Two-period Version of Gertler-Kiyotaki Model

Puzzle of Interest Rate Spreads

 Very high in late 2008, higher than seems explicable with default risk.

Two explanations:

- Liquidity: Kiyotaki-Moore/Moore
 - Banks with cash reluctant to use it to buy firm assets
 - Afraid they'll need the cash themselves, and the resale market for firm assets would dry up.
 - Classic financial market multiple equilibrium phenomenon (Bagehot)
- Fear of out-of-equilibrium default (Gertler-Kiradi, Gertler-Kiyotaki).

Two-period Version of GK Model

- Many identical households, each with a unit measure of members:
 - Some members are 'bankers'
 - Some members are 'workers'
 - Perfect insurance inside households...workers and bankers consume same amount!

Period 0

- Workers endowed with y goods, household makes deposits in a bank
- Bankers endowed with N goods, take deposits and purchase securities from a firm.
- Firm issues securities to finance capital used in production in period 1.

• Period 1

- Household consumes earnings from deposits plus profits from banker.
- Goods consumed are produced by the firm.

Problem of the Household		
	period 0	period 1
budget constraint	$c+d \le y$	$C \le R^d d + \pi$
problem	$\max_{d,c^h,c^H}[u(c)+\beta u(C)]$	

Solution to Household Problem		
$\frac{u'(c)}{\beta u'(C)} = R^d$	$c + \frac{C}{R^d} \le y + \frac{\pi}{R^d}$	
$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$	$C = \frac{y + \frac{\pi}{R^d}}{1 + \frac{\left(\beta R^d\right)^{\frac{1}{\gamma}}}{R^d}}$	

Efficient Benchmark

Problem of the Bank		
period 0	period 1	
take deposits, d	pay dR^d to households	
buy securities, $s = N + d$	receive sR^k from firms	
problem: $\max_d[sR^k - R^dd]$		

Properties of Efficient Benchmark

Equilibrium: R^d , c, C, d, π

- (i) household problem solved
- (ii) bank problem solved
- (iii) market clearing

Properties:

– Household faces true social rate of return on saving:

$$R^k = R^d$$

Equilibrium is 'first best', i.e., solves

$$\max_{c,C,k,} u(c) + \beta u(C)$$
$$c + k \le y + N, \ C \le kR^k$$

Friction

 bank combines deposits, d, with net worth, N, to purchase N+d securities from firms.

- bank has two options:
 - ('no-default') wait until next period when $(N+d)R^k$ arrives and pay off depositors, R^dd , for profit:

$$(N+d)R^k - R^d d$$

– ('default') take $\theta(N+d)$ securities, leave banking forever, refuse to pay depositors and wait until next period when securities pay off:

$$\theta(N+d)R^k$$

Incentive Constraint

Bank will choose 'no default' iff

no default default
$$(N+d)R^k - R^d d \ge \theta(N+d)R^k$$

 Rewriting the above expression, the no default condition is equivalent to:

$$(1-\theta)(N+d)R^k \ge dR^d$$

- i.e., banker doesn't default if defaulting implies the return for depositors goes up.
- Default will never be observed, because depositors would never put their money in a bank that violates the deposit condition.

Collapse in Net Worth

No default condition:

no default default
$$(N+d)R^k - R^d d \ge \theta(N+d)R^k$$

- When condition is non-binding, then $R^k = R^d$ and $NR^k \ge \theta(N+d)R^k$.
- If N collapses, then constraint may be violated for d associated with $R^d = R^k$
 - Equilibrium requires lower value of d
 - Lower *d* requires a spread: $R^d < R^k$
 - Lower d is not efficient

Policy Implications

- Inject equity into banks
 - Government raises taxes and uses equity to become partowner in the bank.
 - This directly increases intermediation, plus may allow additional deposits if households less afraid of default option with government in charge.
- Make direct loans to non-financial firms
 - Hard to interpret in the model, because unique advantage of banks doing the intermediation is not made explicit.
- Make loans to banks.
 - Government may have an advantage here because it's harder for banks to 'steal' from the government

Directions

 Gertler-Kiyotaki place model inside dynamic DSGE model.

 Nominal frictions could be added to the model.