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Following is an exploration of the interest rate and exchange rate consequences of the idea
that people don’t know whether the shock that drives the interest rate is permanent or tem-
porary. Thus, suppose there is a positive money supply shock that drives down the domestic
interest rate. Under UIP this must create an anticipated appreciation of the currency, or else
all agents will sell assets in the domestic economy and buy foreign assets. In order for people
to anticipate an appreciation, there must be an immediate depreciation. How much the de-
preciation must be depends on the persistence of the underlying shock. If the money shock is
completely persistent, then the long-run effect on the exchange rate is to depreciate, and so the
depreciation in the present period must be very great, to permit the eventual appreciation. If
the shock is temporary, then the long-run exchange rate is unchanged, and the required current
depreciation is very small.
Now, suppose that people don’t know whether the shock is permanent or temporary. Initially,

when they see the interest rate move, they will assume that it reflects whatever shock usually
moves the exchange rate. Suppose, for example that the shock moving the money supply is
usually temporary, but that the persistent one hits. In this case, people will expect there to
be no long-run change in the exchange rate, and so there will only be a small depreciation.
However, as time passes, and they see the money supply remaining high, they will slowly revise
their beliefs about the long run exchange rate and this will require a higher current depreciation.
In this way it is possible, in the wake of a drop in the interest rate, for the exchange rate to
depreciate over time.
This note formalizes this argument, and then goes on to show that this line of reasoning does

not provide a way to understand the violations of UIP documented in the data. It is still the
case that if the domestic interest rate is higher than the foreign, then on average the currency
must depreciate afterward. In the data, the result often goes the other way: when the domestic
interest rate is high, on average there is an appreciation of the exchange rate (the ‘UIP puzzle’).
So, uncertainty about the persistence of the shocks underlying movements in the exchange rate
does not offer a possible explanation of the UIP puzzle.

1. The Model

Consider the following model:

Etet+1 − et −Rt = 0 (UIP)

∆mt −∆pt + α∆Rt = 0 (MM) (1.1)

∆pt − (1− λ)∆pt−1 − λ∆mt = 0, (Sticky Prices)

where mt denotes the log of the money supply, pt denotes the log price level, et denotes the log
of dollars per unit of foreign currency, and Rt denotes the net domestic rate of interest. The
first equation is the UIP condition, the second is the money demand equation with output set
to zero and interest elasticity equal to α. This equation has been quasi-differenced using the
operator, ∆. Thus, ∆pt = pt − δpt−1, and δ is a number close to, but not necessarily equal to,
unity.



The log money stock, mt, is driven by a permanent, P, and a transitory component, T :

mt = mT
t +mP

t ,

where

mT
t = ρmT

t−1 + εt

∆mP
t = φ∆mP

t−1 + ut.

When δ = 1, this is the classic permanent/temporary decomposition. The univariate time series
representation of mt is obtained by first multiplying mt by (1− ρL) (1− φL)∆ :

(1− ρL) (1− φL)∆mt = (1− φL) (εt − δεt−1) + (1− ρL)ut (1.2)

= ηt + θ1ηt−1 + θ2ηt−2, (1.3)

say, where ηt is the one-step-ahead forecast error in∆mt based on using only past∆mt to forecast
∆mt. (The representation involving ηt, (1.3), is called the Wold representation of ∆mt.) The
following section derives formulas that can be used to compute θ1, θ2 and the variance of ηt, σ

2
η,

using as input δ, φ, ρ, σ2ε, σ
2
u. That this is a Wold representation requires that the roots of the

moving average representation lie inside the unit circle. The section after that solves the model,
and simulates it.

2. The Univariate Representation of Money Growth

Write the error term in (1.2) in detail:

εt − δεt−1 − φεt−1 + δφεt−2 + (1− ρL)ut = εt − (δ + φ) εt−1 + δφεt−2 + ut − ρut−1

Let cε (τ) and cu (τ) denote the covariance function of the term involving εt’s and ut’s, respec-
tively. Note that the former is zero for all τ > 2 and the latter is zero for all τ > 1. Then,

cε (0) = E [εt − (δ + φ) εt−1 + δφεt−2]
2

= σ2ε
£
1 + (δ + φ)2 + (δφ)2

¤
cε (1) = E [εt − (δ + φ) εt−1 + δφεt−2] [εt−1 − (δ + φ) εt−2 + δφεt−3]

= − [(δ + φ) + δφ (δ + φ)]σ2ε = − (δ + φ) (1 + δφ)σ2ε
cε (2) = δφσ2ε.

cu (0) = σ2u
¡
1 + ρ2

¢
cu (1) = −ρσ2u.

Then, the covariance function of the whole error is c (τ) for τ ≥ 0 :
c (τ) = cε (τ) + cu (τ) , all τ .

With c (τ) in hand, we can compute the parameters of the ηt process. We have that:

c (0) = E
£
ηt + θ1ηt−1 + θ2ηt−2

¤2
= σ2η

£
1 + θ21 + θ22

¤
c (1) = E

£
ηt + θ1ηt−1 + θ2ηt−2

¤ £
ηt−1 + θ1ηt−2 + θ2ηt−3

¤
= θ1 (1 + θ2)σ

2
η

c (2) = θ2σ
2
η.
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Then, solve the following two equations for θ1 and θ2 :

c(2)

c(1)
=

θ2
θ1 (1 + θ2)

c(1)

c(0)
=

θ1 (1 + θ2)

1 + θ21 + θ22
,

subject to the eigenvalue condition. Finally,

σ2η =
c (1)

θ1 (1 + θ2)
.

The eigenvalue condition is expressed as follows. Write:

1 + θ1L+ θ2L
2 = (1− δ1L) (1− δ2L) .

We require that δ1, δ2 be less than unity in absolute value. For every ρ, δ, σε, σu, there is always
such a θ1, θ2.
We have the following connection between the one-step-ahead forecast errors based on the

univariate representation of mt, ηt, and the one-step-ahead forecast errors in the underlying
fundamental shocks:

ηt = −θ1ηt−1 − θ2ηt−2 + (1− φL) (εt − δεt−1) + (1− ρL)ut.

Note that if there is a disturbance in ut, this will produce a serially correlated sequence of one-
step-ahead forecast errors in ηt’s. The intuition is obvious. A jump in ut will initially induce
a same-magnitude jump in ηt. But, ut induces a persistent move in mt, via mP

t . To the extent
that σε > 0, so that a rational forecaster will attribute some possibility to the source of the
disturbance being εt, the dynamic move in mt will be interpreted as a sequence of same-sign
shocks in εt. However, as time evolves, such a sequence becomes less likely and eventually it
is ‘learned’ that the source of the shock in fact was ut. Throughout this period the rational
forecaster makes same-sign one-step-ahead forecast errors in forecasting mt.
Here is a (rather extreme) example:

σ2ε = 1, ρ = 0, δ = 0.99, φ = 0.8, σ
2
u = 0.01.

A unit disturbance in ut pushes up the one-step-ahead forecast error in ∆mt by unity. Since
most of the variance in the series comes from εt, a rational forecaster will assume the shock
came from εt. However, since in fact it came from ut, ∆mt+1 will be surprisingly high too. So,
there will be another shock then, as the forecaster assumes εt+1 must have been high too, and
so on. A graph of ηt in response to the unit shock in ut, as well as the response in ∆mt appears
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Note how big and long-lasting the one-step-ahead forecast errors are. In some sense, the rational
forecaster never learns! They continue to be surprised all along the way. It is interesting to
see how the interest rate and exchange rate respond in this case. Note how the exchange rate
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depreciates with the drop in the interest rate, and it continues to depreciate for 10 periods!
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For comparison, consider the opposite extreme, where most of the variance in ∆mt comes
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from the permanent component. Thus, σ2u = 1 and σ2ε = 0.01. Then,
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The picture now is quite different. In the period of the shock, the forecast error is just the
surprise in the money growth rate. In the next period, there is a bit of a forecast error, because
they assign some probability to the possibility that the shock was temporary. however, after
the second period, they’ve caught on and there is no longer any forecast error. The rational
forecaster correctly forecasts the implications of the surprise in ∆mt, because the surprise comes
from the place it usually comes from. The following picture shows what happens to the exchange
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rate and the interest rate in this example:
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Note that the exchange rate does depreciate for one period. But, right after that it resorts to
the pattern one would expect.

3. Solving and Simulating the Model

To simulate this model, it is appropriate to do so using the univariate time series representation
for ∆mt :

∆mt = (ρ+ φ)∆mt−1 − ρφ∆mt−2 + ηt + θ1ηt−1 + θ2ηt−2.

It is convenient to express ∆mt as a vector first order autoregression:⎛⎜⎜⎝
∆mt

∆mt−1
ηt
ηt−1

⎞⎟⎟⎠ =

⎡⎢⎢⎣
ρ+ φ −ρφ θ1 θ2
1 0 0 0
0 0 0 0
0 0 1 0

⎤⎥⎥⎦
⎛⎜⎜⎝

∆mt−1
∆mt−2
ηt−1
ηt−2

⎞⎟⎟⎠+
⎛⎜⎜⎝

ηt
0
ηt
0

⎞⎟⎟⎠ ,

or,

st = Pst−1 +

⎛⎜⎜⎝
ηt
0
ηt
0

⎞⎟⎟⎠ ,
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where ηt is iid over time, with variance ση. Let

zt =

⎛⎝ et
∆pt
Rt

⎞⎠ ,

and write the system of three equations in matrix form as follows:

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0,

where

α0 =

⎡⎣ β 0 0
0 0 0
0 0 0

⎤⎦ , α1 =
⎡⎣ −1 0 −β
0 −1 α
0 1 0

⎤⎦ , α2 =
⎡⎣ 0 0 0
0 0 −δα
0 − (1− λ) 0

⎤⎦
β0 =

⎡⎣ 0 0 0 0
0 0 0 0
0 0 0 0

⎤⎦ , β1 =
⎡⎣ 0 0 0 0
1 0 0 0
−λ 0 0 0

⎤⎦
Given this solution and given a random draw on ηt, the system can be simulated for T

observations:

st = Pst−1 +

⎛⎜⎜⎝
ηt
0
ηt
0

⎞⎟⎟⎠
zt = Azt−1 +Bst.

The change in the exchange rate, e(t+1)− e(t), can be recovered from the first element in zt+1
and zt and the interest rate, Rt, can be obtained from the third element of zt. Then, the slope
in the regression of e (t+ 1)− e (t) on Rt can be computed from:

β̂ =
cov (e (t+ 1)− e (t) , Rt)

var (Rt)
.

This was done for the following parameterization:

α = 0.1, σ2ε = .1, ρ = 0, δ = 0.99, φ = 0.9, σ2u = 0.01, λ = 0.01
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After doing 10,000 replications with T = 200 data points, the following histogram of β̂’s resulted:
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Interestingly, here there is actually an upward bias. The mean, across 10,000 replications, of β̂,
is 1.42. The standard deviation huge, 0.85. However, this should not be interpreted to suggest
that negative β̂’s are possible. As the histogram makes clear, the distribution is skewed to the
right. Very high numbers are possible, but not very low numbers, such as the ones estimated in
the data. Interestingly,
Note that there is little bias here. Consider now the ‘best case scenario’ for the big bias, the

example in which

β = .99, δ = 0.99, α = .1, λ = 0.01, ρ = 0, φ = 0.8, σ2u = 0.01, σ
2
ε = 1

In this case, the mean (across 10,000 simulations) of β̂ is 1.20, and the standard deviation is
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0.51. The histogram of the β̂’s is
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The point is that the considerations raised here do nothing to resolve the UIP puzzle.
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