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Econometric Methods for the Analysis of Dynamic
General Equilibrium Models
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Overview

• Multiple Equation Methods
– State space-observer form
– Three Examples of Versatility of state space-observer form:
∗ Smoothing and filtering (estimation of ‘output gap’, ‘real interest rate’)
∗ Handling mixed monthly/quarterly data.
∗ Connection between DSGE models and Vector Autoregressions.

– ‘Limited information estimation’: impulse response function matching
∗ Impulse response functions
∗ Formal connection between VARs and DSGE models

– ‘Full information estimation’
∗ Maximum likelihood
∗ Bayesian inference

• Single equation (‘limited information’) methods: Introduction to Generalized
Method of Moments
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State Space-Observer Form

• Compact summary of the model, and of the data used in the analysis.
• Typically, data are available in log form. So, the following is useful:

– If x is steady state of xt :

x̂t ≡
xt − x

x
,

=⇒ xt
x
= 1 + x̂t

=⇒ log
³xt
x

´
= log (1 + x̂t) ≈ x̂t

• Suppose we have a model solution in hand:

zt = Azt−1 +Bst
st = Pst−1 + �t, E�t�

0
t = D.
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State Space-Observer Form ...

• Consider example #3 in solution notes, in which

zt =

µ
K̂t+1

N̂t

¶
, st = ε̂t, �t = et.

Data used in analysis may include variables in zt and/or other variables.
• Suppose variables of interest include employment and GDP .

– GDP, yt :

yt = εtK
α
t N

1−α
t ,

so that
ŷt = ε̂t + αK̂t + (1− α)N̂t

=
¡
0 1− α

¢
zt +

¡
α 0

¢
zt−1 + st

– Then,

Y data
t =

µ
log yt
logNt

¶
=

µ
log y
logN

¶
+

µ
ŷt
N̂t

¶
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State Space-Observer Form ...

• Model prediction for data:

Y data
t =

µ
log y
logN

¶
+

µ
ŷt
N̂t

¶
=

µ
log y
logN

¶
+

∙
0 1− α
0 1

¸
zt +

∙
α 0
0 0

¸
zt−1 +

∙
1
0

¸
st

= a +Hξt

ξt =

⎛⎝ zt
zt−1
ε̂t

⎞⎠ , a =

∙
log y
logN

¸
, H =

∙
0 1− α α 0 1
0 1 0 0 0

¸
• The Observer Equation may include measurement error, wt :

Y data
t = a +Hξt + wt, Ewtw

0
t = R.

• Semantics: ξt is the state of the system (do not confuse with the economic
state (Kt, εt)!).
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State Space-Observer Form ...

• The state equation

– Law of motion of the state, ξt

ξt = Fξt−1 + ut, Eutu
0
t = Q

⎛⎝ zt+1
zt
st+1

⎞⎠ =

⎡⎣ A 0 BP
I 0 0
0 0 P

⎤⎦⎛⎝ zt
zt−1
st

⎞⎠+
⎛⎝ B
0
I

⎞⎠ �t+1,

ut =

⎛⎝ B
0
I

⎞⎠ �t, Q =

⎡⎣ BDB0 0 BD
0 0 0

DB0 D

⎤⎦ , F =
⎡⎣ A 0 BP
I 0 0
0 0 P

⎤⎦ .
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State Space-Observer Form ...

• Summary: State-Space, Observer System -

ξt = Fξt−1 + ut, Eutu
0
t = Q,

Y data
t = a+Hξt + wt, Ewtw

0
t = R.

• Can be constructed from model parameters

θ = (β, δ, ...)

so

F = F (θ) , Q = Q (θ) , a = a (θ) , H = H (θ) , R = R (θ) .

12



State Space-Observer Form ...

• State space observer system very useful

– Estimation of θ and forecasting ξt and Y data
t

– Can take into account situations in which data represent a mixture of
quarterly, monthly, daily observations.

– Software readily available on web and elsewhere.

– Useful for solving the following forecasting problems:
∗ Filtering:

P
£
ξt|Y data

t−1 , Y
data
t−2 , ..., Y

data
1

¤
, t = 1, 2, ..., T.

∗ Smoothing:
P
£
ξt|Y data

T , ..., Y data
1

¤
, t = 1, 2, ..., T.

∗ Example: ‘real rate of interest’ and ‘output gap’ can be recovered from
ξt using example #5 in solution notes.
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Mixed Monthly/Quarterly Observations

• Different data arrive at different frequencies: daily, monthly, quarterly, etc.
• This feature can be easily handled in state space-observer system.
• Example:

– suppose inflation and hours are monthly, t = 0, 1/3, 2/3, 1, 4/3, 5/3, 2, ...
– suppose gdp is quarterly, t = 0, 1, 2, 3, ....

Y data
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

GDPt

monthly inflationt
monthly inflationt−1/3
monthly inflationt−2/3

hourst
hourst−1/3
hourst−2/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, t = 0, 1, 2, ... .

that is, we can think of our data set as actually being quarterly, with
quarterly observations on the first month’s inflation, quarterly observations
on the second month’s inflation, etc.
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Mixed Monthly/Quarterly Observations ...

• Problem: find state-space observer system in which observed data are:

Y data
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

GDPt

monthly inflationt
monthly inflationt−1/3
monthly inflationt−2/3

hourst
hourst−1/3
hourst−2/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, t = 0, 1, 2, ... .

• Solution: easy!
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Mixed Monthly/Quarterly Observations ...

• Model: specified at a monthly level, with solution, t = 0, 1/3, 2/3, ...

zt = Azt−1/3 +Bst,

st = Pst−1/3 + �t, E�t�
0
t = D.

• Monthly state-space observer system, t = 0, 1/3, 2/3, ...

ξt = Fξt−1/3 + ut, Eutu
0
t = Q, ut˜iid t = 0, 1/3, 2/3, ...

Yt = Hξt, Yt =

⎛⎝ yt
πt
ht

⎞⎠ .

• Note:
first order vector autoregressive representation for quarterly statez }| {
ξt = F 3ξt−1 + ut + Fut−1/3 + F 2ut−2/3 ,

ut + Fut−1/3 + F 2ut−2/3 ~iid for t = 0, 1, 2, ...!!
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Mixed Monthly/Quarterly Observations ...

• Consider the following system:⎛⎝ ξt
ξt−1/3
ξt−2/3

⎞⎠ =

⎡⎣ F 3 0 0
F 2 0 0
F 0 0

⎤⎦⎛⎝ ξt−1
ξt−4/3
ξt−5/3

⎞⎠+
⎡⎣ I F F 2

0 I F
0 0 I

⎤⎦⎛⎝ ut
ut−1/3
ut−2/3

⎞⎠ .

• Define

ξ̃t =

⎛⎝ ξt
ξt−1/3
ξt−2/3

⎞⎠ , F̃ =

⎡⎣ F 3 0 0
F 2 0 0
F 0 0

⎤⎦ , ũt =
⎡⎣ I F F 2

0 I F
0 0 I

⎤⎦⎛⎝ ut
ut−1/3
ut−2/3

⎞⎠ ,

so that

ξ̃t = F̃ ξ̃t−1 + ũt, ũt˜iid in quarterly data, t = 0, 1, 2, ...

Eũtũ
0
t = Q̃ =

⎡⎣ I F F 2

0 I F
0 0 I

⎤⎦⎡⎣D 0 0
0 D 0
0 0 D

⎤⎦⎡⎣ I F F 2

0 I F
0 0 I

⎤⎦0
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Mixed Monthly/Quarterly Observations ...

• Done!
• State space-observer system for mixed monthly/quarterly data, for t =
0, 1, 2, ...

ξ̃t = F̃ ξ̃t−1 + ũt, ũt˜iid, Eũtũ
0
t = Q̃,

Y data
t = H̃ξ̃t + wt, wt˜iid, Ewtw

0
t = R.

• Here, H̃ selects elements of ξ̃t to construct Y data
t

– can easily handle distinction between whether quarterly data represent
monthly averages (as in flow variables), or point-in-time observations on
one month in the quarter (as in stock variables).

• Can use Kalman filter to forecast current quarter data based on first month’s
(day’s, week’s) observations.

19



Matching Impulse Response Functions

• Set �t = 1 for t = 1, �t = 0 otherwise

• Impulse response function: log deviation of data with shock from where data
would have been in the absence of a shock -

ut =

⎛⎝ B
0
I

⎞⎠ �t,

ξt = Fξt−1 + ut, ξ0 = 0,

impulse response function =⇒ Ỹ data
t = Hξt, for t = 1, 2, ....

• Choose model parameters, θ, to match Ỹ data
t with corresponding estimate from

VAR (more on this later).
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Connection Between DSGE’s and VAR’s

• Fernandez-Villaverde, Rubio-Ramirez, Sargent Result

• Vector Autoregression

Yt = B1Yt−1 +B2Yt−2 + ... + ut,

where ut is iid. ‘Matching impulse response functions’ strategy for building
DSGE models fits VARs and assumes ut are a rotation of economic shocks
(for details, see later notes).

• Can use the state space, observer representation to assess this assumption from
the perspective of a DSGE.
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Connection Between DSGE’s and VAR’s ...

• System (ignoring constant terms and measurement error):

(‘State equation’) ξt = Fξt−1 +D�t, D =

⎛⎝ B
0
I

⎞⎠ ,

(‘Observer equation’) Yt = Hξt.

• Substituting:
Yt = HFξt−1 +HD�t

• Suppose HD is square and invertible. Then

�t = (HD)−1 Yt − (HD)−1HFξt−1 (∗∗)
• Substitute latter into the state equation:

ξt = Fξt−1 +D (HD)−1 Yt −D (HD)−1HFξt−1

=
h
I −D (HD)−1H

i
Fξt−1 +D (HD)−1 Yt.
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Connection Between DSGE’s and VAR’s ...

• We have:

ξt =Mξt−1 +D (HD)−1 Yt, M =
h
I −D (HD)−1H

i
F.

• If eigenvalues of M are less than unity,

ξt = D (HD)−1 Yt +MD (HD)−1 Yt−1 +M2D (HD)−1 Yt−2 + ...

• Substituting into (∗∗)

�t = (HD)−1 Yt

− (HD)−1HF
h
D (HD)−1 Yt−1 +MD (HD)−1 Yt−2 +M2D (HD)−1 Yt−3 + ...

i
or,
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Connection Between DSGE’s and VAR’s ...

Yt = B1Yt−1 +B2Yt−2 + ... + ut,

where
ut = HD�t
Bj = HFMj−1D (HD)−1 , j = 1, 2, ...

• The latter is the VAR representation.

– Note: �t is ‘invertible’ because it lies in space of current and past Yt’s.

– Note: VAR is infinite-ordered.

– Note: assumed system is ‘square’. Sims-Zha (Macroeconomic Dynamics)
show that square-ness is not necessary.
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Maximum Likelihood Estimation

• State space-observer system:

ξt+1 = Fξt + ut+1, Eutu
0
t = Q,

Y data
t = a0 +Hξt + wt, Ewtw

0
t = R

• Parameters of system: (F,Q, a0, H,R). These are functions of model
parameters, θ.

• Formulas for computing likelihood

P
¡
Y data|θ

¢
= P

¡
Y data
1 , ..., Y data

T |θ
¢
.

are standard (see Hamilton’s textbook).
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Bayesian Maximum Likelihood

• Bayesians describe the mapping from prior beliefs about θ, summarized in
p (θ) , to new posterior beliefs in the light of observing the data, Y data.

• General property of probabilities:

p
¡
Y data, θ

¢
=

½
p
¡
Y data|θ

¢
× p (θ)

p
¡
θ|Y data

¢
× p

¡
Y data

¢ ,

which implies Bayes’ rule:

p
¡
θ|Y data

¢
=
p
¡
Y data|θ

¢
p (θ)

p (Y data)
,

mapping from prior to posterior induced by Y data.
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Bayesian Maximum Likelihood ...

• Properties of the posterior distribution, p
¡
θ|Y data

¢
.

– The value of θ that maximizes p
¡
θ|Y data

¢
(‘mode’ of posterior distribution).

– Graphs that compare the marginal posterior distribution of individual
elements of θ with the corresponding prior.

– Probability intervals about the mode of θ (‘Bayesian confidence intervals’)

– Other properties of p
¡
θ|Y data

¢
helpful for assessing model ‘fit’.
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Bayesian Maximum Likelihood ...

• Computation of mode sometimes referred to as ‘Basyesian maximum
likelihood’:

θmod e = argmax
θ

(
log
£
p
¡
Y data|θ

¢¤
+

NX
i=1

log [pi (θi)]

)
maximum likelihood with a penalty function.

• Shape of posterior distribution, p
¡
θ|Y data

¢
, obtained by Metropolis-Hastings

algorithm.
– Algorithm computes

θ (1) , ..., θ (N) ,

which, as N →∞, has a density that approximates p
¡
θ|Y data

¢
well.

– Marginal posterior distribution of any element of θ displayed as the
histogram of the corresponding element {θ (i) , i = 1, .., N}
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Metropolis-Hastings Algorithm (MCMC)

• We have (except for a constant):

f

Ã
θ|{z}

N×1
|Y
!
=
f (Y |θ) f (θ)

f (Y )
.

• We want the marginal posterior distribution of θi :

h (θi|Y ) =
Z
θj 6=i

f (θ|Y ) dθj 6=i, i = 1, ..., N.

• MCMC algorithm can approximate h (θi|Y ).

• Obtain (V produced automatically by gradient-based maximization methods):

θmod e ≡ θ∗ = argmax
θ

f (Y |θ) f (θ) , V ≡
∙
−∂

2f (Y |θ) f (θ)
∂θ∂θ0

¸−1
θ=θ∗

.
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Metropolis-Hastings Algorithm (MCMC) ...

• Compute the sequence, θ(1), θ(2), ..., θ(M) (M large) whose distribution turns
out to have pdf f (θ|Y ) .

– θ(1) = θ∗

– to compute θ(r), for r > 1

∗ step 1: select candidate θ(r), x,

draw x|{z}
N×1

from θ(r−1) +

‘jump’ distribution’z }| {
kN

Ã
0|{z}

N×1
, V

!
, k is a scalar

∗ step 2: compute scalar, λ :

λ =
f (Y |x) f (x)

f
³
Y |θ(r−1)

´
f
³
θ(r−1)

´
∗ step 3: compute θ(r) :

θ(r) =

½
θ(r−1) if u > λ
x if u < λ

, u is a realization from uniform [0, 1]
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Metropolis-Hastings Algorithm (MCMC) ...

• Approximating marginal posterior distribution, h (θi|Y ) , of θi

– compute and display the histogram of θ(1)i , θ
(2)
i , ..., θ

(M)
i , i = 1, ..., N.

• Other objects of interest:

– mean and variance of posterior distribution θ :

Eθ ' θ̄ ≡ 1

M

MX
j=1

θ(j), V ar (θ) ' 1

M

MX
j=1

h
θ(j) − θ̄

i h
θ(j) − θ̄

i0
.

– marginal density of Y (actually, Geweke’s ‘harmonic mean’ works better):

f (Y ) ' 1

M

MX
j=1

f
³
Y |θ(j)

´
f
³
θ(j)
´
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Metropolis-Hastings Algorithm (MCMC) ...

• Some intuition

– Algorithm is more likely to select moves into high probability regions than
into low probability regions.

– Set,
n
θ(1), θ(2), ..., θ(M)

o
, populated relatively more by elements near mode

of f (θ|Y ) .

– Set,
n
θ(1), θ(2), ..., θ(M)

o
, also populated (though less so) by elements far

from mode of f (θ|Y ) .
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Metropolis-Hastings Algorithm (MCMC) ...

• Practical issues

– what value should you set k to?

∗ set k so that you accept (i.e., θ(r) = x) in step 3 of MCMC algorithm are
roughly 27 percent of time

– what value of M should you set?

∗ a value so that if M is increased further, your results do not change

· in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.

– large M is time-consuming. Could use Laplace approximation (after
checking its accuracy) in initial phases of research project.
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Laplace Approximation to Posterior Distribution

• In practice, Metropolis-Hasting algorithm very time intensive. Do it last!

• In practice, Laplace approximation is quick, essentially free and very accurate.

• Let θ ∈ RN denote the N−dimensional vector of parameters and

g (θ) ≡ log f (y|θ) f (θ) ,

f (y|θ) ~likelihood of data

f (θ) ~prior on parameters

θ∗ ~maximum of g (θ) (i.e., mode)
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Laplace Approximation to Posterior Distribution ...

• Second order Taylor series expansion about θ = θ∗ :

g (θ) ≈ g (θ∗) + gθ (θ
∗) (θ − θ∗)− 1

2
(θ − θ∗)0 gθθ (θ

∗) (θ − θ∗) ,

where

gθθ (θ
∗) = −∂

2 log f (y|θ) f (θ)
∂θ∂θ0

|θ=θ∗

• Interior optimality implies:

gθ (θ
∗) = 0, gθθ (θ

∗) positive definite

• Then,

f (y|θ) f (θ) ' f (y|θ∗) f (θ∗) exp
½
−1
2
(θ − θ∗)0 gθθ (θ

∗) (θ − θ∗)

¾
.
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Laplace Approximation to Posterior Distribution ...

• Note

1

(2π)
N
2

|gθθ (θ∗)|
1
2 exp

½
−1
2
(θ − θ∗)0 gθθ (θ

∗) (θ − θ∗)

¾
= multinormal density for N − dimensional random variable θ

with mean θ∗ and variance gθθ (θ∗)−1 .

• So, posterior of θi (i.e., h (θi|Y )) is approximately
θi ~N

³
θ∗i ,
h
gθθ (θ

∗)−1
i
ii

´
.

• This formula for the posterior distribution is essentially free, because gθθ is
computed as part of gradient-based numerical optimization procedures.
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Laplace Approximation to Posterior Distribution ...

• Marginal likelihood of data, y, is useful for model comparisons. Easy to
compute using the Laplace approximation.

• Property of Normal distribution:Z
1

(2π)
N
2

|gθθ (θ∗)|
1
2 exp

½
−1
2
(θ − θ∗)0 gθθ (θ

∗) (θ − θ∗)

¾
dθ = 1

• Then,Z
f (y|θ) f (θ) dθ '

Z
f (y|θ∗) f (θ∗) exp

½
−1
2
(θ − θ∗)0 gθθ (θ

∗) (θ − θ∗)

¾
dθ

=
f (y|θ∗) f (θ∗)
1

(2π)
N
2
|gθθ (θ∗)|

1
2

Z
1

(2π)
N
2

|gθθ (θ∗)|
1
2 exp

½
−1
2
(θ − θ∗)0 gθθ (θ

∗) (θ − θ∗)

¾
dθ

=
f (y|θ∗) f (θ∗)
1

(2π)
N
2
|gθθ (θ∗)|

1
2

.
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Laplace Approximation to Posterior Distribution ...

• Formula for marginal likelihood based on Laplace approximation:

f (y) =

Z
f (y|θ) f (θ) dθ ' (2π)

N
2
f (y|θ∗) f (θ∗)
|gθθ (θ∗)|

1
2

.

• Suppose f(y|Model 1) > f(y|Model 2). Then, posterior odds on Model 1
higher than Model 2.

• ‘Model 1 fits better than Model 2’

• Can use this to compare across two different models, or to evaluate contribution
to fit of various model features: habit persistence, adjustment costs, etc.
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Generalized Method of Moments

• Express your econometric estimator into Hansen’s GMM framework and you
get standard errors

– Essentially, any estimation strategy fits (see Hamilton)

• Works when parameters of interest, β, have the following property:

E ut|{z}
N×1

⎛⎝ β|{z}
n×1

⎞⎠ = 0, β true value of some parameter(s) of interest

ut (β) ~ stationary stochastic process (and other conditions)

– n = N : ‘exactly identified’

– n < N : ‘over identified’
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Generalized Method of Moments ...

– Example 1: mean
β = Ext,

ut (β) = β − xt.

– Example 2: mean and variance

β =
£
μ σ

¤
,

Ext = μ,E (xt − μ)2 = σ2.

then,

ut (β) =

∙
μ− xt

(xt − μ)2 − σ2

¸
.
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Generalized Method of Moments ...

– Example 3: mean, variance, correlation, relative standard deviation

β =
£
μy σy μx σx ρxy λ

¤
, λ ≡ σx/σy,

where
Eyt = μy, E

¡
yt − μy

¢2
= σ2y

Ext = μx, E (xt − μx)
2 = σ2x

ρxy =
E
¡
yt − μy

¢
(xt − μx)

σyσx
.

then

ut (β) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

μx − xt
(xt − μx)

2 − σ2x
μy − yt¡

yt − μy
¢2 − σ2y

σyσxρxy −
¡
yt − μy

¢
(xt − μx)

σyλ− σx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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Generalized Method of Moments ...

– Example 4: New Keynesian Phillips curve

πt = 0.99Etπt+1 + γst,

or,

πt − 0.99πt+1 − γst = ηt+1

where,
ηt+1 = 0.99 (Etπt+1 − πt+1) =⇒ Etηt+1 = 0

Under Rational Expectations : ηt+1 ⊥ time t information, zt

ut (γ) = [πt − 0.99πt+1 − γst] zt
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Generalized Method of Moments ...

• Inference about β

– Estimator of β in exactly identified case (n = N)

∗ Choose β̂ to mimick population property of true β,

Eut (β) = 0.

∗ Define:

gT (β) =
1

T

TX
t=1

ut (β) .

∗ Solve

β̂ : gT

⎛⎝ β̂|{z}
N×1

⎞⎠ = 0|{z}
N×1

.

43



Generalized Method of Moments ...

– Example 1: mean

β = Ext,

ut (β) = β − xt.

Choose β̂ so that

gT

³
β̂
´
=
1

T

TX
t=1

ut

³
β̂
´
= β̂ − 1

T

TX
t=1

xt = 0

and β̂ is simply sample mean.
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Generalized Method of Moments ...

– Example 4 in exactly identified case

Eut (γ) = E [πt − 0.99πt+1 − γst] zt, zt ~ scalar

choose γ̂ so that

gT

³
β̂
´
=
1

T

TX
t=1

[πt − 0.99πt+1 − γ̂st] zt = 0,

or. standard instrumental variables estimator:

γ̂ =
1
T

PT
t=1 [πt − 0.99πt+1] zt
1
T

PT
t=1 stzt
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Generalized Method of Moments ...

– Key message:

∗ In exactly identified case, GMM does not deliver a new estimator you
would not have thought of on your own

· means, correlations, regression coefficients, exactly identified IV
estimation, maximum likelihood.

∗ GMM provides framework for deriving asymptotically valid formulas
for estimating sampling uncertainty.
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Generalized Method of Moments ...

– Estimating β in overidentified case (N > n)
∗ Cannot exactly implement sample analog of Eut (β) = 0 :

gT

⎛⎝ β̂|{z}
n×1

⎞⎠ = 0|{z}
N×1

∗ Instead, ‘do the best you can’:

β̂ = argmin
β

gT (β)
0WTgT (β) ,

where
WT ~ is a positive definite weighting matrix.

∗ GMM works for any positive definite WT, but is most efficient if WT is
inverse of estimator of variance-covariance matrix of gT

³
β̂
´
:

(WT )
−1 = EgT

³
β̂
´
gT

³
β̂
´0
.
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Generalized Method of Moments ...

– This choice of weighting matrix very sensible:

∗ weight heavily those moment conditions (i.e., elements of gT
³
β̂
´

) that
are precisely estimated

∗ pay less attention to the others.
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Generalized Method of Moments ...

– Estimator of W−1
T

∗ Note:
EgT

³
β̂
´
gT

³
β̂
´0

=
1

T 2
E
h
u1
³
β̂
´
+ u2

³
β̂
´
+ ... + uT

³
β̂
´i h

u1
³
β̂
´
+ u2

³
β̂
´
+ ... + uT

³
β̂
´i0

=
1

T
[
T

T
Eut

³
β̂
´
ut

³
β̂
´0
+
T − 1
T

Eut

³
β̂
´
ut+1

³
β̂
´0
+ ... +

1

T
Eut

³
β̂
´
ut+T−1

³
β̂
´0

+
T − 1
T

Eut

³
β̂
´
ut−1

³
β̂
´0
+
T − 2
T

Eut

³
β̂
´
ut−2

³
β̂
´0
+ .. +

1

T
Eut

³
β̂
´
ut−T+1

³
β̂
´0
]

=
1

T

"
C (0) +

T−1X
r=1

T − r

T

¡
C (r) + C (r)0

¢#
,

where
C (r) = Eut

³
β̂
´
ut−r

³
β̂
´0

∗W−1
T is ‘ 1T×spectral density matrix at frequency zero, S0, of ut

³
β̂
´

’
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Generalized Method of Moments ...

– Conclude:

W−1
T = EgT

³
β̂
´
gT

³
β̂
´
=
1

T

"
C (0) +

T−1X
r=1

T − r

T

¡
C (r) + C (r)0

¢#
=
S0
T
.

– W−1
T estimated by

[W−1
T =

1

T

"
Ĉ (0) +

T−1X
r=1

T − r

T

³
Ĉ (r) + Ĉ (r)0

´#
=
1

T
Ŝ0,

imposing whatever restrictions are implied by the null hypothesis, i.e., (as
in ex. 4)

C (r) = 0, r > R some R.

– which is ‘Newey-West estimator of spectral density at frequency zero’
∗ Problem: need β̂ to compute W−1

T and need W−1
T to compute β̂!!

· Solution - first compute β̂ using WT = I, then iterate...

51



Generalized Method of Moments ...

• Sampling Uncertainty in β̂.

– The exactly identified case

– By the Mean Value Theorem, gT
³
β̂
´

can be expressed as follows:

gT

³
β̂
´
= gT (β0) +D

³
β̂ − β0

´
,

where β0 is the true value of the parameters and

D =
∂gT (β)

∂β0
|β=β∗, some β∗ between β0 and β̂.

– Since gT
³
β̂
´
= 0 and gT (β0)

a
˜ N (0, S0/T ) , it follows:

β̂ − β0 = −D−1gT (β0) ,
so

β̂ − β0
a
˜N

Ã
0,

¡
D0S−10 D

¢−1
T

!
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Generalized Method of Moments ...

– The overidentified case.

∗ An extension of the ideas we have already discussed.

∗ Can derive the results for yourself, using the ‘delta function method’ for
deriving the sampling distribution of statistics.

∗ Hamilton’s text book has a great review of GMM.
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