Involuntary Unemployment and the Business Cycle

Lawrence Christiano,
Mathias Trabandt (ECB)
and
Karl Walentin (Riksbank)

Background

 Much progress building DSGE models for the purpose of analyzing monetary policy.

 Consensus benchmark model: basic goods, labor markets, monetary policy.

• Extensions:

- financial frictions.
 - Financing of investment, working capital, etc.
- unemployment, labor force.

What We Do:

- We investigate a particular approach to modeling unemployment.
 - Hopenhayn and Nicolini (1997), Shavell and Weiss (1979)
- We explore the implications for monetary DSGE models.
 - Simple three equation NK model
 - NAIRU, Okun's gap, natural rate of unemployment.
 - Standard empirical NK model (e.g., ACEL, CEE, SW)
 - Estimate the model.
 - Does well reproducing response of unemployment and labor force to three identified shocks.

Unemployment

- To be 'unemployed' in US data, must
 - be 'willing and able' to work.
 - recently, made efforts to find a job.
- Empirical evidence: losing your job is a bad thing.
 - consumption drops typically about 10 percent upon the loss of a job (Gruber, 1997, Chetty and Looney, 2006)
 - Much discussion in the press about the hardship experienced by the unemployed in the current recession.
- Current monetary DSGE models with 'unemployment':
 - Utility jumps when you lose your job.
 - Finding a job requires **no** effort.
 - US Census Bureau employee dropped into current monetary DSGE models would find zero unemployment.

What we do:

- Explore the simplest possible model of unemployment, which satisfies two key features of unemployment.
- To be unemployed:
 - Must have made recent efforts to find a job.
 - To find a job, household must make an effort, *e*, which increases the probability, *p*(*e*), of finding a job.
 - Transition from employment to unemployment makes you worse off.
 - assume household search effort, e, is not publicly observable.
 - full insurance against household labor market outcomes is not possible.
 - under perfect consumption insurance, no one would make an effort to find a job.

Outline

Insert our model of unemployment into

Simple Clarida-Gali-Gertler (CGG) NK model.

 CEE model: evaluate model's ability to match US macroeconomic data, including unemployment and labor force

CGG Model

Goods Production:

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{1}{\lambda_f}} di \right]^{\lambda_f}, \ 1 \leq \lambda_f < \infty.$$

- Monopolists produce intermediate goods
 - Technology:

$$Y_{i,t} = A_t h_{i,t}$$

– Calvo sticky prices:

$$P_{i,t} = \begin{cases} P_{i,t-1} & \text{with prob. } \xi_p \\ \text{chosen optimally} & \text{with prob. } 1 - \xi_p \end{cases}$$

Enter competitive markets to hire labor.

CGG Model: Monetary Policy

• Taylor rule:

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t$$

- Here:
 - $\hat{\chi}_t$ output gap (percent deviation of output from efficient level)

- Efficient equilibrium:
 - Monopoly power and inflation distortions extinguished.

Households

• This is where the new stuff is......

Typical Household During Period

Draw privately observed, idiosyncratic shock, l, from Uniform, [0,1], that determines utility cost of work:

$$F + \varsigma_t (1 + \sigma_L) l^{\sigma_L}$$
.

t

After observing l , decide whether to join the labor force or stay out.

Household that stays out of labor market does not work and has utility $\log c_{\it t}^{\rm out\ of\ labor\ force}$

t+1

Household that joins labor force tries to find a job by choosing effort, e, and receiving ex ante utility

$$p(e_t) \left[\overbrace{\log(c_t^w) - F - \varsigma_t(1 + \sigma_L)l^{\sigma_L} - \frac{1}{2}e_t^2}^{\text{ex post utility in case of unemployment}} \right] + (1 - p(e_t)) \left[\overbrace{\log(c_t^u) - \frac{1}{2}e_t^2}^{\text{ex post utility in case of unemployment}} \right]$$

$$p(e_t) = \eta + ae_t$$

Household Insurance

- They need it:
 - Idiosyncratic work aversion.
 - Job-finding effort, e, may or may not produce a job.
- Assume households gather into large families, like in Merz and Andolfatto
 - With complete information:
 - Households with low work aversion told to make big effort to find work.
 - All households given same consumption.
 - Not feasible with private information.
 - With private information
 - To give households incentive to look for work, must make them better off in case they find work.

Optimal Insurance

- Relation of family to household: standard principal/agent relationship.
 - family receives wage from working households
 - family observes current period employment status of household.
- For family with given C, h:
 - allocates consumption: c_t^w , c_t^{nw}
 - c_t^w/c_t^{nw} must be big enough to provide incentives.
 - must satisfy family resource constraint:

$$h_t c_t^w + (1 - h_t) c_t^{nw} = C_t.$$

Family Indirect Utility Function

Utility:

$$u(C_t, h_t, \varsigma_t) = \log(C_t) - z(h_t, \varsigma_t)$$

Where

$$z(h_{t},\varsigma_{t}) = \log[h_{t}(e^{F+\varsigma_{t}(1+\sigma_{L})f(h_{t},\varsigma_{t})^{\sigma_{L}}}-1)+1]$$

$$-\frac{a^{2}\varsigma_{t}^{2}(1+\sigma_{L})\sigma_{L}^{2}}{2\sigma_{L}+1}f(h_{t},\varsigma_{t})^{2\sigma_{L}+1}-\eta\varsigma_{t}\sigma_{L}f(h_{t},\varsigma_{t})^{\sigma_{L}+1}.$$

Clarida-Gali-Gertler utility function:

$$u(C_t, h_t, \varsigma_t) = \log(C_t) - \varsigma_t h_t^{1+\sigma_L}$$

Family Problem

$$\max_{\{C_t, h_t, B_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t [\log(C_t) - z(h_t, \varsigma_t)]$$

– Subject to:

$$P_tC_t + B_{t+1} \leq B_tR_{t-1} + W_th_t + Transfers \ and \ profits_t.$$

 Family takes market wage rate as given and tunes incentives so that marginal cost of extra work equals marginal benefit:

$$C_t z_h(h_t, \varsigma_t) = \frac{W_t}{P_t}.$$

Observational Equivalence Result

 Because of the simplicity of the assumptions, the model is observationally equivalent to standard NK model, when represented in terms of output, interest rate, inflation:

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \frac{(1-\beta \xi_{p})(1-\xi_{p})}{\xi_{p}} (1+\sigma_{z}) \hat{x}_{t}$$

$$\hat{x}_{t} = E_{t} \hat{x}_{t+1} - (\hat{R}_{t} - \hat{\pi}_{t+1} - \hat{R}_{t}^{*}).$$

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t,$$

Observational Equivalence Result

z function: disutility of labor for family

'curvature of disutility of labor': $\sigma_z \equiv \frac{\sqrt{z_{hh}h}}{z_h}$ $\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \frac{(1-\beta \xi_{p})(1-\xi_{p})}{\xi_{p}} (1+\sigma_{z}) \hat{x}_{t}$ $\hat{x}_t = E_t \hat{x}_{t+1} - (\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}_t^*).$

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t,$$

Unemployment Gap

 Can express everything in terms of unemployment gap:

$$u_t^g = -\kappa^{okun} \hat{\chi}_t. \qquad \kappa^{okun} = \frac{a^2 \varsigma \sigma_L^2 m^{\sigma_L} (1 - u)}{1 - u + a^2 \varsigma \sigma_L^2 m^{\sigma_L}} > 0.$$

actual rate of unemployment efficient level of unemployment $u_t^g = \underbrace{u_t^g} - \underbrace{u_t^*}$

Non-accelerating rate of inflation level of unemployment, NAIRU

Unemployment Gap

$$\hat{\boldsymbol{\pi}}_t = \beta E_t \hat{\boldsymbol{\pi}}_{t+1} - \kappa u_t^g$$

$$u_t^g = \kappa^{okun} E_t u_{t+1}^g + \kappa^{okun} \left(\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}_t^* \right)$$

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) \left[r_\pi \hat{\pi}_t - \frac{r_y}{\kappa^{okun}} u_t^g \right] + \varepsilon_t$$

$$\kappa \equiv \frac{(1 - \beta \xi_p)(1 - \xi_p)}{\xi_p} \frac{1 + \sigma_z}{\kappa^{okun}}$$

Questions...

 A key distinguishing feature of the model is the limited information that prevents full insurance.

 What is the quantitative impact of limited information on the model?

Must Parameterize the Model

Parameterization informal.

Subset of parameters standard.

 Five parameters (search function and work aversion) novel.

Table 1: Structural Parameters of Small Model Held Fixed Across Numerical Experiments

Parameter	Value	Description
β	1.03^{25}	Discount factor
g_A	1.0047	Technology growth
ξ_p	0.75	Price stickiness
λ_f	1.2	Price markup
$ ho_R$	0.8	Taylor rule: interest smoothing
r_{π}	1.5	Taylor rule: inflation
r_y	0.2	Taylor rule: output gap
η_{g}	0.2	Government consumption share on GDP

'New' Parameters

Disutility of work:

$$F + \varsigma_t (1 + \sigma_L) l^{\sigma_L}$$

Probability of finding work:

$$p(e_t) = \eta + ae_t$$

• Parameters:

$$F, \varsigma, a, \eta, \sigma_L$$
.

 Pin down 5 parameters by imposing 5 properties of steady state:

$$m, u, \sigma_z, \kappa^{okun}, \bar{p}$$

Quantitative Impact of Limited Information

- Impact on:
 - total employment, labor force, welfare?

• What is the value of information?

Table 2: The Impact of Imperfect Information in the Small Model

Variable	Involuntary Unemp. (Imperfect Info.)	Fixed Structual Params Full Info b .	Description
		Steady State Properties	1
m	0.67	0.69	Labor force
h	0.63	0.68	Employment
и	0.056	0.015	Unemployment rate
c^{nw}/c^w	0.18	1.0	Replacement ratio
	0.1		Price (% of C) of info. a
		Structural Parameters ^d	
а	0.53	0.53	Slope, $p(e)$
η	0.86	0.86	Intercept, $p(e)$
ς	4.64	4.64	Slope, labor disutility
F	1.39	1.39	Intercept, labor disutility
σ_L	13.31	13.31	Power, labor disutility
		Welfare Cost of Business Cy	vcles
		Technology shock only	
λ	0.520684131141325	0.566191290230633	% of consumption
	Gover	nment consumption shock only	
λ	0.112215458271869	0.125326644511370	% of consumption
	N	Ionetary policy shock only	
λ	0.071331553871046	0.100111000086489	% of consumption

Put this all into a medium-sized DSGE Model

Habit persistence in preferences

Variable capital utilization.

Investment adjustment costs.

 Wage setting frictions as in Erceg-Henderson-Levin.

Figure 1: Dynamic Responses of Non-Labor Market Variables to a Monetary Policy Shock Real GDP Inflation (GDP deflator) Federal Funds Rate 0.4 0.2 0 0.2 0.1 -0.2 -0.4-0.1 -0.6 -0.2 0 5 5 10 10 5 10 **Real Consumption** Real Investment Capacity Utilization 0.2 8.0 0.6 0.5 0.1 0.4 0.2 -0.5 -0.2-0.1 10 10 10 0 5 0 5 0 5 Rel. Price of Investment Hours Worked Per Capita Real Wage

0.05

-0.05

-0.1

-0.15

0

5

10

0.3

0.2

0.1

-0.1

0

5

10

- VAR Mean —— Standard Model —— Involuntary Unemployment Model

0.2

0.15

0.1

0.05

0

5

10

VAR 95%

Figure 2: Dynamic Responses of Non-Labor Market Variables to a Neutral Technology Shock Real GDP Inflation (GDP deflator) Federal Funds Rate 0 0.1 0.6 -0.2 0 0.4 -0.4-0.10.2 -0.6 -0.2 0 -0.8 -0.3 0 5 10 5 10 0 5 10 Capacity Utilization **Real Consumption** Real Investment 0.5 1.5 0.6 0.4 0.5 -0.5 0.2 -0.5 10 0 5 10 10 5 5 0 0 Rel. Price of Investment Hours Worked Per Capita Real Wage 0.4 0.4

0.3

0.2

0.1

10

VAR 95%

5

-0.1

-0.2

-0.3

0

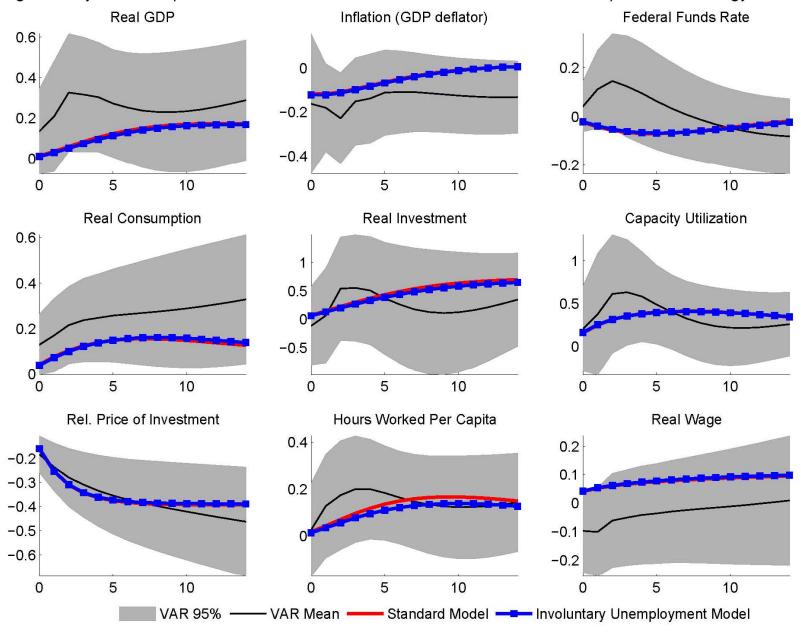
0.3

0.2

0.1

10

VAR Mean —— Standard Model —— Involuntary Unemployment Model


5

0

5

10

Figure 3: Dynamic Responses of Non-Labor Market Variables to an Investment Specific Technology Shock

Unemployment Rate Labor Force 0.1 Monetary Shock 0.05 -0.1 -0.2**Unemployment Rate** Labor Force Neutral Tech. Shock 0.15 0.1 0.1 0.05 -0.1 -0.05 **Unemployment Rate** Labor Force 0.15 Invest. Tech. Shock 0.1 0.05 -0.1 -0.05 -0.2 VAR 95% —— VAR Mean —— Involuntary Unemployment Model

Figure 4: Dynamic Responses of Labor Market Variables to Three Shocks

Model Prediction that Consumption Premium for Employed Households is Bigger in Boom

- Don't have direct evidence on this (but, could get it!)
- Have time series on cross section variance of log, household consumption.

$$V_t = (1 - h_t)h_t \left(\log\left(\frac{c_t^w}{c_t^{nw}}\right)\right)^2.$$

• Heathcote, Perri and Violante (2010) show *V* is procyclical in three of past 5 recessions.

Another Question Raised by Analysis

 Does higher unemployment in recessions reflect reduced search intensity?

Maybe...

- discouraged workers: people 'available to work' but are not currently looking because they think there are no jobs.
- number jumped 70 percent, 2008Q1 to 2009Q1.

Conclusion

 Integrated a model of 'involuntary unemployment' into monetary DSGE model.

Results:

- Obtained a theory of the NAIRU
- Able to match responses of unemployment and labor force to macro shocks.
- Raises several empirical questions.
- Why introduce unemployment?
 - A policy variable of direct interest.
 - By bringing in more data, get a more precise read on output gap and real rate (Basistha and Startz (2004))
 - By bringing in more data, get a better read on unobserved shocks and may improve forecasts.