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Abstract

We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama,
1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters.
In the parameter space of the map periodicity regions associated with attracting cycles of different periods
are organized in the period adding and period incrementing bifurcation structures. The boundaries of all
the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We
show the existence of several partially overlapping period incrementing structures, that is a novelty for the
considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the
model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of
the discrete time fashion cycle model converges to those of continuous-time fashion cycle model.

Keywords: Fashion cycle model, 2D discontinuous piecewise linear map, Border collision bifurcation,
Period adding bifurcation structure, Period incrementing bifurcation structure.

Lead Paragraph

The fashion cycle affects many areas of human activity, not only in dress but also in archi-
tecture, music, painting, literature, business practice, political doctrines, and scientific ideas. In
[12], Matsuyama proposes the continuous-time fashion cycle model, generated by a game played
by Conformists, who want to act or look the same with others, and by Nonconformists, who want
to act or look different from others. In [12] it is shown that the dynamical system associated with
this game is characterized by discontinuous piecewise linear functions, and, depending on para-
meters, has either stable fixed points or a limit cycle. In the present paper, we reformulate this
model into a discrete-time setting to generate a two-dimensional discontinuous piecewise linear
map, which is interesting not only due to its applied meaning but also from the mathematical
point of view. The bifurcations occurring in this map lead to a new kind of bifurcation structure
of the parameter space, which we describe analytically in explicit form. In particular, we show
that the map is characterized by (possibly many coexisting) attracting cycles of different peri-
ods, whose periodicity regions, with their border collision bifurcation boundaries, are organized
in several different families of period incrementing structures. There are also periodicity regions
organized in the period adding bifurcation structure related to one-dimensional restrictions of
the map, and the results follow from those known from the bifurcation theory of one-dimensional
discontinuous maps. We discuss also the connection between the continuous- and discrete-time
fashion cycle models. In particular, we show that if the time-delay in the discrete time formula-
tion shrinks to zero then the number of period incrementing structures goes to infinity and the
dynamics of the considered map converge to the dynamics of the original continuous-time model.
We conjecture that these results can be extended to a wider class of discontinuous maps.

1 Introduction

In this paper, we consider the two-dimensional (2D) discontinuous piecewise linear map that describes the
dynamics of a discrete-time version of the continuous-time fashion cycle model proposed in [12]. This map is



interesting not only due to its applied context but also from the mathematical point of view, as it belongs to a
class of maps for which the bifurcation theory is still not well developed.

As it is well-known, the existence of a border in a nonsmooth map, called also switching manifold, at which
the map changes its definition, may lead to a collision of an invariant set of the map with this border under
variation of some parameter, that may cause a drastic change of the dynamics. Such a phenomenon is called
border collision bifurcation, BCB for short, and many recent research efforts have focused on the classification
of possible BCBs in various classes of nonsmooth maps (see, e.g., the books [22], [3] and references therein).
For continuous nonsmooth maps, for which a generic BCB can be seen as a local bifurcation, many essential
results on the classification have been obtained by means of the related normal forms.! For discontinuous maps,
in contrast, a BCB is not a local phenomenon, because it involves a jump of the value of the map when the
switching manifold is crossed, and if such a jump is relatively large the result of a BCB depends on the global
properties of the map, which poses a significant challenge.

For example, consider a class of 1D piecewise monotone maps with one discontinuity point arising when a
Poincaré section of a Lorenz-type flow is constructed. Among such maps 1D piecewise increasing maps called
Lorenz maps have attracted a lot of research attention (see e.g., [8], [10], [6], [20], to cite a few). In particular, it
has been shown that if a Lorenz map is invertible in the absorbing interval then it can have only attracting cycles,
associated with rational rotation numbers, which are robust (i.e., persistent under parameter perturbations)
as well as non robust Cantor set attractors representing the closure of quasiperiodic trajectories, associated
with irrational rotation numbers.? In the parameter space of such maps the so-called period adding bifurcation
structure is observed, formed by the periodicity regions corresponding to the attracting cycles. These regions
are ordered according to the Farey summation rule applied to the related rotation numbers.> A Poincaré section
of a Lorenz-type flow may lead also to a 1D discontinuous map with one increasing and one decreasing branches.
In the parameter space of such a map the period incrementing bifurcation structure can be observed which is
formed by the periodicity regions ordered according to the increasing by k periods of the related attracting
cycles, and each two adjacent regions are partially overlapping that corresponds to coexisting attracting cycles.
We refer to [5] where the period adding and period incrementing structures are associated with codimension-
two BCB points in 1D piecewise monotone maps. Note that for a generic 1D piecewise linear map with one
discontinuity point, which is the simplest representative of piecewise monotone maps, the boundaries associated
with period adding and period incrementing structures can be obtained analytically in explicit form.?*

In the 2D piecewise linear map F' considered in the present paper there is a period adding structure which
is the standard one being related to a 1D reduction of the 2D map, and there are several period incrementing
structures associated with 2D dynamics. The overall bifurcation structure of map F' is quite interesting and,
to our knowledge, it has not been described before. After a brief description of the fashion cycle model by
[12] in Sec.2, we describe map F in Sec.3. It consists of four linear maps where each one is a contraction
and whose definition regions are separated by two discontinuity lines. The map depends on three parameters;
one of them is the coefficient of the contraction of the linear maps, and the other two are the slopes of the
discontinuity lines. The variables of map F' are coupled only via the discontinuity lines, and this feature allows
us to describe the complete bifurcation structure of the parameter space analytically. In particular, we obtain
all the boundaries of the periodicity regions associated with period adding and period incrementing structures
in explicit form. The period adding structure, discussed in Sec.4 and 5, is associated with parameter values at
which map F' is reduced to a 1D discontinuous piecewise linear map, so that the results known for such a class
of maps can be applied (for completeness the related results are given in Appendix). Novelty for the considered

LFor a 1D continuous map with one border point a complete classification of BCBs can be proposed using a 1D BCB normal
form represented by the well-known skew tent map defined by two linear functions ([7], [11], [15], [23], [18]). For 2D continuous
nonsmooth maps with one switching manifold many essential results can be obtained with the help of a 2D BCB normal form
defined by two linear maps ([14], [19], [17]).

2Chaotic dynamics in the Lorenz map is possible only if it is noninvertible in the absorbing interval.

3That is, between the regions corresponding to the cycles with rotation numbers m1 /n1 and ma/ng such that [ming — mani| = 1,
there exists a region of the cycle with rotation number (mi + ma2)/(n1 + n2).

4For an overview of the bifurcation scenarios in 1D piecewise linear maps with one discontinuity point, we refer to [2]. These
scenarios can be seen as building blocks, as they are also observed in 1D maps with more border points and in nonsmooth maps of
higher dimension. For example, period adding structure arises in the parameter space of a 1D continuous bimodal map [16], or in
a 2D discontinuous triangular map [21]. In a 2D discontinuous piecewise linear map with one discontinuity line considered in [13]
both period adding and period incrementing structures are observed being quite similar to those observed in 1D maps.



class of discontinuous maps is related to period incrementing structures. As we show in Sec.6, in the parameter
space of map F' there are several such structures which are partially overlapping. Moreover, if the coefficient
of the contraction of the linear maps tends to 1 (that corresponds also to the time-delay in the discrete time
formulation of the model tending to zero) the number of overlapping period incrementing structures goes to
infinity. That leads, in particular, to more than two coexisting attracting cycles (in the paper we present an
example with four coexisting cycles). Given that each linear component of map F' is a contraction, map F'
can have neither saddle not repelling cycles, and all the basin boundaries of coexisting attractors are formed
by proper segments of the discontinuity lines and their preimages. In Sec.7 we compare the dynamics of our
map F' and the original continuous-time fashion cycle model. We show that if the time-delay in the discrete
time formulation shrinks to zero the dynamics of the discrete time fashion cycle model converges to those of
continuous-time fashion cycle model. Some concluding remarks are given in Sec.8.

2 The Matsuyama (1992) fashion cycle model

What is the fashion cycle? In [12], it is defined as a collective process of taste changes, in which certain forms of
social behavior, or "styles", enjoy temporary popularity only to be replaced by others. This pattern of changes
sets the fashion cycle apart from the social custom. The fashion cycle is also a recurring process, in which many
"new" styles are not so much born as rediscovered. Although most conspicuous in the area of dress, many other
areas of human activity are subject to the fashion cycles, including architecture, music, painting, literature,
business practice, political doctrines, and scientific ideas. So are many stages of our lives, from the names given
to babies to the forms of gravestones.

What causes the fashion cycle? And why does it persist? The key idea put forward in [12] is this. In order
for such recurrent patterns of the fashion cycle to emerge, two fundamentally irreconcilable desires for human
beings—Conformity (i.e., the desire to act or look the same as others) and Nonconformity (the desire to act
or look different from others)-both must operate. Conformity alone would lead to an emergence of the social
custom, or convention. Nonconformity alone would prevent any discernible patterns from emerging. What is
necessary for an emergence of the fashion cycle is a delicate balance between Conformity and Nonconformity.

To capture this idea and to study the social environment that leads to fashion cycles as opposed to social cus-
toms, [12] considers the society populated by two types of anonymous players, Conformists and Nonconformists,
who play the following dynamic game in continuous time, ¢ € [0, 00).

e FEach player is continuously matched with another player of either type with some probability. The
relative frequency of across-type versus within-type matchings is m > 0 for a Conformist and m* > 0 for
a Nonconformist.’

e Each player takes one of the two actions, A and B, and the opportunity to switch actions follows as an
independent, identical Poisson process, whose mean arrival rate is o > 0.

e When matched, a Conformist gains a higher payoff if he sees his matched partner has the same action
with his, instead of the different action. A Nonconformist, on the other hand, gains a lower payoff if she
sees her matched partner takes the same action with her, instead of the different action.

Let At (A;) € [0, 1] denote the fraction of Conformists (Nonconformist) with A at time ¢. Then, a Conformist
is more likely to be matched with someone with A than with someone with B if P, = (A, —1/2)4+m(Af —1/2) > 0,
in which case, the fraction 1—\; of the Conformists who are currently with B switch to A, when the opportunity
to switch actions arrives, which follows the Poisson process with the mean arrival rate @ > 0. Thus, A\; changes
as % = a(l — \) if P, > 0. On the other hand, a Nonconformist is more likely to be matched with someone
with A than with someone with B if P = (A} — 1/2) + m*(A\; — 1/2) > 0, in which case, the fraction A} of
the Nonconformists who are currently with A would switch to B, when the opportunity to switch arrives, so
that A} changes as d;‘g = —a\] if P} < 0. Following this line of logic, the dynamics of (A, A}) € [0,1] can be
described by the following dynamical system denoted A:

5These relative frequencies of across-type versus within-type matchings for each type are in turn determined by the relative size
of the two types and the relative frequency of the matching being of inter-type versus intra-type.



{Oé(l — )\t)} if Pt > 0,

el [—a,a(l—N)]  if =0, where P, = (A —1/2) + m(\; —1/2)
{—OZ)\t} if Pt < O7
(1)
X {—a\}, if PF >0,
D [, (1l — X)), if PF =0, where Pf = (A —1/2) +m*(\ — 1/2)
{1 =)}, it P <0,

In [12], it is shown that this dynamical system has effectively three kinds of asymptotic behaviors, depending
on the two parameters, m > 0 and m* > 0.° In particular, for m* > m > 1, there exists a limit cycle, along
which Nonconformists become fashion leaders, and switch their actions periodically, while Conformists follow
with delay. In fact, this limit cycle can occur through two kinds of bifurcation. First, starting from the case
of m > m* > 1, where (A, \}) = (1/2,1/2) is the globally attracting fixed point, an increase in the share of
Conformists (a decrease in the share of Nonconformists) leads to a loss of the stability of (A, \}) = (1/2,1/2),
which creates of the limit cycle, similar to a Hopf bifurcation.” Second, starting from the case of m* > 1 > m,
where (A, A}) = (1,0) and (As, A7) = (0,1) are two stable fixed points, whose basins of attraction are separated
by Py = 0 (this case can be interpreted as the Conformists setting the social custom, and the Nonconformists
revolting against it), a decrease in the share of Conformists (an increase in the share of Nonconformists) leads
to a loss of the stability of both (A, A\}) = (1,0) and (A, A;) = (0,1), which creates the limit cycle through a
nonsmooth analogue of a heteroclinic bifurcation.

In Sec.7 the dynamics of the continuous-time fashion cycle model (1) are described in more detail to be
compared with those of the discrete-time model introduced in the next section.

3 Description of the map. Preliminaries

In the present paper, we reformulate the continuous-time fashion cycle model of [12] into a discrete-time setting
as follows. Matching now takes place at a regular interval, /A > 0, and from the current match and the next
match, the fraction § = 1 — e~ *® > 0 of the players can switch actions before the next match. Then, the
dynamics of a discrete version of the Matsuyama fashion cycle model can be described by a family of 2D
discontinuous piecewise linear maps F : I? — I%, I? = [0,1] x [0,1], given by (Zni1,Yns1) = F(Tpn,yn) :

- B (1=08)an+6 if PP(xn,yn) >0
T (1= 0)z, if P (,,9n) <0

Yt = (1= 0y +3 i PY(an,yn) <0

where
P xn,yn) = (tn = 1/2) +ma(yn —1/2),  PY(@n,yn) = (Yn —1/2) + my(zn — 1/2) (2)
and the parameters satisfy
0<d<l, my>0,my>0 (3)

Note that parameters mg, m, and variables z,, y, correspond to parameters m, m* and variables X\, A},
respectively, in the continuous time formulation of the model.

One can immediately notice that the variables are connected only via the discontinuity lines P*(z,, y,) = 0
and PY(z,,y,) = 0.> Moreover, their dynamics are governed by the discontinuous function consisting of two
linear branches with equal slopes 1 — 0 = a, where 0 < a < 1, so that map F' can have neither repelling or

6The asymptotic behaviors are independent of a > 0. Indeed, one could set a = 1 without loss of generality by rescaling time
as t' = at.

"Note however that the mechanism of this bifurcation is related to the nonsmoothness of the system and not to a pair of
complex-conjugate eigenvalues crossing imaginary axis as it occurs in case of a Hopf bifurcation.

8Note that map F is not defined at the discontinuity lines. In fact, such a definition does not influences the overall bifurcation
structure of the parameter space which is the main subject of our study. What is really important for the bifurcation analysis are
the limit values of the system function on both sides of the borders.



saddles cycles, nor chaotic dynamics. Nevertheless, the dynamics of F' is quite interesting being characterised by
coexisting attracting cycles of different periods and complicated bifurcation structures related to these cycles,
which we are going to describe.

The discontinuity lines given in (2) subdivide the phase plane of map F into four regions denoted D;, i = 1,4,
associated with corresponding linear maps F;. Let us rewrite the definition of map F' in the following form
using its linear components:

T 1-9)x
o y — El—5gy+5 , for (z,y) € Dy
= 0
Ey: 5 — 51_5§§+ , for (z,y) € Dy
x (1-9)z (4)
F3: y = (1_5)2/ ) for (x7y)€D3
x 1—-0x+46
Fy: y — E1_6;y+5),f0r(x,y)€D4
where
Dy = {(z,y) € I?: P"(x,y) <0, PY(z,y) <0}
Dy = {(z,y) € I*: P*(z,y) >0, PY(z,y) > 0}
D3 = {(z,y) € I*: P*(z,y) <0, PY(z,y) > 0}
Dy = {(z,y) € I*: P*(z,y) >0, PY(z,y) <0}

Property 1. Map F is symmetric with respect to (wrt for short) the point (z,y) = (1/2,1/2) denoted S.

One can check that for points p = (z,y) and p’ = (1 — 2,1 — y) which are symmetric wrt S it holds that
F(p) and F(p’) are also symmetric wrt S. This property implies

Property 2. Any invariant set A of map F' is either symmetric wrt S or there must exist one more invariant
set A’ which is symmetric to A wrt S.

The discontinuity lines P*(z,y) = 0 and PY(z,y) = 0 can be written as
1 1 1 1 1
c*: y:—(x—2)+2, cY: y:—my<m—2)+2 (5)
In the (x,y)-plane C* and C¥ are straight lines with negative slopes, intersecting at point S. They coincide if
C: My = — (6)

in which case F' is defined by the maps F} and F5 only.
Depending on mym, 2 1, as well as m, = 1, m, 2 1, one can distinguish between 6 cases (see Fig.1 and
Fig.2) which in short can be characterised as follows:

e For (my, my) € Ry = {mym, > 1, m,; <1} (Case I) and (my, my) € R;; = {mym, <1, m, > 1} (Case
IT) map F' has two attracting border fixed points, (z,y) = (0,1) and (x,y) = (1,0) (the fixed points of I}
and Fy, respectively). It is easy to see that their basins are separated by the discontinuity line C*.

e For (mg,my) € Rrrr = {my < 1, m; < 1} (Case IIT) map F has either two coexisting attracting n-cycles,
n > 2, denoted +,, and v/,, symmetric to each other wrt S and belonging, respectively, to the left and right
border of I? (denoted Iy and I;), or two coexisting Cantor set attractors, g, € Iy and q, € I, associated
with an irrational rotation number p, which are also symmetric to each other wrt S. Similarly to the
Cases I and II, the basins of coexisting attractors are separated by C”. In the (6, m,,m,)-parameter
space associated with Case III a period adding bifurcation structure is observed which is formed by the
periodicity regions related to the border cycles.



Figure 1: In the center: partitioning of the (m, m,)-parameter plane into the regions Ry, Ryy,..., Ryv. Around
the center: examples of the discontinuity lines C*, CY and attractors of map F' associated with these regions.
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Figure 2: 2D bifurcation diagram of map F in the (m,,m,)- and (arctan(m,), arctan(m,))-parameter plane
for § = 0.3. Color panel on the right indicates a correspondence between the colors of the parameter regions
and periods of the related cycles (some periods are indicated by numbers). In (a) some coexistence regions are
shown in gray.



e For (mg,my) € Rry = {mym, <1, my > 1} (Case IV) map F has an attracting interior 2-cycle denoted
I'; (whose points belong to D and Do and are symmetric wrt .S), which may coexist or not with border
n-cycles v, € Iy and v, € I, or with border Cantor set attractors g, € Iy and q:, el.

e For (mg,my) € Ry = {mym, > 1, m, < 1} (Case V) map F has an interior 2-cycle I'y which may
coexist or not with one interior 2n-cycle I'y,, n > 2, or with two interior cycles, 'y, and I'y(;,41) (each of
these cycles is symmetric wrt S). In the parameter space the related periodicity regions are organised in
a period incrementing bifurcation structure with incrementing step 2.

e For (my,my) € Ryr = {my > 1, my > 1} (Case VI) map F has one or several coexisting interior cycles
of even periods. In the parameter space there are [ > 1 period incrementing bifurcation structures, which
are partially overlapping, where | = Llogl,é 0.5J + 1. Here |-] is the floor function which for positive
numbers gives the integer part of the number.

Cases I and II are straightforward. Cases III, IV, V and VI are considered in detail in the following sections.

4 Case III: two border n-cycles and period adding structure

For 0 < § < 1 and (mg,my) € Ry any initial point (zo,y0) with yo < —; (2 — ) + 3, i.e., below the
discontinuity line C* (where the maps F; and F3 are defined) converges to Iy, given that 2 — 0 as the number
of iterations tends to infinity for both maps F; and F3. The dynamics of the y variable on I are governed by

the 1D piecewise linear map g defined as follows:

=(1-9y+6, 0Z c
oo (S 1

where ¢ = (my +1)/2 > 1/2 is the discontinuity point of g. An example of map g is shown in Fig.3a where
0 =0.3, my = 0.5.

The dynamics of such a class of maps, that is, 1D piecewise linear maps with one discontinuity point and
increasing contracting branches, are well studied (see, e.g., [9], [8], [1], [5]). Obviously, such maps cannot
have repelling cycles or chaotic invariant sets, but they can have attracting cycles of any period. Each such a
cycle, which appears/disappears due to BCB? is associated with a rational rotation number. These cycles are
robust, that is persistent under parameter perturbations; in the parameter space the regions associated with
existence of these cycles, called periodicity regions, are organized in the period adding bifurcation structure.
Irrational rotation numbers are associated with Cantor set attractors (representing the closure of quasiperiodic
trajectories) which are not robust (see e.g., [8]). For map ¢ the period adding bifurcation structure in the
(6, my)-parameter plane is shown in Fig.4. One can see that there are two boundaries of an n-periodicity region
associated with cycle v,,. These boundaries are related to collision of v, with the discontinuity point from the
left and right sides. The analytical expressions of these boundaries can be written explicitly (see Appendix).
Given that map g does not depend on m,, in the (my, m,)-parameter plane the boundaries of the periodicity
regions in Ry; are represented by horizontal straight lines (see Fig.2).

The dynamics of initial points (xg,yo) with yo > 7mir (az — %) + %, i.e., above C® (where maps F» and
Fy are defined), are symmetric wrt S to those described above: any initial point converges to I, given that
x — 1 as the number of iterations tends to infinity for both maps F5 and Fy. The dynamics of the y variable
on I; are defined by the 1D map ¢’ which has the same linear branches as map ¢ and discontinuity point
¢ =(1-my)/2=1-c<1/2. Due to the symmetry, the bifurcation structure of the (J, m,)-parameter plane
of map ¢’ is the same as for map g, with the only difference related to the symbolic sequences'” of the coexisting
cycles: if map g has a cycle v,, then map ¢’ has a symmetric cycle v/, whose symbolic sequence is obtained

9Recall that a border collision bifurcation occurs when under parameter variation an invariant set of a piecewise smooth map
collides with a border at which the system function changes its definition, leading to a qualitative change in the dynamics ([14],
[15]).

10The symbolic sequence of an n-cycle {xi}Z;*l of a map f defined on two partitions, associated with symbols L and R, can be
defined as o = og01...0n—1, 0; € {L, R}, where 0; = Lif z; € L and 0; = Rif z; € R.
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Figure 3: Map g and ¢’ defined on the left and right borders of I? are show in (a) and (b), respectively, at
0 = 0.3, my = 0.5 (Case III). Map g has a 3-cycle 5 with symbolic sequence L?R, and map ¢’ has a 3-cycle 4
with symbolic sequence R%L.
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Figure 4: Period adding bifurcation structure in the (d, m,)-parameter plane of maps g and ¢’ defined in Case
III on the left and right borders of I?, respectively.

from the symbolic sequence of v, interchanging the symbols L and R. For example, if a (J,m,)-parameter
point belongs to the 3-periodicity region, then both maps, g and ¢’, have attracting 3-cycles, 5 with symbolic
sequence RL? and v} with symbolic sequence LR?, respectively (see Fig.3).

5 Case IV: interior 2-cycle and two border n-cycles

The transition from Case III to Case IV (for increasing m, through 1 for some fixed 0 < m, < 1) is associated
with the appearance of one more discontinuity point on the border Iy (and on the border I;) which is the point
(z,y) = (0,d) ((z,y) = (1,1 — d), respectively), where

g LEma
2my

(8)

is the y-coordinate of the intersection point of the discontinuity line C* with border Iy. After such a transition
points of the segment of Iy (I;) with y € (d,1) (y € (0,1 —d), respectively) as well as points of a neighbourhood
of this segment, are repelled from the borders. This leads to the appearance of an interior 2-cycle, according to
the following



Property 3. For any fixed 0 < 0 < 1 and m; > 1, my < 1 map F has an interior attracting 2-cycle

Iy = {po,p1}, where
1 1-9 1-6 1
Po = <m7m> €Dy, p= (m, m) € Dy (9)

To see this, note that considering map F? = F, o F}, its fixed point py is a point of an actual 2-cycle of map
F if py € Dy (in such a case p1 = F(py) € D2 due to the symmetry), that holds for m, > 1, m, < 1, i.e., for
(mg,my) € Ry URy. For my =1 a BCB of I'y occurs at which py € C* (and also p; € C7), while for my, =1
a BCB occurs at which py € C¥ (as well as p; € CY), so that in the (m,, m,)-parameter plane the boundaries of
the periodicity region associated with an interior 2-cycle are defined by the straight lines m, = 1 and m, = 1.

For (mg,my) € Rry the 2-cycle 'y = {po,p1} (see Property 3) may coexist or not with border cycles v,, € Iy
and v;, € I, or, in a non generic case, with Cantor set attractors g, € I and g, € I.

In fact, the periodicity regions forming the period adding structure in region R;r; extend to region Rry,
however, in Ry each region has one more, vertical, boundary (see, for example, Fig.2), related to the mentioned
above new discontinuity points (z,y) = (0,d) € Iy and (z,y) = (1,1 —d) € I;. To see which bifurcation is
associated with this boundary consider map g given in (7) and its absorbing interval J = [gr(c), g1.(c)] to which
the related cycle +,, belongs (the cycle 7/, belongs, respectively, to the absorbing interval J' = [gr(c’), gr(¢)]).
For (mg, my) € Rrv map g is defined not on the complete border Iy, i.e., not for any y € [0,1] as in Case III,
but for y € [0,d], and any point (z,y) = (0,y) with y > d is mapped in the interior of I2. As long as gr.(c) < d,
that is, if d ¢ J, the period adding structure of map F' is not influenced by the existence of point d, that is, it
extends from region Ryr; to region Ryy. If gr(¢) = d that holds for

1—0dm,

B: =
" (1= 0)

(10)
the absorbing interval J has a contact with d (see Fig.2 where curve B is shown). If gz (c) > d, i.e., if d € J,
new discontinuity point y = d can collide (for increasing m,) with the rightmost point of cycle +,,, and this
BCB defines the vertical borders of the periodicity regions in Rjy (their analytical expressions are given in
Appendix). A collision of the discontinuity point y = ¢ can no longer occur with +,, from the right side (because
such a collision means also a collision of the critical point gy (¢) with the rightmost point of v,,) and, thus, the
periodicity regions in Ry have no lower BCB boundary, while such a collision from the left side can still occur
(for increasing m,), and this BCB is associated with the upper boundary of the related periodicity region.
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Figure 5: Case IV. Coexisting attracting interior 2-cycle and two border 3-cycles together with their basins.
Here 6 = 0.3 and (m,,m,) = (1.3,0.45) in (a), (mg, m,) = (1.75,0.45) in (b), so that the (my, m,)-parameter
point is, respectively, below and above curve B given in (10).

Clearly, the appearance of an attracting internal cycle 'y leads to a change in the basins of attraction of
the cycles v,, and +},, moreover, these basins differ depending on the location of the (m,, m,)-parameter point



wrt curve B. Recall that for (m,,m,) € Ry the basins of ,, and v/, are separated by the discontinuity line
C*. For (mg,my) € Rry with my < Ti;(‘sffg), that is, if (my, my)-point is below the curve B, the basins of v,
and «y/, remain simply connected (see an example in Fig.5a where an interior 2-cycle coexists with two border
3-cycles). On the other hand, for (mg,m,) € Rry with my > ni;(‘sl’fg), that is, if (mg, my)-point is above the
curve B, the basins of v,, and v/, are disconnected in I? (an example is shown in Fig.5b). All the basins are
separated by the proper segments of the discontinuity lines C*, C¥ and their preimages. It is worth to note also
that curve B converges to curve C' as § — 0, that is, the subregion of Ry associated with disconnected basins
decreases and disappears as 6 — 0.

In the transition from Case IV to Case V crossing the curve C given in (6), for example, increasing m,, for
fixed m, > 1 (see e.g., Fig.2), the discontinuity curves C* and C¥ are merging and switching their position wrt
each other. As a result, in the parameter region above the curve C the cycles +,, and ~), no longer exist (it can
be shown that in a lower neighbourhood of the curve C only the basic cycles ,, € Iy and 7}, € I, n > 1, with
symbolic sequences L™ R and R"L, respectively, still exist), while new interior cycles may appear as we show in
the next section.

6 Cases V, VI: Interior cycles and period incrementing structures

6.1 Border collision bifurcations of an interior cycle

Let us denote an interior cycle of map F as 'y, = {p; ?251 = {(z:,y:) ?251, n > 1. We represent such a cycle
by a symbolic sequence o = 0g071...02,—1 where o; € {1,2,3,4} and

if p;, € Dy
if p; € Do
lfpl € D3
ifpl‘ € Dy

g; =

W N

Property 4. Let (mg, my) € Ry U Ryr. Any interior cycle I'a,, n > 1, of map F' can be represented by the
symbolic sequence 1¥4!2%3! where k > 1, [ > 0. The period of I'y,, can be written as 2n = 2(k +1).

To see this consider first an arbitrary initial point ¢y = (z¢, yo) € D;1. Applying map Fj the trajectory moves
along the straight line y = y(;glx + 1 approaching the fixed point (z,y) = (0,1) of map F;. Two cases can be
distinguished:

(1) If after a number i > 1 of iterations by F} it holds that ¢; = F{(go) € D2 (this can occur if (m,,m,) €
Ry and cannot occur if (mg,my) € Ryr), then applying F> the trajectory moves along the straight line
y = ;%5(z — 1) towards the fixed point (z,y) = (1,0) of F». It is easy to see that the trajectory necessarily
comes back to Dy where F} is applied again. As a result, applying only the maps F} and F, the trajectory is
attracted to the 2-cycle I's (see Property 3) which can be represented by the symbolic sequence 114°213%. Here
the upper index 0 means that the related symbol is absent in the symbolic sequence. The parameter region
defined by m, > 1, m, < 1, associated with I's is denoted Fp ;.

(2) If after a number i > 1 of iterations by F} it holds that ¢; = F{(qo) € D4 (this can occur for (m,,m,) €
Ry and necessarily occurs for (mg, my) € Ry;), then applying map Fj the trajectory moves along the straight

line y = }:Zlaj + 1 towards the fixed point (z,y) = (1,1) of map Fy, and after a number j > 1 of iterations it

necessarily enters region Dy, that is, ¢;4; = FZ o Fi(pg) € Ds. Then, after a number of iterations by Fy the
trajectory enters region D3, and applications by F3 lead the trajectory back to region D;. In such a way a cycle
(of period at least 4) of map F' may exist.

Consider a cycle I'y,, = {p; ?251 of map F, n > 2, where pg is the rightmost periodic point in D;. Then
following the same reasoning as for a generic trajectory, we can state that there are numbers £k > 1 and [ > 1
such that p, = Ff(py) € Dy and pry; = Fl o FF(py) € Dy. Due to the symmetry of F wrt S, point pyy; is
necessarily symmetric wrt S to point pg, that is, it holds pg; = (1 — 20,1 — o), and there are other k — 1 points
of 'y, in Dy as well as [ points in D3, each of which is symmetric to the related point p;, 1 <i < k+1— 1.
Thus, the cycle I's,, can be represented by the symbolic sequence 1¥4!2%3!. We denote its existence region in
the (my, my)-parameter plane as P, ;. Two examples of I'y,, are presented in Fig.6.
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Figure 6: Examples of interior cycles I'yx4) = {pi}fgf)ﬂ)_l of map F' with k points in region D1, [ points in

Dy, k points in region Dy and [ points in region Ds. In case (a) the related periodicity region P has four
boundaries, while in case (b) P, is unbounded on two sides (see Proposition 1).

Property 5. The rightmost point py € D; of the cycle I's,, = {p; ?261, n > 1, of map I with symbolic

sequence 1¥4/2%3! has the following coordinates:

al al—‘rk
po:(xo’yo):(1+al+k’1+al+k>’ a:=1-9 (11)

To see this note that for py € Dy, where pg is the point of I's,, in Dy with the largest ¢ coordinate, it holds
Pryr = (a'(aPzo — 1) + 1,0/ ¥ (yo — 1) + 1)
then (11) follows from pgy; = (1 — @0, 1 — yo).

Proposition 1 Let 0 < 0 <1, a =1-90, and (my,my) € Ry U Ryr. Suppose map F has a cycle I'y,, =
{pi}?zal, n > 2. Then it is an interior attracting cycle of period 2(k + 1) with the symbolic sequence 1%4!2k3!,
where 1 <1 <1, k>1, andl = Llogl_(; O.5J + 1. In the (mg, my)-parameter plane the related periodicity region
P, 1 is confined by at most four boundaries associated with the border collision bifurcations of I'ay,:

1 alth —1 1 y
Bl,k : my = m = my(l,k) (p() eC ) (12)
alt*=1(2-a) -1
Bij: my = T () Myry  (Patkrn—1 € CY) (13)
B} i my = _L-a att _ m3 (pr € C7) (14)
Ik =7 +ak(al —2) = My1,k) Pk
1—a** =12 —a) .
Bla: M= it gy = ek (e €07) (15)

The region Py, can be one-side unbounded (only the boundaries Bll’,€7 Bﬁk and Bik, or Bﬁk, Bl?:k and Bl‘fk, exist)
or two-side unbounded (only the boundaries Bﬁk and Bik exist).

Proof. Let 0 < 0 < 1, (mg, my) € Ry U Ryr. Suppose that map F has a cycle I'y,, = {122» 52517 n > 1. Then
'y, can be represented by the symbolic sequence 1#4!2+3! (see Property 4), where 1 <1 <, k > (the value [ is
discussed in Proposition 2), and the rightmost point pg € D; of I'a,, has coordinates given in (11) (see Property
5).

11



Increasing m,, (the slope of the discontinuity line C¥ given in (5) becomes larger in modulus, see Fig.7a) a
BCB of I's,, can occur at which pg € C¥. From the condition py € C? the boundary Bl{k of P, j, is obtained (see
Fig.7b). Obviously, such a BCB cannot occur if zg < % (see Fig.6b) given that it must hold m, > 0 (i.e., the
slope of CY¥ must be negative). Thus, if 2o < %, that is, if 1 + a'(a® — 2) > 0, the boundary le,k of Py, does
not exist and P, is at least one-side unbounded. Note that in such a case it holds that mzll(lyk) < 0.

] 1
, v Br i my=mbap
m
08 Drig ! 1‘
cx Prig1
Pk 5
06 B}',k Pri B]?k
Pie1 me=mi ' m=mig
04
P2l+i-1

02 Po -

Bjj: my=mjay

Mx
OO 02 04 06 08 X 1
(a) ®)

Figure 7: Approaching boundary Bl{ i of the periodicity region P by increasing m,: in (a) it is shown how
the curve C¥ moves, and in (b) the related boundary is indicated.

Decreasing m,, (the slope of C¥ becomes smaller in modulus, see Fig.8a) a BCB of I'y,, can occur at which
D2(k+1)—1 € CY where

a1 qltk—1
DP2(k+)-1 = (1 T otk T+ al+k)

From the condition py(x44)—1 € CY the boundary Blz,]C is obtained (see Fig.8b). It is easy to see that for the

considered parameter values such a BCB always occurs, that is, the boundary 312, . of P always exists.

. 1
, v Big: my=mlay
my
08 Preg
cx Prig.]
3 4
06 By Pix Bk
Di-1 m=migy ' =i g
04
D2l+ky-1 J’
02 Po 2
Biy: my=miay
, Mx
0 02 04 06 08 X 1
(a) ®)

Figure 8: Approaching boundary Bl% .. of the periodicity region P by decreasing m,: in (a) it is shown how
the curve C¥ moves, and in (b) the related boundary is indicated.

Let now m, be decreasing (the slope of the discontinuity line C* defined in (5) becomes larger in modulus,
see Fig.9a). Then a BCB of I'y,, can occur at which p, € C* where

B a1 +4+aF(a —1)
Pe =\ Tk~ 1 L gtk
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The equation for Bl?jk is obtained from the condition p; € C* (Fig.9b). For the considered parameter values

such a BCB always occurs so that the boundary B} of P,y always exists.

1 1
y cy Bii: my=mjax
my
08 Pri
Prij1
c* &
Ao 3 4
08 Bik le— p,, B’k
Pr1 m=mip ’ m=migy
04
P2(l+k)-1
02 0 =
By my =mjax
Mix
00 02 04 06 08 )
(a) (®)

Figure 9: Approaching boundary Bl?: i of the periodicity region P, ; by decreasing m,: in (a) it is shown how
the curve C® moves, and in (b) the related boundary is indicated.

Increasing m, (the slope of C* becomes smaller in modulus, see Fig.10a) a BCB of I'y,, can occur at which

pr—1 € C* where
glh—1

Pk—1 = <1+al+k’

The equation for Bl‘fk is obtained from py_; € C® (see Fig.10b). Such a BCB cannot occur if yi_1 < % (see
Fig.6b) given that it must hold m, > 0 (i.e., the slope of C* must be negative). Thus, if yr_; < %7 that is,
if 1+ a*~1(a!t! —2) < 0, it holds that the boundary Bﬁk of P, does not exist and P} is at least one-side
unbounded. Note that in such a case my, , < 0 (in (15) the inequality 1 — a'**~'(2 — a) > 0 follows from

Tipk—1 < %)

1+ar1(a*! 1)
1+altk

1 1

y cy By my=mbgy
ny
08 Pk
Cx Pt
i

. 3 4

” Bii P —>|Bik
Pi1 my= m.g(f,k) ’ M= m,@mk)
04
P2(l+k)-1
02 0 -
By my=min
mx
DO 02 04 06 08 X 1
(a) (b)

Figure 10: Approaching boundary Bl‘fk of the periodicity region P by increasing my: in (a) it is shown how
the curve C” moves, and in (b) the related boundary is indicated.

To summarize, if all the BCB values given in (12)-(15) are positive, it holds that mzl!(l k) > mi(l r) and
mi(lwk) > mi(lﬁk), that is, Bl{k, Bl27,67 Bl3,k- and Bffk are, respectively, upper, lower, left and right boundaries of
P, . If for some values of k,[ it holds that m;(l g <0 (e, 1+ a'(a* —2) > 0) then such a region is unbounded

from above, while if mi(lﬁk) <0 (i.e., 1 +a*!(a*! — 2) < 0) holds then the related region is unbounded from
the right. m
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Figure 11: BCB boundaries of the periodicity regions P g, | = 1,2, k > [, in the (arctan(m,), arctan(m,))-
parameter plane for § = 0.3.

6.2 Properties of the period incrementing structures

Fig.11a shows an example of the BCB boundaries confining the periodicity regions P, in the (arctan(m,),
arctan(m,))-parameter plane for § = 0.3 (some boundaries are shown in color associated with the colliding
cycle). As we show below (see Proposition 2), for such a value of § it holds that [ < [ = 2, that is, there
are two sets of periodicity regions, {Pi x},., and {Pa},-,, which are related to the cycles with symbolic
sequences 1¥412%31 and 1%422F32. In Fig.11b the BCB boundaries of the periodicity regions are superposed
on the 2D bifurcation diagram obtained numerically. One can see that the regions P and P g1, & > 1,
are partially overlapping and for k¥ — oo they accumulate to m; = 1,. So, the set of regions {PLk}ZO:l form
a period incrementing bifurcation structure with incrementing step 2. The same holds for regions {P27k}2022.
Note that regions P ; and P, 2 are two side unbounded, P, 2 is unbounded from the right and P, k£ > 3, are
unbounded from above. Note also that the periodicity regions of different incrementing structures, that is, for
I =1 and [ = 2, are also partially overlapping, so that more than 2 different cycles may coexist. An example of
4 coexisting cycles!! is shown in Fig.12b, and the related parameter point is indicated in Fig.12a.

Proposition 2 For a fited 0 < § < 1 the number of the period incrementing bifurcation structures in the
(my, my)-parameter plane of map F is given by

I =|log;_50.5] +1 (16)

that is, map F can have cycles with symbolic sequences 1%4'283¢ for any 1 <1 <1 and k > 1. Here || denotes
the integer part of the number.

Proof. Suppose that 0 < 6 < 1 is fixed and in the (my, m,)-parameter plane of map F there is more than
one period incrementing structure. Consider a set of periodicity regions {Pl)k}zozl for some fixed [ > 2. For the
boundaries of these regions, defined in (12)-(15), we have

ILH;O mi(l,k) =1, klingo mi(l’k) =1

1
. 1 _ —.
iy = 21—ol—1 "Ml (17

11 As it follows from Proposition 2 the number of incrementing structures increases as 6 — 0. Then more than 2 incrementing
structures can overlap leading to more than 4 coexisting cycles.
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Figure 12: (a) BCB boundaries of the periodicity regions in the (mg,m,)-parameter plane for § = 0.3; some
periods are indicated by numbers; (b) For § = 0.3, m, = 1.4, m, = 3.2 (the related point is indicated by red
circle in (a)) in the phase plane there are coexisting 8-, 10-, 12- and 14-cycles with symbolic sequences 13412331,
14412431, 14422432 and 1°422532, respectively.

1
. 2
i iy = 1 gyt =g = Mt (18)
Since the convergence of the sequence mz(l,k) as k — oo is monotone, mz(l,k +1) < mz(h k) it follows that if the

sequence of lower boundaries BZ . of P converges to a positive value, that is, if m, ;_1 > 0, the related set of
periodicity regions, forming a period incrementing structure, exists. From the condition m, ;1 > 0 we get that
1<l=|log,_s05/+1. m

The next two properties follow immediately from (16):

Property 6. For 0.5 < § < 1 it holds that [ = 1, i.e., in the (mg, my)-parameter plane there is only one
period incrementing structure formed by periodicity regions P; i, k > 1, unbounded from above (where P, 1 is
unbounded from the right side as well).

Property 7. As § — 0 the number [ of incrementing structures in the (mg, my)-parameter plane tends to
infinity.

As an example, Fig.13a presents the BCB boundaries for § = 0.1, and in Fig.13b they are superposed on
the 2D bifurcation diagram obtained numerically. For such a value of § there are | = 7 period incrementing
structures. For § = 0.01, for example, there are already [ = 69 period incrementing structures.

For the period incrementing structure {Pl,k},;“;l, k > 1, the following property can be verified by direct
computation:

Property 8. In the (my, m,)-parameter plane the vertex point p?z = Bik N Bik of each region P i, £ > 1,

given by (mg,my) = (M 1), M 1)), belongs to the curve C' given in (6), that is, m?, = 1/m? ;.

Let us consider now the vertex point plllg’ = Bll7 N Bl?j i of the periodicity region P, given by (mg,my) =
(mi(l’ k) m;(l, k)), when it exists. From Property 6 it follows that a necessary condition for the existence of such
a point is 0 < 0 < 0.5.

Property 9. In the (my, m,)-parameter plane the vertex point pll,f’ of any periodicity region P, j, if it exists
(i-e., if 1 +a*~1(a'*! —2) > 0), is located above the diagonal m, = m,.
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Figure 13: BCB boundaries of the periodicity regions P i, 1 <1 <7, k > [, in the (arctan(m,), arctan(m,))-
parameter plane for § = 0.1.

A simple corollary of this property is that regions P , k > 1, extend from the parameter region Ry to the
parameter region Ry ;. Moreover, the following property holds:

Property 10. In the parameter region Ry there is only the period incrementing structure {Pl,k}zil (extend-
ing to Ry ) which is overlapped by region P, 1 related to 2-cycle I'; (see Property 3).
g pp Yy reg ; Y perty

To see this, note that for 0 < § < 0.5 it holds that my,; = 1255 > 1, my 2 = 1 (see (17), (18)) and for any
k > 2 we have that m321(2,k+1) < mz(lk)’ that is, the period incrementing structure {P2,k}2022 is located in Ry .

The above property means that for (m,,m,) € Ry map F has an interior 2-cycle I'y which may coexist or
not with one cycle having symbolic sequence 1¥4'2%3' k > 1, or with two such cycles, with symbolic sequence
1%412F3% and 1#+1412F+131, For example, in Fig.14a an interior 2-cycle coexists with 8-cycle 1341233, and in
Fig.14b it coexists with 6-cycle 124'223! and 8-cycle 134'233!.

1

¥

08

06

04

02

06

(@

Figure 14: Coexisting interior 2- and 8-cycles in (a) and 2-, 6- and 8-cycles in (b), and their basins. Here
0=0.3, my =0.8 and m; = 1.5 in (a) and m, = 2 in (b).
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Figure 15: An example of parallelogram P with vertices given in (19) and (20), which can be constructed in
the (z,y)-phase plane of map F' for m, > m,, my; >1and 0 < ¢ < 1.

6.3 Codimension-two BCB of an interior cycle

Consider a periodicity region P, and its vertex point plls = (m?c(l’k)7 mz(l’k)) (assuming that it exists, that is,
1+ a*~1(a"*! —2) > 0). In this section we describe the particular BCB of the related cycle [o(14x), associated
with such a parameter point.

We first construct for fixed (m,, my) € Ry U Ry an auxiliary parallelogram P in the (x, y)-phase plane (see
an example in Fig.15), with vertices p = (zp,y,) € CY, ¢ = (z4,y,) € C, p' = (2,,9,) € CY, ¢’ = (v, y,) € C*
(where p’ and ¢’ are symmetric wrt S to p and ¢, respectively) and edges belonging to straight lines connecting
point p (as well as ¢') with point (0,0), and ¢ (as well as p) with (0,1). By symmetry, the other two edges
belong to straight lines connecting p’ (as well as ¢) with (1,1), and ¢’ (as well as p’) with (1,0). Recall that
(0,0), (0,1), (1,1) and (1,0) are the fixed points of F3, Fy, Fy and F», respectively, which are virtual for F.
The mentioned above straight lines are denoted, respectively, as Log, Lo1, L11 and Lqg :

-1
Loo : y:ylx» Loy : y:7yq z+1
Tp Tq
yp — 1 Ye
L : =2 —1)+1, Ly: y=—212 -1
11 y %_1(95 )+1, Lwo: y 3:{1—1( )

After some algebra one can get the coordinates of the vertices p, q, p’ and ¢’

1 M 1 M 1 M1 M
_ S - _ = = =(Z-= = 1
p (xpayp) (2 + 2my7 2 ) )7 q (xqayq) (2 2 ’2 + 2m1> ( 9>
1 M 1 M 1 M1 M
O A (e L A (ol ol — [ = s 20
P = (@ 0) (2 2my’2+2)’ ¢ = (@0 (2+2’2 2mx) (20)
where
Y L L
Mmgmy — 1

Note that by construction it must be % <zp <1land % < yq < 1, that is, the inequalities 0 < M < 1, leading
to my > 1, mymy > 1 and m, > m,, have to be satisfied. The inequalities m, > 1, mym, > 1 are satisfied for
the considered regions Ry and Ry, thus, we can state the following
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Figure 16: Period incrementing structure {Ps;},-, for § = 0.1 (a) and 6 = 0.05 (b). The curves V}, defined in
(21), to which the vertex points pll,f’ belong, are shown for 1 < k£ < 100. The region P; 5 is highlighted.

Property 11. In the (z,y)-phase plane of map F a parallelogram P with vertices p, ¢, p’ and ¢/, given in
(19) and (20), can be constructed if m, > m,, m, > 1, independently on 4.

The following property can be verified by straightforward calculations:

Property 12. The vertex point plll‘j of region P, j is a codimension-2 BCB point at which four points of the
cycle Iy 41 collide with the borders: po = p € CY, pp = q € C%, prqy = p’ € CY and pap4 = ¢’ € C*, where
p, ¢, p' and ¢’ are given in (19) and (20).

Recall that at the parameter point pll,f the inequality m;(l’k) > mi(lyk) holds, thus, from Property 11 it
follows that the parallelogram P can be constructed.

Note that from pg = p it follows that points pllé’ for different k& belong to the curves
akfm,

Vi : =
r My mg(ak —1) +1

(21)

which for fixed k and § — 0 (i.e., a — 1_) tend to the diagonal m, = m,, while for fixed ¢ and k — oo tend to
the vertical line m, = 1. In Fig.16 the curves V} are shown for 1 < k£ <100 and § = 0.1 in Fig.16a, § = 0.05 in
Fig.16b.

It is interesting to note that as m, — 14, it holds that p — (n;;/:;170> , g — (0,1),p — (Tg;’r:,l) and
¢ — (1,0) (see (19) and (20)). We can formulate the following

Property 13. Let m,, > 1 and 0 < ¢ < 1 be fixed and m, — 1. Then for interior cycles I'y(; ) it holds that
k — oo and points py_1 and p tend to (0, 1), while the symmetric points pj,_; = pog4i—1 and pj, = pax4; tend
to (1,0). Crossing the boundary m, =1 (so that the (m,, m,) parameter point enters region R;) leads to the
attracting fixed points (z,y) = (0,1) and (z,y) = (1,0).

Proposition 3 Let 0 < § < 1, my > my and my > 1. Then in the generic case any initial point (xo,yo) is
attracted to a cycle I'sy, n > 2, of map F, and points of this cycle are external to the parallelogram P with
vertices p, q, p' and ¢, given in (19) and (20).

Proof. Generic case here means that the (m,, my)-parameter point does not belong to a BCB boundary of some
periodicity region. To prove this statement let us consider a non-generic case related to the parameter point
p},f’ at which pg € C¥ and p; € C* and py = p, pr = ¢ (see Property 9). Then increasing m, and decreasing m,,
(sb that the parameter point enters the region P, ;) the points of the cycle I'y(;44) remain unchanged because
their coordinates do not depend on m,, m,, while the vertices of parallelogram P move towards point S : it is
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easy to check that for increasing m, and decreasing m, the value y, increases, thus, the value z, decreases, so
that the vertex p becomes closer to S, and the same conclusion holds also for the other vertices of P. Thus, the
points of the cycle, when it exists (i.e., for (my, my) € P, 1), cannot be located inside parallelogram P (recall
that parallelogram P shrinks to point S for m, = m,, and does not exist for m, < m,). =

7 Discrete versus continuous time model: a comparison of dynamics

As we already mentioned map F given in (4) describes the dynamics of a discrete-time version of the continuous-
time fashion cycle model A given in (1). In the present section we show that the dynamics of map F' as 6 — 0
converge to those of the original continuous-time model. Recall that the discrete-time and continuous-time
versions are related via 1 —§ = ¢ %, and § — 0 as A — 0, where A is the time-delay in the discrete time
formulation.

Similar to the partitioning of the (m,, m, )-parameter plane of the discrete-time model, the (m, m*)-parameter
plane of the continuous-time model A can be subdivided into six regions according to the location of the discon-
tinuity lines P, = 0 and P = 0: Case I (m < 1 < mm*), Case IT (m < mm* < 1), Case III (mm* < m < 1),
Case IV (m > 1 > mm*), Case V (m > mm* > 1) and Case VI (mm* > m > 1). The last case is further divided
in Case VIa (m > m* > 1) and Case VIb (m* > m > 1). In the center of Fig.17 we show the corresponding
partitioning of the (m, m*)-parameter plane and around the center the corresponding dynamics are illustrated.

The description of possible attractors of the system A is summarized in

Proposition 4 [12] The attractors of system A defined in (1) depending on parameters m and m* are given
by
(a) (A, A}
(b) (Ae, Ay
(c) (A, Ay

= (0, ) and (A¢, A7) = (1,0) if m* > 1, m < 1 (Cases I and II);
) and (A, AY) = (1, 17’”*) if m* <1, mm* <1 (Cases III and IV);
%) if L <m* <m (Cases V and Vla);

777,

B \_/ \_/ \_/
I
M\»—A o

(d) a lzmz cle which is parallelogram L defined by vertices
1 Xo 1 X 1 X 1 Xo
P=(-+==_-_ =|--=-4+= 22
<2+2m*’2 2)’ @ (2 2’2+2m) (22)
1 X, 1 X 1 X 1 X
p—(2_ Lo 2 o) — (242 -2 23
(2 2m*’2+ 2)’ @ <2+ 2 72 2m> (23)
where .
X, = -m
mm* — 1

if m*>m > 1 (Case VIb).
Comparing the dynamics of the discrete- and continuous-time fashion cycle models we can state the following

Proposition 5 For § — 0 the dynamics of the discrete-time fashion cycle model defined by map F' given in (4)
converges to the dynamics of the continuous-time fashion cycle model defined by the system A given in (1).

Proof. In Cases I and II both models are associated with attracting border fixed points (0,1) and (1,0).

For Cases III and IV first note that the border cycles v, and «), of map F belong to the intervals J =
[gr(c),gr(c)] C Iy and J' = [gr(c), gr(c")] C I, respectively. It is easy to see that as 6 — 0 intervals J and J’
shrink to the discontinuity points (0, Lmy

5 , respectively, so that the border cycles v,, and 7/,

also shrink to these points. Moreover, the interior 2-cycle I's = {po,p1} (see (9)) existing in the parameter region
Rry and Ry (Cases IV and V), shrinks to point S as § — 0 (recall that point S is defined by (z,y) = (%, %))
It can be shown that in Case IV the basin of attraction of I'y also shrinks. Thus, in Cases III and IV there is a

correspondence of attractors of F' as § — 0 with those of system A (see item (b) of Proposition 4).
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Figure 17: In the center: Partitioning of the (m,m*)-parameter plane into the regions associated with different
cases of continuous time fashin cycle model A. Around the center: The (A, A} )-phase plane where examples of
the discontinuity lines and attractors, corresponding to these regions, are shown.

In Case VI for m, < m,, as well as in Case V, i.e., for the (m,, m,)-parameter point satisfying i <my <
mg, the trajectories of map F' as 6 — 0 tend to point S, as illustrated by the 1D bifurcation diagrams § versus
x for my = 2 and m, = 3 in Fig.18a, and m, = m, = 2 in Fig.18b. Recall that map F' can have coexisting
cycles, and some of them are shown in Fig.18 by different colors. As one can see, for decreasing § points of each
cycle, as long as this cycle exists, tend to .S, however, such a cycle may disappear due to a BCB.

In fact, let 0 < § < 1 be fixed. Consider a parameter point (m.,m,) satisfying —~ < m, < m,. Such a
point necessarily belongs to one or several (overlapping) periodicity regions. Let (mx, my) € Pk, then map F
has the cycle I'y(;44) with point pg € D; defined in (11). From (11) it follows that decreasing § the point pg (as
well as any other point of I'y;41)) tends to S. In the meantime, decreasing ¢ the value m;(lvk) (related to the

BCB boundary By ;) decreases and the value m? (k) (related to B}, increases, that can be verified using (21).
It is illustrated in Fig.16, where the region Pj 5 is fmghhghted for §=0.11n Fig.16a and § = 0.05 in Fig.16b.
Thus, decreasing 0 cycle 'y ) either shrinks to S, or disappears due to a BCB colliding either with C¥ (if
boundary Bl{ i 1s crossed) or with C* (if Bl?jk is crossed). Given that for each fixed m, < m, and decreasing &
the period of cycles of map F' may increase but it remains finite (i.e., [ and & in (11) do not tend to infinity), it
holds that in the considered case the limit sets of the trajectories of F shrink to S, i.e., there is a correspondence
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(a)

Figure 18: 1D bifurcation diagram § versus = of map F for 0 < 6 < 0.1, m, = 2 and (a) mgy = 3, (b) m, =2,
(¢) my = 1.5.

with item (c¢) of Proposition 4.

In Case VI for my, > m, the trajectories of map F' as 6 — 0 tend to cycles whose period tends to infinity
and whose location tends to the parallelogram P with vertices defined in (19), (20) (note that these vertices
correspond to those defined in (22), (23)). This case is illustrated in Fig.18c, where the 1D bifurcation diagram
§ versus z is shown for m, = 2 and m, = 1.5. Here the points x, and z] which are z-coordinates of the vertices

q
g and ¢ of P, are also indicated. Note that for m, — 1. it holds that z; — 0 and x; — 1.

1

Figure 19: (a) In Case VI for m, > m, and 6 — 0 limit sets of trajectories of map F' tend to parallelogram P;
(b) the related parallelogram and convergence to it in the continuous-time fashion cycle model.

In fact, similarly to the previous case, for fixed (my, my) € P (with m, > m,) and decreasing J the points
of the related cycle o4k tend to S, however, [y(1+#) necessarily disappears due to a BCB colliding either
with C¥ when the boundary le,k is crossed, or with C* when Bik is crossed (recall that as § — 0 the point pll,f
tends to the diagonal m, = m,, with decreasing ml}/(l’ ) and increasing mi (l, k)). Each new cycle which appears
for decreasing ¢ has a higher period, moreover, according to Proposition 3, any cycle of map F' remains external
to the parallelogram P (recall that its vertices do not depend on ¢§). Thus, parallelogram P is a limit set for
the trajectories of map F' as & — 0, which corresponds to item (d) of Proposition 4 (see Fig.19 where one can
compare the parallelograms and trajectories of discrete- and continuous-time models in Case VIb). m
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8 Concluding remarks

We considered a 2D piecewise linear discontinuous map F' depending on three parameters, which is a discrete-
time version of the continuous-time fashion cycle model introduced in [12]. The map is chartarized by attracting
cycles of different periods, with possible coexistence. Our objective was twofold: to describe the bifurcation
structure of the parameter space of map F' and to compare the obtained results with those associated with
the continuous-time model. In fact, the bifurcation structure of map F' is quite interesting: it is formed by
the periodicity regions of attracting cycles organized in the period adding and period incrementing bifurcation
structures. Recall that these structures are known to be characteristic for 1D piecewise monotone maps with one
discontinuity point. In map F' the period adding structure is standard being observed when map F' is reduced
to a 1D piecewise linear map. As for the period incrementing structure, it is related to the 2D dynamics and
associated with the following peculiarities: if the coefficient of the contraction of the linear maps defining F'
is larger than 1/2 then several partially overlapping period incrementing structures are observed, moreover,
their number goes to infinity if the contraction coefficient tends to 1 (that corresponds also to the time-delay
in the discrete time formulation of the model tending to zero). This leads, in particular, to more than two
coexisting attracting cycles whose basin boundaries are formed by proper segments of discontinuity lines and
their preimages. The rather simple analytical representation of map F' allowed us to get the boundaries of all
the periodicity regions in explicit form. We showed also that the dynamics of map F' converges to the dynamics
of its continuous-time counterpart if the time-delay in the discrete time formulation of the model tends to zero.

The question arises to which extent the considered fashion cycle model can be generalized. One possible
direction is to break the symmetry of map F'. Recall that in the present formulation the map is symmetric wrt
the point (z,y) = (1/2,1/2) which is the intersection point of two discontinuity lines. We expect that if this point
is no longer in the center of the unit square, the overall bifurcation structure will be only quantitatively modified.
However, a definite answer to this question requires further research. It is also interesting to investigate the
conditions for the existence of multiple overlapping period incrementing structures in a generic 2D piecewise
linear map with one or two discontinuity lines.
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APPENDIX

The period adding bifurcation structure, also known as Arnold tongues or mode-locking tongues, is character-
istic for a certain class of circle maps, for discontinuous maps defined by two increasing functions, for nonlinear
maps undergoing Neimark-Sacker bifurcation, etc. (see, e.g. [9], [8], [4], [5]). The periodicity regions forming
this structure in the parameter space of map F given in (4) are associated with attracting n-cycles, n > 2, of
the 1D piecewise linear discontinuous map g given in (7) defined on the left border of I? (as well as with the
symmetric n-cycles of map g’ defined on the right border of I?). Recall that for 0 < § < 1 and m, < 1, m, <1
(Case III) the left and right borders of I? are invariant, and map F on these borders is reduced on the 1D maps
g and ¢, respectively. Given that dynamics of these maps are symmetric to each other wrt points S, below we
consider the dynamics of map ¢ only.

To describe the period adding structure we first need to introduce the symbolic representation of a cycle.
The two partitions, 0 < y < c and ¢ < y < 1 where ¢ = (m, + 1)/2, in which two linear branches of map g
(with slopes a = 1 — 0 < 1) are defined, are associated with symbols L and R. Using these symbols any generic
n-cycle {yi}gfl of map ¢ can be represented by a symbolic sequence o = 0g01...05,-1, 0; € {L, R}, where
o;=Lify;, € L and o; = R if y; € R. The rotation number of the n-cycle can be defined as m/n, where n is
the number of points of the cycle (i.e., its period) and m is the number of points in the right partition. The
periodicity regions forming the period adding structure are related to cycles with different rotation numbers.
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These regions are ordered in the parameter space according to the Farey summation rule applied to the rotation
numbers of the related cycles, namely, between the regions corresponding to the cycles with rotation numbers
mi/ny and msa/ne (which are Farey neighbors) there is a region related to the cycle with rotation number
(m1 +ma)/(n1 + na).

A more generic definition of the rotation number is given as

ply) = lim % > (g (w)
k=0

where Y, is the characteristic function of the right partition:

_J 0 ifo<y<e
Xr(y)_{l ife<y<1

For map ¢ the rotation number is the same for any point y, p(y) := p. If p is a rational number, the above
definition coincides with the one given for a cycle, while if p is an irrational number then map g has a Cantor
set attractor (represented by the closure of quasiperiodic trajectories). Such an attractor is not persistent under
parameter perturbations.

To get the boundaries of the periodicity regions analytically, all the cycles associated with the period adding
structure are first grouped into certain families, called complexity levels (see [9], [1], [5]). For the sake of
simplicity we denote a cycle by its symbolic sequence. The complexity level one includes two families of basic
cycles:

Cia={LR™}; . Con={RL™} _, (24)
Recall that any n-cycle of map g is always attracting, with multiplier A = a™ < 1. Thus, its periodicity region
can be confined only by the boundaries related to the BCBs. In fact, there are two boundaries: if the parameter
point crosses one boundary then a periodic point, which is nearest from the left to the discontinuity point
y = ¢, collides with it, and crossing the other boundary a point of the cycle, which is nearest from the right to
Yy = ¢, collides with this discontinuity point. In order to obtain analytical expressions of these boundaries it is
convenient to shift the discontinuity point of map g to the origin, introducing the new variable z := y — c. In
such a way we obtain a topologically conjugate map

7o) = gr(x)=ar+06(1—¢), —c<z<0
9g: 9\&) = gr(z) = ax — dc, 0<z<l-c
Using the BCB conditions mentioned above and coordinates of the corresponding periodic points, one can obtain
the boundaries of the periodicity region P gn: related to the basic cycle LR™ , n; > 1:

(25)

2(a™ —1)
¢£Rn1 = {(5,my)0<5<1, my:1am+1+1}
26a™ 1
¢5Rn1 = {((5,my>0<5<1, my:]w_l}

Similarly, the boundaries of the periodicity region Prpn: related to the basic cycle RL™ can be obtained:

2(am — 1)
dng”l = {(5,my)0<5<1, my:—l_anl+l—1}
25a™ 1
gbéLnl = {(§,my):0<5<1, my_l_a’ﬂl'l‘l+1}

For example, for ny = 1, i.e., for the basic 2-cycle RL (which is the unique basic cycle belonging to both families
C11 and Cs 1) the related region Pgy, is bounded by the curves

)
¢LR: {(6,my)0<(5< 1, my:—H}
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¢RL={(§,my):O<5<l, my:2i§}

Note that in the (, m, )-parameter plane the curves gbenl and gi)gml , as well as ng}L%Rnl and gbfunl , are symmetric
wrt the axis m, = 0.

Recall that the feasible parameter range for the considered fashion cycle model is m, > 0, thus, map g has
only basic cycles associated with the family Cs 1, i.e., with cycles RL"'. In the meantime for the symmetric
map ¢’ the same periodicity regions correspond to the basic cycles related to the family C 4, i.e., to cycles
LR™. In Fig.20 the boundaries of regionsPgpn and Ppgn: are shown in black for 1 < n; < 50 in the (4, ¢)-
and (6, c’)-parameter planes, respectively, where ¢ = (1 + m,)/2 is the discontinuity point of map g and
¢ =1—c¢=(1-my)/2 is the discontinuity point of map ¢’.

In the (my,my)-parameter plane the boundaries d)ﬁLnl for n; > 2 and (;SgLnl for ny > 1 (which are
represented by the horizontal straight lines) extend from region Rj; to region Ry (see, e.g., Fig.2) up to the
curve B defined in (10). Above this curve each region Pry» has no lower boundary while new vertical boundary
appears defined by a collision of the rightmost point of cycle RL™ with the discontinuity point d given in (8):

1 —qmtt 1—my 1 }

, 1+ <my < —

Yrim = {(m“my) e T T T (2 - a) My M

In the gaps between the periodicity regions Prrn1 and Pjppni+1, as well as Prrn1 and Pgpn+1, related to
the cycles of the first complexity level (i.e., basic cycles), the periodicity regions associated with the families of
higher complexity levels are located. In order to get the boundaries of these regions we first construct for each
gap a corresponding first return map in a proper neighbourhood of the discontinuity point. This map appears
to be of the same class of maps as the original one. Thus, for each first return map we can repeat the same
reasoning as for the original map and get the boundaries of the periodicity regions related to the basic cycles.
For the original map these cycles are associated with 22 families of the complexity level two:

Ciy = {LR™ (RLR™)"}>° Cao = {RLR" (LR™)"} ™

ni,ne=1" ni,na=1

Cs2 = {RL™ (LRL™)™}2% Ciz = {LRL™ (RL™)"™}

ni,me=1" ni,me=1

and the boundaries of the corresponding periodicity regions are given as

26a™ (1 — a(m+2)(n2+1))
L _ . — _
(/501,2 - {(57my) 10<d <, my = (1 _ a”1+2)(1 _ an1+1+n2(n1+2)) 1

25a™ (am2 A1)l (gmit2 _ §) — 1)
R _ . _ _
¢Cl,2 - {(57my) 10<d <, my = (1 _ a”1+2)(1 _ an1+1+n2(n1+2)) 1

28a™ (1 — a(m+1)(4n2))
L _ . — _
¢Cz.2 - {(6amy) 0<o< 1’ my = (1 _ a”1+1)(1 _ aTL1+2+7L2(TL1+1)) 1}

2qM! 5(1 _ an2(1+n1)(an1+2 + 5))
R _ . _
$Cy o = {(57my) 0<o<, my = (1 — amit1)(1 — gm+2Fna(nitl)) 1

The other four boundaries are symmetric wrt m, = 0, namely, qbés , 18 symmetric to qﬁg 2 gf)gs , to gbél 2 ¢é s
to ‘1502 . and, finally, ¢C4 5 to ¢02 ,- In Fig.20 these boundaries are shown in red for 1 <n; < 50, 1 < ny < 10,
in the (4, ¢)-parameter plane for map g and in the (d, ¢’)-parameter plane for map g¢'.

Reasoning in a similar way regarding the gaps between the regions of the complexity level two one can get 23
families of the complexity level three and the boundaries of the corresponding periodicity regions. This process
can be continued ad infinitum. For more details see [1], [5] and references therein.
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Figure 20: The period adding structure of map g given in (7) in the (J,c)-parameter plane, and of map ¢’
(symmetric to g) in the (J,¢')-parameter plane, where ¢ = (1 4+ m,)/2 and ¢/ =1 —c¢ = (1 —m,)/2 are the
discontinuity points of g and g¢’, respectively. Here the boundaries of the periodicity regions associated with
cycles of complexity level one and two are shown in black and red, respectively.

References

[1] Avrutin V., Schanz M. & Gardini L. (2010). Calculation of bifurcation curves by map replacement. Int. J.
Bif. Chaos, 20, 3105-3135.

[2] Avrutin V., Sushko I. A gallery of bifurcation scenarios in piecewise smooth 1D maps. In: Global analysis
of dynamic models for economics, finance and social sciences (G.-I1. Bischi, C. Chiarella and I. Sushko Eds.),
Springer, 2013.

[3] M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk, Piecewise-smooth Dynamical Systems:
Theory and Applications, Applied Mathematical Sciences 163, Springer, 2008.

[4] Boyland P. L. (1986). Bifurcations of circle maps: Arnold tongues, bistability and rotation intervals. Comm.
Math. Phys., 106(3), 353-381.

[5] Gardini L., V. Avrutin, I. Sushko. (2014). Codimension-2 border collision bifurcations in one-dimensional
discontinuous piecewise smooth maps. Int. J. Bif. Chaos, 24 (2) 1450024 (30 pages).

[6] A.J. Homburg, Global aspects of homoclinic bifurcations of vector fields, Springer-Verlag, Berlin, 1996.

[7] S. Ito, S. Tanaka, and H. Nakada, On unimodal transformations and chaos II, Tokyo J. Math. 2 (1979),
pp. 241-259.

[8] Keener J.P. (1980). Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc.,
261, 589-604.

[9] Leonov N.N. (1959). Map of the line onto itself. Radiofisika, 3, 942-956.

[10] D.V. Lyubimov, A.S. Pikovsky, and M.A. Zaks, Universal scenarios of transitions to chaos via homoclinic
bifurcations, Math. Phys. Rev. 8 (1989). Harwood Academic, London.

[11] Y.L. Maistrenko, V.L. Maistrenko, and L.O. Chua, Cycles of chaotic intervals in a time-delayed Chua’s
circuit, Int. J. Bifur. Chaos 3 (1993), pp. 1557-1572.

25



[12]

[13]

[14]

K. Matsuyama. Custom versus Fashion: Path-dependence and Limit Cycles in a Random Matching Game.
Discussion paper N 1030, 1992, Dept of Economics, Northwestern University.

C. Mira. Embedding of a Dim1 Piecewise Continuous and Linear Leonov Map into a Dim2 Invertible Map.
In: Global analysis of dynamic models for economics, finance and social sciences (G.-I. Bischi, C. Chiarella
and I. Sushko Eds.), Springer, 2013.

Nusse H.E , Yorke J.A. (1992). Border-collision bifurcations including period two to period three for piece-
wise smooth systems. Physica D, 57, 39-57.

Nusse H.E., Yorke J.A. (1995). Border-collision bifurcations for piecewise smooth one-dimensional maps.
Int. J. Bif. Chaos, 5, 189-207.

Panchuk A., Sushko I., Schenke B., Avrutin V. (2013). Bifurcation Structure in Bimodal Piecewise Linear
Map. Int. J. Bif. Chaos, 23(12) 1330040 (24 pages).

Simpson, D. J. W. & Meiss, J. D. (2008) Neimark-Sacker bifurcations in planar, piecewise-smooth, contin-
uous maps, STAM J. Appl. Dyn. Syst. 7, 795-824.

I. Sushko, V. Avrutin, and L. Gardini, Bifurcation structure in the skew tent map and its application as a
border collision normal form, J. Differ. Equ. Appl. (2015). doi:10.1080/10236198.2015.1113273

I. Sushko, L. Gardini. Center Bifurcation for Two-Dimensional Border-Collision Normal Form, Int. J.
Bifurcation and Chaos, Vol. 18, Issue 4 (2008), 1029-1050.

Sushko I., L. Gardini, V. Avrutin. (2016). Nonsmooth One-dimensional Maps: Some Basic Concepts and
Definitions. Journal of Difference Equations and Applications DOIL: 10.1080/10236198.2016.1248426.

F. Tramontana, I. Sushko, V. Avrutin. (2015). Period adding structure in a 2D discontinuous model of
economic growth. Applied Mathematics and Computation, 253, 262273.

Zh.T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-smooth Dynamical Systems,
Nonlinear Science A Vol. 44, World Scientific, 2003.

Z. T. Zhusubaliyev, E. Mosekilde, S. Maity, S. Mohanan, and S. Banerjee, Border collision route to quasi-
periodicity: Numerical investigation and experimental confirmation, Chaos 16, 1054 (2006).

26



