tractable and yet flexible ways of departing from CES in 

 
2 Matsuyama & Ushchev (2020a, 2023) showed that many results in Sections 5 and 6 hold also in two other classes 
of homothetic symmetric demand systems: symmetric Homothetic Direct Implicit Additivity (HDIA) with gross 
substitutes, an extension of the Kimball (1995) aggregator with an endogenous product range, and symmetric 
Homothetic Indirect Implicit Additivity (HIIA) with gross substitutes. The three classes, H.S.A., HDIA, and HIIA, 
originally developed by Matsuyama & Ushchev (2017) without symmetry and gross substitutes restriction, all share 
CES as a special case, but are otherwise pairwise disjoint. HDIA and HIIA are less tractable than H.S.A. Some 
additional restrictions are needed just to ensure the uniqueness and the symmetry of the equilibrium in the Dixit-
Stiglitz environment. Moreover, these two are not analytically tractable with firm heterogeneity. This is because the 
cross-variety interactions are captured by two aggregators under HDIA and HIIA, unlike one aggregator under 
H.S.A. For these reasons, I focus on H.S.A. from Section 5. 
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their applications. And I hope that the readers will find useful building blocks for constructing 

their own models. But it is not intended to be a review of applications of monopolistic 

competition under non-CES to some topics in economics, whether they are in international trade, 

economic geography, economic growth, or Keynesian macro. Such a review needs a separate 

treatment, at least one in each topic, some of which I hope to write in the future. Second, because 

the materials reviewed here are theoretical in nature, I try not to sacrifice the logical rigor, and 

yet try not to be bogged down in technicalities. I offer the intuition and explain the logics behind 

the main results but skip many derivations. Furthermore, some regularity conditions, such as 

continuity and differentiability, are often not explicitly stated. Moreover, the space limitation 

prevents me from discussing any empirical evidence that motivates some assumptions. This 

review should thus be treated as a reading guide for the references cited, not as a substitute for 

reading them. Finally, I have encountered, repeatedly throughout years, several false claims 

about non-CES demand systems. Often taken for granted, these false claims are found not only 

in published and discussion papers but also heard in seminars, both by the speakers and by those 

in the audience. I have also seen them in the referee reports, both as an editor and as a submitting 

author. In this review, I explicitly discuss several fallacies and explain why they are wrong, but 

without citing any references. They are so widespread that I have no idea who should be given 

“credit” for starting each fallacy. Indeed, many of them are a kind of logical pitfalls, to which 

anyone could fall into. (I confess that I used to believe Fallacies #3 and #4 discussed in Section 3 

myself.) By flagging these fallacies without finger-pointing, I am hoping to prevent 

misinformation from spreading, particularly, to the new generations of researchers. 

 

2.  Dixit Stiglitz under CES: A Quick Refresher 

We discuss CES demand systems in terms of demand for differentiated intermediate 

inputs generated by a competitive industry that produces a single final good, using symmetric 

CES production function,  

𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = 𝑍𝑍 �� (𝑥𝑥𝜔𝜔)1−
1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

. 

Here 𝐱𝐱 = {𝑥𝑥𝜔𝜔;𝑑𝑑 ∈ Ω} is an input quantity vector, where Ω is the set of input varieties, indexed 

by 𝑑𝑑, that are available in equilibrium, whose mass is denoted by 𝑉𝑉 ≡ |Ω|.  Under CES, the 

elasticity of substitution across varieties is a parameter, 𝜎𝜎 > 1, and 𝑍𝑍 > 0 is TFP.  
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2.1 CES Demand System 

Facing 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝑑𝑑 ∈ Ω}, the input price vector, the competitive industry chooses 𝐱𝐱 to 

minimize the production cost, which leads to the unit cost function,  

𝑃𝑃(𝐩𝐩) ≡ min
𝐱𝐱
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1� =

1
𝑍𝑍 �
� (𝑝𝑝𝜔𝜔)1−𝜎𝜎𝑑𝑑𝑑𝑑
Ω

�

1
1−𝜎𝜎

, 

with demand for 𝑑𝑑  

𝑥𝑥𝜔𝜔 = �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)�
−𝜎𝜎 𝑋𝑋(𝐱𝐱)

𝑍𝑍
=

(𝑝𝑝𝜔𝜔)−𝜎𝜎

�𝑍𝑍𝑃𝑃(𝐩𝐩)�1−𝜎𝜎
𝐸𝐸, 

and the budget share of 𝑑𝑑 

𝑠𝑠𝜔𝜔 ≡
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐸𝐸

= �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)�
1−𝜎𝜎

= �
𝑍𝑍𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�

1−1𝜎𝜎
 

where 𝐸𝐸 ≡ 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐩𝐩𝐱𝐱, is the size of this industry, and hence market size for differentiated 

inputs, which we treat as given.  From the well-known duality principle, 𝑋𝑋(𝐱𝐱) can be recovered 

from 𝑃𝑃(𝐩𝐩) as: 

𝑋𝑋(𝐱𝐱) ≡ min
𝐩𝐩
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1� = 𝑍𝑍 �� (𝑥𝑥𝜔𝜔)1−

1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

. 

 

2.2 The Dixit-Stiglitz Environment 

We now apply CES to what I shall call the Dixit-Stiglitz environment. There exists a 

single primary factor of production, “labor,” taken as numeraire. Each differentiated intermediate 

input, 𝑑𝑑 ∈ Ω, is produced from “labor” and sold exclusively by a single monopolistically 

competitive (MC) firm, also indexed by 𝑑𝑑 ∈ Ω. These MC firms are symmetric. Not only their 

products enter symmetrically in the demand system, but also share the same technology.3 Each 

firm needs to hire 𝐹𝐹 + 𝜓𝜓𝑥𝑥𝜔𝜔 units of “labor” to supply 𝑥𝑥𝜔𝜔 units of its own product. Here F is the 

fixed cost, a combination of the entry/innovation cost, required to develop its own product and 

to enter the market, and of the overhead cost, required to stay in the market; 𝜓𝜓𝑥𝑥𝜔𝜔 is the 

production cost, or “employment,” where 𝜓𝜓 is a constant marginal cost of production, and the 

inverse of productivity. Finally, there is free-entry to the market. Firms enter/exit until their gross 

 
3 Being symmetric in both demand and supply sides, MC firms in the Dixit-Stiglitz environment are often referred to 
as “homogeneous” or “representative” firms, even though what they supply are product-differentiated.  
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profit is equalized to the fixed cost, Π𝜔𝜔 = 𝐹𝐹. This ensures that there is no excess profit in 

equilibrium, and that the total “labor” demand of this sector is 𝐿𝐿 = 𝐩𝐩𝐱𝐱 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐸𝐸. 4 

 

2.3 Equilibrium:  

As the sole producer of its own product, each MC firm sets its price, 𝑝𝑝𝜔𝜔, to maximize its 

gross profit, 

Π𝜔𝜔 = (𝑝𝑝𝜔𝜔 −  𝜓𝜓)𝑥𝑥𝜔𝜔 =
(𝑝𝑝𝜔𝜔 −  𝜓𝜓)(𝑝𝑝𝜔𝜔)−𝜎𝜎

�𝑍𝑍𝑃𝑃(𝐩𝐩)�1−𝜎𝜎
𝐸𝐸, 

holding the industry-wide variables, 𝑃𝑃(𝐩𝐩) and 𝐸𝐸, fixed. The first-order condition of the profit 

maximization leads to the familiar Lerner pricing formula and the markup rule: 

𝑝𝑝𝜔𝜔 �1 −
1
𝜎𝜎�

= 𝜓𝜓              ⟺          𝑝𝑝𝜔𝜔 ≡ 𝑝𝑝 = �
𝜎𝜎

𝜎𝜎 − 1
�𝜓𝜓 ≡ 𝜇𝜇𝜓𝜓, 

where 𝜇𝜇 is the constant and common markup rate. Thus, all firms set the same price, and the 

equilibrium is symmetric. By dropping the index to denote the common values, 𝑝𝑝𝜔𝜔 = 𝑝𝑝, and 

𝑥𝑥𝜔𝜔 = 𝑥𝑥, which implies 𝑝𝑝𝑥𝑥𝑉𝑉 = 𝐸𝐸. Thus, the common gross profit is Π = (𝑝𝑝 −  𝜓𝜓)𝑥𝑥 = 𝑝𝑝𝑥𝑥 𝜎𝜎⁄ =

𝐸𝐸 𝜎𝜎𝑉𝑉⁄ .  Finally, the free-entry/exit condition implies that the common gross profit is equal to the 

fixed cost in equilibrium, 𝐸𝐸 𝜎𝜎𝑉𝑉𝑒𝑒𝑒𝑒⁄ = 𝐹𝐹,  so that 

𝑉𝑉𝑒𝑒𝑒𝑒 =
𝐸𝐸
𝜎𝜎𝐹𝐹

;   𝑝𝑝𝑒𝑒𝑒𝑒 = �
𝜎𝜎

𝜎𝜎 − 1
�𝜓𝜓;   𝑥𝑥𝑒𝑒𝑒𝑒 =

(𝜎𝜎 − 1)𝐹𝐹
𝜓𝜓

. 

In equilibrium, the revenue 𝑝𝑝𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒 = 𝐸𝐸 𝑉𝑉𝑒𝑒𝑒𝑒⁄ = 𝜎𝜎𝐹𝐹 is divided into the (gross) profit, 

(𝑝𝑝𝑒𝑒𝑒𝑒 −  𝜓𝜓)𝑥𝑥𝑒𝑒𝑒𝑒 = 𝐹𝐹, and the production cost, 𝜓𝜓𝑥𝑥𝑒𝑒𝑒𝑒 = (𝜎𝜎 − 1)𝐹𝐹 in every firm. Notice that the 

firm’s revenue, profit, and production cost are all independent of 𝜓𝜓.  Moreover, the profit and 

production cost shares in revenue,  
𝐹𝐹

𝑝𝑝𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒
=

1
𝜎𝜎

;   
𝜓𝜓𝑥𝑥𝑒𝑒𝑒𝑒

𝑝𝑝𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒
= 1 −

1
𝜎𝜎

=
1
𝜇𝜇

, 

and the profit/production cost ratio, 
𝐹𝐹

𝜓𝜓𝑥𝑥𝑒𝑒𝑒𝑒
=
𝜇𝜇
𝜎𝜎

=
1

𝜎𝜎 − 1
= 𝜇𝜇 − 1, 

 
4Notice that no assumption is made on how this sector interacts with the rest of the economy, except 𝐸𝐸 is the 
aggregate spending on this sector, which leads to this sector’s “labor” demand, 𝐿𝐿 = 𝐸𝐸. Of course, one could assume 
that the representative household, endowed with 𝐿𝐿 units of “labor”, consumes only the final good produced in this 
sector, so that its budget constraint leads to 𝐿𝐿 = 𝐸𝐸. However, the sector-level analysis in this review does not need to 
make such an assumption. 
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are all constant and independent of 𝐸𝐸 𝐹𝐹⁄  under CES. 

 

2.4 Comparative Statics:  

By denoting the percentage change by 𝑞𝑞� ≡ 𝜕𝜕 ln 𝑞𝑞 = 𝜕𝜕𝑞𝑞 𝑞𝑞⁄ , the three endogenous 

variables, (𝑉𝑉𝑒𝑒𝑒𝑒, 𝑝𝑝𝑒𝑒𝑒𝑒, 𝑥𝑥𝑒𝑒𝑒𝑒), respond to the three exogenous variables, (𝐸𝐸,𝐹𝐹,𝜓𝜓), as  

𝑉𝑉𝑒𝑒𝑒𝑒� = 𝐸𝐸� − 𝐹𝐹�;  𝑝𝑝𝑒𝑒𝑒𝑒� = 𝜓𝜓�;   𝑥𝑥𝑒𝑒𝑒𝑒� = 𝐹𝐹� − 𝜓𝜓�. 

Note that the firm behavior, 𝑝𝑝𝑒𝑒𝑒𝑒, 𝑥𝑥𝑒𝑒𝑒𝑒, are not affected by 𝐸𝐸, while the mass of firms, 𝑉𝑉𝑒𝑒𝑒𝑒, 

responds proportionally to 𝐸𝐸. Thus, the adjustment to a market size change takes place only at 

the extensive margin under CES. 

 

2.5 Optimality of the Equilibrium Allocation:  

Now imagine that this sector were fully integrated and could control all intermediate 

inputs production. Then,    

max𝑋𝑋(𝐱𝐱)  = max𝑍𝑍 �� (𝑥𝑥𝜔𝜔)1−
1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

    𝑠𝑠. 𝑡𝑡.   � 𝜓𝜓𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

+ 𝑉𝑉𝐹𝐹 ≤ 𝐸𝐸. 

The optimal allocation is clearly symmetric, 𝑥𝑥𝜔𝜔 = 𝑥𝑥 > 0 for 𝑑𝑑 ∈ Ω, simplifying the problem to:  

max
(𝜓𝜓𝜓𝜓+𝐹𝐹)𝑉𝑉≤𝐸𝐸

𝑉𝑉
𝜎𝜎

𝜎𝜎−1(𝑍𝑍𝑥𝑥) =
𝑍𝑍𝐹𝐹
𝜓𝜓

max
𝑉𝑉

𝑉𝑉
1

𝜎𝜎−1 �
𝐸𝐸
𝐹𝐹
− 𝑉𝑉�.   

By solving this problem, the optimal allocation is given by:  

𝑉𝑉𝑜𝑜𝑜𝑜 =
𝐸𝐸
𝜎𝜎𝐹𝐹

;    𝑥𝑥𝑜𝑜𝑜𝑜 =
(𝜎𝜎 − 1)𝐹𝐹

𝜓𝜓
, 

which is identical with the equilibrium allocation. 

The optimality result is surprising. A priori, one would expect that MC equilibrium 

would not be optimal due to the presence of externalities. First, there are negative externalities 

due to the business stealing effect. A firm, when paying the fixed cost to enter and stay with its 

own product, does not take into account that this action reduces demand for other products and 

their profits, which would suggest excessive product variety. On the other hand, there are 

positive externalities due to incomplete appropriability: A firm is motivated to produce and 

sell its own variety, not by the social surplus, but by the profit, which is a fraction of the social 

surplus. This would suggest insufficient product variety. As explained in Tirole (1988, Chapter 

7) and Matsuyama (1995; Section 3E), these two sources of externalities cancel out each other 
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under CES, which is why the equilibrium is optimal. We will show later how departing from 

CES in the Dixit-Stiglitz environment could break the optimality. This feature makes the Dixit-

Stiglitz environment a useful benchmark against which the efficiency implications of non-CES 

can be evaluated.5 

Unfortunately, the logic behind the optimality result under CES is poorly understood.  

Fallacy #1. The equilibrium allocation is optimal because all the products are sold at the same 

markup rate, and hence the relative prices across products are not distorted. 

It is easy to see why this is false. If this logic were correct, the equilibrium would be optimal, as 

long as all products were sold at the same markup rate, and it would not have to be equal to 

σ (σ − 1)⁄ . Indeed, any symmetric equilibrium would be optimal, even if the demand system 

were non-CES and/or in the presence of a uniform taxation on differentiated products. The logic 

is incorrect, because the common markup rate merely ensures that the allocation across available 

products is not distorted; it does not ensure that the equilibrium incentive to introduce another 

product is optimal. 

Fallacy #2. The equilibrium allocation is optimal if and only if it is under CES.   

This is the polar opposite of Fallacy #1. Of course, the optimality under CES is not robust, 

because it must satisfy the knife-edge condition, the two sources of externalities canceling out 

each other. However, CES is not unique in this respect, as explained in Section 4. 

 

3.  General Homothetic Symmetric Demand Systems6 

Let us now assume that the industry uses symmetric production technologies, specified 

either as the CRS production function, 𝑋𝑋(𝐱𝐱), which satisfies linear homogeneity, monotonicity, 

and strict quasi-concavity, or its corresponding unit cost function, 

𝑃𝑃(𝐩𝐩) ≡ min
𝐱𝐱
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1�, 

 
5 Of course, we can also break the optimality by changing the environment while keeping CES. For example, the 
equilibrium is no longer optimal if producing intermediate inputs needs not only “labor” but also the final good, or if 
the taxation is added, or if “labor” is differentiated and MC firms face a upward-sloping “labor” supply, which gives 
them monopsony power, and allow them to set markdown in the “labor” market, etc. One could also change the 
environment to ensure the optimality of the equilibrium allocation under any symmetric demand systems, if the 
resource used in 𝐹𝐹 is in fixed supply and is not used in the production.  
6 This section draws heavily from Matsuyama & Ushchev (2023). 
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where 𝐱𝐱 = {𝑥𝑥𝜔𝜔;𝑑𝑑 ∈ Ω�}, the input quantity vector, and 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝑑𝑑 ∈ Ω�}, the input price vector, 

are now defined over Ω�, the set of all potential input varieties, so that Ω ⊂ Ω�, the set of available 

input varieties, with 𝑉𝑉 ≡ |Ω|. Thus, Ω�\Ω is the set of unavailable varieties, with 𝑥𝑥𝜔𝜔 = 0 and 

𝑝𝑝𝜔𝜔 = ∞ for 𝑑𝑑 ∈ Ω�\Ω.  To ensure the feasibility of production, we need to assume that inputs are 

inessential, i.e., Ω�\Ω ≠ ∅ does not imply 𝑋𝑋(𝐱𝐱) = 0 ⟺ 𝑃𝑃(𝐩𝐩) = ∞.  Recall that, from the duality 

principle, the production function 𝑋𝑋(𝐱𝐱), can be recovered from 𝑃𝑃(𝐩𝐩) as: 

𝑋𝑋(𝐱𝐱) ≡ min
𝐩𝐩
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1�.    

Hence, we could use either 𝑃𝑃(𝐩𝐩) or 𝑋𝑋(𝐱𝐱) as the primitive of this CRS production technologies. 

 

3.1 Demand Systems 

 The demand curve and the inverse demand curve for 𝑑𝑑 ∈ Ω are: 

𝑥𝑥𝜔𝜔 =
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑋𝑋(𝐱𝐱) =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝐸𝐸;                     𝑝𝑝𝜔𝜔 = 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

=
𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

𝐸𝐸;    ,  

from either of which Euler’s homogenous function theorem implies  

𝐩𝐩𝐱𝐱 = � 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

= � 𝑝𝑝𝜔𝜔
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑋𝑋(𝐱𝐱)𝑑𝑑𝑑𝑑
Ω

= � 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

= 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐸𝐸. 

The budget share of 𝑑𝑑 ∈ Ω, 𝑠𝑠𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)⁄ , can be thus written as a homogeneous 

function of degree zero both in price and in quantity; 

𝑠𝑠𝜔𝜔 =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

≡ 𝑠𝑠(𝑝𝑝𝜔𝜔,𝐩𝐩) = 𝑠𝑠(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ); 

𝑠𝑠𝜔𝜔 =
𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

≡ 𝑠𝑠∗(𝑥𝑥𝜔𝜔, 𝐱𝐱) = 𝑠𝑠∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ). 

From now on, we also impose gross substitutability,  

𝜕𝜕 ln 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

< 0 ⟺  
𝜕𝜕 ln 𝑠𝑠∗(𝑥𝑥𝜔𝜔;  𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
> 0. 

This ensures that the firm selling 𝑑𝑑 ∈ Ω faces the positive marginal revenue curve.7 

The price elasticity of demand for 𝑑𝑑 ∈ Ω, 𝜁𝜁𝜔𝜔 ≡ −𝜕𝜕 ln 𝑥𝑥𝜔𝜔 𝜕𝜕 ln𝑝𝑝𝜔𝜔⁄ , can be also written 

as a homogeneous function of degree zero in prices or in quantities: 

 
7 Under CES, 𝜎𝜎 > 1 ensures both the inessentiality and gross substitutability of inputs. In general, the inessentiality 
and gross substitutability are different concepts and need to be assumed separately. 
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𝜁𝜁𝜔𝜔 = 1 −
𝜕𝜕 ln 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

≡ 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) > 1; 

𝜁𝜁𝜔𝜔 = �1 −
𝜕𝜕 ln 𝑠𝑠∗(𝑥𝑥𝜔𝜔; 𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
�
−1

≡ 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) = 𝜁𝜁∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ) > 1. 

Notice that the restriction of gross substitutability is equivalent to the restriction that the price 

elasticity is always greater than one. In general, the price elasticity can be increasing or 

decreasing in its own price. The literature typically focuses on the increasing case,   

𝜕𝜕 ln 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

> 0 ⟺  
𝜕𝜕 ln 𝜁𝜁∗(𝑥𝑥𝜔𝜔;  𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
< 0. 

This is Marshall’s 2nd law of demand, or the 2nd law for short. For the case where the price 

elasticity is decreasing, we say the anti-2nd law holds. Clearly, CES is the borderline case. All 

other examples listed in Appendix 2 satisfies the 2nd law.  

Note that the budget share of 𝑑𝑑 ∈ Ω, 𝑠𝑠𝜔𝜔, and its price elasticity of demand, 𝜁𝜁𝜔𝜔, are both 

functions of 𝐩𝐩 𝑝𝑝𝜔𝜔⁄  or 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ . Of course, symmetry implies that they are invariant of permutation, 

but they still depend on the entire distribution of the prices (or the quantities) relative to its own 

price (or its own quantity), which is infinite dimensional. This suggests that the cross-variety 

interactions could be complicated under general homothetic symmetric demand systems. 

 

3.2 Substitutability and Love-for-Variety Measures:  

We now introduce two measures that help to characterize general homothetic symmetric 

demand systems. First, define the unit quantity vector, 

𝟏𝟏Ω ≡ {(1Ω)𝜔𝜔;𝑑𝑑 ∈ Ω�}, where (1Ω)𝜔𝜔 ≡ �1 for 𝑑𝑑 ∈
0 for 𝑑𝑑 ∈ ΩΩ�\Ω, 

which is the indicator function of Ω, and the unit price vector, 

𝟏𝟏Ω−1 ≡ {(1Ω−1)𝜔𝜔;𝑑𝑑 ∈ Ω�}, where (1Ω−1)𝜔𝜔 ≡ �1 for 𝑑𝑑 ∈
∞ for 𝑑𝑑 ∈ ΩΩ�\Ω. 

Clearly, ∫ (1Ω)𝜔𝜔𝑑𝑑𝑑𝑑Ω = ∫ (1Ω−1)𝜔𝜔𝑑𝑑𝑑𝑑Ω = |Ω| ≡ 𝑉𝑉.  Moreover, at the symmetric patterns, 𝐩𝐩 =

𝑝𝑝𝟏𝟏Ω−1 and 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω,  

𝑠𝑠𝜔𝜔 = 𝑠𝑠(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) = 𝑠𝑠∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ) = 𝑠𝑠(1,𝟏𝟏Ω−1) = 𝑠𝑠∗(1,𝟏𝟏Ω) = 1 𝑉𝑉⁄ , 

and the price elasticity of each variety,    

𝜁𝜁𝜔𝜔 = 𝜁𝜁(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) = 𝜁𝜁∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ) = 𝜁𝜁(1,𝟏𝟏Ω−1) = 𝜁𝜁∗(1,𝟏𝟏Ω) > 1, 
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is a function of 𝑉𝑉 only, hence can be denoted as 𝜎𝜎(𝑉𝑉).  Furthermore, as shown in Matsuyama & 

Ushchev (2023), 𝜁𝜁(1,𝟏𝟏Ω−1) = 𝜁𝜁∗(1,𝟏𝟏Ω) is equal to the Allen-Uzawa elasticity of substitution8 

between any pair, 𝑑𝑑 and 𝑑𝑑′ ∈ Ω,  evaluated at 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1.  Hence,   

Definition: The substitutability measure across varieties is defined by 

 𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁(1;𝟏𝟏Ω−1) = 𝜁𝜁∗(1;𝟏𝟏Ω) > 1,  
 

where 𝜎𝜎(𝑉𝑉) > 1 is guaranteed by gross substitutability. If 𝜎𝜎′(𝑉𝑉) > (<)0, we call the case of 

increasing (decreasing) substitutability. In general, 𝜎𝜎(𝑉𝑉) may be nonmonotonic in 𝑉𝑉.   

Love-for-variety is commonly defined by the rate of productivity gain from a higher 𝑉𝑉, 

at 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω, holding 𝑥𝑥𝑉𝑉 constant,  

    
𝑑𝑑 ln𝑋𝑋(𝐱𝐱)
𝑑𝑑 ln𝑉𝑉

�
𝐱𝐱=𝜓𝜓𝟏𝟏Ω,𝜓𝜓𝑉𝑉=𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.

=     
𝑑𝑑 ln 𝑥𝑥𝑋𝑋(𝟏𝟏Ω)

𝑑𝑑 ln𝑉𝑉
�

 𝜓𝜓𝑉𝑉=𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.
=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1. 

Since 𝑋𝑋(𝟏𝟏Ω) is a function of 𝑉𝑉 only, so is this measure, and hence it can be denoted as ℒ(𝑉𝑉).   

An alternative (and my favorite definition) of love-for-variety is the rate of decline in 

𝑃𝑃(𝐩𝐩) from a higher 𝑉𝑉, at 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, holding 𝑝𝑝 constant. 

 −  
𝑑𝑑 ln𝑃𝑃(𝐩𝐩)
𝑑𝑑 ln𝑉𝑉

�
𝐩𝐩=𝑜𝑜𝟏𝟏Ω

−1,   𝑜𝑜=𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.
= −  

𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

. 

Since 𝑃𝑃(𝟏𝟏Ω−1) is a function of 𝑉𝑉 only, so is this measure. The two definitions are indeed 

equivalent. This can be verified by setting 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω and 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1 to 𝐩𝐩𝐱𝐱 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱), 

𝑝𝑝𝑥𝑥𝑉𝑉 = 𝑝𝑝𝑃𝑃(𝟏𝟏Ω−1)𝑥𝑥𝑋𝑋(𝟏𝟏Ω) ⟹−  
𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1. 

Hence, 

Definition. The love-for-variety measure is defined by: 

 
ℒ(𝑉𝑉) ≡ −  

𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0, 
 

 

where ℒ(𝑉𝑉) > 0 is guaranteed by the strict quasi-concavity of the production technologies. If 

ℒ′(𝑉𝑉) > (<)0, we call the case of increasing (diminishing) love-for-variety. In general, ℒ(𝑉𝑉) 

may be nonmonotonic in 𝑉𝑉. 

  Under CES, 

• The price elasticity of demand is constant; 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) = 𝜎𝜎. 

 
8Because there is a continuum of inputs, there is no point of looking into the Morishima elasticity of substitution. 
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• Substitutability is constant; 𝜎𝜎(𝑉𝑉) = 𝜎𝜎. 

• Love-for-variety is constant and ℒ(𝑉𝑉) = ℒ = 1 (𝜎𝜎 − 1)⁄ , which is inversely related to 𝜎𝜎. 9 

Under general homothetic symmetric demand systems, however, we can say little about the 

relation between 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), 𝜎𝜎(𝑉𝑉), and ℒ(𝑉𝑉), even though that the following claims 

are often made: 

Fallacy #3: 𝜎𝜎(𝑉𝑉) is constant only under CES. 

Fallacy #4: 𝜎𝜎′(𝑉𝑉) > (<)0 iff the 2nd law (anti-2nd law) holds.  

Fallacy #5: 𝜎𝜎(𝑉𝑉) is an inverse measure of love-for-variety, ℒ(𝑉𝑉).10 

See Matsuyama & Ushchev (2023, 2024b) for some counterexamples. Symmetry and 

homotheticity alone are not strong enough to impose much restriction, because the budget share 

and the price elasticity of each variety can depend on the entire distribution of prices across 

different varieties. Nevertheless, one might find that the claims made in these fallacies are 

appealing features for a demand system to have. Even though these claims are false under 

general homothetic symmetric demand systems, they are true under H.S.A., as will be shown in 

Section 5. 

 

4.  Dixit Stiglitz under General Homothetic Demand Systems11 

Let us now apply the general homothetic symmetric demand system to the Dixit-Stiglitz 

environment.   

Fallacy #6. With the symmetric firms, the equilibrium is symmetric.   

In general, the symmetry of the model environment only ensures the symmetry of the set of 

equilibria, not the symmetry of any equilibrium. (This is called “Symmetry-Breaking:” see 

 
9 Benassy (1996) proposed to break the tight relation between 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) under the standard CES, by making 
TFP a function of 𝑉𝑉 as 𝑍𝑍(𝑉𝑉), justified by some sorts of direct externalities from 𝑉𝑉 to TFP (or affinity in the context 
of spatial economics). Such modified CES yields ℒ(𝑉𝑉) = 𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄ + 1 (𝜎𝜎 − 1).⁄  This allows the gap 
between the observed love-for-variety and the love-for-variety implied by CES demand to be “accounted for” by 
𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄ , the term I would call “the Benassy residual,” in analogy with the Slow residual in the growth 
accounting. Moreover, he assumed that 𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄ = 𝜈𝜈 − 1 (𝜎𝜎 − 1)⁄ ,  so that ℒ(𝑉𝑉) = 𝜈𝜈, which can be chosen 
independently from 𝜎𝜎(𝑉𝑉) = 𝜎𝜎. If we assume instead 𝜕𝜕 ln𝑍𝑍(𝑉𝑉) 𝜕𝜕 ln𝑉𝑉⁄  is another parameter independent of 𝜎𝜎(𝑉𝑉) =
𝜎𝜎, ℒ(𝑉𝑉) is still inversely related to 𝜎𝜎(𝑉𝑉) = 𝜎𝜎.  Even if one believed in the presence of direct externalities from 𝑉𝑉 to 
TFP or affinity, any estimate of the Benassy residual hinges on the CES assumption. In any case, introducing the 
Benassy residual does not serve our goal of characterizing MC models under homothetic non-CES demand systems. 
10Though many have derived 𝜎𝜎(𝑉𝑉) for specific non-CES demand systems, I am unaware of any attempt prior to 
Matsuyama & Ushchev (2023) to derive ℒ(𝑉𝑉) for any non-CES. I suspect that those who made this claim just take it 
for granted that ℒ = 1 (𝜎𝜎 − 1)⁄  under CES would be generalized to ℒ(𝑉𝑉) = 1 (𝜎𝜎(𝑉𝑉) − 1)⁄  under non-CES. 
11 This and next sections draw heavily from Matsuyama & Ushchev (2020a). 
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Matsuyama 2008). Even if the symmetric equilibrium exists, it may co-exist with a symmetric 

set of asymmetric equilibriums. In an asymmetric equilibrium in the Dixit-Stiglitz environment, 

ex-ante symmetric firms pursue different pricing strategies, where some choose to have higher 

markup rates with smaller quantities while others choose to have lower markup rates with larger 

quantities, and the masses of firms choosing between the two strategies adjust in such a way that 

they are indifferent between the two, so that firms become endogenously asymmetric, giving rise 

to endogenous price distribution. 

 

4.1 Symmetric Equilibrium:  

Nevertheless, let us proceed under the assumption that a symmetric equilibrium exists. 

Each firm chooses 𝑝𝑝𝜔𝜔 to maximize its gross profit,  

Π𝜔𝜔 = (𝑝𝑝𝜔𝜔 −  𝜓𝜓)𝑥𝑥𝜔𝜔 = �1 −
 𝜓𝜓
𝑝𝑝𝜔𝜔
�𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 = �1 −

 𝜓𝜓
𝑝𝑝𝜔𝜔
� 𝑠𝑠(𝑝𝑝𝜔𝜔,𝐩𝐩)𝐸𝐸, 

holding 𝐸𝐸 and 𝐩𝐩, given. The first-order condition generates the Lerner pricing formula,  

𝑝𝑝𝜔𝜔 �1 −
1

𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩)� = 𝜓𝜓.       

In any symmetric equilibrium, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁(1,𝟏𝟏Ω−1) = 𝜎𝜎(𝑉𝑉). Hence, 

𝑝𝑝𝜔𝜔 �1 −
1

𝜎𝜎(𝑉𝑉)� = 𝜓𝜓              ⟺          𝑝𝑝𝜔𝜔 ≡ 𝑝𝑝 =
𝜎𝜎(𝑉𝑉)

𝜎𝜎(𝑉𝑉) − 1
𝜓𝜓 ≡ 𝜇𝜇(𝑉𝑉)𝜓𝜓, 

where the markup rate, 𝜇𝜇(𝑉𝑉), satisfies the following identities: 

1
𝜎𝜎(𝑉𝑉) +

1
𝜇𝜇(𝑉𝑉) = 1;      

1
𝜎𝜎(𝑉𝑉) − 1

=
𝜇𝜇(𝑉𝑉)
𝜎𝜎(𝑉𝑉) = 𝜇𝜇(𝑉𝑉) − 1;   

and 12 

ℰ𝜎𝜎(𝑉𝑉) = −
ℰ𝜇𝜇(𝑉𝑉)

𝜇𝜇(𝑉𝑉) − 1
;     ℰ𝜇𝜇(𝑉𝑉) = −

ℰ𝜎𝜎(𝑉𝑉)
𝜎𝜎(𝑉𝑉) − 1

 .  

The common gross profit is Π = (𝑝𝑝 −  𝜓𝜓)𝑥𝑥 = 𝑝𝑝𝑥𝑥 𝜎𝜎(𝑉𝑉)⁄ = 𝐸𝐸 [𝑉𝑉𝜎𝜎(𝑉𝑉)]⁄ , which must be equal to 

the fixed cost, 𝐹𝐹. Thus, in a symmetric equilibrium,  

𝑉𝑉𝑒𝑒𝑒𝑒𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) =
𝐸𝐸
𝐹𝐹

. 

 
12 Throughout this review, ℰ𝑓𝑓(𝑥𝑥) ≡ 𝑥𝑥𝑓𝑓′(𝑥𝑥) 𝑓𝑓(𝑥𝑥)⁄ = 𝜕𝜕 ln 𝑓𝑓(𝑥𝑥) 𝜕𝜕 ln 𝑥𝑥⁄  denotes the elasticity of a positive-valued 
function, 𝑓𝑓(𝑥𝑥) > 0, defined over a positive real number 𝑥𝑥 > 0. 
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Notice that 𝑉𝑉𝑒𝑒𝑒𝑒 is independent of 𝜓𝜓, and so are the revenue, 𝑝𝑝𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒 = 𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)𝐹𝐹, the gross profit, 

𝐹𝐹. and the production cost, [𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) − 1]𝐹𝐹, of each firm. However, the price, 𝑝𝑝𝑒𝑒𝑒𝑒 = 𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)𝜓𝜓, 

and the quantity,𝑥𝑥𝑒𝑒𝑒𝑒 = 𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)𝐹𝐹 [𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)𝜓𝜓]⁄ , are not. 

The symmetric equilibrium is unique for any 𝐸𝐸 𝐹𝐹⁄ > 0 iff 𝑉𝑉𝜎𝜎(𝑉𝑉) is globally increasing in 

𝑉𝑉. This condition can be written as 1 + ℰ𝜎𝜎(𝑉𝑉) > 0, or equivalently, ℰ𝜇𝜇(𝑉𝑉) < 𝜇𝜇(𝑉𝑉) − 1. Under 

the same condition, 𝑉𝑉𝑒𝑒𝑒𝑒 is globally increasing in 𝐸𝐸 𝐹𝐹⁄ .13 Clearly, 𝜎𝜎′(⋅) > 0, the case of 

increasing substitutability, or equivalently, 𝜇𝜇′(⋅) < 0, the case of procompetitive entry, is 

sufficient, but not necessary. 

In the symmetric equilibrium, the profit and production cost shares are:   
1

𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ; 
1

𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒), 

and the profit/production cost ratio is: 

𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) =

1
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) − 1

= 𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) − 1 

in all firms. All of them generally vary with 𝑉𝑉𝑒𝑒𝑒𝑒, and hence with 𝐸𝐸 𝐹𝐹⁄ > 0. 

 

4.2 Comparative Statics:  

Under the condition that ensures the uniqueness of the symmetric equilibrium and its 

stability, 1 + ℰ𝜎𝜎(𝑉𝑉) > 0,   

𝑉𝑉𝑒𝑒𝑒𝑒� =
𝐸𝐸� − 𝐹𝐹�

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ;   𝑝𝑝𝑒𝑒𝑒𝑒� =
ℰ𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)�𝐸𝐸� − 𝐹𝐹��

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) + 𝜓𝜓�;    𝑥𝑥𝑒𝑒𝑒𝑒� =
𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)�𝐸𝐸� − 𝐹𝐹��

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) + 𝐹𝐹� − 𝜓𝜓�. 

Thus, for ℰ𝜎𝜎(𝑉𝑉) ⋛ 0 ⟺ ℰ𝜇𝜇(𝑉𝑉) ⋚ 0, the market size effect is 

0 <
𝜕𝜕 ln𝑉𝑉𝑒𝑒𝑒𝑒

𝜕𝜕 ln𝐸𝐸
= 1 −

𝜕𝜕 ln(𝑝𝑝𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒)
𝜕𝜕 ln𝐸𝐸

=
1

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋚ 1; 

𝜕𝜕 ln 𝑝𝑝𝑒𝑒𝑒𝑒

𝜕𝜕 ln𝐸𝐸
=

ℰ𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)
1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋚ 0;          

𝜕𝜕 ln 𝑥𝑥𝑒𝑒𝑒𝑒

𝜕𝜕 ln𝐸𝐸
=
𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋛ 0; 

and the profit/production cost ratio changes as:   

𝜕𝜕 ln(𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) 𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)⁄ )
𝜕𝜕 ln𝐸𝐸

=
ℰ𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) − ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋚ 0. 

 
13 Locally increasing 𝑉𝑉𝜎𝜎(𝑉𝑉) in the neighborhood of a symmetric equilibrium also ensures its local stability in any 
adjustment process with the following property: �̇�𝑉𝑐𝑐 ⋛ 0 if and only if 𝜋𝜋𝑐𝑐 = 𝐸𝐸 𝑉𝑉𝑐𝑐𝜎𝜎(𝑉𝑉𝑐𝑐)⁄ ⋛ 𝐹𝐹. 
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The intuition is easy to grasp. For example, consider the case of increasing substitutability 

ℰ𝜎𝜎(𝑉𝑉) > 0, i.e., the case of procompetitive entry, ℰ𝜇𝜇(𝑉𝑉) < 0. In response to a market size 

increase, more firms enter and product variety goes up. When this makes the products more 

substitutable, ℰ𝜎𝜎(𝑉𝑉) > 0, the markup rate goes down, ℰ𝜇𝜇(𝑉𝑉) < 0, necessitating each firm to 

increase the scale of operation and earn more revenue just to break even. Because each firm is 

larger, the masses of firms and product variety go up at a rate lower than the rate of market size 

increase. This also means a decline in the profit/production cost ratio. Note that these 

comparative statics results depend on sgn{ℰ𝜎𝜎(𝑉𝑉)} = −sgn� ℰ𝜇𝜇(𝑉𝑉)�, i.e., how the markup rate 

responds to entry, not whether the 2nd law hold or not. It is also unrelated to the property of 

ℒ(𝑉𝑉), which plays a crucial role in determining the optimal allocation.  

 

4.3 Optimal Allocation: This now solves the following problem: 

max𝑋𝑋(𝐱𝐱)     𝑠𝑠. 𝑡𝑡.   � 𝜓𝜓𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

+ 𝑉𝑉𝐹𝐹 ≤ 𝐸𝐸. 

The solution satisfies 𝑥𝑥𝜔𝜔 = 𝑥𝑥 > 0  for 𝑑𝑑 ∈ Ω; 𝑥𝑥𝜔𝜔 = 0 for 𝑑𝑑 ∉ Ω, simplifying the problem to:  

max𝑋𝑋(𝐱𝐱) =  max
𝑉𝑉(𝜓𝜓𝜓𝜓+𝐹𝐹)≤𝐸𝐸

𝑥𝑥𝑋𝑋(𝟏𝟏Ω) =
𝐹𝐹
𝜓𝜓

max
𝑉𝑉

𝑋𝑋(𝟏𝟏Ω)
𝑉𝑉 �

𝐸𝐸
𝐹𝐹
− 𝑉𝑉�. 

From the first-order condition, and using ℒ(𝑉𝑉) = 𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1,  the optimal variety 𝑉𝑉𝑜𝑜𝑜𝑜 satisfies 

  �1 +
1

ℒ(𝑉𝑉𝑜𝑜𝑜𝑜)�  𝑉𝑉𝑜𝑜𝑜𝑜 =
𝐸𝐸
𝐹𝐹

. 

This condition fully characterizes 𝑉𝑉𝑜𝑜𝑜𝑜 if LHS is strictly increasing, i.e., ℰℒ(𝑉𝑉) < 1 + ℒ(𝑉𝑉), 

which also ensures that 𝑉𝑉𝑜𝑜𝑜𝑜 is globally increasing in 𝐸𝐸 𝐹𝐹⁄ . This condition is clearly satisfied for 

the case of diminishing love-for-variety, ℒ′(𝑉𝑉) < 0, which is sufficient but not necessary. 

 

4.4 Optimal vs. Equilibrium: By comparing the two conditions, 

�1 +
1

ℒ(𝑉𝑉𝑜𝑜𝑜𝑜)� 𝑉𝑉
𝑜𝑜𝑜𝑜 =

𝐸𝐸
𝐹𝐹

;   𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)𝑉𝑉𝑒𝑒𝑒𝑒 =
𝐸𝐸
𝐹𝐹

, 

with the LHS of each condition strictly increasing in 𝑉𝑉𝑜𝑜𝑜𝑜 and in 𝑉𝑉𝑒𝑒𝑒𝑒 respectively, one could 

easily verify:   

Proposition 1.  Assume that the symmetric equilibrium exists uniquely in the Dixit-Stiglitz 

environment under general homothetic symmetric demand systems. Then,  
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ℒ(𝑉𝑉) ⋛
1

𝜎𝜎(𝑉𝑉) − 1
 for all 𝑉𝑉 > 0 ⟺ 𝑉𝑉𝑒𝑒𝑒𝑒 ⋚ 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0. 

The logic behind this result is simple; ℒ(𝑉𝑉) captures the social incentive to add product variety, 

while [𝜎𝜎(𝑉𝑉) − 1]−1 = 𝜇𝜇(𝑉𝑉) − 1 = 𝜇𝜇(𝑉𝑉) 𝜎𝜎(𝑉𝑉)⁄ , the profit/production cost ratio, captures the 

private incentive to add product variety. In general, these two do not coincide. For some classes 

of demand systems, ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] > 1, hence 𝑉𝑉𝑒𝑒𝑒𝑒 < 𝑉𝑉𝑜𝑜𝑜𝑜.  For some other classes, 

ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] < 1, hence 𝑉𝑉𝑒𝑒𝑒𝑒 > 𝑉𝑉𝑜𝑜𝑜𝑜.  In-between, there are the borderline classes for which 

ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] = 1, hence 𝑉𝑉𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑜𝑜𝑜𝑜.  CES belongs to the borderline, but not the only one. 

And the optimality in any of the borderline classes is not robust.14 Moreover, though 

ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] = 1 ensures the optimality of the unique symmetric equilibrium, it does not rule 

out the existence of a symmetric set of asymmetric equilibria, none of which is optimal. 

Proposition 1 gives us the condition for evaluating the optimality of the symmetric 

equilibrium, if it exists uniquely. However, because homotheticity and symmetry alone impose 

little restriction on the relation between 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉), “almost anything goes.” It is thus 

necessary to restrict the demand systems to make further progress. The next section introduces 

such a restriction in the form of H.S.A. demand systems. 

 

5. Homothetic Single Aggregator (H.S.A.) Demand Systems  

A homothetic symmetric demand system belongs to the homothetic single aggregator 

(H.S.A.) class with gross substitutes if the budget share of 𝑑𝑑 ∈ Ω is a strictly decreasing function 

of its normalized price, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ , only, where the normalized is defined by its own price, 

𝑝𝑝𝜔𝜔 divided by a single price aggregator 𝐴𝐴(𝐩𝐩), which is common across all varieties. That is, all 

the cross-price effects are summarized in a single number, 𝐴𝐴(𝐩𝐩), or a sufficient statistic. 

 

5.1 Definition 

Formally, a homothetic symmetric demand system belongs to H.S.A. with gross 

substitutes if there exists a function of a single variable, 𝑠𝑠:ℝ++ → ℝ+, which is strictly 

 
14Matsuyama & Ushchev (2024a) constructed a two-parameter family of homothetic symmetric demand systems, in 
which the equilibrium variety is generically either excessive or insufficient, as well as there is a continuum of non-
generic cases in which the equilibrium is optimal, to which CES belongs. 
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decreasing for 𝑠𝑠(𝑧𝑧) > 0 with lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and lim𝑧𝑧→�̅�𝑧𝑠𝑠(𝑧𝑧) = 0, where 𝑧𝑧̅ ≡

inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0},15 such that the budget share of 𝑑𝑑 ∈ Ω can be expressed as: 

𝑠𝑠𝜔𝜔 =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�,    

where 𝐴𝐴(𝐩𝐩) is defined implicitly by 

� 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω

 ≡ 1. 

The price elasticity of demand for 𝑑𝑑 ∈ Ω is, for 𝑝𝑝𝜔𝜔 < 𝑧𝑧̅𝐴𝐴(𝐩𝐩), 

𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 1 −
𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)
𝑠𝑠(𝑧𝑧𝜔𝜔) ≡ 1 − ℰ𝑐𝑐(𝑧𝑧𝜔𝜔) ≡ 𝜁𝜁(𝑧𝑧𝜔𝜔) ≡ 𝜁𝜁 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� > 1, 

with lim
𝑧𝑧→�̅�𝑧

𝜁𝜁(𝑧𝑧) = ∞, if 𝑧𝑧̅ < ∞. The 2nd law holds iff 𝜁𝜁′(∙) > 0. 16  If 𝑧𝑧̅ < ∞, 𝑠𝑠𝜔𝜔 = 0 for 𝑝𝑝𝜔𝜔 ≥

𝑧𝑧̅𝐴𝐴(𝐩𝐩), hence 𝑧𝑧̅𝐴𝐴(𝐩𝐩) is the choke price. 

Note that the budget share function, 𝑠𝑠(∙), is the primitive of the H.S.A. demand system. 

The common price aggregator, 𝐴𝐴(𝐩𝐩), is not, because it needs to be derived from 𝑠𝑠(∙) using the 

adding-up constraint, ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑Ω  ≡ 1.  Clearly, 𝐴𝐴(𝐩𝐩) is linear homogenous in 𝐩𝐩 for 

any fixed Ω, and the budget share 𝑠𝑠(𝑧𝑧𝜔𝜔) = 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ) adds up to one by construction. Note 

that 𝐴𝐴(𝐩𝐩) is common across varieties and that both the budget share of 𝑑𝑑 ∈ Ω, 𝑠𝑠(𝑧𝑧𝜔𝜔) and its 

price elasticity 𝜁𝜁(𝑧𝑧𝜔𝜔) are functions of 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄  only. Thus, all the cross-variety effects in 

H.S.A. are summarized by the single price aggregator, 𝐴𝐴(𝐩𝐩). 17 

After deriving 𝐴𝐴(𝐩𝐩) from 𝑠𝑠(∙), the unit cost function, 𝑃𝑃(𝐩𝐩), can be derived by integrating 

𝑠𝑠𝜔𝜔 = 𝜕𝜕 ln𝑃𝑃(𝐩𝐩) 𝜕𝜕 ln𝑝𝑝𝜔𝜔⁄ = 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ) as: 

c𝑃𝑃(𝐩𝐩) = 𝐴𝐴(𝐩𝐩) exp �− � 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�Φ�

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑

Ω

� ,   where  Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉 > 0
�̅�𝑧

𝑧𝑧

. 

 
15For 𝑠𝑠:ℝ++ → ℝ+, satisfying these conditions, a class of the budget share functions, 𝑠𝑠(𝑧𝑧; 𝛾𝛾) ≡ 𝛾𝛾𝑠𝑠(𝑧𝑧) for 𝛾𝛾 > 0, 
generate the same demand system with the same common price aggregator. We just need to renormalize the indices 
of varieties, as 𝑑𝑑′ = 𝛾𝛾𝑑𝑑, so that ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ; 𝛾𝛾)𝑑𝑑𝑑𝑑Ω  = ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔′ 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑′

Ω = 1.  In this sense, 𝑠𝑠(𝑧𝑧; 𝛾𝛾) ≡ 𝛾𝛾𝑠𝑠(𝑧𝑧) 
for 𝛾𝛾 > 0 are all equivalent. Also, a class of the budget share functions, 𝑠𝑠(𝑧𝑧;𝛽𝛽) ≡ 𝑠𝑠(𝑧𝑧 𝛽𝛽⁄ ) for 𝛽𝛽 > 0, generate the 
same demand system, with 𝐴𝐴(𝐩𝐩;𝛽𝛽) = 𝐴𝐴(𝐩𝐩) 𝛽𝛽⁄ , because 𝑠𝑠�𝑝𝑝𝜔𝜔 𝐴𝐴𝛽𝛽(𝐩𝐩)⁄ ;𝛽𝛽� = 𝑠𝑠�𝑝𝑝𝜔𝜔 𝐴𝐴𝛽𝛽(𝐩𝐩;𝛽𝛽)⁄ � = 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ). In 
this sense, 𝑠𝑠(𝑧𝑧;𝛽𝛽) ≡ 𝑠𝑠(𝑧𝑧 𝛽𝛽⁄ ) for 𝛽𝛽 > 0 are all equivalent. 
16 Conversely, one can obtain 𝑠𝑠(⋅) as 𝑠𝑠(𝑧𝑧) = 𝛾𝛾 exp �∫ 1−𝜁𝜁(𝜉𝜉)

𝜉𝜉
𝑑𝑑𝜉𝜉𝑧𝑧

𝑧𝑧0
�, from any 𝜁𝜁(⋅) > 1, with lim

 𝑧𝑧→�̅�𝑧
𝜁𝜁(𝑧𝑧) = ∞, if 𝑧𝑧̅ < ∞. 

17 Recall that, under general homothetic symmetric demand systems, the budget share of 𝑑𝑑 ∈ Ω, and its price 
elasticity depends on 𝐩𝐩 𝑝𝑝𝜔𝜔⁄ , the price distribution normalized by its own price, an infinite dimensional object. 
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where Φ(𝑧𝑧) is the productivity gain created by the product sold at the normalized price, 𝑧𝑧, and  

𝑐𝑐 > 0 is an integral constant, which is proportional to TFP. Clearly, 𝑃𝑃(𝐩𝐩) is linear homogeneous 

and monotonic. Moreover, Matsuyama & Ushchev (2017) showed that it is strictly quasi-

concave, thereby proving the integrability (in the sense of Samuelson 1950 and Hurwicz & 

Uzawa 1971) of H.S.A. demand systems. It is worth emphasizing that 𝑃𝑃(𝐩𝐩) 𝐴𝐴(𝐩𝐩)⁄  is not 

constant, with the sole exception of CES.18 𝐴𝐴(𝐩𝐩) and 𝑃𝑃(𝐩𝐩) generally move differently in 

response of a change in 𝐩𝐩. This should make sense, because 𝐴𝐴(𝐩𝐩) is the inverse measure of 

competitive pressures from other products, which captures the cross-variety interactions in the 

demand system, while 𝑃𝑃(𝐩𝐩) is the unit cost function, which captures the productivity 

consequences of price changes; there is no reason to expect them to move together in general.19 

In other words, 𝐴𝐴(𝐩𝐩) in the definition of H.S.A. cannot be replaced by 𝑃𝑃(𝐩𝐩), though many have 

claimed to the contrary. 

Fallacy #7; 𝑠𝑠𝜔𝜔 = 𝑓𝑓(𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ ), with 𝑓𝑓′(∙) < 0 defines the class of flexible homothetic demand 

systems, which contains CES as a special case, where 𝑠𝑠𝜔𝜔 ∝ (𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ )1−𝜎𝜎 . 

This is false because 𝜕𝜕 ln𝑃𝑃(𝐩𝐩) 𝜕𝜕 ln𝑝𝑝𝜔𝜔⁄ = 𝑠𝑠𝜔𝜔 = 𝑓𝑓(𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ ) is a partial differential equation of 

𝑃𝑃(𝐩𝐩), whose solution must take the form of 𝑠𝑠𝜔𝜔 ∝ (𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ )1−𝜎𝜎. 

 

5.2 Substitutability and Love-for-Variety under H.S.A. 

For symmetric price patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1,  𝑧𝑧𝜔𝜔 = 𝑧𝑧 satisfies 𝑠𝑠(𝑧𝑧)𝑉𝑉 = 1, and − ln𝑃𝑃(𝟏𝟏Ω−1) =

ln 𝑐𝑐 + ln 𝑧𝑧 + Φ(𝑧𝑧), from which 

Proposition 2:  Under H.S.A.,  

𝜎𝜎(𝑉𝑉) = 𝜁𝜁 �
1

𝐴𝐴(𝟏𝟏Ω−1)� = 𝜁𝜁 �𝑠𝑠−1 �
1
𝑉𝑉�
� > 1. 

 
18 To see this, differentiating ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝑑𝑑Ω  ≡ 1, yields 

𝜕𝜕 ln𝐴𝐴(𝐩𝐩)
𝜕𝜕 ln𝑝𝑝𝜔𝜔

=
𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)

∫ 𝑠𝑠′(𝑧𝑧𝜔𝜔′)𝑧𝑧𝜔𝜔′𝑑𝑑𝑑𝑑′
Ω

=
[𝜁𝜁(𝑧𝑧𝜔𝜔) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔)

∫ [𝜁𝜁(𝑧𝑧𝜔𝜔′) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔′)𝑑𝑑𝑑𝑑′
Ω

, 

which differs from 𝜕𝜕 ln𝑃𝑃(𝐩𝐩) 𝜕𝜕 ln𝑝𝑝𝜔𝜔⁄ = 𝑠𝑠(𝑧𝑧𝜔𝜔), unless 𝜁𝜁(𝑧𝑧) is constant, i.e., except the case of CES. 
19 Moreover, 𝐴𝐴(𝐩𝐩), the “average input price”, depends on the unit of measurement of inputs, but not on the unit of 
measurement of the final good. In contrast, 𝑃𝑃(𝐩𝐩) is the cost of producing one unit of the final good, when the input 
prices are 𝐩𝐩. Hence, it depends not only on the unit measurement of inputs but also on that of the final good. 
Furthermore, a change in TFP, while affecting 𝑃𝑃(𝐩𝐩), leaves the market share unaffected. This is why the H.S.A. 
demand system and 𝐴𝐴(𝐩𝐩) are independent of the integral constant, 𝑐𝑐 > 0, and hence it cannot be determined. 
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ℒ(𝑉𝑉) ≡ −  
𝑑𝑑 ln𝑃𝑃(𝟏𝟏Ω−1)
𝑑𝑑 ln𝑉𝑉

= Φ�𝑠𝑠−1 �
1
𝑉𝑉�
� > 0. 

Since 𝑠𝑠−1(1 𝑉𝑉⁄ ) is increasing in 𝑉𝑉,  sgn {𝜁𝜁′(∙)} = sgn {𝜎𝜎′(∙)} and sgn {Φ′(∙)} = sgn {ℒ′(∙)}. In 

particular, increasing substitutability and procompetitive entry are equivalent to the 2nd law under 

H.S.A.  Moreover, Matsuyama & Ushchev (2020a, 2023) show that  

𝜁𝜁′(⋅) ⋛ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) ⟹Φ′(𝑧𝑧) ⋚ 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧). 

The reverse is not true in general, except  

Φ′(𝑧𝑧) = 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧)    ⟹   𝜁𝜁′(⋅) = 0,∀𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧). 

Hence, from Proposition 2, 

Proposition 3:  Under H.S.A.,  

𝜎𝜎′(𝑉𝑉) ⋛ 0,   ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞)    ⟹    ℒ′(𝑉𝑉) ⋚ 0,    ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞), 

The reverse is not true in general, except  

ℒ′(𝑉𝑉) = 0,    ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞)  ⟹   𝜎𝜎′(𝑉𝑉) = 0,   ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞). 

Thus, the 2nd law, increasing substitutability, and procompetitive entry are all equivalent to each 

other under H.S.A.  Moreover, if any of them holds globally, it is sufficient (but not necessary) 

for global diminishing love-for variety under H.S.A.20 

 

6. Dixit Stiglitz under H.S.A. 

Let us now apply H.S.A. to the Dixit-Stiglitz environment.21 

6.1 Equilibrium:  

Holding 𝐸𝐸 and 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) fixed, each firm chooses 𝑝𝑝𝜔𝜔 (hence 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴⁄ ) to maximize 

its gross profit,  

(𝑝𝑝𝜔𝜔 − 𝜓𝜓)𝑥𝑥𝜔𝜔 = �1 −
𝜓𝜓
𝑝𝑝𝜔𝜔
�𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 = �1 −

𝜓𝜓
𝑝𝑝𝜔𝜔
� 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�𝐸𝐸 = �1 −

𝜓𝜓 𝐴𝐴⁄
𝑧𝑧𝜔𝜔

� 𝑠𝑠(𝑧𝑧𝜔𝜔)𝐸𝐸. 

The first-order condition can be written as the Lerner pricing formula, normalized by 𝐴𝐴, as:  

𝑧𝑧𝜔𝜔 �1 −
1

𝜁𝜁(𝑧𝑧𝜔𝜔)� =
𝜓𝜓
𝐴𝐴

. 

 
20Note that 𝜎𝜎′(∙) > 0 everywhere over (𝑉𝑉,∞) is sufficient for ℒ′(𝑉𝑉) < 0, but 𝜎𝜎′(𝑉𝑉) > 0 is not. This is because 
substitutability is a local property of the demand system, while love-for-variety depends on its global properties. 
21 In addition to Matsuyama & Ushchev (2020a,b, 2022a,b, and 2024a), recent applications of H.S.A. to 
monopolistic competition include Baqaee et. al. (2024), Fujiwara & Matsuyama (2022), and Grossman et. al. (2023). 
Trottner (2023) applies H.S.A. to both monopolistic and monopsonic competition among firms with two-sided 
market power. 
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In what follows, let us assume purely for the expositional reason,22 

Assumption A1: For all 𝑧𝑧 ∈ (0, 𝑧𝑧), 
𝑑𝑑
𝑑𝑑𝑧𝑧 �

𝑧𝑧 �1 −
1

𝜁𝜁(𝑧𝑧)�� > 0. 

Clearly, the 2nd law, 𝜁𝜁′(𝑧𝑧) > 0, is sufficient but not necessary for A1.  A1 states that, for any 

𝐴𝐴 = 𝐴𝐴(𝐩𝐩), the marginal revenue of each firm is strictly increasing in 𝑝𝑝𝜔𝜔 (i.e., decreasing in 𝑥𝑥𝜔𝜔). 

Under A1, the LHS of the normalized Lerner formula is strictly increasing, it can be inverted to 

express the profit-maximizing 𝑧𝑧𝜔𝜔 as: 

𝑧𝑧𝜔𝜔 =  
𝑝𝑝𝜔𝜔
𝐴𝐴

= 𝑍𝑍� �
𝜓𝜓
𝐴𝐴�

;    𝑍𝑍�′(∙) > 0. 

Thus, the equilibrium is symmetric, so that 𝑝𝑝𝜔𝜔 = 𝑝𝑝 and 𝑧𝑧𝜔𝜔 = 𝑧𝑧 satisfying: 

𝑧𝑧 =
𝑝𝑝
𝐴𝐴

=
𝑝𝑝

𝐴𝐴(𝐩𝐩)
=

1
𝐴𝐴(𝟏𝟏Ω−1)

= 𝑠𝑠−1 �
1
𝑉𝑉�

. 

Moreover, A1 is equivalent to: 

𝑑𝑑
𝑑𝑑𝑧𝑧

ln�
𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧)� < 0 ⟺

𝑑𝑑
𝑑𝑑𝑉𝑉

ln𝑉𝑉𝜎𝜎(𝑉𝑉) > 0, 

so that the maximized gross profit of each firm,   

�1 −
𝜓𝜓
𝑝𝑝�

𝑠𝑠(𝑧𝑧)𝐸𝐸 = �1 −
𝜓𝜓 𝐴𝐴⁄
𝑧𝑧
� 𝑠𝑠(𝑧𝑧)𝐸𝐸 =

𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧)𝐸𝐸 =

𝐸𝐸
𝑉𝑉𝜎𝜎(𝑉𝑉) 

is strictly decreasing in 𝑧𝑧 and in 𝑉𝑉.  Hence, the free-entry condition uniquely pins down 𝜓𝜓 𝐴𝐴⁄ , 𝑧𝑧, 

and 𝑉𝑉. Thus, the equilibrium is symmetric and unique under H.S.A.  From Section 4, 

𝑉𝑉𝑒𝑒𝑒𝑒𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) =
𝐸𝐸
𝐹𝐹

;  𝑝𝑝𝑒𝑒𝑒𝑒 = 𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)𝜓𝜓;   𝑥𝑥𝑒𝑒𝑒𝑒 =
(𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) − 1)𝐹𝐹

𝜓𝜓
=

𝐹𝐹
(𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) − 1)𝜓𝜓

, 

and the profit share and the production cost share in the revenue in all firms are equal to   
1

𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ; 
1

𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒). 

and the ratio of the profit to the production cost is equal to: 

𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) =

1
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) − 1

= 𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) − 1 

 
22 Even without A1, the profit maximizing 𝑧𝑧𝜔𝜔 is strictly increasing and the maximized profit Π𝜔𝜔 = 𝑠𝑠(𝑧𝑧𝜔𝜔)𝐸𝐸 𝜁𝜁(𝑧𝑧𝜔𝜔)⁄  is 
strictly decreasing in the normalized cost 𝜓𝜓 𝐴𝐴⁄ , which is all we need to establish the symmetry and uniqueness of the 
equilibrium. Without A1, however, 𝑧𝑧𝜔𝜔 is piecewise-continuous (i.e., it jumps up at some values of 𝜓𝜓 𝐴𝐴⁄ ), and Π𝜔𝜔 is 
piecewise-differentiable, which complicates the exposition. 
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in all firms. They all vary with 𝑉𝑉𝑒𝑒𝑒𝑒 , and hence with 𝐸𝐸 𝐹𝐹⁄  under non-CES H.S.A.   

 

6.2 Comparative Statics: Clearly, the results obtained in Section 4 for general homothetic 

demand system under the assumption that the symmetric equilibrium exists uniquely carry over 

to this case. Moreover, the comparative statics results for ℰ𝜎𝜎(𝑉𝑉) ⋛ 0 ⟺ ℰ𝜇𝜇(𝑉𝑉) ⋚ 0 carry over 

for 𝜁𝜁′(𝑧𝑧) ⋛ 0, because they are equivalent under H.S.A. 

 

6.3 Optimal vs. Equilibrium: Differentiating Φ(𝑧𝑧) ≡ �∫ 𝑐𝑐(𝜉𝜉)
𝜉𝜉

d𝜉𝜉�̅�𝑧
𝑧𝑧 � 𝑠𝑠(𝑧𝑧)�  yields 

𝜕𝜕 lnΦ(𝑧𝑧)
𝜕𝜕 ln 𝑧𝑧

= −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) −

1
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) − 1 −

1
Φ(𝑧𝑧). 

Thus,  

Φ′(𝑧𝑧) ⋚ 0  ⟺  𝜁𝜁(𝑧𝑧) − 1 ⋚
1

Φ(𝑧𝑧). 

Since 𝜎𝜎(𝑉𝑉) = 𝜁𝜁�𝑠𝑠−1(1 𝑉𝑉⁄ )�, ℒ(𝑉𝑉) = Φ�𝑠𝑠−1(1 𝑉𝑉⁄ )�, and 𝑠𝑠−1(1 𝑉𝑉⁄ ) is increasing in 𝑉𝑉, the above 

equivalence translates into 

ℒ′(𝑉𝑉) ⋚ 0 ⟺ ℒ(𝑉𝑉) ⋚
1

𝜎𝜎(𝑉𝑉) − 1
. 

Hence, from Propositions 1, 2, and 3,  

Proposition 4: In the Dixit-Stiglitz environment under H.S.A.,  

𝜁𝜁′(𝑧𝑧) ⋚ 0 for all 𝑧𝑧 > 0 ⟺ 𝜎𝜎′(𝑉𝑉) ⋚ 0 for all 𝑉𝑉 > 0 

⟹ 

ℒ′(𝑉𝑉) ⋛ 0 for all 𝑉𝑉 > 0 ⟺ 𝑉𝑉𝑒𝑒𝑒𝑒 ⋚ 𝑉𝑉𝑜𝑜𝑜𝑜 for all 𝐸𝐸 𝐹𝐹⁄ > 0. 

Moreover,  

𝜁𝜁(𝑧𝑧) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.  ⟺  𝜎𝜎(𝑉𝑉) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.⟺ ℒ(𝑉𝑉) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.  ⟺  𝑉𝑉𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0. 

Thus, under H.S.A., equilibrium variety is excessive (insufficient) if and only if love-for-variety 

is diminishing (increasing), for which globally increasing (decreasing) substitutability or 

equivalently, the 2nd law (the anti-2nd law) is sufficient. Moreover, CES is the only H.S.A. 

demand system in which substitutability is constant, love-for-variety is constant, and the 

equilibrium is optimal. 

 



©Kiminori Matsuyama  Homothetic Non-CES with Applications to MC  

Page 25 of 50 
 

7. Melitz under H.S.A.23 

Let us now depart from the Dixit-Stiglitz environment and introduce heterogeneity across 

firms and their differentiated inputs.  

7.1 The Melitz Environment 

Consider what I shall call the Melitz (2003) Environment.  As before, there exists a 

single primary factor of production, called simply as “labor” and taken as numeraire. Each 

differentiated input variety, 𝑑𝑑 ∈ Ω, is produced from “labor” and sold exclusively by a single 

MC firm, also indexed by 𝑑𝑑 ∈ Ω, and their products enter symmetrically in the demand system. 

Moreover, the firms are ex-ante identical before they enter the market. However, unlike the 

Dixit-Stiglitz environment, they become ex-post heterogenous in their marginal cost of 

production. More specifically, each firm pays 𝐹𝐹𝑒𝑒 units of “labor” to enter the market, which is the 

sunk cost of entry. Upon entry, each firm draws its marginal cost of production, 𝜓𝜓𝜔𝜔 from the 

common cdf, 𝐺𝐺(𝜓𝜓), with the density function, 𝑔𝑔(𝜓𝜓) = 𝐺𝐺′(𝜓𝜓) > 0 over the support, �𝜓𝜓,𝜓𝜓�� ⊆

(0,∞). Then, firm 𝑑𝑑 needs to hire 𝐹𝐹 +  𝜓𝜓𝜔𝜔𝑥𝑥𝜔𝜔 units of “labor” to produce 𝑥𝑥𝜔𝜔 units of its own 

product, where F is the overhead cost, the fixed cost of production, which is not sunk. Thus, 

upon discovering its marginal cost, 𝜓𝜓𝜔𝜔, firm 𝑑𝑑 calculates its gross profit, Π(𝜓𝜓𝜔𝜔), and chooses to 

stay in the market if Π(𝜓𝜓𝜔𝜔) ≥ 𝐹𝐹 and to exit if Π(𝜓𝜓𝜔𝜔) < 𝐹𝐹. Finally, there is free-entry to the 

market. Ex-ante identical firms enter until their expected gross profit is equal to the entry cost; 

𝐹𝐹𝑒𝑒 = ∫ max{Π(𝜓𝜓) − 𝐹𝐹, 0}𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓�
𝜓𝜓, . This ensures no excess profit in equilibrium, so that the total 

demand for “labor” in this sector is equal to 𝐿𝐿 = 𝐩𝐩𝐱𝐱 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐸𝐸.  Let us now apply H.S.A. 

to the Melitz environment.24  

 

7.2 Pricing Behavior, Markup and Pass-Through Rates Across Firms: 

Knowing its marginal cost, 𝜓𝜓𝜔𝜔, and holding 𝐸𝐸 and 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) fixed, firm 𝑑𝑑 chooses 𝑝𝑝𝜔𝜔 

(hence 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴⁄ ) to maximize,  

(𝑝𝑝𝜔𝜔 − 𝜓𝜓)𝑥𝑥𝜔𝜔 = �1 −
𝜓𝜓𝜔𝜔 𝐴𝐴⁄
𝑧𝑧𝜔𝜔

� 𝑠𝑠(𝑧𝑧𝜔𝜔)𝐸𝐸, 

 
23 This section draws heavily from Matsuyama & Ushchev (2022b). 
24 Melitz under CES is a special case of Melitz under H.S.A. Melitz under HDIA or HIIA is not analytically 
tractable without some additional assumptions (e.g., the presence of the choke price combined with zero overhead 
cost, as in Arkolakis et.al. 2019). One could say very little under general homothetic symmetric demand systems.  
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whose first-order condition is given by:  

𝑧𝑧𝜔𝜔 �1 −
1

𝜁𝜁(𝑧𝑧𝜔𝜔)� =
𝜓𝜓𝜔𝜔
𝐴𝐴

. 

Under A1, this can be inverted as 𝑝𝑝𝜔𝜔 𝐴𝐴⁄ = 𝑧𝑧𝜔𝜔 = 𝑍𝑍�(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ), 𝑍𝑍�′(∙) > 0. Thus, all the firms that 

share the same 𝜓𝜓𝜔𝜔 set the same price. This means that we can identify firms only by their 

marginal cost, 𝜓𝜓, so that we reindex them by 𝜓𝜓. Their profit-maximizing normalized price 

satisfies 
𝑝𝑝𝜓𝜓
𝐴𝐴

= 𝑧𝑧𝜓𝜓 = 𝑍𝑍� �
𝜓𝜓
𝐴𝐴�

,   𝑍𝑍�′(∙) > 0. 

The price elasticity of demand at the point 𝜓𝜓-firms operates and their markup rate can both 

expressed as functions of 𝜓𝜓 𝐴𝐴⁄ :25 

𝜁𝜁�𝑧𝑧𝜓𝜓� = 𝜁𝜁 �𝑍𝑍� �
𝜓𝜓
𝐴𝐴�
� ≡ 𝜎𝜎 �

𝜓𝜓
𝐴𝐴�

;     𝜇𝜇 �
𝜓𝜓
𝐴𝐴�

≡
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1
. 

which are related with the following identities:  

1
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) +

1
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) = 1;    ℰ𝜎𝜎 �

𝜓𝜓
𝐴𝐴�

= −
ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )

𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) − 1
;     ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴�

= −
ℰ𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1
 .  

The pass-through rate is also a function of 𝜓𝜓 𝐴𝐴⁄ : 

𝜌𝜌𝜓𝜓 ≡
𝜕𝜕 ln𝑝𝑝𝜓𝜓
𝜕𝜕 ln𝜓𝜓

= ℰ𝑍𝑍� �
𝜓𝜓
𝐴𝐴�

≡ 𝜌𝜌 �
𝜓𝜓
𝐴𝐴�

=
1

1 + ℰ1−1 𝜁𝜁⁄ �𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ )�
= 1 + ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴�

> 0. 

Note that 𝜎𝜎(∙), 𝜇𝜇(∙), 𝜌𝜌(∙) are all functions of the normalized cost, 𝜓𝜓 𝐴𝐴⁄ , only. This means 

that, for non-CES H.S.A., market size 𝐸𝐸 affects the pricing behaviors of firms only through its 

effects on 𝐴𝐴 = 𝐴𝐴(𝐩𝐩).  (They are constant under CES, 𝜎𝜎(∙) = 𝜎𝜎;  𝜇𝜇(∙) = 𝜎𝜎 (𝜎𝜎 − 1)⁄ = 𝜇𝜇;𝜌𝜌(∙) =

1.)  Moreover, 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) enters only as the divisor of 𝜓𝜓. This means that a decline in 𝐴𝐴, more 

competitive pressures, act like a uniform decline in productivity across firms. 

Moreover, it is straightforward to verify: 

𝜁𝜁′(∙) ⋛ 0 ⟺ ℰ𝜎𝜎(∙) ⋛ 0 ⟺ ℰ𝜇𝜇(∙) ⋚ 0 ⟺ 𝜌𝜌(∙) ⋚ 1. 

Under the 2nd law, 𝜁𝜁′(∙) > 0, high-𝜓𝜓 firms set lower markup rates, and their pass-through rates 

are less than one (incomplete pass-through). The equivalence of the 2nd law and incomplete 

pass-through is general and not specific to H.S.A., though it hinges on the assumption that the 

 
25 Notice some abuse of notations here. Until the previous section, 𝜎𝜎(∙) and 𝜇𝜇(∙) are both functions of 𝑉𝑉, denoting 
the common values across symmetric firms. In this section, 𝜎𝜎(∙) and 𝜇𝜇(∙) are both functions of 𝜓𝜓 𝐴𝐴⁄ , denoting the 
price elasticity and the markup rate of 𝜓𝜓-firms. This should not cause any confusion. 
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MC firms are price-takers on their input market. Under H.S.A., the 2nd law, 𝜁𝜁′(∙) > 0, also 

implies that more competitive pressures, a lower 𝐴𝐴, force all firms to lower their markup rates, 

regardless of their marginal cost, 𝜓𝜓. 

The 2nd law alone does not say how the pass-through rate varies across firms or how it 

responds to more competitive pressures. Motivated by some evidence that more productive firms 

have lower pass-through rates, let us introduce the Strong (Weak) 3rd law,26 

ℰ1−1 𝜁𝜁⁄
′(∙) < (≤)0, 

which implies 𝜌𝜌′(∙) > (≥)0 and ℰ𝜇𝜇′(∙) > (≥)0. Among the parametric families listed in 

Appendix 2, Generalized Translog violates even the weak 3rd law; CoPaTh features a constant 

pass-through rate, hence satisfying the weak (but not strong) 3rd law. PEM/FIM satisfies the 

Strong 3rd law.  

Fallacy #8. “Translog is flexible, as it can approximate any homothetic symmetric demand 

system.”   

Some even claim that “because translog is flexible, the results shown under translog hold under 

general homothetic demand systems.”  I find these claims mind-boggling. Symmetric translog 

(Feenstra 2003) belongs to Generalized Translog. Its budget share function can be expressed as 

𝑠𝑠(𝑧𝑧) = −max{ln 𝑧𝑧 , 0} without any loss of generality. It has no parameter to fit the data. It is 

highly tractable, which explains its popularity, but it has no flexibility, whatsoever.27 Moreover, 

it violates even the weak 3rd law, thus inconsistent with the evidence that more productive firms 

have lower pass-through rates.28 

 
26 The 1st law of demand states that a higher price reduces demand, restricting the 1st derivative of the demand curve. 
The 2nd law states that a higher price increases the price elasticity, restricting the 2nd derivative. We call this law--a 
higher price reduces the rate of change in the price elasticity-- the 3rd law because it restricts the 3rd derivative.  
27 Some agree with me about non-flexibility of symmetric translog. For example, Edmond et. al. (2023, p.1623) 
wrote “…Kimball … is more flexible than … symmetric translog … and is better able to match our calibration 
targets. But … translog … is more tractable than … Kimball … and leads to sharp analytic results.”  In this respect, 
I argue that H.S.A. dominates both Kimball and symmetric translog, because it is as flexible as Kimball and as 
tractable as symmetric translog.  
28I am not sure why some people believe that translog is flexible. Maybe it is because translog (without symmetry 
restriction) offers local 2nd-order approximation to any unit cost function, which may be good enough for studying 
the impacts of small shocks in a competitive economy, where all firms are price takers. But it is not good enough 
when firms make price-setting and entry decisions, because these decisions depend on the global properties and the 
3rd derivatives of the unit cost function. Perhaps it is analogous to the widespread use of the quadratic function in 
early days of portfolio theory, “because it offers local 2nd-order approximation to any risk-averse utility function,” in 
spite of its counterfactual implication that the rich invest a larger fraction of the wealth to the safe asset, until Arrow 
(1971) pointed out that how the household wealth affects its portfolio choice depends on how the Arrow-Pratt 
measures of absolute and relative risk aversion vary with consumption, which hinge on its 3rd derivatives. 
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Under the Strong 3rd law, high-𝜓𝜓 firms have higher pass-through rates, and more 

competitive pressures, a lower 𝐴𝐴, causes the pass-through rate to go up across all firms. The 

Strong 3rd law is also equivalent to  

𝜕𝜕2 ln 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) > 0. 

That is, 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) is log-supermodular29 in 𝜓𝜓 and 1 𝐴𝐴⁄ . Because 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) is decreasing in 𝜓𝜓 under 

the 2nd law, this means that more competitive pressures cause a proportionately smaller decline 

in the markup rate for high-𝜓𝜓 firms, thus a smaller dispersion of the markup rates across firms. 

 

7.3 Revenue, Gross Profit, and Employment Across Firms:  

They can be all written as functions of 𝜓𝜓 𝐴𝐴⁄ , multiplied by market size 𝐸𝐸, because: 

𝑅𝑅𝜓𝜓 = 𝑠𝑠�𝑧𝑧𝜓𝜓�𝐸𝐸 = 𝑠𝑠 �𝑍𝑍� �
𝜓𝜓
𝐴𝐴�
�𝐸𝐸 ≡ 𝑟𝑟 �

𝜓𝜓
𝐴𝐴�

𝐸𝐸; 

Π𝜓𝜓 =
𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 ≡ 𝜋𝜋 �

𝜓𝜓
𝐴𝐴�

𝐸𝐸; 

𝜓𝜓𝑥𝑥𝜓𝜓 =
𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 ≡ ℓ �

𝜓𝜓
𝐴𝐴�

𝐸𝐸. 

Moreover, they vary according to: 

𝜕𝜕 ln𝑅𝑅𝜓𝜓
𝜕𝜕 ln𝜓𝜓

=
𝜕𝜕 ln𝑅𝑅𝜓𝜓
𝜕𝜕 ln(1 𝐴𝐴⁄ ) = ℰ𝑟𝑟 �

𝜓𝜓
𝐴𝐴�

= ℰ𝑐𝑐 �𝑍𝑍� �
𝜓𝜓
𝐴𝐴�
�ℰ𝑍𝑍� �

𝜓𝜓
𝐴𝐴�

= �1 − 𝜎𝜎 �
𝜓𝜓
𝐴𝐴�
� 𝜌𝜌 �

𝜓𝜓
𝐴𝐴�

< 0; 

𝜕𝜕 lnΠ𝜓𝜓
𝜕𝜕 ln𝜓𝜓

=
𝜕𝜕 lnΠ𝜓𝜓
𝜕𝜕 ln(1 𝐴𝐴⁄ ) = ℰ𝜋𝜋 �

𝜓𝜓
𝐴𝐴�

= ℰ𝑟𝑟 �
𝜓𝜓
𝐴𝐴�

− ℰ𝜎𝜎 �
𝜓𝜓
𝐴𝐴�

= 1 − 𝜎𝜎 �
𝜓𝜓
𝐴𝐴�

< 0; 

𝜕𝜕 ln�𝜓𝜓𝑥𝑥𝜓𝜓�
𝜕𝜕 ln𝜓𝜓

=
𝜕𝜕 ln�𝜓𝜓𝑥𝑥𝜓𝜓�
𝜕𝜕 ln(1 𝐴𝐴⁄ ) = ℰℓ �

𝜓𝜓
𝐴𝐴�

= ℰ𝑟𝑟 �
𝜓𝜓
𝐴𝐴�

− ℰ𝜇𝜇 �
𝜓𝜓
𝐴𝐴�

= 1 − 𝜎𝜎 �
𝜓𝜓
𝐴𝐴�

𝜌𝜌 �
𝜓𝜓
𝐴𝐴�

, 

all of which are independent of market size 𝐸𝐸, and depend solely on 𝜓𝜓 𝐴𝐴⁄ , through 𝜎𝜎(∙) and 𝜌𝜌(∙). 

[Under CES, 𝜎𝜎(∙) = 𝜎𝜎 and 𝜌𝜌(∙) = 1, so that ℰ𝑟𝑟(∙) = ℰ𝜋𝜋(∙) = ℰℓ(∙) = 1 − 𝜎𝜎 < 0.]  This means 

that, for non-CES H.S.A., market size 𝐸𝐸 affects the relative firm size in revenue, gross profit, and 

employment only through its effects on 𝐴𝐴 = 𝐴𝐴(𝐩𝐩).  (Under CES, the relative firm size never 

changes.) Moreover, 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) enters only as the divisor of 𝜓𝜓; a decline in 𝐴𝐴 thus acts as if firm 

 
29 A positive-value function, 𝑓𝑓(𝑥𝑥,𝑦𝑦) > 0, is log-supermodular in 𝑥𝑥 and 𝑦𝑦 if 𝜕𝜕2 ln 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦⁄ > 0 and log-
submodular in 𝑥𝑥 and 𝑦𝑦 if 𝜕𝜕2 ln 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦⁄ < 0. Costinot & Vogel (2015) offer an accessible exposition of their 
properties.   



©Kiminori Matsuyama  Homothetic Non-CES with Applications to MC  

Page 29 of 50 
 

productivity declines uniformly, not only in terms of its implications on the firm behavior, but 

also in terms of its implications on the firm relative performance.  

Note also that 𝑅𝑅𝜓𝜓 = 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 and Π𝜓𝜓 = 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 are both strictly decreasing in 𝜓𝜓 𝐴𝐴⁄ , 

but ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸, may be nonmonotonic in 𝜓𝜓 𝐴𝐴⁄ , because 1 − 𝜎𝜎(∙)𝜌𝜌(∙) may change its sign. Under 

the 2nd and the weak 3rd law, 𝜎𝜎(∙)𝜌𝜌(∙) is strictly increasing, and one can show that ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 is 

hump-shaped in 𝜓𝜓 𝐴𝐴⁄ .  Moreover, the profit is log-submodular in 𝜓𝜓 and 1 𝐴𝐴⁄  under the 2nd law,  

𝜕𝜕2 lnΠ𝜓𝜓
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) = 𝜎𝜎′ �

𝜓𝜓
𝐴𝐴�

< 0, 

while 𝑅𝑅𝜓𝜓 = 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 and ℓ(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 are log-submodular in 𝜓𝜓 and 1 𝐴𝐴⁄  under the 2nd and weak 

3rd laws. 

𝜕𝜕2 ln𝑅𝑅𝜓𝜓
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) = �1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴�
� 𝜌𝜌′ �

𝜓𝜓
𝐴𝐴�

− 𝜎𝜎′ �
𝜓𝜓
𝐴𝐴�

𝜌𝜌 �
𝜓𝜓
𝐴𝐴�

< 0; 

𝜕𝜕2 ln�𝜓𝜓𝑥𝑥𝜓𝜓�
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) = −𝜎𝜎′ �

𝜓𝜓
𝐴𝐴�

𝜌𝜌 �
𝜓𝜓
𝐴𝐴�

− 𝜎𝜎 �
𝜓𝜓
𝐴𝐴�

𝜌𝜌′ �
𝜓𝜓
𝐴𝐴�

< 0. 

Since 𝑅𝑅𝜓𝜓 and Π𝜓𝜓  are both decreasing in 𝜓𝜓, this implies that more competitive pressures cause a 

proportionately larger decline in the revenue and the profit among high-𝜓𝜓 firms, hence a larger 

dispersion in revenue and profit across firms.  

Up to now, we looked at how different firms respond to a change in competitive 

pressures,𝐴𝐴. Of course, 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) is endogenous, so that it can change only in response to some 

changes in exogenous variables, such as the entry cost, 𝐹𝐹𝑒𝑒, the overhead cost, 𝐹𝐹, and market 

size,𝐸𝐸. To understand this, let us now turn to: 

 

7.4 Equilibrium:  

Let us assume 𝐹𝐹 + 𝐹𝐹𝑒𝑒 < 𝜋𝜋(0)𝐸𝐸. This ensures that a positive measure of firms always enter, 

because otherwise 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) → ∞, and firms could earn enough gross profit to cover both the 

entry cost and the overhead cost, regardless of their marginal costs. An equilibrium is 

characterized by the following three conditions:   

Cutoff Rule: Firms choose to stay if 𝜓𝜓 ≤ 𝜓𝜓𝑐𝑐 and to exit if 𝜓𝜓 > 𝜓𝜓𝑐𝑐, where 𝜓𝜓𝑐𝑐 is the cutoff level 

of the marginal cost, determined by: 

𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

𝐸𝐸 = 𝐹𝐹. 
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Figure 1 depicts the cutoff rule as the ray from the origin, whose slope, 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝜋𝜋−1(𝐹𝐹 𝐸𝐸⁄ ), is 

decreasing in 𝐹𝐹 𝐸𝐸⁄ . A smaller market size/overhead cost ratio thus causes a tougher selection, a 

smaller 𝜓𝜓𝑐𝑐, causing more firms to exit for a given 𝐴𝐴. 

Free-Entry Condition: Expected gross profit is equal to the entry cost, 

𝐹𝐹𝑒𝑒 = � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
. 

Figure 1 depicts this condition as the C-shaped curve, downward-sloping below the cutoff rule, 

upward-sloping above it and vertical at the intersection. The curve shifts to the left, as the entry 

cost declines, which causes 𝐴𝐴 to decline. 

As Figure 1 illustrates, these two conditions alone fully determine the equilibrium values 

of 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) and 𝜓𝜓𝑐𝑐 uniquely as functions of 𝐹𝐹𝑒𝑒 𝐸𝐸⁄  and 𝐹𝐹 𝐸𝐸⁄ . In what follows, assume that 𝐹𝐹𝑒𝑒 is 

not too large to ensure the interior solution, 0 < 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1. 

With 𝐴𝐴 and 𝜓𝜓𝑐𝑐 pinned down, we can calculate the mass of entering firms, 𝑀𝑀, and that of 

active firms, 𝑉𝑉 = 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐), from:30 

Adding-up (Resource) Constraint:  This can be written as:  

� 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴
�𝑑𝑑𝑑𝑑

Ω
= 𝑀𝑀� 𝑟𝑟 �

𝜓𝜓
𝐴𝐴�

𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
= 1, 

from which the mass of active firms (hence the mass of product variety) is: 

𝑉𝑉 = 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) = �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴�

𝑑𝑑𝐺𝐺(𝜓𝜓)
𝐺𝐺(𝜓𝜓𝑐𝑐)

𝜓𝜓𝑐𝑐

𝜓𝜓
�
−1

= �� 𝑟𝑟 �𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸�

𝜉𝜉� 𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)
1

𝜉𝜉
�
−1

, 

where 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) ≡ 𝐺𝐺(𝜓𝜓𝑐𝑐𝜉𝜉) 𝐺𝐺(𝜓𝜓𝑐𝑐)⁄  is the cdf of 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ , defined for 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ < 𝜉𝜉 ≤ 1.  

Thus, the selection, 𝜓𝜓𝑐𝑐 , affects the equilibrium product variety, 𝑉𝑉, through its effect on 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐).  

It turns out that a lower 𝜓𝜓𝑐𝑐  (a tougher selection) shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the right (left) in the sense of 

 
30One of the advantages of H.S.A. is that the equilibrium is solved recursively. The mass of entrants and hence the 
mass of firms staying active are derived using the adding-up (resource) constraint after solving for the cutoff and a 
single measure of the competitive pressures. On the other hand, HDIA and HIIA both have two price aggregators, 
one capturing how competitive pressures affect firms pricing behavior and the other capturing how competitive 
pressures from entry affect firms profit without affecting their pricing behavior. For this reason, all the equilibrium 
conditions need to be solved simultaneously under HDIA and HIIA, with the feedback effect from the resource 
constraint. This makes ensuring the existence and uniqueness of the equilibrium and the comparative static exercises 
challenging. This shows up clearly in Baqaee, Farhi, and Sangani (2024). Under H.S.A., the allocative efficiency 
term in the market size effect in Theorem 1 has no denominator, while the corresponding expression under HDIA in 
Section 8 has a denominator, which captures the feedback effect and could be negative or change the sign, indicating 
the possibility of the multiplicity and non-existence of equilibrium.   
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Monotone Likelihood Ratio if ℰ𝑔𝑔′ (𝜓𝜓) < (>)0. Pareto distributed productivity, 𝐺𝐺(𝜓𝜓) = (𝜓𝜓 𝜓𝜓�⁄ )𝜅𝜅, 

is the borderline case, ℰ𝑔𝑔′ (𝜓𝜓) = 0, in which 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) is independent of 𝜓𝜓𝑐𝑐. Since Fréchet, 

Weibull, and Lognormal distributions all satisfy ℰ𝑔𝑔′ (𝜓𝜓) < 0, a lower 𝜓𝜓𝑐𝑐 (a tougher selection) 

shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the right. However, there is some evidence for ℰ𝑔𝑔′ (𝜓𝜓) > 0, which suggests that 

a lower 𝜓𝜓𝑐𝑐  (a tougher selection) shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the left. 

 Another feature of the equilibrium is worth noting. From the equilibrium conditions, it is 

easy to verify that an industry-wide productivity shock of the form, 𝐺𝐺(𝜓𝜓) → 𝐺𝐺(𝜓𝜓 𝜆𝜆⁄ ), causes the 

cutoff and competitive pressures to shift as 𝜓𝜓𝑐𝑐 → 𝜆𝜆𝜓𝜓𝑐𝑐  and 𝐴𝐴 → 𝜆𝜆𝐴𝐴, keeping  𝜓𝜓𝑐𝑐 𝐴𝐴⁄  unchanged. 

Thus, the distribution of 𝜓𝜓 𝐴𝐴⁄  across active firms remains unchanged, and hence the distributions 

of the normalized prices, of the markup and pass-through rates, and of the revenues, the profits, 

and the employments, as well as the masses of entrants and active firms, 𝑀𝑀 and 𝑉𝑉, all remain 

unchanged. The distribution of the (unnormalized) prices shifts to the right and that of the 

quantities shifts to the left by the factor 𝜆𝜆, and 𝑃𝑃 → 𝜆𝜆𝑃𝑃. 

 

7.5 Average Markup Rate, Profit and Production Cost Measures Across Active Firms 

 Except under CES, heterogeneous firms differ in their markup rates, 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ), so they 

differ also in the gross profit and the production cost shares in revenue:  

𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )
𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ) =

1
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) ;           

ℓ(𝜓𝜓 𝐴𝐴⁄ )
𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ ) =

1
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) 

and the profit/production cost ratio: 

𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )
ℓ(𝜓𝜓 𝐴𝐴⁄ ) =

𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) =

1
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1

= 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) − 1. 

It turns out that comparative statics requires comparing the profit, the revenue and the 

employment of the firms at the cutoff with those of the industry average. Let  

𝔼𝔼1(𝑓𝑓) ≡
∫ 𝑓𝑓 �𝜓𝜓𝐴𝐴�𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

;        𝔼𝔼𝑤𝑤(𝑓𝑓) ≡
∫ 𝑓𝑓 �𝜓𝜓𝐴𝐴�𝑤𝑤 �𝜓𝜓𝐴𝐴�𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑤𝑤 �𝜓𝜓𝐴𝐴�𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

 

denote, respectively, the unweighted average of 𝑓𝑓(∙) and the 𝑤𝑤(∙)-weighted average of 𝑓𝑓(∙) 

across the active firms, which are related as follows:  

𝔼𝔼1(𝑓𝑓)
𝔼𝔼1(𝑤𝑤) = 𝔼𝔼𝑤𝑤 �

𝑓𝑓
𝑤𝑤�

=
1

𝔼𝔼𝑓𝑓(𝑤𝑤 𝑓𝑓⁄ ). 
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For example, by applying this formula, we could have 

𝔼𝔼1(𝜋𝜋)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

𝜋𝜋
𝑟𝑟
� = 𝔼𝔼𝑟𝑟 �

1
𝜎𝜎�

=
1

𝔼𝔼𝜋𝜋(𝑟𝑟 𝜋𝜋⁄ ) =
1

𝔼𝔼𝜋𝜋(𝜎𝜎). 

That is, the sector-level profit share is equal to the revenue-weighted arithmetic mean, and the 

profit-weighted harmonic mean, of the profit shares across active firms. Likewise, 

𝔼𝔼1(ℓ)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

ℓ
𝑟𝑟�

= 𝔼𝔼𝑟𝑟 �
1
𝜇𝜇�

=
1

𝔼𝔼ℓ(𝑟𝑟 ℓ⁄ ) =
1

𝔼𝔼ℓ(𝜇𝜇) 

That is, the sector-level production cost share is equal to the revenue-weighted arithmetic mean, 

and the employment-weighted harmonic mean, of the production cost shares across active firms. 

 

7.6. Comparative Statics: Competitive Pressures and Firm Selection.  

By totally differentiating the cutoff rule and the free-entry condition with respect to 𝐹𝐹𝑒𝑒, 𝐸𝐸, 

and 𝐹𝐹, their effects on 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) and 𝜓𝜓𝑐𝑐 are 

�̂�𝐴 =
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) �

(1 − 𝑓𝑓𝜓𝜓) �
𝐹𝐹𝑒𝑒
𝐸𝐸�
�

+ 𝑓𝑓𝜓𝜓 �
𝐹𝐹
𝐸𝐸�
�

� ;      𝜓𝜓𝑐𝑐� =
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) �

(1 − 𝑓𝑓𝜓𝜓) �
𝐹𝐹𝑒𝑒
𝐸𝐸�
�

+ (𝑓𝑓𝜓𝜓 − 𝛿𝛿) �
𝐹𝐹
𝐸𝐸�
�

� ; 

where  

𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

= 𝔼𝔼ℓ(𝜇𝜇) − 1 > 0; 

𝑓𝑓𝜓𝜓 ≡
𝐹𝐹𝐺𝐺(𝜓𝜓𝑐𝑐)

𝐹𝐹𝑒𝑒 + 𝐹𝐹𝐺𝐺(𝜓𝜓𝑐𝑐) =
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

 𝔼𝔼1(𝜋𝜋) < 1;      𝛿𝛿 ≡
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) − 1

=
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝔼𝔼1(ℓ)
𝔼𝔼1(𝜋𝜋) ≡ 𝑓𝑓𝜓𝜓

𝔼𝔼1(ℓ)
ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) > 0. 

   Let us look at each shock separately.  First, consider the entry cost, 𝑭𝑭𝒆𝒆: 

𝜕𝜕 ln𝐴𝐴 
𝜕𝜕 ln𝐹𝐹𝑒𝑒

=
𝜕𝜕 ln𝜓𝜓𝑐𝑐  
𝜕𝜕 ln𝐹𝐹𝑒𝑒

= (1 − 𝑓𝑓𝜓𝜓)
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) > 0. 

A decline in 𝐹𝐹𝑒𝑒 shifts the C-shaped curve to the left in Figure 1 and leads to a decline in 𝐴𝐴 (more 

competitive pressures) and a decline in 𝜓𝜓𝑐𝑐 (a tougher selection). 

Next, consider market size, 𝑬𝑬: 

𝜕𝜕 ln𝐴𝐴 
𝜕𝜕 ln𝐸𝐸

= −
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) < 0;    

𝜕𝜕 ln𝜓𝜓𝑐𝑐  
𝜕𝜕 ln𝐸𝐸

= −(1 − 𝛿𝛿)
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ). 
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A higher 𝐸𝐸 shifts the C-shaped curve to the left and the cutoff rule counter-clockwise in Figure 

1.31  This always leads to a lower 𝐴𝐴, but a lower 𝜓𝜓𝑐𝑐 iff 𝛿𝛿 < 1,  i.e., 𝔼𝔼𝜋𝜋(𝜎𝜎) < 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ), which 

holds under the 2nd law.32 

Finally, consider the overhead cost, 𝑭𝑭: 

𝜕𝜕 ln𝐴𝐴 
𝜕𝜕 ln𝐹𝐹

= 𝑓𝑓𝜓𝜓
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) > 0;    

𝜕𝜕 ln𝜓𝜓𝑐𝑐  
𝜕𝜕 ln𝐹𝐹

= (𝑓𝑓𝜓𝜓 − 𝛿𝛿)
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ). 

A decline in 𝐹𝐹 also shifts the C-shaped curve to the left and makes the cutoff rule steeper in 

Figure 1. This always leads to a lower 𝐴𝐴, but to a lower 𝜓𝜓𝑐𝑐 iff 𝛿𝛿 < 𝑓𝑓𝜓𝜓,  i.e., 𝔼𝔼1(ℓ) < ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ), 

which holds if more productive firms employ less, which occurs under the 2nd and the weak 3rd 

laws when 𝐹𝐹 is sufficiently high but not under CES.  

 

7.7 Comparative Statics: Firm Size Distributions in Revenue and Profit. 

 A change in 𝐹𝐹𝑒𝑒 and a change in 𝐹𝐹 both affect the revenue, 𝑅𝑅𝜓𝜓 = 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸, and the profit, 

Π𝜓𝜓 = 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸, across firms only through their effect on 𝐴𝐴. Thus, we already know that a 

decline in 𝐹𝐹𝑒𝑒 or in 𝐹𝐹 causes the profit and the revenue of all firms to decline, and the negative 

effects are proportionately larger among high 𝜓𝜓-firms in the profit (under the 2nd law) and in the 

revenue (under the 3rd law), thereby causing a larger dispersion in the profit and in the revenue. 

For an increase in market size, 𝐸𝐸, we also need to take into account the direct positive 

effect of 𝐸𝐸, in addition to the indirect negative effect through the decline in 𝐴𝐴. The direct positive 

effect is uniform across all firms. Under CES, the indirect negative effect is also uniform, so that 

these two effects cancel out. Under the 2nd law, however, the decline in 𝐴𝐴 caused by an increase 

in 𝐸𝐸 causes the profit distribution more skewed toward low 𝜓𝜓-firms. Because of this, the 

combined effect is that the profit is up among low 𝜓𝜓-firms, down among middle 𝜓𝜓-firms, and 

 
31Since 𝐹𝐹 > 0, the cutoff rule implies 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) > 0, hence 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ < 𝑍𝑍�(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) < 𝑧𝑧̅. If 𝐹𝐹 = 0 and the choke price 
exists, 𝑧𝑧̅ < ∞, the cutoff rule is 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) = 0, so that 𝜓𝜓𝑐𝑐 𝐴𝐴⁄ = 𝑍𝑍�(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) = 𝑧𝑧̅.  Hence, a change in 𝐸𝐸 does not affect 
the cutoff rule, and the result is the same with a change in 𝐹𝐹𝑒𝑒. 
32Under CES, 𝛿𝛿 = 1, hence the cutoff does not change. The profit at the cutoff is always equal to 𝐹𝐹, and with the 
constant markup rate, the revenue and the employment at the cutoff are also unaffected. Moreover, we know that 
firm size distribution is not affected by a change in 𝐴𝐴. Thus, all firms are unaffected. Thus, the only effect of a 
change in 𝐸𝐸 under CES is a proportional change in 𝑉𝑉 = 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐). 
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high 𝜓𝜓-firms are forced to exit (a decline in 𝜓𝜓𝑐𝑐). Under the 2nd and the weak 3rd laws, the 

combined effect on the revenue is similar, possibly except when the overhead cost 𝐹𝐹 is large.33  

 

7.8. Comparative Statics: Average Markup and Pass-Through Rates. 

Under the 2nd law, more competitive pressures, a low 𝐴𝐴, has the procompetitive effect, such that 

the markup rate 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) to decline for each firm, but the firm size distribution shifts toward low-

𝜓𝜓 firms with higher markup rates. Likewise, under the strong 3rd law, a low 𝐴𝐴 has the 

procompetitive effect such that the pass-through rate 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) to increase for each firm, but the 

firm size distribution shifts toward low-𝜓𝜓 firms with lower pass-through rates. Due to the 

composition effect working against the procompetitive effect, how more competitive pressures 

affect the average rates in the industry depend on whether the elasticity of the density function, 

ℰ𝑔𝑔(⋅), is globally increasing or globally decreasing.34 For a change in 𝐹𝐹𝑒𝑒, which keeps 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  

intact, the composition effect dominates the procompetitive effect and the average rates move in 

the opposite direction from the firm level rates iff ℰ𝑔𝑔′ (⋅) < 0. Thus, under the 2nd law, an entry 

cost decline, which causes all firms to lower their markup rates, ends up increasing the average 

markup rate by shifting the firm size distribution toward more productive, high markup firms. In 

contract, the procompetitive effect dominates the composition effect and the average rates move 

in the same direction with the firm level rates iff ℰ𝑔𝑔′ (⋅) > 0, satisfied, e.g., by Fréchet, Weibull, 

and Log-normal. And ℰ𝑔𝑔′ (⋅) = 0 (i.e., Pareto-distributed productivity) is the knife-edge case 

where there is no change in the average rates. For a change in 𝐸𝐸 or in 𝐹𝐹, for which 

𝑑𝑑 ln𝜓𝜓𝑐𝑐 𝑑𝑑 ln𝐴𝐴⁄ < 1 hold, ℰ𝑔𝑔′ (⋅) > 0 is a necessary condition for the composition effect to 

dominate, while ℰ𝑔𝑔′ (⋅) ≤ 0 is a sufficient condition for the procompetitive effect to dominate. 

 

7.9 Comparative Statics: TFP. 

 
33 This qualification is necessary because the markup rate goes down for all firms, so that the cutoff firms need to 
earn a higher revenue to earn enough profit to cover the overhead cost, 𝐹𝐹. Hence, when 𝐹𝐹 is large, the revenue of all 
the firms that stay may increase. 
34 The following results hold for any industry average of 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) = 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) or 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) = 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ), of the form, 
𝐼𝐼 ≡ ℳ−1 �𝔼𝔼𝑤𝑤�ℳ(𝑓𝑓)��, where ℳ:ℝ+ → ℝ  is a monotone transformation and 𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ ) is a weighted function. All 
Hölder means are special cases, including the arithmetic, 𝐼𝐼 = 𝔼𝔼𝑤𝑤(𝑓𝑓),  geometric, ln 𝐼𝐼 = 𝔼𝔼𝑤𝑤(ln𝑓𝑓), harmonic, 1 𝐼𝐼⁄ =
𝔼𝔼𝑤𝑤(1 𝑓𝑓⁄ ), and the weight function, w(𝜓𝜓 𝐴𝐴⁄ ), can be the profit, the revenue, and the employment. 
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The logic above can be also applied to the impact of more competitive pressures on TFP, 

because ln(𝐴𝐴 𝑐𝑐𝑃𝑃⁄ ) = 𝔼𝔼𝑟𝑟[Φ ∘ 𝑍𝑍�] is the revenue-weighted average of Φ�𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ )� across active 

firms and 𝜁𝜁′(⋅) ⋛ 0 ⟹Φ ∘ 𝑍𝑍�′(⋅) ⋚ 0.  Under the 2nd law, 𝜁𝜁′(⋅) > 0 implies Φ′(∙) < 0, hence 

Φ�𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ )� is decreasing in 𝜓𝜓 𝐴𝐴⁄ . This implies, for example, that a change in 𝐹𝐹𝑒𝑒, which keeps 

𝜓𝜓𝑐𝑐 𝐴𝐴⁄  intact, 𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

⋛ 1 iff ℰ𝑔𝑔′ (⋅) ⋛ 0.  

 

7.10 Comparative Statics: Masses of Entrants and Active Firms. 

The effect of the mass of entrants, 𝑀𝑀, is simple. It immediately follows from the adding-up 

constraint that 𝑀𝑀 increases when hit by any shock that causes a decline in 𝐴𝐴 and a decline in 𝜓𝜓𝑐𝑐 . 

For the mass of active firms (hence product variety), 𝑉𝑉 = 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐), 𝑀𝑀 and 𝐺𝐺(𝜓𝜓𝑐𝑐) move in the 

opposite direction. The overall effect depends on whether the elasticity of the cumulative 

distribution function, ℰ𝐺𝐺(⋅), is globally increasing or globally decreasing.35 A decline in 𝐹𝐹𝑒𝑒, 

which keeps 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  intact, causes 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) to increase iff ℰ𝐺𝐺′ (⋅) < 0; and decline iff ℰ𝐺𝐺′ (⋅) >

0. Again, ℰ𝐺𝐺′ (⋅) = 0 (i.e., Pareto-distributed productivity) is the knife-edge case where 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) 

remains unchanged. For an increase in 𝐸𝐸 or a decline in 𝐹𝐹, ℰ𝐺𝐺′ (⋅) > 0 is necessary for 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) to 

go down and ℰ𝐺𝐺′ (⋅) ≤ 0 is sufficient for 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) to go up. 

 

7.11 Sorting of Heterogenous Firms across Markets:   

As an application, let us consider a multi-market extension of Melitz under H.S.A. 

Imagine that there are 𝐽𝐽 ≥ 2 markets, indexed by 𝑗𝑗 = 1,2, … , 𝐽𝐽, and their market sizes, 𝐸𝐸1 > ⋯ >

𝐸𝐸𝑗𝑗 > ⋯ > 𝐸𝐸𝐽𝐽 > 0, are the only exogenous source of heterogeneity across markets. The primary 

factor of production, “labor,” is full mobile, equalizing its price across the markets, so that we 

can still use it as numeraire. As before, each MC firm pays 𝐹𝐹𝑒𝑒 > 0 to draw its marginal cost 𝜓𝜓 ∼

𝐺𝐺(𝜓𝜓). After learning its 𝜓𝜓, each firm now decides which market to enter and produce with an 

overhead cost, 𝐹𝐹 > 0, or exit without producing in any market. Firms sell their products at the 

profit-maximizing prices in the market they enter. 

 The unique equilibrium under the 2nd law is characterized by 𝐴𝐴1 < 𝐴𝐴2 < ⋯ < 𝐴𝐴𝐽𝐽, and 

𝜓𝜓 = 𝜓𝜓0 < 𝜓𝜓1 < 𝜓𝜓2 < ⋯ < 𝜓𝜓𝐽𝐽 = 𝜓𝜓𝑐𝑐 < 𝜓𝜓, with firms 𝜓𝜓 ∈ �𝜓𝜓𝑗𝑗−1,𝜓𝜓𝑗𝑗� entering market-𝑗𝑗. The 

 
35 Globally increasing (decreasing) ℰ𝐺𝐺(⋅) is a weaker condition than globally increasing (decreasing) ℰ𝑔𝑔(⋅).  
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intuition is simple. The ratio of the profit of 𝜓𝜓-firms in market-(𝑗𝑗 − 1) relative to that in market-

𝑗𝑗 is �𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗−1⁄ � 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �� � [𝐸𝐸𝑗𝑗−1 𝐸𝐸𝑗𝑗]⁄ .  For both markets to attract some firms, this ratio must be 

greater than one for some firms and less than one for others, which implies 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1, i.e., more 

competitive pressures in larger markets. The log-submodularity of 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) in 𝜓𝜓 and 1 𝐴𝐴⁄  under 

the 2nd law means that this ratio is decreasing in 𝜓𝜓, which means that more productive firms sort 

themselves into larger markets.  

Because of more competitive pressures in larger markets, firms are forced to set lower 

markup rates as they move to larger markets under the 2nd law. But larger markets attract more 

productive firms with high markup rates. Due to this composition effect, the average markup rate 

can be higher in larger markets. If the strong 3rd law also holds, firms set higher pass-through 

rates in larger markets, but larger markets attract more productive firms with lower pass-through 

rate firms. Due to this composition effect, the average pass-through rate may be lower in larger 

markets. These results should provide a caution against testing the 2nd and 3rd laws by comparing 

the average markup/pass-through rates in cross-section of cities. 

 

7.12. International/Interregional Trade with Differential Market Access 

Up to now, all firms are assumed to be able to sell its product only in the market where it 

is located. Of course, one could interpret the effect of a market size increase as the effect of 

international/interregional trade when different markets change from complete autarky to 

complete integration, where firms gain equal access to all markets, regardless of their locations. 

However, what are the effects if firms have to pay additional trade costs for selling to remote 

markets and market integration takes the form of a trade cost reduction? 

To address this question, imagine that the MC industry has two symmetric markets in two 

countries/regions.36 Both markets are characterized by market size 𝐸𝐸, and by “labor” supplied at 

the price equal to one. This ensures that the same level of competitive pressures prevail in both 

markets, which is denoted by 𝐴𝐴. After paying the entry cost, 𝐹𝐹𝑒𝑒, and learning its marginal cost of 

production 𝜓𝜓𝜔𝜔, firm 𝑑𝑑 can produce its product and sell it to both markets, but this requires the 

overhead cost 𝐹𝐹 > 0 in each market. Selling it in its home market requires no additional cost, 

 
36Extending the analysis below to many symmetric markets is straightforward. However, extending it to two or 
more asymmetric markets requires additional assumptions. Matsuyama and Ottaviano (2024) conduct such analysis 
for the CoPaTh family of H.S.A.        
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while selling it in the other market (the export market) requires additional iceberg cost, 𝜏𝜏 > 1.  

That is, only 1 𝜏𝜏⁄  fraction of the product shipped arrives to the export market. This implies tht the 

marginal cost of exporting is 𝜏𝜏𝜓𝜓𝜔𝜔, greater than the marginal cost of selling at home, 𝜓𝜓𝜔𝜔.  

Then, the equilibrium is characterized by the following three conditions.  

Cutoff Rules: Firm 𝑑𝑑 sells to both markets iff 𝜓𝜓𝜔𝜔 ≤ 𝜓𝜓𝜓𝜓𝑐𝑐 = 𝜓𝜓𝑐𝑐 𝜏𝜏⁄ < 𝜓𝜓𝑐𝑐 , and sells only to the 

home market iff 𝜓𝜓𝜓𝜓𝑐𝑐 = 𝜓𝜓𝑐𝑐 𝜏𝜏⁄ < 𝜓𝜓𝜔𝜔 ≤ 𝜓𝜓𝑐𝑐  where 

𝐹𝐹 ≡ 𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

𝐸𝐸 ≡ 𝜋𝜋 �
𝜏𝜏𝜓𝜓𝜓𝜓𝑐𝑐
𝐴𝐴 �𝐸𝐸. 

Thus, a fraction 𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐) of firms sell to both; a fraction 𝐺𝐺(𝜓𝜓𝑐𝑐) − 𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐) sells only to their home 

market; a fraction 1 − 𝐺𝐺(𝜓𝜓𝑐𝑐) exits. 

Free-Entry Condition: The expected profit from both markets is equal to the entry cost. 

𝐹𝐹𝑒𝑒 = � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
+ � �𝜋𝜋 �

𝜏𝜏𝜓𝜓
𝐴𝐴 �

𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑥𝑥𝑐𝑐

𝜓𝜓
, 

where the first (second) term of the RHS is the expected profit from selling at home (abroad). 

Adding-Up (Resource) Constraint: Let 𝑀𝑀 denote the mass of the firms that pay the entry cost 

in each market. Then, 

𝑀𝑀 �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴�

𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
+ � 𝑟𝑟 �

𝜏𝜏𝜓𝜓
𝐴𝐴 �

𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑥𝑥𝑐𝑐

𝜓𝜓
� = 1. 

from which 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐), the mass of the domestic firms, and 𝑀𝑀𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐), that of the foreign firms 

operating in each market. 

Comparative Statics: By combining the cutoff rules and free-entry condition,  

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝜋𝜋 �
𝜓𝜓
𝜓𝜓𝑐𝑐

𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸��

−
𝐹𝐹
𝐸𝐸�
𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
+ � �𝜋𝜋 �

𝜏𝜏𝜓𝜓
𝜓𝜓𝑐𝑐

𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸��

−
𝐹𝐹
𝐸𝐸�
𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐 𝜏𝜏⁄

𝜓𝜓
. 

This equation pins down uniquely the equilibrium value of 𝜓𝜓𝑐𝑐 ≡ 𝜏𝜏𝜓𝜓𝜓𝜓𝑐𝑐 ≡ 𝜋𝜋−1(𝐹𝐹 𝐸𝐸⁄ )𝐴𝐴.  In what 

follows, assume that 𝐹𝐹𝑒𝑒 is not too large to ensure the interior solution, 𝜓𝜓𝑐𝑐 < 𝜓𝜓� or 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1. 

Then, the RHS of this condition is strictly increasing in 𝜓𝜓𝑐𝑐 ∈ �𝜓𝜓,𝜓𝜓��, so that it is easy to verify 

that a decline in 𝝉𝝉 (globalization) causes 

• A decline in 𝜓𝜓𝑐𝑐  and an increase in 𝜓𝜓𝜓𝜓𝑐𝑐. Hence, 𝐺𝐺(𝜓𝜓𝑐𝑐) falls, 𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐) rises, and the share of 

exporting firms, 𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐) 𝐺𝐺(𝜓𝜓𝑐𝑐)⁄  rises.   

• A decline in 𝐴𝐴 and an increase in 𝐴𝐴 𝜏𝜏⁄ . Hence,  
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o 𝑟𝑟(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) and 𝜋𝜋(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) decline and 𝑟𝑟(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) and 𝜋𝜋(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) rise. Thus, the shares of each 

domestic firm in revenue and profit are down, and those of each foreign firm are up.  

Moreover, there are more foreign firms relative to the domestic firms, so that the shares of all 

the domestic (foreign) firms are down (up) in each market. 

o 𝜇𝜇(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) declines and 𝜇𝜇(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) rises under the 2nd law, and 𝜇𝜇(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) rises and 𝜇𝜇(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) 

declines under the Strong 3rd law. Thus, each exporting firm reduces its markup rate but 

raises its pass-through rate at home, and simultaneously raises its markup rate and reduces its 

pass-through rate abroad. And in each market, the markup (pass-through) rates set by the 

domestic firms are down (up), while those set by the foreign firms are up (down). 

 

8. Other Forms of Firm Heterogeneity under H.S.A. 

One of the advantages of H.S.A. is its analytical tractability when used in monopolistic 

competition with entry/exit and heterogeneous firms. The Melitz-type firm heterogeneity in 

productivity discussed in Section 7 is an example of monopolistic competition models, in which 

different firms, despite that their products enter symmetrically in the demand system, could set 

different prices with different markup rates. In Section 7.12, we also looked at the case where 

firms that differ in market access compete against each other in the same market.  

However, even when the firms share the same productivity and the same market access, 

they may set different prices due to different pricing constraints. I discuss two examples.    

 

8.1 Sticky Prices:  

In New Keynesian macroeconomics, they often model sticky prices by imposing some 

constraints on the pricing behaviors of monopolistically competitive firms; see Gali (2005). For 

example, under the Rotemberg (1982) pricing rule, symmetric firms always set the same price, as 

in the Dixit-Stiglitz environment, but they need to pay the adjustment cost that is increasing the 

price change, so that the price adjusts sluggishly. Under the Calvo (1983) pricing rule, only a 

fraction of firms is randomly given the opportunities to reset their prices at each moment, so that 

individual prices can jump infrequently, but the “average” price adjusts sluggishly, and at any 

point of time, the firms are heterogeneous in their prices. Most models in this literature assume a 

fixed set of firms with no entry and use CES demand systems. Exceptions include Bilbiie et. al. 

(2008) and Bilbiie et. al. (2014), which considered entry/exit under CES and translog with the 
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Rotemberg pricing. Recently, Fujiwara & Matsuyama (2022) replaced CES and translog with 

H.S.A.  Among others, we found that a higher entry cost and resulting market concentration 

causes a flattening of the Phillips curve in two cases; under the 2nd law with the Rotemberg 

pricing and under the 3rd law with the Calvo pricing. Because translog violates the 3rd law, the 

latter case implies that, under translog and Calvo pricing, a higher entry cost and resulting 

market concentration would make the Phillips curve steeper, contrary to the empirical evidence. 

Fujiwara & Matsuyama (2022) also considered HDIA and HIIA, but a full general equilibrium 

analysis was feasible only under H.S.A. 

 

8.2 Technology Diffusion and Competitive Fringes  

Up to now, it has been assumed that each MC firm is the sole producer of its own 

product, and its market power is constrained only by the price elasticity of the demand curve it 

faces. In some cases, however, firms may be constrained by the presence of competitive fringes. 

For example, in the dynamic monopolistic competition models by Judd (1985) and Matsuyama 

(1999), each firm pays the innovation cost to enter with its own product for which it enjoys 

monopoly power only temporarily due to technology diffusion. After the loss of its monopoly 

power, competitive fringes force the innovator to sell its product at the marginal cost. Thus, 

different products are priced differently, depending on how recently they are introduced. This 

causes synchronization and endogenous fluctuation of innovation activities under some 

conditions.37  But these conditions are independent of market size in Judd and Matsuyama, both 

of which use CES demand system and features the exogenously constant markup rate by the 

innovators while they enjoy the monopoly power. Matsuyama & Ushchev (2022a) replaced CES 

by H.S.A. in the Judd model to allow for the 2nd law and procompetitive entry. The Judd model 

under H.S.A. remains analytically tractable and we were able to demonstrate how a large market 

size makes endogenous fluctuations of innovation activities more likely. Matsuyama & Ushchev 

(2022c) considered the Judd model under HDIA, an extension of the Kimball (1995) aggregator 

 
37 This is because a potential innovator needs to enter when the market for its product is large enough to recover the 
innovation cost. If an innovator chooses to enter when others do, most of the competing products are 
monopolistically priced. If an innovator enters after an innovation wave, it competes against products that are mostly 
priced competitively. This generates an incentive to innovate when others innovate, which creates an innovation 
wave. This in turn cause the market to become too saturated, and innovation stops for a while, until the growth of 
the economy or obsolescence of the existing products make innovation profitable again.       
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that allows its product range to vary endogenously. This “Judd meets Kimball” model is not 

analytically tractable, and we were able to solve only numerically. 
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Appendix 1: HDIA and HIIA Demand Systems 
 
This Appendix discusses two other classes of homothetic symmetric demand systems with gross 

substitutes and their key properties: see Matsuyama & Ushchev (2020a, 2023) for detail. 

 

HDIA Demand System:  

A homothetic symmetric demand system belongs to the homothetic direct implicit 

additivity (HDIA) class with gross substitutes, if it is generated by the cost minimization of the 

competitive industry whose CRS production function, 𝑋𝑋(𝐱𝐱) = 𝑍𝑍𝑋𝑋�(𝐱𝐱), can be expressed as: 

ℳ�� 𝜙𝜙 �
𝑍𝑍𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)� 𝑑𝑑𝑑𝑑Ω

� ≡ ℳ �� 𝜙𝜙 �
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�𝑑𝑑𝑑𝑑
Ω

� ≡ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡. 

where ℳ[∙] is a monotone transformation; and 𝜙𝜙(∙): ℝ+ → ℝ+, satisfies 𝜙𝜙(0) = 0;𝜙𝜙(∞) = ∞; 

𝜙𝜙′(𝓎𝓎) > 0 > 𝜙𝜙′′(𝓎𝓎),−𝓎𝓎𝜙𝜙′′(𝓎𝓎) 𝜙𝜙′(𝓎𝓎)⁄ < 1 for 0 < 𝓎𝓎 < ∞.  Here, 𝜙𝜙(∙) is independent of 𝑍𝑍 >

0, the TFP parameter, and hence so is 𝑋𝑋�(𝐱𝐱).  Its unit cost function, 𝑃𝑃(𝐩𝐩) = 𝑃𝑃�(𝐩𝐩) 𝑍𝑍⁄ , is given by   

𝑃𝑃(𝐩𝐩) ≡ min
𝐱𝐱
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1� 

≡ min
𝐱𝐱
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑍𝑍𝑋𝑋�(𝐱𝐱) ≥ 1� ≡ 𝑃𝑃�(𝐩𝐩) 𝑍𝑍⁄ . 

Its budget share of 𝑑𝑑 ∈ Ω can be expressed as: 

𝑠𝑠𝜔𝜔 = 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩) =
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)�,    

where 𝐵𝐵(𝐩𝐩) is derived from the adding-up constraint,  

�
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω

 ≡ 1, 

and hence it is linear homogeneous in 𝐩𝐩 for any fixed Ω.  Note that the two aggregators, 𝑃𝑃�(𝐩𝐩) 

and 𝐵𝐵(𝐩𝐩), enter in the budget share function of HDIA, which summarizes all the information 

needed to keep track of the cross-variety interactions, except when 𝑃𝑃�(𝐩𝐩) 𝐵𝐵(𝐩𝐩)⁄ = 𝑍𝑍𝑃𝑃(𝐩𝐩) 𝐵𝐵(𝐩𝐩)⁄  

is constant, which can occur iff it is CES. This also implies that CES is the only common 

element of HDIA and H.S.A.  Price elasticity of demand for 𝑑𝑑 ∈ Ω can be expressed as: 

𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = −
𝑝𝑝𝜔𝜔 𝐵𝐵(𝐩𝐩)⁄

(𝜙𝜙′)−1(𝑝𝑝𝜔𝜔 𝐵𝐵(𝐩𝐩)⁄ )𝜙𝜙′′�(𝜙𝜙′)−1(𝑝𝑝𝜔𝜔 𝐵𝐵(𝐩𝐩)⁄ )�
> 1, 
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in which only one aggregator, 𝐵𝐵(𝐩𝐩), enters.  Thus, the cross-variety interactions in the pricing 

rule operates only through 𝐵𝐵(𝐩𝐩), while the cross-variety interactions in the profit, revenue, and 

employment operate through 𝐵𝐵(𝐩𝐩) and 𝑃𝑃�(𝐩𝐩).  

 

HIIA Demand System:   

A homothetic symmetric demand system belongs to the homothetic indirect implicit 

additivity (HIIA) class with gross substitutes if it is generated by the competitive industry whose 

unit cost function, 𝑃𝑃(𝐩𝐩) = 𝑃𝑃�(𝐩𝐩) 𝑍𝑍⁄ , can be expressed as: 

ℳ�� 𝜃𝜃 �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω
� ≡ ℳ �� 𝜃𝜃 �

𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�𝑑𝑑𝑑𝑑
Ω

� ≡ 1, 

where ℳ[∙] is a monotone transformation; and 𝜃𝜃(∙): ℝ++ → ℝ+, satisfies 𝜃𝜃(𝓏𝓏) > 0, 𝜃𝜃′(𝓏𝓏) <

0 < 𝜃𝜃"(𝓏𝓏) > 0, −𝓏𝓏𝜃𝜃′′(𝓏𝓏) 𝜃𝜃′(𝓏𝓏)⁄ > 1 for 0 < 𝓏𝓏 < �̅�𝓏 ≤ ∞ & 𝜃𝜃(𝓏𝓏) = 0 for 𝓏𝓏 ≥ �̅�𝓏.  Here, 𝜃𝜃(∙) is 

independent of 𝑍𝑍 > 0, the TFP parameter, and hence so is 𝑃𝑃�(𝐩𝐩).  Its production function, 𝑋𝑋(𝐱𝐱) =

𝑍𝑍𝑋𝑋�(𝐱𝐱) is given by: 

𝑋𝑋(𝐱𝐱) ≡ min
𝐩𝐩
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1� 

≡ min
𝐩𝐩
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃�(𝐩𝐩) ≥ 𝑍𝑍� ≡ 𝑍𝑍𝑋𝑋�(𝐱𝐱). 

Its budget share of 𝑑𝑑 ∈ Ω can be expressed as: 

𝑠𝑠𝜔𝜔 = 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩) =
𝑝𝑝𝜔𝜔
𝐶𝐶(𝐩𝐩) 𝜃𝜃

′ �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�,   

where 𝐶𝐶(𝐩𝐩) is derived from the adding-up constraint,  

 �
𝑝𝑝𝜔𝜔
𝐶𝐶(𝐩𝐩)𝜃𝜃

′ �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�𝑑𝑑𝑑𝑑
Ω

 ≡ 1. 

and hence it is linear homogeneous in 𝐩𝐩 for any fixed Ω.  Note that the two aggregators, 𝑃𝑃�(𝐩𝐩) 

and 𝐶𝐶(𝐩𝐩), enter in the budget share function of HIIA, which summarizes all the information 

needed to keep track of the cross-variety interactions, except when 𝑃𝑃�(𝐩𝐩) 𝐶𝐶(𝐩𝐩)⁄ = 𝑍𝑍𝑃𝑃(𝐩𝐩) 𝐶𝐶(𝐩𝐩)⁄  

is constant, which can occur iff it is CES. This also implies that CES is the only common 

element of HIIA and H.S.A. (Though the proof is bit more involved, CES is the only common 

element of HDIA and HIIA, and hence H.S.A., HDIA and HIIA are pairwise disjoint with the 

sole exception of CES.)  Price elasticity of demand for 𝑑𝑑 ∈ Ω can be expressed as: 
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𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = −
�𝑝𝑝𝜔𝜔 𝑃𝑃�(𝐩𝐩)⁄ �𝜃𝜃′′�𝑝𝑝𝜔𝜔 𝑃𝑃�(𝐩𝐩)⁄ �

𝜃𝜃′�𝑝𝑝𝜔𝜔 𝑃𝑃�(𝐩𝐩)⁄ �
> 1, 

in which only one aggregator, 𝑃𝑃�(𝐩𝐩), enters.  Thus, the cross-variety interactions in the pricing 

rule operates only through 𝑃𝑃�(𝐩𝐩), while the cross-variety interactions in the profit, revenue, and 

employment operate through both 𝐶𝐶(𝐩𝐩) and 𝑃𝑃�(𝐩𝐩).  

 

 To sum up, under HDIA and HIIA, the cross-variety interactions in the budget shares 

operate through two aggregators, and those in the price elasticities operate through one 

aggregator. This offers a significant reduction in the dimensionality of the problem, compared to 

general homothetic symmetric demand systems, where those interactions depend on the entire 

distribution of the prices. 

However, the presence of the two-aggregators creates more room for the multiplicity and 

non-existence of the equilibrium and complications when conducting comparative statics, 

particularly with endogenous product variety.38  In contrast, it is straightforward to ensure the 

existence of the unique equilibrium and to conduct comparative statics under H.S.A., due to its 

single aggregator property. This is the reason why departing from CES within H.S.A. is far more 

tractable.39 

 

 

  

 
38 In applications, macroeconomists use almost exclusively the Kimball (1995) aggregator with a fixed product 
range and no entry, while trade economists use almost exclusively symmetric translog by Feenstra (2003). I thought 
for years that this is due to the lack of communication between the two fields. Perhaps I was wrong. Unlike 
macroeconomics who are more concerned with short-run fluctuations, endogenous product variety is important for 
trade economists, and they might have already tried Kimball with endogenous product variety (i.e., HDIA) and 
found it too hard. 
39 Another advantage of H.S.A., pointed out by Kasahara & Sugita (2020), is that the market share (in revenue) 
function is the primitive of H.S.A., hence it can be readily identified with the typical firm-level data, which contain 
revenue, but not the output. 
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Appendix 2: Some Parametric Families of H.S.A. 

 

Example 1: CES.  This corresponds to 𝑠𝑠(𝑧𝑧) = 𝛾𝛾(𝑧𝑧 𝛽𝛽⁄ )1−𝜎𝜎 , for 𝜎𝜎 > 1, and 𝛽𝛽, 𝛾𝛾 > 0,  from which 

𝜁𝜁(𝑧𝑧) = 𝜎𝜎 > 1. It is the only H.S.A. in which any of 𝜁𝜁(∙), Φ(∙), 𝜎𝜎(∙),ℒ(∙), 𝑃𝑃(𝐩𝐩) 𝐴𝐴(𝐩𝐩)⁄  is constant. 

Example 2: Generalized Translog. Originally developed by Matsuyama and Ushchev (2022a) 

to bridge the gap between CES and translog. See also Matsuyama and Ushchev (2022b). It is 

also used in Matsuyama & Ushchev (2024a) as a building block to construct a parametric family 

of homothetic demand systems under which the equilibrium variety is optimal. It corresponds to, 

for 𝜎𝜎 > 1 and 𝛽𝛽, 𝜂𝜂, 𝛾𝛾 > 0,   

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �−
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝑧𝑧̅
��

𝜂𝜂

;  𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1, 

from which 

𝜁𝜁(𝑧𝑧) = 1 −
𝜂𝜂

ln(𝑧𝑧 𝑧𝑧̅⁄ ) > 1. 

This family is called Generalized Translog, because it contains symmetric translog (Feenstra 

2003) as a special case with 𝜂𝜂 = 1. CES is the limit case, as 𝜂𝜂 → ∞, while holding 𝛽𝛽 > 0 and 

𝜎𝜎 > 1 fixed, which leads to 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1 → ∞;  𝜁𝜁(𝑧𝑧) → 𝜎𝜎;  𝑠𝑠(𝑧𝑧) → 𝛾𝛾(𝑧𝑧 𝛽𝛽⁄ )1−𝜎𝜎 .  It features the 

choke price, the 2nd law, increasing substitutability & diminishing love-for-variety. However,   

ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) =
1

𝜂𝜂 − ln(𝑧𝑧 𝑧𝑧̅⁄ ) 

is strictly increasing in 𝑧𝑧 for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅), and hence 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is strictly decreasing in 𝜓𝜓, 

violating even the weak form of the 3rd law. 

Example 3: Constant Pass-Through (CoPaTh). Developed by Matsuyama & Ushchev (2020b) 

without the symmetry restriction, its symmetric version has been applied by Matsuyama & 

Ushchev (2022a, 2022b) and Fujiwara & Matsuyama (2022). This corresponds to 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �1 − �
𝑧𝑧
𝑧𝑧̅
�
1−𝜌𝜌
𝜌𝜌 �

𝜌𝜌
1−𝜌𝜌

;  0 < 𝜖𝜖 < 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽 �
𝜎𝜎

𝜎𝜎 − 1
�

𝜌𝜌
1−𝜌𝜌,  

where 0 < 𝜌𝜌 < 1, 𝜎𝜎 > 1, 𝛽𝛽, 𝛾𝛾 > 0, and 𝜖𝜖 is an arbitrarily small positive constant.40 Then,  

 
40 One minor technicality is 𝑠𝑠(𝑧𝑧) needs to be defined separately for 0 < 𝑧𝑧 < 𝜖𝜖 for an arbitrarily small 𝜖𝜖 to ensure  
lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞, so that 𝐴𝐴(𝐩𝐩) is well-defined for any 𝐩𝐩 over any 𝑉𝑉 = |Ω| > 0.   
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1 −
1

𝜁𝜁(𝑧𝑧) = �
𝑧𝑧
𝑧𝑧̅
�
1−𝜌𝜌
𝜌𝜌  ⟹ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) =

1 − 𝜌𝜌
𝜌𝜌

⟹ 𝜌𝜌�
𝜓𝜓
𝐴𝐴�

= 𝜌𝜌, 

for 𝑧𝑧 ∈ (𝜖𝜖, 𝑧𝑧̅). The pricing behavior is given by the geometric mean of the marginal cost and the 

choke price, 𝑝𝑝𝜓𝜓 = (𝑧𝑧̅𝐴𝐴)1−𝜌𝜌(𝜓𝜓)𝜌𝜌, for 𝜓𝜓 ∈ (𝜖𝜖𝐴𝐴, 𝑧𝑧̅𝐴𝐴). This family is called CoPaTh, because it 

implies that the pass-through rate is equal to 𝜌𝜌, a parameter.  CES is the limit case, as 𝜌𝜌 ↗ 1, 

while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed, which leads to≡ 𝛽𝛽 � 𝜎𝜎
𝜎𝜎−1

�
𝜌𝜌

1−𝜌𝜌 → ∞, 𝜁𝜁(𝑧𝑧) → 𝜎𝜎;  𝑠𝑠(𝑧𝑧) →

𝛾𝛾(𝑧𝑧 𝛽𝛽⁄ )1−𝜎𝜎 .  It features the choke price, the 2nd law, increasing substitutability & diminishing 

love-for-variety, and the weak (but not strong) form of the 3rd law.41 

Example 4: Power Elasticity of Markup Rate (PEM)/Fréchet Inverse Markup Rate (FIM). 

Developed by Matsuyama & Ushchev (2022b) and applied by Fujiwara & Matsuyama (2022).  

This corresponds to, for 𝜅𝜅 > 0 and 𝜆𝜆 > 0 

𝑠𝑠(𝑧𝑧) = exp ��
𝑐𝑐

𝑐𝑐 − exp �−𝜅𝜅𝑧𝑧̅
−𝜆𝜆

𝜆𝜆 � exp �𝜅𝜅𝜉𝜉
−𝜆𝜆

𝜆𝜆 �

𝑑𝑑𝜉𝜉
𝜉𝜉

𝑧𝑧

𝑧𝑧0
�, 

where 𝑐𝑐 ≤ 1 if 𝑧𝑧̅ = ∞ and 𝑐𝑐 = 1 if 𝑧𝑧̅ < ∞.  Then,    

1 −
1

𝜁𝜁(𝑧𝑧) = 𝑐𝑐 exp �
𝜅𝜅𝑧𝑧̅−𝜆𝜆

𝜆𝜆 � exp �−
𝜅𝜅𝑧𝑧−𝜆𝜆

𝜆𝜆 � < 1 

⟹ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) = 𝜅𝜅𝑧𝑧−𝜆𝜆. 

This family is called PEM, because the elasticity of markup rate is a power function of 𝑧𝑧 and FIR 

because the inverse markup rate is proportional to Fréchet distribution function. CES is the limit 

case for 𝜅𝜅 → 0;  𝑧𝑧̅ = ∞;  𝑐𝑐 = 1 − 1
𝜎𝜎

;  CoPaTh is also the limit case for 𝑧𝑧̅ < ∞;  𝑐𝑐 = 1; 𝜅𝜅 = 1−𝜌𝜌
𝜌𝜌

>

0, and 𝜆𝜆 → 0.  It features the choke price, the 2nd law, increasing substitutability & diminishing 

love-for-variety.  Moreover, ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) = 𝜅𝜅𝑧𝑧−𝜆𝜆 is strictly decreasing in 𝑧𝑧 for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅), and 

hence 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) is strictly increasing in 𝜓𝜓, satisfying the strong form of the 3rd law. 

  

 
41 Matsuyama (2024) also develops parametric families of H.S.A, Constant Absolute Pass-Through (CAPaTh), 
which generate the pricing behavior featuring a constant pass-through in level.  That is, 𝑝𝑝𝜓𝜓 = 𝛼𝛼0𝐴𝐴 + 𝛼𝛼1𝜓𝜓 for 𝛼𝛼0 ≥
0 and 𝛼𝛼1 ≥ 1 and 𝑝𝑝𝜓𝜓 = (1 − 𝛼𝛼1) 𝑧𝑧̅𝐴𝐴 + 𝛼𝛼1𝜓𝜓 for  0 < 𝛼𝛼1 < 1. Clearly, CES is a special case, where 𝛼𝛼0 = 0 and 
𝛼𝛼1 = 𝜎𝜎

𝜎𝜎−1
.  To distinguish from CAPaTh, the class in Example 3 may need to be called Constant Relative Pass-

Through (CRPaTh). 
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List of Abbreviations Used 

 

CES  Constant Elasticity of Substitution 

CoPaTh Constant Pass-Through 

CRS  Constant Returns to Scale 

DEA  Direct Explicit Additivity 

FIM   Fréchet Inverse Markup Rate  

HDIA  Homothetic Direct Implicit Additivity 

HIIA  Homothetic Indirect Implicit Additivity 

H.S.A.  Homothetic Single Aggregator 

IEA  Indirect Explicit Additivity 

MC  Monopolistically Competitive/Monopolistic Competition 

PEM  Power Elasticity of Markup Rate 

TFP  Total Factor Productivity 
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Figure 1:  Melitz under H.S.A.; The cutoff rule and the free entry condition. 
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