Intermediate Macroeconomics 311-1 (Professor Christiano)
 Solution to Homework 1

QUESTION 2, Page 56 in Blanchard's text-book

(a)
$\mathrm{Y}_{\mathrm{D}}=\mathrm{Y}-\mathrm{T}=\mathrm{Y}-100$
Agg. Demand $=\mathrm{Z}=\mathrm{C}+\mathrm{I}+\mathrm{G}=160+0.6(\mathrm{Y}-100)+150+150=400+0.6 \mathrm{Y}$

Equilibrium: $\mathrm{Z}=\mathrm{Y}$

$$
Y=400+0.6 Y
$$

$$
Y=1000
$$

(b)
$Y_{D}=Y-100=900$
(c)
$C=160+0.6900=700$

QUESTION 3, Page 56 in Blanchard's text-book

(a)

From the previous question, aggregate demand is: $Z=400+0.6 \mathrm{Y}$
When $Y=900, Z=940$.
So, there is excess demand at that level of production.
(b)

We know from question 2 that Y is the equilibrium level of output. Starting from $\mathrm{Y}=940$, as we increase Y by one dollar amounts, demand increases by less than one dollar (ie: by 0.6 dollars). So, excess demand falls as we increase production. Excess demand is 0 at $\mathrm{Y}=1000$.
(c)

Private savings $=Y_{D}-C$.
In equilibrium [from question 1], private savings are equal to 200 . Investment is equal 150 , so private savings are higher that investment.

For the economy, it has to be the case that Total Savings = Investment, where Total Savings $=$ Private Savings + Public Savings.

In this case, Public Savings $=T-G=-50$.

QUESTION 4, Page 56 in Blanchard's text-book

(a)

Share of different components in GDP: question 2 vs data (1998)
Consumption: 70% (68 \% in data)
Investment: $\quad 15 \% \quad$ (15% in data)
Gov. Expenditure: 15% (18% in data)
(b)

In the 1990-91 recession, real GDP fell by 2% (6171 in 90:2 to 6047 in 91:1).
(c)

In terms of c_{0}, equilibrium output is equal to:

$$
Y^{\mathrm{eq}}=(1 / 0.4)\left(\mathrm{c}_{0}+240\right)
$$

If we want to make $Y^{\text {eq }}$ equal to $980(a \%$ reduction of the initial equilibrium output $=1000)$, we have to solve for c_{0} in the following equation:

$$
980=(1 / 0.4)\left(c_{0}+240\right), \text { so } c_{0}=0.4 * 980-240=152 . \text { So, } c_{0} \text { should fall by } 8 .
$$

(d)

The change in c_{0} is lower that the resulting change in output. This is due to the multiplier effect.

