Foundations for the New Keynesian Model

Lawrence J. Christiano

Objective

- Describe a very simple model economy with no monetary frictions.
 - Describe its properties.
 - 'markets work well'

- Modify the model to include price setting frictions.
 - Now markets won't necessarily work so well, unless monetary policy is good.

Model

Household preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right\},\,$$

$$\tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}, \ \varepsilon_t^{\tau} \sim iidN(0, \sigma_{\varepsilon}^2)$$

Production

• Final output requires lots of intermediate inputs:

$$Y_{t} = \left[\int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}}, \ \varepsilon > 1$$

Production of intermediate inputs:

$$Y_{i,t} = e^{a_t} N_{i,t}, \ \Delta a_t = \rho \Delta a_{t-1} + \varepsilon_t^a, \ \varepsilon_t^a \sim iidN(0, \sigma_a^2)$$

Constraint on allocation of labor:

$$\int_0^1 N_{it} di = N_t$$

Efficient Allocation of Total Labor

• Suppose total labor, N_t , is fixed.

• What is the best way to allocate N_t among the various activities, $0 \le i \le 1$?

Answer:

allocate labor equally across all the activities

$$N_{it} = N_t$$
, all i

Suppose Labor Not Allocated Equally

Example:

$$N_{it} = \begin{cases} 2\alpha N_t & i \in \left[0, \frac{1}{2}\right] \\ 2(1-\alpha)N_t & i \in \left[\frac{1}{2}, 1\right] \end{cases}, 0 \le \alpha \le 1.$$

 Note that this is a particular distribution of labor across activities:

$$\int_0^1 N_{it} di = \frac{1}{2} 2\alpha N_t + \frac{1}{2} 2(1-\alpha)N_t = N_t$$

Labor Not Allocated Equally, cnt'd

$$Y_{t} = \left[\int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

$$= \left[\int_{0}^{\frac{1}{2}} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

$$= e^{a_{t}} \left[\int_{0}^{\frac{1}{2}} N_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} N_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

$$= e^{a_{t}} \left[\int_{0}^{\frac{1}{2}} (2\alpha N_{t})^{\frac{\varepsilon-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} (2(1-\alpha)N_{t})^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

$$= e^{a_{t}} N_{t} \left[\int_{0}^{\frac{1}{2}} (2\alpha)^{\frac{\varepsilon-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} (2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

$$= e^{a_{t}} N_{t} \left[\frac{1}{2} (2\alpha)^{\frac{\varepsilon-1}{\varepsilon}} + \frac{1}{2} (2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

$$= e^{a_{t}} N_{t} f(\alpha)$$

$$f(\alpha) = \left[\frac{1}{2}(2\alpha)^{\frac{\varepsilon-1}{\varepsilon}} + \frac{1}{2}(2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

Economy with Efficient N Allocation

Efficiency dictates

$$N_{it} = N_t$$
 all i

So, with efficient production:

$$Y_t = e^{a_t} N_t$$

Resource constraint:

$$C_t \leq Y_t$$

• Preferences:

$$E_0 \sum_{t=0}^{\infty} \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right), \ \tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}, \ \varepsilon_t^{\tau} \sim iid,$$

Efficient Determination of Labor

• Lagrangian:

$$\max_{C_t,N_t} E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \underbrace{\frac{-\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi}}{u(C_t,N_t,\tau_t)}}_{= t+\varphi} + \lambda_t [e^{a_t}N_t - C_t] \right\}$$

• First order conditions:

$$u_c(C_t, N_t, \tau_t) = \lambda_t, \ u_n(C_t, N_t, \tau_t) + \lambda_t e^{a_t} = 0$$

or:

$$u_{n,t} + u_{c,t}e^{a_t} = 0$$

marginal cost of labor in consumption units= $\frac{-\frac{du}{dN_t}}{\frac{du}{dC_t}} = \frac{dC_t}{dN_t}$

$$\frac{-u_{n,t}}{u_{c,t}} = e^{a_t}$$
marginal product of labor
$$= e^{a_t}$$

Efficient Determination of Labor, cont'd

Solving the fonc's:

$$\frac{-u_{n,t}}{u_{c,t}} = e^{a_t}$$

$$C_t \exp(\tau_t) N_t^{\varphi} = e^{a_t}$$

$$e^{a_t} N_t \exp(\tau_t) N_t^{\varphi} = e^{a_t}$$

$$N_t = \exp\left(\frac{-\tau_t}{1+\varphi}\right)$$

$$C_t = \exp\left(a_t - \frac{\tau_t}{1+\varphi}\right)$$

- Note:
 - Labor responds to preference shock, not to tech shock

Response to a Jump in a

Decentralizing the Model

 Give households budget constraints and place them in markets.

 Give the production functions to firms and suppose that they seek to maximize profits.

Households

Solve:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right\},\,$$

Subject to:

bonds purchases in
$$t$$
 wage rate profits (real) interest on bonds $C_t + \overbrace{B_{t+1}} = \underbrace{w_t} N_t + \overbrace{\pi_t} + \underbrace{r_{t-1}} = B_t$

First order conditions:

 $\frac{-u_{n,t}}{u_{c,t}} = C_t \exp(\tau_t) N_t^{\varphi} = w_t$ 'marginal cost of working equals marginal benefit' $u_{c,t} = \beta E_t u_{c,t+1} r_t$ 'marginal cost of saving equals marginal benefit'

Final Good Firms

• Final good firms buy $Y_{i,t}$, $i \in (0,1)$, at given prices, $P_{i,t}$, to maximize profits:

$$Y_t - \int_0^1 P_{i,t} Y_{i,t} di$$

Subject to

$$Y_{t} = \left[\int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• Fonc's:

$$P_{i,t} = \left(\frac{Y_t}{Y_{i,t}}\right)^{\frac{1}{\varepsilon}}$$

$$\to Y_{i,t} = P_{i,t}^{-\varepsilon} Y_t, \ 1 = \int_0^1 P_{i,t}^{1-\varepsilon} di$$

Intermediate Good Firms

• For each $Y_{i,t}$ there is a single producer who is a monopolist in the product market and hires labor, $N_{i,t}$ in competitive labor markets.

Marginal cost of production:

(real) marginal cost=
$$s_t = \frac{\frac{dCost}{dwor \text{ker}}}{\frac{doutput}{dwor \text{ker}}} = \frac{\left(1 - \sqrt{v}\right)w_t}{\exp(a_t)}$$

 Subsidy will be required to ensure markets work efficiently.

Intermediate Good Firms

ith Intermediate Good Firm

- Problem: $\max_{N_{it}} P_{it} Y_{it} s_t Y_{it}$
- Subject to demand for $Y_{i,t}$: $Y_{i,t} = P_{i,t}^{-\varepsilon} Y_t$
- Problem:

$$\max_{N_{it}} P_{it} P_{i,t}^{-\varepsilon} Y_t - s_t P_{i,t}^{-\varepsilon} Y_t$$

fonc:
$$(1-\varepsilon)P_{it}^{-\varepsilon}Y_t + \varepsilon s_t P_{i,t}^{-\varepsilon-1}Y_t = 0$$

$$P_{it} = \frac{\varepsilon}{\varepsilon - 1} s_t$$
 'price is markup over marginal cost'

 Note: all prices are the same, so resources allocated efficiently across intermediate good firms.

$$P_{i,t} = P_{j,t} = 1$$
, because $1 = \int_{0}^{1} P_{i,t}^{1-\varepsilon} di$

Equilibrium

Pulling things together:

$$1 = \frac{\varepsilon}{\varepsilon - 1} s_t = \frac{\varepsilon}{\varepsilon - 1} \frac{(1 - v)w_t}{\exp(a_t)}$$
household fonc
$$\stackrel{\varepsilon}{=} \frac{\varepsilon(1 - v)}{\varepsilon - 1} \frac{\frac{-u_{n,t}}{u_{c,t}}}{\exp(a_t)}$$
if
$$\frac{\varepsilon(1 - v)}{\varepsilon - 1} \frac{\frac{-u_{n,t}}{u_{c,t}}}{\exp(a_t)}$$
.
$$\stackrel{\varepsilon}{=} \frac{u_{n,t}}{\exp(a_t)}$$
.

• If proper subsidy is provided to monopolists, employment is efficient:

if
$$1 - v = \frac{\varepsilon - 1}{\varepsilon}$$
, then $\frac{-u_{n,t}}{u_{c,t}} = \exp(a_t)$

Equilibrium Allocations

With efficient subsidy,

functional form
$$\frac{-u_{n,t}}{u_{c,t}} \stackrel{\text{functional form}}{=} C_t \exp(\tau_t) N_t^{\varphi} \stackrel{\text{resource constraint}}{=} \exp(a_t) \exp(\tau_t) N_t^{1+\varphi} = \exp(a_t)$$

$$\rightarrow N_t = \exp\left(\frac{-\tau_t}{1+\varphi}\right)$$

$$C_t = e^{a_t} N_t = \exp\left(a_t - \frac{\tau_t}{1+\varphi}\right)$$

Bond market clearing implies:

$$B_t = 0$$
 always

Interest Rate in Equilibrium

 Interest rate backed out of household intertemporal Euler equation:

$$u_{c,t} = \beta E_t u_{c,t+1} r_t \rightarrow \frac{1}{C_t} = \beta E_t \frac{1}{C_{t+1}} r_t$$

$$\Rightarrow r_t = \frac{1}{\beta E_t \frac{C_t}{C_{t+1}}} = \frac{1}{\beta E_t \exp[c_t - c_{t+1}]} = \frac{1}{\beta E_t \exp[a_t - a_{t+1} - \frac{\tau_t - \tau_{t+1}}{1 + \varphi}]}$$

$$= \frac{1}{\beta \exp\left[E_t\left(-\Delta a_{t+1} - \frac{\tau_t - \tau_{t+1}}{1+\varphi}\right) + \frac{1}{2}V\right]}, V_t = \sigma_a^2 + \left(\frac{1}{1+\varphi}\right)^2 \sigma_\lambda^2$$

$$\log r_t = -\log \beta + E_t \left(\underbrace{\Delta a_{t+1} - \underbrace{\tau_{t+1} - \tau_t}}^{c_{t+1} - c_t} \right) + \frac{1}{2} V$$

Dynamic Properties of the Model

Key Features of Equilibrium Allocations

- Allocations efficient (as long as monopoly power neutralized)
- Employment does not respond to technology
 - Improvement in technology raises marginal product of labor and marginal cost of labor by same amount.
- First best consumption not a function of intertemporal considerations
 - Discount rate irrelevant.
 - Anticipated future values of shocks irrelevant.
- Natural rate of interest steers consumption and employment towards their natural levels.

Introducing Price Setting Frictions (Clarida-Gali-Gertler Model)

Households maximize:

$$E_0 \sum_{t=0}^{\infty} \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right), \ \tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}, \ \varepsilon_t^{\tau} \sim iid,$$

Subject to:

$$P_t C_t + B_{t+1} \leq W_t N_t + R_{t-1} B_t + T_t$$

Intratemporal first order condition:

$$C_t \exp(\tau_t) N_t^{\varphi} = \frac{W_t}{P_t}$$

Household Intertemporal FONC

Condition:

$$1 = \beta E_t \frac{u_{c,t+1}}{u_{c,t}} \frac{R_t}{1 + \pi_{t+1}}$$

- or

$$1 = \beta E_{t} \frac{C_{t}}{C_{t+1}} \frac{R_{t}}{1 + \pi_{t+1}}$$

$$= \beta E_{t} \exp[\log(R_{t}) - \log(1 + \pi_{t+1}) - \Delta c_{t+1}]$$

$$\simeq \beta \exp[\log(R_{t}) - E_{t}\pi_{t+1} - E_{t}\Delta c_{t+1}], c_{t} \equiv \log(C_{t})$$

– take log of both sides:

$$0 = \log(\beta) + r_t - E_t \pi_{t+1} - E_t \Delta c_{t+1}, \ r_t = \log(R_t)$$

$$- \text{ or }$$

$$c_t = -\log(\beta) - [r_t - E_t \pi_{t+1}] + c_{t+1}$$

Final Good Firms

- Buy $Y_{i,t}$, $i \in [0,1]$ at prices $P_{i,t}$ and sell Y_t for P_t
- Take all prices as given (competitive)
- Profits:

$$P_t Y_t - \int_0^1 P_{i,t} Y_{i,t} di$$

Production function:

$$Y_{t} = \left[\int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}} di, \ \varepsilon > 1,$$

First order condition:

$$Y_{i,t} = Y_t \left(\frac{P_{i,t}}{P_t}\right)^{-\varepsilon} \rightarrow P_t = \left(\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}}$$

Intermediate Good Firms

- Each ith good produced by a single monopoly producer.
- Demand curve:

$$Y_{i,t} = Y_t \left(\frac{P_{i,t}}{P_t}\right)^{-\varepsilon}$$

Technology:

$$Y_{i,t} = \exp(a_t)N_{i,t}, \ \Delta a_t = \rho \Delta a_{t-1} + \varepsilon_t^a,$$

Calvo Price-setting Friction

$$P_{i,t} = \begin{cases} \tilde{P}_t & \text{with probability } 1 - \theta \\ P_{i,t} & \text{with probability } \theta \end{cases}$$

Marginal Cost

real marginal cost =
$$s_t = \frac{\frac{dCost}{dwor \text{ker}}}{\frac{dOutput}{dwor \text{ker}}} = \frac{(1-v)W_t/P_t}{\exp(a_t)}$$

$$= \frac{\frac{\varepsilon-1}{\varepsilon} \text{ in efficient setting}}{(1-v)} \frac{C_t \exp(\tau_t) N_t^{\varphi}}{\exp(a_t)}$$

The Intermediate Firm's Decisions

• ith firm is required to satisfy whatever demand shows up at its posted price.

 It's only real decision is to adjust price whenever the opportunity arises.

Intermediate Good Firm

Present discounted value of firm profits:

 $E_t \sum_{j=0}^{\infty} \beta^j \qquad \qquad \underbrace{v_{t+j}}^{\text{profits sent to household}}_{\text{period } t+j \text{ profits sent to household}}_{\text{period } t+j \text{ profits sent to household}}$

• Each of the $1-\theta$ firms that can optimize price choose \tilde{P}_t to optimize

in selecting price, firm only cares about future states in which it can't reoptimize

$$E_t \sum_{i=0}^{\infty} \beta^j \qquad \qquad \widehat{\theta^j} \qquad \qquad v_{t+j} [\tilde{P}_t Y_{i,t+j} - P_{t+j} S_{t+j} Y_{i,t+j}].$$

Intermediate Good Firm Problem

Substitute out the demand curve:

$$egin{aligned} E_t \sum_{j=0}^{\infty} (eta heta)^j v_{t+j} [ilde{P}_t Y_{i,t+j} - P_{t+j} S_{t+j} Y_{i,t+j}] \ &= E_t \sum_{j=0}^{\infty} (eta heta)^j v_{t+j} Y_{t+j} P_{t+j}^{arepsilon} [ilde{P}_t^{1-arepsilon} - P_{t+j} S_{t+j} ilde{P}_t^{-arepsilon}]. \end{aligned}$$

• Differentiate with respect to \tilde{P}_t :

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon} [(1-\varepsilon)(\tilde{P}_t)^{-\varepsilon} + \varepsilon P_{t+j} s_{t+j} \tilde{P}_t^{-\varepsilon-1}] = 0,$$

or

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon+1} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0.$$

Intermediate Good Firm Problem

Objective:

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j \frac{u'(C_{t+j})}{P_{t+j}} Y_{t+j} P_{t+j}^{\varepsilon+1} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0.$$

$$\to E_t \sum_{j=0}^{\infty} (\beta \theta)^j P_{t+j}^{\varepsilon} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0.$$

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j (X_{t,j})^{-\varepsilon} \left[\tilde{p}_t X_{t,j} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0,$$

$$\tilde{p}_{t} = \frac{\tilde{P}_{t}}{P_{t}}, X_{t,j} = \begin{cases}
\frac{1}{\bar{\pi}_{t+j}\bar{\pi}_{t+j-1}...\bar{\pi}_{t+1}}, j \geq 1 \\
1, j = 0.
\end{cases}, X_{t,j} = X_{t+1,j-1}\frac{1}{\bar{\pi}_{t+1}}, j > 0$$

Intermediate Good Firm Problem

• Want \tilde{p}_t in:

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j (X_{t,j})^{-\varepsilon} \left[\tilde{p}_t X_{t,j} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0$$

• Solution:

$$\tilde{p}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} S_{t+j}}{E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} (X_{t,j})^{1-\varepsilon}} = \frac{K_{t}}{F_{t}}$$

• But, still need expressions for K_t , F_t .

$$K_{t} = E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j}$$

$$= \frac{\varepsilon}{\varepsilon - 1} s_{t} + \beta \theta E_{t} \sum_{j=1}^{\infty} (\beta \theta)^{j-1} \left(\frac{1}{\overline{\pi}_{t+1}} X_{t+1,j-1} \right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j}$$

$$= \frac{\varepsilon}{\varepsilon - 1} s_{t} + \beta \theta E_{t} \left(\frac{1}{\overline{\pi}_{t+1}} \right)^{-\varepsilon} \sum_{j=0}^{\infty} (\beta \theta)^{j} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j}$$

$$= \frac{\varepsilon}{\varepsilon - 1} s_{t} + \beta \theta E_{t} \left(\frac{1}{\overline{\pi}_{t+1}} \right)^{-\varepsilon} \sum_{j=0}^{\infty} (\beta \theta)^{j} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j}$$

$$= \frac{\varepsilon}{\varepsilon - 1} s_{t} + \beta \theta E_{t} \left(\frac{1}{\overline{\pi}_{t+1}} \right)^{-\varepsilon} E_{t+1} \sum_{j=0}^{\infty} (\beta \theta)^{j} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j}$$

$$= \frac{\varepsilon}{\varepsilon - 1} s_{t} + \beta \theta E_{t} \left(\frac{1}{\overline{\pi}_{t+1}} \right)^{-\varepsilon} K_{t+1}$$

From previous slide:

$$K_t = \frac{\varepsilon}{\varepsilon - 1} s_t + \beta \theta E_t \left(\frac{1}{\bar{\pi}_{t+1}} \right)^{-\varepsilon} K_{t+1}.$$

Substituting out for marginal cost:

$$\frac{\varepsilon}{\varepsilon - 1} s_t = \frac{\varepsilon}{\varepsilon - 1} (1 - v) \frac{\widetilde{W_t/P_t}}{\frac{d\text{Output/dlabor}}{d}}$$

$$= \frac{\frac{W_t}{P_t} \text{ by household optimization}}{\frac{\varepsilon}{\varepsilon - 1} (1 - v)} = \frac{\exp(\tau_t) N_t^{\varphi} C_t}{\exp(a_t)}.$$

In Sum

• solution:

$$\tilde{p}_t = \frac{E_t \sum_{j=0}^{\infty} (\beta \theta)^j (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} S_{t+j}}{E_t \sum_{j=0}^{\infty} (\beta \theta)^j (X_{t,j})^{1-\varepsilon}} = \frac{K_t}{F_t},$$

• Where:

$$K_{t} = (1 - v_{t}) \frac{\varepsilon}{\varepsilon - 1} \frac{\exp(\tau_{t}) N_{t}^{\varphi} C_{t}}{\exp(a_{t})} + \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1}.$$

$$F_t = E_t \sum_{j=0}^{\infty} (\beta \theta)^j (X_{t,j})^{1-\varepsilon} = 1 + \beta \theta E_t \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{1-\varepsilon} F_{t+1}$$

To Characterize Equilibrium

- Have equations characterizing optimization by firms and households.
- Still need:
 - Expression for all the prices. Prices, $P_{i,t}$, $0 \le i \le 1$, will all be different because of the price setting frictions.
 - Relationship between aggregate employment and aggregate output not simple because of price distortions:

$$Y_t \neq e^{a_t}N_t$$
, in general

 This part of the analysis is the reason why it made Calvo famous – it's not easy.

Going for Prices

Aggregate price relationship

$$P_t = \left[\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right]^{\frac{1}{1-\varepsilon}}$$

$$= \left[\int_{\text{firms that reoptimize price}} P_{i,t}^{(1-\varepsilon)} di + \int_{\text{firms that don't reoptimize price}} P_{i,t}^{(1-\varepsilon)} di \right]^{\frac{1}{1-\varepsilon}}$$

all reoptimizers choose same price
$$\left[(1 - \theta) \tilde{P}_t^{(1 - \varepsilon)} + \int_{\text{firms that don't reoptimize price}} P_{i,t}^{(1 - \varepsilon)} di \right]^{\frac{1}{1 - \varepsilon}}$$

- In principle, to solve the model need all the prices, $P_t, P_{i,t}, 0 \le i \le 1$
 - Fortunately, that won't be necessary.

Key insight

$$\int_{\text{firms that don't reoptimize price in } t} P_{i,t}^{(1-\varepsilon)} di$$

add over prices, weighted by # of firms posting that price

funds of firms that had price,
$$P(\omega)$$
, in $t-1$ and were not able to reoptimize in t

$$f_{t-1,t}(\omega)$$

$$P(\omega)^{(1-\varepsilon)} d\omega$$

Applying the Insight

By Calvo randomization assumption

total 'number' of firms with price $P(\omega)$ in t-1

$$f_{t-1,t}(\omega) = \theta \times$$

$$f_{t-1}(\omega)$$

, for all ω

Substituting:

$$\int_{\text{firms that don't reoptimize price}} P_{i,t}^{(1-\varepsilon)} di = \int f_{t-1,t}(\omega) P(\omega)^{(1-\varepsilon)} d\omega$$

$$=\theta\int f_{t-1}(\omega)P(\omega)^{(1-\varepsilon)}d\omega$$

$$=\theta P_{t-1}^{(1-\varepsilon)}$$

Expression for \tilde{p}_t in terms of aggregate inflation

 Conclude that this relationship holds between prices:

$$P_t = \left[(1 - \theta) \tilde{P}_t^{(1-\varepsilon)} + \theta P_{t-1}^{(1-\varepsilon)} \right]^{\frac{1}{1-\varepsilon}}.$$

- Only two variables here!
- Divide by P_t :

$$1 = \left[(1 - \theta) \tilde{p}_t^{(1 - \varepsilon)} + \theta \left(\frac{1}{\bar{\pi}_t} \right)^{(1 - \varepsilon)} \right]^{\frac{1}{1 - \varepsilon}}$$

• Rearrange:

$$\tilde{p}_t = \left[\frac{1 - \theta \bar{\pi}_t^{(\varepsilon - 1)}}{1 - \theta} \right]^{\frac{1}{1 - \varepsilon}}$$

Relation Between Aggregate Output and Aggregate Inputs

- Technically, there is no 'aggregate production function' in this model
 - If you know how many people are working, N, and the state of technology, a, you don't have enough information to know what Y is.
 - Price frictions imply that resources will not be efficiently allocated among different inputs.
 - Implies Y low for given a and N. How low?
 - Tak Yun (JME) gave a simple answer.

Tak Yun Algebra

$$Y_t^* = \int_0^1 Y_{i,t} di \left(= \int_0^1 A_t N_{i,t} di \right)^{\text{labor market clearing}} A_t N_t$$

demand curve
$$Y_t \int_0^1 \left(\frac{P_{i,t}}{P_t}\right)^{-\varepsilon} di$$

$$= Y_t P_t^{\varepsilon} \int_0^1 (P_{i,t})^{-\varepsilon} di$$

$$= Y_t P_t^{\varepsilon} (P_t^*)^{-\varepsilon}$$

• Where:
$$P_t^* = \left[\int_0^1 P_{i,t}^{-\varepsilon} di \right]^{\frac{-1}{\varepsilon}} = \left[(1-\theta) \tilde{P}_t^{-\varepsilon} + \theta (P_{t-1}^*)^{-\varepsilon} \right]^{\frac{-1}{\varepsilon}}$$

Relationship Between Agg Inputs and Agg Output

Rewriting previous equation:

$$Y_t = \left(\frac{P_t^*}{P_t}\right)^{\varepsilon} Y_t^*$$

$$= p_t^* e^{a_t} N_t,$$

'efficiency distortion':

$$p_t^*: \begin{cases} \leq 1 \\ = 1 \quad P_{i,t} = P_{j,t}, \text{ all } i,j \end{cases}$$

Example of Efficiency Distortion

$$P_{j,t} = \begin{cases} P^1 & 0 \leq j \leq \alpha \\ P^2 & \alpha \leq j \leq 1 \end{cases} \cdot p_t^* = \left(\frac{P_t^*}{P_t}\right)^{\varepsilon} = \left(\frac{\left[\alpha + (1-\alpha)\left(\frac{P^2}{P^1}\right)^{-\varepsilon}\right]^{\frac{-1}{\varepsilon}}}{\left[\alpha + (1-\alpha)\left(\frac{P^2}{P^1}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}}\right)^{\varepsilon}$$

 $\log P^1/P^2$

Collecting Equilibrium Conditions

• Price setting:

$$K_{t} = (1 - \nu) \frac{\varepsilon}{\varepsilon - 1} \frac{\exp(\tau_{t}) N_{t}^{\varphi} C_{t}}{A_{t}} + \beta \theta E_{t} \bar{\pi}_{t+1}^{\varepsilon} K_{t+1} (1)$$

$$F_{t} = 1 + \beta \theta E_{t} \bar{\pi}_{t+1}^{\varepsilon - 1} F_{t+1} (2)$$

 Intermediate good firm optimality and restriction across prices:

$$\frac{\tilde{K}_{t}}{\tilde{F}_{t}} = \left[\frac{1 - \theta \bar{\pi}_{t}^{(\varepsilon - 1)}}{1 - \theta} \right]^{\frac{1}{1 - \varepsilon}}$$
(3)

Equilibrium Conditions

Law of motion of (Tak Yun) distortion:

$$p_t^* = \left[(1 - \theta) \left(\frac{1 - \theta \bar{\pi}_t^{(\varepsilon - 1)}}{1 - \theta} \right)^{\frac{\varepsilon}{\varepsilon - 1}} + \frac{\theta \bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right]^{-1}$$
(4)

Household Intertemporal Condition:

$$\frac{1}{C_t} = \beta E_t \frac{1}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}$$
(5)

Aggregate inputs and output:

$$C_t = p_t^* e^{a_t} N_t$$
 (6)

6 equations, 8 unknowns:

$$v, C_t, p_t^*, N_t, \bar{\pi}_t, K_t, F_t, R_t$$

System under determined!

Underdetermined System

 Not surprising: we added a variable, the nominal rate of interest.

 Also, we're counting subsidy as among the unknowns.

Have two extra policy variables.

One way to pin them down: compute optimal policy.

Ramsey-Optimal Policy

- 6 equations in 8 unknowns.....
 - Many configurations of the 8 unknowns that satisfy the 6 equations.
 - Look for the best configurations (Ramsey optimal)
 - Value of tax subsidy and of R represent optimal policy
- Finding the Ramsey optimal setting of the 6 variables involves solving a simple Lagrangian optimization problem.

Ramsey Problem

$$\max_{v,p_t^*,C_t,N_t,R_t,\bar{\pi}_t,F_t,K_t} E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right) \right\}$$

$$+ \lambda_{1t} \left[\frac{1}{C_{t}} - E_{t} \frac{\beta}{C_{t+1}} \frac{R_{t}}{\bar{\pi}_{t+1}} \right]$$

$$+ \lambda_{2t} \left[\frac{1}{p_{t}^{*}} - \left((1 - \theta) \left(\frac{1 - \theta(\bar{\pi}_{t})^{\varepsilon - 1}}{1 - \theta} \right)^{\frac{\varepsilon}{\varepsilon - 1}} + \frac{\theta \bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}} \right) \right]$$

$$+ \lambda_{3t} \left[1 + E_{t} \bar{\pi}_{t+1}^{\varepsilon - 1} \beta \theta F_{t+1} - F_{t} \right]$$

$$+ \lambda_{4t} \left[(1 - v) \frac{\varepsilon}{\varepsilon - 1} \frac{C_{t} \exp(\tau_{t}) N_{t}^{\varphi}}{e^{a_{t}}} + E_{t} \beta \theta \bar{\pi}_{t+1}^{\varepsilon} K_{t+1} - K_{t} \right]$$

$$+ \lambda_{5t} \left[F_{t} \left(\frac{1 - \theta \bar{\pi}_{t}^{\varepsilon - 1}}{1 - \theta} \right)^{\frac{1}{1 - \varepsilon}} - K_{t} \right]$$

$$+ \lambda_{6t} \left[C_{t} - p_{t}^{*} e^{a_{t}} N_{t} \right]$$

Solving the Ramsey Problem (surprisingly easy in this case)

First, substitute out consumption everywhere

$$\max_{v,p_t^*,N_t,R_t,\bar{\pi}_t,F_t,K_t} E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \left(\log N_t + \log p_t^* - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right) \right.$$

$$\left. \text{defines } \underbrace{R} + \lambda_{1t} \left[\frac{1}{p_t^* N_t} - E_t \frac{e^{a_t} \beta}{p_{t+1}^* e^{a_{t+1}} N_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}} \right] \right.$$

$$\left. + \lambda_{2t} \left[\frac{1}{p_t^*} - \left((1-\theta) \left(\frac{1-\theta(\bar{\pi}_t)^{\varepsilon-1}}{1-\theta} \right)^{\frac{\varepsilon}{\varepsilon-1}} + \frac{\theta \bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right) \right] \right.$$

$$\left. \text{defines } F \right. + \lambda_{3t} \left[1 + E_t \bar{\pi}_{t+1}^{\varepsilon-1} \beta \theta F_{t+1} - F_t \right]$$

$$\left. \text{defines tax} \right. + \lambda_{4t} \left[(1-v) \frac{\varepsilon}{\varepsilon-1} \exp(\tau_t) N_t^{1+\varphi} p_t^* + E_t \beta \theta \bar{\pi}_{t+1}^{\varepsilon} K_{t+1} - K_t \right]$$

$$\left. \text{defines } K \right. + \lambda_{5t} \left[F_t \left(\frac{1-\theta \bar{\pi}_t^{\varepsilon-1}}{1-\theta} \right)^{\frac{1}{1-\varepsilon}} - K_t \right] \right\}$$

Solving the Ramsey Problem, cnt'd

Simplified problem:

$$\max_{\bar{\pi}_t, p_t^*, N_t} E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \left(\log N_t + \log p_t^* - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right) \right\}$$

$$+ \lambda_{2t} \left[\frac{1}{p_t^*} - \left((1 - \theta) \left(\frac{1 - \theta(\bar{\pi}_t)^{\varepsilon - 1}}{1 - \theta} \right)^{\frac{\varepsilon}{\varepsilon - 1}} + \frac{\theta \bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right) \right] \right\}$$

• First order conditions with respect to p_t^* , $\bar{\pi}_t$, N_t

$$p_{t}^{*} + \beta \lambda_{2,t+1} \theta \bar{\pi}_{t+1}^{\varepsilon} = \lambda_{2t}, \ \bar{\pi}_{t} = \left[\frac{(p_{t-1}^{*})^{\varepsilon-1}}{1 - \theta + \theta(p_{t-1}^{*})^{\varepsilon-1}} \right]^{\frac{1}{\varepsilon-1}}, \ N_{t} = \exp\left(-\frac{\tau_{t}}{\varphi + 1}\right)$$

 Substituting the solution for inflation into law of motion for price distortion:

$$p_t^* = \left[(1 - \theta) + \theta(p_{t-1}^*)^{(\varepsilon-1)} \right]^{\frac{1}{(\varepsilon-1)}}.$$

Solution to Ramsey Problem

Eventually, price distortions eliminated, regardless of shocks

$$p_t^* = \left[(1 - \theta) + \theta (p_{t-1}^*)^{(\varepsilon - 1)} \right]^{\frac{1}{(\varepsilon - 1)}}$$

When price distortions gone, so is inflation.
$$\vec{\pi}_t = \frac{p_{t-1}^*}{p_t^*}$$

 $N_t = \exp\left(-\frac{\tau_t}{1+\omega}\right)$ Efficient ('first best') allocations in real $1 - v = \frac{\varepsilon - 1}{c}$ economy

$$\longrightarrow C_t = p_t^* e^{a_t} N_t.$$

Consumption corresponds to efficient allocations in real economy, eventually when price distortions gone

Eventually, Optimal (Ramsey) Equilibrium and Efficient Allocations in Real Economy Coincide

 The Ramsey allocations are eventually the best allocations in the economy without price frictions (i.e., 'first best allocations')

- Refer to the Ramsey allocations as the 'natural allocations'....
 - Natural consumption, natural rate of interest, etc.

 Preceding provides important foundations for the construction of the New Keynesian model.