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Abstract

The existing literature on perturbation methods for dynamic stochastic gen-
eral equilibrium models points out that the approximated solution can generate
spurious unstable dynamics. Various ad-hoc techniques have been suggested
in order to overcome this problem. In this paper we show that by applying
series-expansion techniques, as suggested by the mathematical literature on
perturbation methods for non-linear dynamical systems, generates solutions
that are (globally) stable as long as the original system is locally stable
at any order of approximation. A feature not shared by the alternative high-
order perturbation approaches discussed in the economic literature. This paper
contributes to the existing literature in two ways. First, it points to the math-
ematical foundations of some of the ad-hoc remedies used in the literature (i.e.
“pruning”) for second-order approximations. Second, it offers a clear guide
on how to proceed for orders larger than two. We compare the alternative
perturbation techniques and highlight their properties.
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1 Introduction

Following the seminal work of Jin and Judd (2002) and Judd (1998, 2002) a number
of papers has contributed to the literature on higher order approximations by sug-
gesting alternative techniques to solve and simulate dynamic stochastic general equi-
librium (DSGE) models. Most of this literature derives approximated dynamical sys-
tems that are non-linear in the state variables (e.g. Schmitt-Grohé and Uribe, 2004,
Kim et al., 2008, Anderson et al., 2006, Collard and Juillard, 2001 and Fernandez-
Villaverde and Rubio-Ramirez, 2006)." As a consequence, for sufficiently large shocks
the approximated solution can imply explosive dynamics, even if the original system
is still (saddle-path) stable for shocks of the same magnitude.? The possibility that
spurious unstable dynamics emerge from these solutions is a well-known fact, docu-
mented, among others, by Fernandez-Villaverde and Rubio-Ramirez (2006), Aruoba
et al. (2006) and Kim et al. (2008). The literature is not unanimous about the way

to treat this problem. For example, Aruoba et al. (2006) suggest to disregard re-

!Gomme and Klein (2010) provide an alternative solution method for the coefficient matrices of
a second order approximation to the policy function. In their paper the authors use the same rep-
resentation of the approximating policy function as in Schmitt-Grohé and Uribe (2004). Andreasen
(2010), in a recent paper, provides accompanying software that extend Schmitt-Grohé and Uribe
(2004) to third order. Amisano and Tristani (2011) show how to take second order approximations
a la Schmitt-Grohé and Uribe (2004) when innovations are heteroskedastic. Similarly, Benigno
et al. (2010) show how to compute second order approximations for models with time varying risk.

2In this paper we refer to stability as local asymptotic stability (Azariadis, 1993, p. 22), and,
in relation to DSGE models, as local saddle-path stability. In general, we cannot exclude that the
true dynamical system has multiple (stochastic) equilibria such that the point of approximation is
not globally saddle-path stable (e.g. Tu, 1994). In this case the radius of convergence of the original
function around the point of approximation would be delimited by the separatrix curve marking the
boundary between regions in the phase plane with different stability properties. Therefore, none of
the local perturbation methods discussed here would allow us to make statements concerning the
global properties of the true dynamical system.



alizations that generate unbounded solutions.? Kim et al. (2008), in an influential
paper, have suggested to “prune” the second order approximated solution by replac-
ing the quadratic terms with cross-products of the first order solution and, hence,
by generating a solution that is recursively linear.* A different approach is followed
by Lombardo and Sutherland (2007), who develop a second-order solution technique
based on the recursive linearity of the state-space representation. In that paper the
authors resort to an “order” argument to maintain that cross-products of variables in
higher order expressions should be computed using lower order terms. Their paper
does not make any explicit link to the mathematical foundations or their approach.
A gap that we fill in the present paper.

In this paper we borrow from the applied-mathematics literature to show that
approximating DSGE models using the method of series expansions naturally gen-
erates solutions that are 1) recursively linear and i) (globally) stable as long as the
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first order dynamics is stable. As explained by Berglund (2001, p. 3) at each
order we only need to solve |a| linear equation, where the |non-linear| term depends
only on previously computed quantities.”” We show that, contrary to our approach,
naive “pruning” does not ensure stability even in those regions of the phase space

where the original model is stable.

Solving non-linear DSGE models by perturbation methods, including the series

3These authors also point out that the problem could be avoided by bounding the support of
the shocks, as recommended by Jin and Judd (2002).

4Schmitt-Grohé and Uribe (2004) show the state-space solution in non-linear form but don’t
discuss the potential issues related to its non-linear structure. Nevertheless, the accompanying
computer code posted by the authors on the web, simu_2nd.m, applies the “pruning” procedure to
the second-order approximation. I thank Martin Uribe for having pointed out this fact to me.

5]t is important to notice that there is another sense in which the solutions proposed in the
literature are recursively linear. While here we refer to recursive linearity in the state variables
of the state-space representation of the solution, the literature has often pointed out the recursive
linearity of the problem of determining the coefficient matrices of the state-space representation.
On the latter problem our paper has nothing to add.



expansion method advocated here, amounts to finding a polynomial approximation
to the unknown policy function. The coefficients of such polynomial are typically
related to the value of the partial derivatives of the original function evaluated at the
point of approximation. As we argue in this paper, there is no disagreement between
the series expansion method and the alternative method a la Schmitt-Grohé and
Uribe (2004) as concerns the value of these partial derivatives. What distinguishes
these methods is the actual structure of the approximating polynomial. Contrary to
Kim et al. (2008) we do not modify what we consider to be the correct approximation,
given the approximation method, in order to achieve some desired properties. We
show instead how to obtain a polynomial approximation that is consistent with the
series expansion method and that has the desired property of asymptotic stability,
with no need of ad-hoc corrections. In this sense, the purpose of our paper is identical
to that of Sims (2000), Jin and Judd (2002), Schmitt-Grohé and Uribe (2004) or
Anderson et al. (2006), among others, although each of these papers focuses on a
different aspect of the problem.

We don’t discuss in details the origins of the perturbation method exposed in
this paper.® The approach followed here is thoroughly discussed by Holmes (1995),
Bush (1992) and Hinch (1991), among others. Nevertheless, we point out that our
approach finds its theoretical foundations in the asymptotic properties of series ex-
pansions as well as in the Implicit Function Theorem and in Taylor’s theorem in
particular (Holmes, 1995 and Chicone, 2006), as does the perturbation method with-
out “pruning” proposed by the literature cited above. These foundations are essential
in order to discriminate among alternative approximation techniques. In this sense
our paper offers a way to rationalize the “pruning” technique discussed by Kim et al.

(2008) for second-order approximations. More importantly, our paper suggests a sys-

6For an interesting survey see Gutzwiller (1998).



tematic way to generate stable solutions at any order of approximation that display
desirable asymptotic properties.”

In this light, our paper fills an important gap in the literature since many have
documented the problems that can arise at higher orders of approximation from ad-
hoc corrections of the perturbation approach a la Schmitt-Grohé and Uribe (2004).8

The rest of the paper is organized as follows. Section 2 provides an overview of
the series-expansion method. Section 3 discusses the difference between the series
expansion method and “pruning” and provides a proof that the method of series
expansion generates globally stable dynamics as long as the first order dynamics is
stable. Section 4 applies the technique to a simple non-linear DSGE model. Section 5
discusses how existing computer codes can be used together with the series expansion

method to any order of approximation. Section 6 concludes.

2 The method of series expansions

In this paper we are interested in solving problems of the general form
EtF (Zt+1, Zt, O'Et) =0 (].)

where F'is a system of non-linear stochastic difference equations deriving from first
order conditions of agents’ problems, resource constraints and market clearing con-
ditions, [E; is the mathematical expectation operator, €, is a vector of exogenous
stochastic forcing processes with given low of motion, z; is a vector of endogenous

variables and o is a parameter (the perturbation parameter) such that if o = 0 we

It is important to remember that there are two types of desirable asymptotic properties of series
expansions. First, from Taylor’s theorem, we know that for analytic functions, or within the radius
of convergence, increasing the order of approximation will eventually recover the exact function.
Second, for a given order of approximation, the approximation error is increasing in the size of the
perturbation. The solution proposed here has both asymptotic properties.

8See for example den Haan and de Wind (2010) and Ruge-Murcia (2010).



know how to solve equation (1) as well as the derivatives of F (-).? For illustrative
purposes, in this section, we describe the approximation method using a very simpli-
fied abstract version of the general case, and consider only a second-order expansion.
This version would indeed not need approximations as the value of the variable at
each point in time can be easily traced starting from given initial conditions. In the
next section we will return to the more general case, showing an application to the
neoclassical growth model.

In order to approximate the (scalar) model

yo=1(o,911) (2)

we can proceed as follows (Holmes, 1995 and Berglund, 2001).'

First, we recognize that y;, that solves equation (2), is a function of time and of
the perturbation parameter o. We are interested in an approximation of this function
around o = 0. Resorting to Taylor’s theorem we choose to approximate y; using the
series expansion''

y=v + oy + oy, (3)

where ) denotes the order = of approximation of the variable, i.e. y,fo) = 0 (09

etc. Notice that y'” is assumed not to depend on the perturbation parameter.'? It

9This representation can be thought of as the companion form of a more extended model with
lagged variables. Also, terms like €411 are taken care of by an appropriate definition of the terms
in z.

19Obviously, in order to apply this method it is necessary that the solution admit series expansion
in the perturbation parameter and that the function f be analytic. In particular the resulting
Jacobian of the system of equations must be non-singular. When this condition is not satisfied
singular-perturbation methods can be applied. Singular perturbation methods have been applied
to portfolio problems by Judd and Guu (2001).

1To be consistent with the representation discussed in most of the literature (e.g. Holmes, 1995),
at this stage we do not divide each term i of the expansion by the factorial of i (i!), as a Taylor
expansion would require. The solution steps suggested by this literature correct for this omission.
Alternatively, we could introduce these factorials, in which case no correction would be needed in
the subsequent steps.

12 Holmes (1995) and Judd (1998, p. 516) discuss the use of more general representations, i.e. of



is important to notice that this representation is identical to that discussed by Judd
(1998, p. 456-457), who makes clear that the terms in yfc) are “derivatives of |y, (o)]

with respect to 0 when o = 0.”

Next, we take an expansion of f () around o = 0 (assume that g\ = Yo)

f(O', yt) ~ f(Ovy(]) + fcra+ fy (yt - yO) + % (fcrcra2 + fyy (yt - y0)2) +0 (03) ) (4)

where for simplicity we have assumed that f,, = 0.

Replace equations (3) and (4) in the original problem (2),

0 1 2
W+ =

[ O.90) + foo + [y <0y§i)1 + 02.%91)
1 2
3 (Fro® + g (4 2292) ) + 0 (). ®
“By equating like powers” (Holmes, 1995, p. 27) we obtain that the zero order is
yzSO) = f (Oa yO) ’
that the first order is
) = ful + fa+ 0 (07),
and that the second order is
1 2
yt(2) = fyyt(z)l + 5 (.faa + fyy <yt(i)1) ) + 0O (03> .

Therefore

Y —Y =0 (fyyﬁ)1 + fo) +0° <fyy£)1 + % (fcrcr + fyy (yﬁ)1>2)) . (6)

the form y, = yt(o) + Uo‘yt(l) + Uzo‘yt@) + .... Quoting Holmes (1995, p. 19): “[This assumption] is
nothing more than an educated guess. The motivation for making this assumption comes from the
observation that in expanding functions one usually ends up using Taylor’s theorem and [our guess|
is simply a reflection of that type of expansions. The exponent « is to allow for a little flexibility.”
In this paper we focus only on the case of @ = 1, although this might not be the best choice in
general.



Notice that there are terms of order higher than 2 in equation (5). These belong
to the higher order terms in the residual, i.e. they belong in O (¢3).13

It is important to notice that our approximation is the result of the application of
the chain rule. In fact, by simply differentiating (2) with respect to o, and bearing in
mind the dependence of y; on the perturbation parameter, we would have obtained
the same result.'

The representation of the solution proposed by most of the recent economic lit-
erature on this topic (except for Lombardo and Sutherland, 2007) would amount to
writing the second-order expansion as (assuming for simplicity that y, = 0)

Y = fylYi—1 + 0 fo + % (UQfaa + fyy (yt—l)z) + 0O (03) ) (7)

that is, neglecting the order of the approximation of the variables.

Kim et al. (2008), among others, recognize that this solution could generate
spurious dynamics, and propose a remedy consisting of using the firs-order solution to
compute the cross-product terms. Up to second order this procedure would generate
virtually the same solution as the one that we propose in this paper. In particular

these authors suggest to rewrite equation (7) as'®

1 2
Upd = fyypir + 0o + 3 (a%a + fuy (y,(ft’_l) ) +0(0%). (8)

where subscript “p” denotes the pruned solution. Solving backward the first order

3By first replacing equation (3) and then taking expansions directly in terms of o would make
this statement unnecessary. The procedure followed in the text has the advantage of highlighting
that in order to include further terms, we have to bring in terms from the residual, i.e. increase the
order of approximation.

M Alternatively we could have first substituted equation (3) into equation (2) and then expanded
with respect to o for all the orders of approximation up to the desired one. In this case, equation
(3) should include the factorial terms that we have omitted.

15Notice that the normalization with respect to o is applied differently in the two representations.
This has no consequence for the result as it is apparent from the following algebra.



equation we obtain'6

T-1
yp, nypt T+0-ngjf07 (9)
i=0

Doing the same for equation (8) yields

T-1 1T—1 y(l) 2
i i =1
2 nypt T+O-ny(f0>+o-2§z.fy fUU_'_fyy( I;.tz ) : (10)
=0 =0

Replacing the backward solution in equation (6) yields

v = o [Ty + o2 fys +UZJ“ (fs) + Zfz (faa+fyy (yt 1) ) (11)

Clearly, as long as |f,| < 1, limy_, yz(ft) = 1. In general the discrepancy between
the two solutions depends on the initial conditions. In typical exercises (e.g. impulse
responses or unconditional moments) second order pruning and series expansions
generate the same dynamic paths.'”

This result also suggest that equation (7) does not generate the same solution as
the other two representations. This is true for any (non-zero) size of the perturbation
(so even with supports that ensure that the function remains within its radius of
convergence, e.g. Aruoba et al., 2006). Obviously since these are all asymptotic
approximations, the discrepancy between them vanishes as we reduce the size of the
perturbation.

In light of this result our contribution offers theoretical motivations for the
“pruned” representation of the solution up to second order of approximation. Nev-
ertheless, further below we show that, in general, for higher order of approximation

the equivalence does not hold.

16Gee Tjungqvist and Sargent (2000, p. 11).
ITThis result is true also for system of equations. It simply rely on the fact that the coefficient
(matrix) on the linear term in each equation (f,) is the same at both orders of approximation.

10



The asymptotic properties of the series expansion method that we propose is
grounded in Taylor’s theorem. Appendix A further discusses the convergence prop-
erties of our method (SE) applied to a simple ad-hoc model (of the kind used by den
Haan and de Wind, 2010) and compares the results with those obtained by using
two alternative perturbation approaches, i.e. the one a la Schmitt-Grohé and Uribe
(2004) without pruning (NP) and the one suggested by Aruoba et al. (2006). The
latter approach consists of dropping the “explosive” draws from the simulation (DD).
We show that both SE and DD approaches seem to converge relatively quickly to
the true solution, while NP seems to reduce the number of “explosive” paths as the
order of approximation increases. We argue that the SE approach provides a more
systematic way to generate stable paths than the ad-hoc and relatively subjective

DD approach.

3 Series expansion and “pruning” at higher orders
of approximation

For second-order expansions, Kim et al. (2008) have proposed a “pruning” tech-
nique that ensures stability of the approximated dynamical system: i.e. they replace
cross products of variables with products of variables solved at first order of ap-
proximation. Up to second order, “pruning” and the series-expansion method are
equivalent. At higher order of approximation, “pruning” the solution by replacing
cross-products of variables with products of lower-order approximations would still
generate a recursively-linear system of difference equations. Nevertheless, stability
of the system can no longer be ensured, even if the first order dynamics is stable. On
the contrary, the series-expansion method preserves stability at any order of approxi-

mation. Furthermore, in general, the “pruned” solution will differ from that obtained

11



by applying the series expansion method as we show in this section.
Given a vector of non-predetermined (jump) variables y; and a vector of prede-
termined (state) variables z;, a solution to the model in equation (1) is generally

postulated as (e.g. Schmitt-Grohé and Uribe, 2004):

Yt :9($t§0)> (12)
and
Tip1 = h(24;0) + oneq, (13)

where z; =[x} y;].
For the sake of simplicity assume for a moment that y; and x; are scalars. Then,

the n-th order approximation of A () according to the NP method yields

h () ~ h’O + hxxt + haa + 0NEL+1

1 1 2
fhmzvf + §h0002 + éhmzta +

2
1 3 3 1
éhmmmx? + éhfcrcrma:tO-2 + ghoxxo-x? + 6]10000'3 + -+ O (O'n+1)

After collecting terms we obtain

1 1 2 3
h(:) ~ ho+ [hoa + §hma2 - 6hmo—?’} + [hx + Ghaoo + éhmo—2 Ty + oNE +

3 1
[6%“0} x? + 6hmxzvf +---4+0 (a”“)

or, more compactly (and neglecting the approximation residual)
h(-)—hy~ D+ Av, + Bx? + Cxd + onepq + . ... (14)

This is the typical representation of the approximated solution discussed in the

literature on perturbation methods (e.g. Anderson et al. (2006) for orders higher

12



than two). “Pruning”, as described by Kim et al. (2008) would amount to replacing

the powers of ; with cross-products of solutions of x; to lower order, i.e.'®
3
:Bgl =h(:)—ho=D+ AZEt + BZE(l) ,22) + C’:Egl) +ongr+ ... (15)

The solution obtained applying the series-expansion method is:

h()—ho~ axgr)l + a%ﬁl + a?’xﬁ)l +..., (16)
where
xﬁfl = hmxil) + he + onELL, (17)
1 2 1
xwg-zi-)l = h’mxf) + h’mcrng,l) + §hxx <Jf£1)> + §h007 (18)
(3) 3 3
xt-i—l = h’ xt + 6hooac + hmcrx‘t
1 1 1 3 1
éhaxng )ng, ) + ghx:c:c <I§ )> _I' 6h0'0'0'7 (19)
etc..

The key difference between the two solutions concerns their asymptotic stability
properties. The series expansion method delivers asymptotically stable solutions
as long as the first order dynamics is asymptotically stable. This result does not
necessarily hold true for the “pruning” approach, as we now show.

First, represent the approximated solution, given by equations (15) and (17) to
(19) as

2 = oY + B, (20)

8The first and second order approximations are identical to those given in equations (17) and
(18) below.

13



where 20) is a vector of endogenous variables, ®; is a matrix of constant coeffi-
cients, B;; is a vector-valued process independent of ) and j denotes the order of

approximation. Then, let us state the following known fact in form of a lemma:

Lemma 1 Provided that the eigenvalues of ®; lie within the unit circle, a particular

solution (xf’j) to this system can be found by solving it “backward”, i.e. fo =

St ®iBj,—i. The general solution to system (20) will be the sum of the solution

to the homogeneous part and the particular solution, i.e. :L'Ej) = (ID;"”:E?_)” + xf’j.

Proof The proof follows from the superposition principle and backward iteration

(see Azariadis, 1993, p. 127). |}

Using these results and following Azariadis (1993, p. 22) we can define asymptotic

stability as follows:

Definition System (20) is asymptotically stable if lim; xﬁj) = lim; xf’j < 00,

where for a stochastic model lim;_, o, fo is a probability distribution.?

Notice, furthermore, that the (kronecker) tensor product of two vectors v and
w, with n, and n, elements respectively, gives the n,n, cross products of all the
elements in v with all the elements in w, i.e. v®@w = [vywy, viws, ..., v, w,,]". This
can be repeated any number of times for any number of vectors. Denote by n the
number of vectors (possibly identical) involved in the tensor product. We call the
tensor product involving multiple vectors as the n-th order tensor product. We can

then state the following lemma:

Lemma 2 The n-th order tensor product of asymptotically stable vectors of vari-
ables, divided by the n-th factorial (n!), is itself asymptotically stable Vn.

YNotice that even if the underlying shocks are Gaussian, the limiting distribution of the endoge-
nous variables, in general, will not be Gaussian at orders of approximation larger than one.

14



Proof The proof follows directly from the the fact that the limit of the product of
two vector-valued functions is equal to the product of the limit of these functions
(Apostol, 1967, vol. II, p. 248). The division by n! ensures that the limit converges

. . ) a’
even for n — oo, since for any finite number a, lim,,_, = 0. |
n!

Finally we are ready to state the following proposition:

Proposition 1 Assume that the n-th order approximation of system (1) both by the
method of series expansion and by the method of “pruning”, generates n systems of
difference equations — one per order of approximation up to n — that can be written in
the form of equation (20). Then, the dynamics of the endogenous variables approzi-
mated to n-th order is globally asymptotically stable if the eigenvalues of the matriz
®; lie within the unit circle, Vj.

Proof On the basis of Lemma 1 and of Lemma 2, provided that the first order
system is asymptotically stable, we know that the n-th order tensor product of the
first-order solution vector divided by the n-th order factorial (n!) has a well defined
limit as ¢ — oo, for any positive integer n. Since the forcing process of the second
order solution is a linear transformation of second-order tensor products of first-order
solutions, we have proved that the second order solution is asymptotically stable as
long as the eigenvalues of the 5 matrix lie within the unit circle. If this is the case,
the n-th order tensor product of the second-order solution vector divided by the n-th
order factorial (n!) has a well defined limit as t — oo, for any positive integer n.
Since the forcing process of the third order solution is a linear transformation of
third-order tensor products of first- and second-order solutions, we have proved that
the second order solution is asymptotically stable as long as the eigenvalues of the

®3 matrix lie within the unit circle. And soon .... |}

By inspecting equations (17) to (19) we see that ®; = hy Vj. So the whole

approximated system is asymptotically stable as long as the first order system is

15



asymptotically stable, i.e. as long as |hj| < 1. On the contrary, the stability property
of equation (15) is governed by the eigenvalue A, which, in general, is different
from hg. In particular, there is no guarantee that |A] < 1, so that the system
could be unstable even locally, despite the original system being locally saddle-path
stable.?? Furthermore, the “pruned” solution implies that the stability properties of
the dynamical system are affected by the variance of the exogenous shocks: this is
not the case for the SE approach.

Appendix C shows that the discrepancy between simple “pruning” and the series-
expansion method is larger the higher the order of approximation: while at third
order it is the matrix multiplying the linear terms that generates the discrepancy, at
fourth order an additional source of discrepancy is generated by the matrix multi-

plying square terms, and so on.

4 An example: The neoclassical growth model

In this section we apply the method of series expansion to the Neo-Classical Growth
Model. This model has also been used by Judd (1998), Lombardo and Sutherland
(2007) and Schmitt-Grohé and Uribe (2004) to show how to apply their approxi-
mation techniques. While here we present only a second-order approximation, in
Appendix C we extend the approximation to higher orders. Furthermore, there we
show how to use existing software (i.e. Aruoba et al., 2006) to solve this model to
any order of approximation. This section also illustrates that the solution can be
found through direct factorization as opposed to postulating unknown solutions as
in equations (12) and (13). A point similar to that made by Klein (2000) in rela-

tion to the solution of linearized rational expectation models and by Lombardo and

20 Ruge-Murcia (2010) has documented that simple “pruning” could be insufficient to ensure
stability to third order.

16



Sutherland (2007) in relation to second order approximations.

Consider the following rational expectation model, consisting of an Euler con-
sumption (c) equation, a capital (k) accumulation equation and an i.i.d. process for
the (log) of the productivity shock (¢) with zero mean and variance normalized to

one.?! That is

¢ = afE [e” ki e ] (21)

kt+1 = QUEtk? — Cy, (22)

where 0 > 0, a € (0,1), v >0, B € (0,1) and E; (g441) = 0.

Notice that if 0 = 0, the model is deterministic and has a closed form solution
ko = (@B)T= and ¢; = (aB)T= — (aB)T= .

The first step of the series expansion method consists of assuming that the solu-

tion can be expressed in terms of a series expansion
1 2
R co+ acg )+ 020,2 ) (23)

and

ke ~ ko + ok + 0%k, (24)

Take a second order expansion of equations (21) and (22) around ¢ = 0, dropping
the expectation operator for notational convenience (implicitly associated to t + 1

variables), i.e.

21For the approximation to retain its asymptotic properties, the distribution of the shock must
be such that the system remains within its radius of convergence. Here we leave this issue in the
background referring the reader to Jin and Judd (2002) and Kim et al. (2008) for a discussion of
this issue.

17



O (%) = veg ' Th e + aBkST ey (ot 4 kgt (o — 1) ki — e téa
1 . 1 . -
-5 (v+ 1) % + §aﬁk0 leg? [azng +y(v+ 1) %G + (a—1) (o —2) ko °k

+a5k8{_lcaﬁ/ |:k50_1 (O{ — 1) U€t+1kt+1 — 70510€t+16t+1 - (O{ — ].) k(]_lcalét+1kt+1

and

@) (€3> = —]%t_:,_l + k‘SCO'Et + Oék'g_ll%t — ét +

~ 1 1 ~
cakd ek, + §k8‘02€f + 5 (o — 1) kS 2k

Y
Define z, = [ét kt] . Then can rewrite in matrix notation

@ (€3> = A2zt+1 + Alzt + O'Co<€t +

—i—BthH + Blwt + O'DQZH_léTH_l + O'Dlztéft + 0'2016’? +U2028%+1, (25)

where??
/!
wy = vech (z2]) = [ ¢? <étkt> k? ]
and where the matrices of coefficients are described in Appendix B.

We can also rewrite our assumption concerning the solution in matrix notation??

2 = UZS) + 022152). (26)
Notice that
2z = 0222V 4 042D 4 3,0y 53,2 (27)

22We are using the vech operator to eliminate repeated terms in kronecker products of identical
vectors. For approximations of order larger than 2, appropriate elimination matrices can be applied
to eliminate repeated terms in n-th tensor powers.

Z3Notice that we have reformulated the assumption concerning the solution: now we are expanding
in deviations from the steady-state.

18

5 7
t+1




Since we are interested in solution up to order 2, we must drop the higher terms in

.24 Therefore

oy, = o*vech (zﬁl)zﬁl)v .

Replacing equations (26) and (27) into (25) we obtain

A (crzt(_lk)1 + Uzzt(ﬂ) + A <azt(1) + 02zt(2)> + 0Cpe; +
+Bgazwt+1 + Bla2wt +
oD (az,fl) + U2z§2)) e+ oD, (az&)l + UQZﬁ)l) €41

+0°Che} + 0°Cocyy = 0.
By equating like powers we have
o: Agzﬁ)l + Alz§1) +Coe; =0 (28)
and

0'2 . AQZgi)l + Alz,fz) + ngt+1 + Blwt +

D2 Ve 4+ DizVe + Coe? + Cie? = 0. (29)

Both these equations can be solved (recursively) using any solution technique for lin-
ear rational expectation models.?” Alternatively we can use the approach suggested
by Jin and Judd (2002) and followed by most of the related literature. In the next
section and in Appendix C we follow the latter approach.

The final solution is obtained by solving for zlfl) from (28) and for z§2) from (29)

and replacing the solutions into (26).

24 As explained in the previous section, these higher order terms will match terms in the approx-
imation residual.

ZFor example Christiano (2002), King and Watson (2002), Klein (2000), Uhlig (1999) etc..
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5 Computer codes

As argued above, it is possible to apply the series expansion method by using a
number of existing alternative computer codes, developed to solve DSGE models by
perturbation methods. The previous section shows indeed that we need a software
able to solve for the derivatives of the ¢ (-) and h(-) functions. In particular, in
Appendix C we use a Mathematica computer code, written by Aruoba et al. (2006),
that generates the derivatives of these functions for the neoclassical growth model.

We then use Matlab to construct and compare the NP and the SE solutions.?®

6 Conclusion

We have shown that the series expansion method to solve non-linear equations dis-
cussed in the perturbation literature can be applied to DSGE models to obtain
higher-order solutions that are recursively linear, in a very precise way. We have
proved that this type recursive linearity has the advantage of avoiding spurious di-
verging dynamics. We have also proved that the recursive linearity generated by
naive “pruning”’; does not ensure local asymptotic stability, even if the true model is
locally asymptotically stable. In general, “pruning” and the series expansion method
do not deliver the same approximation to the policy function.

Our paper shows that perturbation methods need not be “problematic” as some
recent literature has claimed. Obviously, there are limitations to the accuracy of the
approximation that low-order perturbations can achieve for particular models. And,

in some cases, the radius of convergence of the series expansion could be so small

Z6PerturbationATM written by Anderson et al. (2006) could also be used to generate the deriva-
tives of the ¢ (-) and h(-) functions. Dynare (version 4.2) and Dynare++, at present, provide a
solution in a form similar to equation (14), so that it is not directly possible to use it with the
method of series expansion.
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to make such an approach futile. Nevertheless, perturbation methods remain a very
efficient way of analyzing a wide range of economic models (e.g. Kollmann et al.,
2011a,b), and in some simple cases even analytically (e.g. Devereux and Sutherland,
2008). Furthermore, very often perturbation methods remain the only viable solution
when a large number of state variables is involved.

By way of example, we have shown that, for an analytic function, the series-
expansion method converges to the true dynamic path. We have shown that the
alternative perturbation method that delivers non-linear dynamic equation shares
this property but has the disadvantage of potentially producing exploding paths. In
principle, exploding paths can be eliminated in simulation (as discussed in the liter-
ature) delivering bounded and converging approximations. Whether this approach
or the one that we advocate is to be preferred will likely depend on the particular
problem.

We have shown how to apply the series expansion method to the neoclassical
growth model, solving it to fifth order of approximation using trivial extensions of

existing computer codes.

Appendix
A Convergence of the series expansion

In order to illustrate the convergence properties of the of the series expansion method,
in this Appendix we use a very simple non-linear dynamic model, similar to the one
used by den Haan and de Wind (2010). We don’t compare our results with “pruning”
since in our view the way to apply “pruning” to higher orders of approximation is to

apply the series expansion method proposed here.
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Consider the simple model

Ui = YY1 + Erexp (ay,_1 (Boeiyr + 1)) + oey; (30)

where v < 1,a < 0, 8 > 0, and where &; is white noise. This equation does not
have a linear MA representation. Nevertheless it has a recursive structure so that
we can easily simulate it and obtain the exact path of the variable g, for given draws
of the innovation. Moreover, we can apply perturbation methods and compare the
simulation results with the exact solution.

Since g; is Gaussian, we know that

1
Eexp (o1 (Bocitr + 1)) = exp (ayt—l + 2 (6202%2—1)) .

Therefore, for § # 0 the stochastic-steady state differs from the non-stochastic one.
We allow for the possibility of a stochastic steady state as this is typically the case
in DSGE models and it is a source of distortion of approximations centered around
the non-stochastic steady state (see den Haan and de Wind, 2010).

We consider three alternative perturbation procedures for different orders of ap-
proximation and up to order ten: i) the series expansion proposed here (SE); ii)
the one used for example by Fernandez-Villaverde and Rubio-Ramirez (2006) among
others (NP) and iii) the latter method adjusted by dropping draws that generate
divergence over the next ten periods (DD).?” We take 500 draws and retain only the

last 251.

?In essence in each period of the simulation we check if the series without further shocks, after
ten periods displays values that are larger than the current one. If this is the case, we replace the
current innovation with zero. To make the comparison sensible, we use the resulting series of actual
draws also to compute the true value to which we compare this particular case. In practice we
might have/want to take the distribution of the shocks as given. In this case the performance of
DD would be worse since the true endogenous process would be subject to a different set of shocks.
This is not necessarily the only way to generate stability by selecting draws. In essence we are
selecting where we want to approximate the true function: a fully legitimate approach.
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Table 1 considers the case in which the stochastic and non-stochastic steady
state are identical (8 = 0), as well as the case in which the two steady states differ
(B =0.1).2 We set « = —1 and v = 0.8, while we vary the magnitude of the
perturbation parameter (o = 1.2,1,0.9,0.6). The seed is reset to the same value at
each order of approximation.

Consider the case of f = 0in Table 1. In the first set of approximations, i.e. with
a larger perturbation, the SE method shows clear convergence and the percentage
mean error is relatively small at all orders of approximation. Convergence — not nec-
essarily monotonic — is what theory predicts for analytic functions. The NP displays
convergence, although for some (low) orders of magnitude it generates explosive dy-
namics. The DD method shows to be a decent remedy to this problem, as suggested
by Aruoba et al. (2006). Although it does not explode (by design) it generates very
poor approximations at low orders of approximation. Progressively reducing the size
of the perturbation shows that all alternative approximations improve (as predicted
by theory for asymptotic expansions). The NP method tends to explode at lower
orders of approximation, although in an unpredictable way. This is to be expected
since the approximation error is decreasing in the order of approximation. Since the
true function does not explode, also the approximation, eventually, will not explode.
Both the NP and DD method seem to be worse than the SE method for relatively low
orders of approximation while they generate better approximations for high orders.

Allowing for a stochastic steady state makes the approximation around the non-
stochastic steady state more distorted, as can be seen from the Table. den Haan

and de Wind (2010) suggest to take as approximation point the stochastic steady

ZFor sufficiently large values of beta and sufficiently large initial conditions, the true process
diverges. We select beta and the standard deviation of the innovations so to be well within the
stable range.
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state. Nevertheless, Caldara et al. (2009) find no improvement in correcting the
approximation in this way. The results reported in Table 1 for g = 0.1 are computed
approximating around the (known) stochastic steady state. In general this point is
unknown so that iterative procedures need to be used.?” Approximating around the
non-stochastic steady state, in our case produces much less accurate approximations.

In this simple backward-looking system it would be straightforward to extend
the pruning procedure obtaining exactly our solution. It would amount to impose
that the cross-product terms be constructed using first-order approximations, as ex-
plained earlier. den Haan and de Wind (2010, p. 21), in describing this procedure,
make the coefficient on the linear term of the approximation depend on the order of
approximation. According to the series expansion method, this coefficient is always
the same at all orders of approximation. This discrepancy shows that not all inter-
pretations of “pruning” at higher order of approximation coincide with the method

proposed here.

B Matrices of coefficients of second order-approximation

These are the matrices of coefficients of the second order approximation of the neo-

classical growth model in levels.

e —yaBki e aB(a— 1) kS 2y a1 yegTh 0
2 — ) 1 — )
0 ~1 ~1  ak§!
B N R I TN S Py
0 — ) 1— 5 9 2 — 45 )
ke 2 Ky 2 0

29Gee Evers (2010) and Juillard and Kamenik (2005).
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B _ 1| v(y+ D aBk™ ey =208k 2" 'y (a—1) (a—1) (a0 —2) afki3cy”
= =
2 0 0 0
5L —y(v+ 1) 0 0
2 0 0 ala—1)kg?
—yafkSreg " Bk (a0 — 1) 0 0
D2 = ’ Dl =
0 0 0 ake!

C Fifth order expansion of the neoclassical growth
model using Aruoba et al. (2006)

Aruoba et al. (2006) (AFVRR) have written a Mathematica code to find the n-th
partial derivatives of the g (-) and h (-) functions that can be used for any of the per-
turbation methods discussed in this paper. We use their file perturbation_logs.nb,
and modify it to solve the neoclassical growth model described in our paper.*®

The file perturbation_logs.nb defines scalar-valued g () and A (-) functions for
each of the endogenous jump and state variables, whereas the exogenous shock is
assumed to follow an AR(1) process in logs (with normally distributed innovation).

In particular define

¢t = g (k, 2, 0) (31)

k=g (kt, Zts U) (32)

30Their original file is set-up to solve a neoclassical growth model with endogenous labor. There-
fore, our amendment is minimal. It is nevertheless straightforward to modify their code in order to
solve any DSGE model.
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and

241 = P2+ oNE (33)

where z; = log (A;).

We follow Aruoba et al. (2006), Schmitt-Grohé and Uribe (2004) and Lombardo
and Sutherland (2007), among others, and solve numerically our model in logs of
consumption and capital. Furthermore, for the sake of comparison, we use the
same parameterization used by Schmitt-Grohé and Uribe (2004) and Lombardo and
Sutherland (2007): ie. p=1,6=1, 5=0.95 o« =0.3 and v = 2.

Table 2 shows how the different partial derivatives are associated to the state
variables evaluated at different orders of approximation according to the series ex-
pansion method. This Table complements the result shown in the text concerning
the discrepancy between the series-expansion method and “pruning”. One can see
that according to the NP approach the term involving k? would be Bk?, where
B = [gkk + kko + Grkoo|- According to the “pruning” approach, in order to generate
a recursively linear system it would suffice to replace k2 with the product of terms
of lower order. The series expansion method that we advocate, on the contrary,
suggests how the component of the coefficient B should precisely be assigned to the
different terms.

After generating the partial derivatives of the ¢ (-) and h (-) functions with per-
turbation_logs.nb we save them using save_output_perturbation.nb. Finally
we run simulate_perturbation.m and simulate_perturbation_AFVRR.m in Mat-
lab. These codes retrieve the saved partial derivatives, constructs the appropriate
vectors of (cross-products of) variables and, for given initial conditions and exoge-

nous process, generates time series at the given order of approximation, using the

26



series-expansion method and the NP method respectively.!

Table 3 shows the response of capital and of consumption (in deviation from the
stochastic steady state) to an unexpected increase in technology by 100%.%* This
example confirms the result discussed in Appendix A: as long as the NP solution
is well behaved (i.e. does not diverge) both perturbation approaches deliver very
similar results. Notice that in the first period both approaches generate the same
response. This is the case only if we start from the non-stochastic steady state, as

we do in this example.

31The Mathematica code perturbation_logs.nb is available at http://economics.sas.upenn.
edu/"jesusfv/companion.htm. The other codes mentioned here can be downloaded from https://
sites.google.com /site /giovannilombardohomepage

32This is not exactly an impulse response function as we do not subtract the expected value of
the variable.
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Table 1: Absolute percent mean error.

6=0 £=0.1
Order SE NP DD SE NP DD
oc=1.2 oc=1.2
2 11.0066 exploding 24.419 11.0725 exploding 28.1806
3 7.89805 16.7974  16.7974 7.9724 16.7273  16.7273
4 4.5704  exploding 19.1931 4.66354 exploding 18.1139
6 3.45446 exploding 4.64201 3.41486 exploding 4.60333
8 2.93758  3.91734  3.91734 2.90604 3.9317 3.9317
10 2.8259 0.58361  0.58361 2.78598  0.72189  0.72189
c=1 oc=1
2 6.01543 exploding 26.0249 6.01681 exploding 25.4932
3 3.78238  8.36944  8.36944 3.7959 8.30864  8.30864
4 1.84586 exploding 6.93115 1.86158 exploding 6.87524
6 0.92493 1.96516  1.96516 0.92178 1.99822  1.99822
8 0.55499  0.26341  0.26341 0.56662  0.33433  0.33433
10 0.39594  0.02984  0.02984 0.4183 0.10741  0.10741
c=20.9 c=20.9
2 4.24978 exploding 14.5092 4.24527 exploding 14.3825
3 2.45879  5.51597  5.51597 2.46273  5.46996  5.46996
4 1.08499 7.0103 3.21948 1.0907 6.96278  3.20739
6 0.43473  0.64626  0.64626 0.44383  0.68091  0.68091
8 0.21539 0.0733 0.0733 0.23516  0.12112  0.12112
10 0.12601  0.00646  0.00646 0.15287 0.05923  0.05923
oc=20.6 oc=20.6
2 1.14357  3.74767  3.74767 1.1411 3.72673  3.72673
3 0.4691 1.05055  1.05055 0.46979  1.04046  1.04046
4 0.14359  0.31988  0.31988 0.14377 0.31195  0.31195
6 0.02413  0.01979  0.01979 0.03402 0.0296 0.0296
8 0.00574  0.00088  0.00088 0.02059  0.01743  0.01743
10 0.00147 3e-05 3e-05 0.01778 0.0173 0.0173
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Table 2: Terms of higher order series-expansion

Coefficient\ orders (1) (2) (3) (4)

i kM k2 k®) k®)
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s 0 0 KA KO0
Ghzo 0 0 k(D (D) K@ 50
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Table 2: Terms of higher order series-expansion (contin-

ued)

Coefficient\ orders (1)
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(4)

Gkkkk 0 0 0 k224
Gkkkz 0 0 0 k912993
Gkkko 0 0 0 k%;i
Gkkzz 0 0 0 k(nif(n2
Gkkzo 0 0 0 ELB;EQZ
kkoo 0 0 0 Sk
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- 0 0 0 k) g0
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000 0 0 0 £
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Table 3: Response to 100% technology shock: Ratio of Aruoba et al. (2006) to Series
Expansion

Order\ period 1 2 3 4
Capital
(1) 1 1 1 1
(2) 1 0.99766  0.9959 0.99564
(3) 1 0.99775  0.9912 0.98365
(4) 1 1.0016 1.0034 1.0042
(5) 1 1.0004 1.0009 1.0015
Consumption
(1) 1 1 1 1
(2) 1 0.99488 0.98675  0.9757
(3) 1 0.99596 0.97217 0.90261
(4) 1 1.0033 1.0127  1.0427
(5) 1 1.0007 1.0033 1.0143
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