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Application of Log-linearization Methods: Optimal
Policy
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...

• Optimal monetary policy addresses questions like:

– ‘how much inflation volatility should we have?’
– ‘should we have inflation targeting or should we have price level targeting?’
– answer: depends on what gets you closest to the optimal policy benchmark.

• Actual policy seems to be gravitating in the direction of ‘optimal policy’.

– In early days of ‘rational expectations revolution’, looked for simple rules
with good operating characteristics to impose on central banks.

– Perception (based on the 1970s performance) was that central banks had
done a terrible job.

– Simplicity of the rule supposed to help with monitoring central bank, which
was viewed as always having an incentive to deviate from good policy and
inflate (‘inflation bias’)
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...

– There is a widespread view that inflation bias is not a big problem.

∗ The classic vehicle for the inflation bias idea, the Barro-Gordon model,
appears to some to have been rejected by the data.
· US seems to have tamed inflation without the institutional reform that

BG said was required

(for a challenge to the logic of this argument, see Chari, Christiano,
Eichenbaum (JET), Albanesi, Chari, Christiano (RESTUD).)

∗ It is thought that the inflation bias problem can be solved by central
bankers’ being sufficiently aware of the negative consequences of losing
credibility. This, together with a good dose of self discipline, should be
enough to ensure that inflation bias is not a problem, according to an
emerging consensus.

∗ Thus, the problem (‘inflation bias’) that simple rules are meant to solve,
is no longer viewed as a serious problem.
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...

– Assessment of costs of simple rules were increased.

∗ ‘Mother of all rules’, Friedman’s k−percent rule, viewed as positively
dangerous in the presence of velocity shocks.

∗ It is not hard to think of scenarios in which the Taylor rule could be
destabilizing (see the end of these notes).

– For these reasons, central banks moving towards ‘look at everything,
optimal’ policy.

∗ Flexible inflation targeting.

∗ Going back to simple rules is now unthinkable, especially in light of
the recent financial crisis, which has required creativity and freedom of
action on the part of central banks..
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Log-linear Methods

• Equilibrium conditions:

v (kt, kt+1, kt+2) = 0,
t = 0, 1, 2, ...

• Solution:
– compute steady state, k∗ such that v (k∗, k∗, k∗) = 0.
– expansion about steady state: V0k̃t + V1k̃t+1 + V2k̃t+2 = 0.

– solve linearized system.

• Last time:
– v equilibrium conditions of a monetary model.
– included a monetary policy rule.
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Log-linear Methods ...

• This time:

– what is optimal monetary policy?

– drop monetary policy rule

– now we’re short one equation!

– system underdetermined....‘many solutions’

– pick the best one.
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Log-linear Methods ...

• Potential problem: time inconsistency of optimal monetary policy:
– period t announcement about period t + 1 policy action, X, influenced in

part by the impact of X on period t decisions by the public.
– when t+1 occurs and it is time to actually implement X, period t decisions

by public are past history.
∗ temptation in t + 1 to modify X since X no longer influences period t

decisions of public.
– temptation to modify X in t + 1 must be avoided, if there is to be any hope

to have optimal policy. Bad outcomes could occur otherwise.
∗ discipline on the part of policy makers is required, if they are to avoid

temptation to deviate.

• Technical implication of potential time inconsistency.
– v equilibrium conditions seemingly not time invarient: apparently our

log-linearization methods do not apply!
– follow Kydland-Prescott ‘trick’ and put problem in Lagrangian form.
– problem of avoiding temptation to deviate boils down to the admonition,

‘remember your multipliers!’
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Example #1: Optimal Monetary Policy - Toy
Example

• Setup
– Model
∗ One equation characterizing private sector behavior:

πt − βπt+1 − γyt = 0, t = 0, 1, 2, .... (1)

∗ Another equation characterizes policy.

– Want to do optimal policy, so throw away policy equation.

– System is now under-determined: one equation in two variables, πt and yt.
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Example #1: Optimal Monetary Policy - Toy Example ...

– Optimization delivers the other equations.

∗ optimize objective:
∞X
t=0

βtu (πt, yt)

subject to (1).

∗ If objective corresponds to social welfare function, this is called Ramsey
optimal problem

∗ Objective may be preferences of policy maker.
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Example #1: Optimal Monetary Policy - Toy Example ...

• Lagrangian representation of problem:

max
{πt,yt;t=0,1,...}

∞X
t=0

βt {u (πt, yt) + λt [πt − βπt+1 − γyt]}

= max
{πt,yt;t=0,1,...}

{u (π0, y0) + λ0 [π0 − βπ1 − γy0]

+βu (π1, y1) + βλ1 [π1 − βπ2 − γy1] + ...}
• First order necessary conditions for optimization:

uπ (π0, y0) + λ0 = 0 (*)
uπ (π1, y1) + λ1 − λ0 = 0

...

uy(π0, y0)− γλ0 = 0

uy(π1, y1)− γλ1 = 0

...

π0 − βπ1 − γy0 = 0

π1 − βπ2 − γy1 = 0

...
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Example #1: Optimal Monetary Policy - Toy Example ...

• These equations ‘look’ different than the ones we’ve seen before

– They are not stationary, (*) is different from the others.

∗ reflects that at time 0 there is a constraint ‘missing’

∗ no need to respect what people were expecting you to do as of time −1

∗ do need to respect what they expect you to do in the future, because that
affects current behavior.

∗ that’s the source of the ‘time inconsistency of optimal plans’.

• Can trick the problem into being stationary (see, e.g., Kydland and Prescott
(JEDC, 1990s) and Levin, Onatski, Williams, and Williams, Macro Annual,
2005). Then, apply standard log-linearization solution method.
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Example #1: Optimal Monetary Policy - Toy Example ...

• Consider:

v (πt, πt+1, yt, λt, λt−1) =

⎡⎣ uπ (πt, yt) + λt − λt−1
uy(πt, yt)− γλt
πt − βπt+1 − γyt

⎤⎦ , for all t.

– time t ‘endogenous variables’: λt, πt, yt

– time t ‘state variable’: λt−1.

– ‘solution’:

λt = λ (λt−1) , πt = π (λt−1) , yt = y (λt−1) ,
such that

v (π (λt−1) , π (λ (λt−1)) , y (λt−1) , λ (λt−1) , λt−1) = 0, for all possible λt−1.
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Example #1: Optimal Monetary Policy - Toy Example ...

• In general, solving this problem exactly is intractable.
• But, can log-linearize!

– Step 1: find π∗, y∗, λ∗ such that following three equations are satisfied:
v (π∗, π∗, y∗, λ∗, λ∗) = 0|{z}

3×1
.

– Step 2: log-linearly expand v about steady state
v (πt, πt+1, yt, λt, λt−1) ' v1π

∗π̂t + v2π
∗π̂t+1 + v3y

∗ŷt + v4∆λ̂t + v5∆λ̂t−1,

where
∆λ̂t ≡ λt − λ∗ (play it safe, don’t divide by something that could be zero!)

– Step 3: Posit
∆λ̂t = Aλ∆λ̂t−1, π̂t = Aπ∆λ̂t−1, ŷt = Ay∆λ̂t−1,

and find Aλ,Aπ,Ay that solve
[v1π

∗Aπ + v2π
∗AπAλ + v3y

∗Ay + v4Aλ + v5]∆λ̂t−1 = 0|{z}
3×1

for all ∆λ̂t−1.
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Example #1: Optimal Monetary Policy - Toy Example ...

• What does the stationary solution have to do with the original non-stationary
problem?

– Do we have a solution to the period 0 problem, (*)?

uπ (π0, y0) + λ0 = 0.

– Yes! Just pretend that this equation really has the following form:

uπ (π0, y0) + λ0 − λ−1 = 0.

Expression (*) does have this form, if we set λ−1 = 0. Then,

π0 = π (0) , y0 = y (0) , λ0 = λ (0) .
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Example #1: Optimal Monetary Policy - Toy Example ...

• The situation is exactly what it is in the neoclassical model when we want to
know what happens when initial capital is away from steady state.

– Plug k0 into the stationary rule

k1 = g (k0) .

• Possible computational pitfall: if λ−1 = 0 is far from λ∗, then linearized
solution might be highly inaccurate (see LOWW).
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Example #1: Optimal Monetary Policy - Toy Example ...

• Optimal policy in real time.

• Suppose today is date zero.

– Solve for λ (·) , y (·) , π (·)

– set λ−1 = 0

– Compute and present in charts:

λ0 = λ (λ−1) , y0 = y (λ−1) , π0 = π (λ−1)

λ1 = λ (λ0) , y1 = y (λ0) , π1 = π (λ0)

...

λt = λ (λt−1) , yt = y (λt−1) , πt = π (λ0)

....
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Example #1: Optimal Monetary Policy - Toy Example ...

• The optimal policy program may break down if policy makers succumb to the
temptation to restart the Ramsey problem at a later date.

– there is a temptation in period 1 when π1 is determined, to ignore a
constraint that went into determining the announcement made about π1 in
period 0:

π0 − βπ1 − γy0 (*)

– If (*) is ignored at date 1, then π1 computed in date 1 solves a different
problem than π1 computed at date 0 and there will be time inconsistency.
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Example #1: Optimal Monetary Policy - Toy Example ...

• Honoring past announcements is equivalent to ‘always respect the past
multipliers’.

– ‘Remembering λ0’ in period 1 ensures that constraint

π0 − βπ1 − γy0 (*)

is incorporated in period 1. In this case, π1 solves the same problem in
period 1 that it did in period 0.

• Practical implication of the admonition, ‘always respect your multipliers’:

– Charts released after later meetings will be consistent with the continuation
of charts released after later meetings.
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Example #1: Optimal Monetary Policy - Toy Example ...

– Example:

date 0 meeting : y0 = y (0) , y1 = y (λ (λ−1)) , y2 = y (λ (λ (λ−1))) , ...

date 1 meeting : YES - y1 = y (λ (λ−1)) , y2 = y (λ (λ (λ−1))) , ...
NO - y1 = y (0) , y2 = y (λ1 (0)) , ...

– If Central Bank selects the bad (‘NO’) option people will see the temporal
inconsistency of policy, and CB will lose credibility.

– Any differences in charts from one meeting to the next must be fully
explicable in terms of new information.
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Example #2: Optimal Monetary Policy - More
General Discussion

• The equilibrium conditions of a model

Etf (zt−1, zt, zt+1, st, st+1)| {z }
(N−1)×1

= 0, for all zt−1|{z}
N×1

(endogenous), st (exogenous)

st = Pst−1 + εt.

• Preferences:

Et

∞X
t=0

βtU (zt, st) .

– Could include discounted utility in f :

v (zt−1, zt, st) = U (zt, st) + βEtv (zt, zt+1, st+1)
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Example #2: Optimal Monetary Policy - More General Discussion ...

• Optimum problem:

maxE0

∞X
t=0

βt

⎧⎨⎩U (zt, st) + λ0t|{z}
1×(N−1)

Etf (zt−1, zt, zt+1, st, st+1)| {z }
(N−1)×1

⎫⎬⎭ .

• N first order conditions:
U1 (zt, st)| {z }

1×N

+ λ0t|{z}
1×(N−1)

Etf2 (zt−1, zt, zt+1, st, st+1)| {z }
(N−1)×N

+β−1 λ0t−1|{z}
1×(N−1)

f3 (zt−2, zt−1, zt, st−1, st)| {z }
(N−1)×N

+βλ0t+1|{z}Et

1×(N−1)

f1 (zt, zt+1, zt+2, st+1, st+2)| {z }
(N−1)×N

= 0|{z}
1×N

– Endogenous variables: zt (N), λt (N − 1)

– Equations: Ramsey optimality conditions (N) , equilibrium condition
(N − 1)
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Example #2: Optimal Monetary Policy - More General Discussion ...

• First order conditions of optimum problem have exactly the same form as the
type of problem we solved using linearization methods.

• Seem much more cumbersome:

– must differentiate f (includes private first order conditions that have already
involved differentiation!)

– good news: LOWW wrote a program that takes U , f as input and writes
Dynare code for solving the system

– solving policy optimum problem is no harder than solving original problem.
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Example #3: Optimal Monetary Policy -
Rotemberg Model

• Household preferences:

E0

∞X
t=0

βt
h
log (Ct)−

χ

2
h2t

i
.

• Household budget constraint:

PtCt +Bt = (1 +Rt−1)Bt−1 +Wtht + Πt.

• First order conditions:

intratemporal foncz }| {
χhtCt =

Wt

Pt
,

intertemporal foncz }| {
1

1 +Rt
= βEt

PtCt

Pt+1Ct+1
, t = 0, 1, 2, ....
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Final good firms

production functionz }| {
Yt =

µZ 1

0

Y
ε−1
ε

j,t dj

¶ ε
ε−1

, ε ≥ 1,

first order condition (demand curve for jth intermediate good producer)z }| {
Yj,t =

µ
Pj,t

Pt

¶−ε
Yt

• jth intermediate good firm:

Et

∞X
l=0

βlυt+l[(1 + ν)Pj,t+lYj,t+l −
labor costs of productionz }| {
st+lPt+lYj,t+l

−

cost (in terms of final goods) of adjusting pricesz }| {
φ

2

µ
Pj,t+l

Pj,t+l−1
− 1
¶2

Pt+lCt+l ],

Yj,t =

production functionz }| {
Athj,t , at ≡ log (At) , st =

real marginal costz}|{
Wt

PtAt
=

substitute out household foncz }| {
χhtCt

At
.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Substitute out jth firm’s demand curve υt = 1/(PtCt):

max
{Pj,l}∞l=0

Et

∞X
l=0

βl 1

Pt+lCt+l
[(1 + ν)Pj,t+l

µ
Pj,t+l

Pt+l

¶−ε
Yt+l

−Pt+lst+l

µ
Pj,t+l

Pt+l

¶−ε
Yt+l −

φ

2

µ
Pj,t+l

Pj,t+l−1
− 1
¶2

Pt+lCt+l]

• Differentiate with respect to Pj,t :"
(1 + ν) (1− ε)

µ
Pj,t

Pt

¶−ε
1

Pt
+ stε

µ
Pj,t

Pt

¶−ε−1
1

Pt

#
Yt
Ct
− φ

µ
Pj,t

Pj,t−1
− 1
¶

1

Pj,t−1

+βφEt

µ
Pj,t+1

Pj,t
− 1
¶
Pj,t+1

(Pj,t)
2 = 0.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Rearrange firm efficiency condition:

real price receivedz }| {
(1 + ν)

Pj,t

Pt
=

markupz }| {
ε

ε− 1 ×
real marginal cost (exclusive of price adjustment costs)z}|{

st

+
1

ε− 1φ
µ
Pj,t

Pt

¶ε
Ct

Yt
[

if static considerations entail a rise in price, adj costs imply rising by less

−
z }| {µ

Pj,t

Pj,t−1
− 1
¶

Pj,t

Pj,t−1

+βEt

if contemplating a rise in future price, then raise price today by morez }| {µ
Pj,t+1

Pj,t
− 1
¶
Pj,t+1

Pj,t
].

• When φ = 0 :
– get ‘normal’ efficiency condition, ‘price equals markup over marginal cost’
– get ‘normal’ monopoly power correction: 1 + ν = ε/ (ε− 1) .
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Impose Pj,t = Pi,t = Pt for all i, j :

(πt − 1)πt =
1

φ

µ
1 + ν − ε

ε− 1

¶
(1− ε)

Yt
Ct
+
ε

φ
(st − 1)

Yt
Ct
+βEt (πt+1 − 1)πt+1.

• Resource constraint:

Ct

⎡⎢⎢⎣consumptionz}|{
1 +

price adjustment costsz }| {
φ

2
(πt − 1)2

⎤⎥⎥⎦ = total outputz}|{
Atht = Yt, at = ρat−1+ut, at ≡ logAt

• Substitute out the resource constraint:

(πt − 1)πt =
1

φ

∙µ
1 + ν − ε

ε− 1

¶
(1− ε) + ε (st − 1)

¸ ∙
1 +

φ

2
(πt − 1)2

¸
+βEt (πt+1 − 1)πt+1.

• Looks ‘sort of’ like Calvo equilibrium relation for inflation.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Log-linearize around ‘efficient steady state’ (πt = 1, 1 + ν = ε/ (ε− 1) ,
st = 1) :

(πt − 1)πt =
1

φ

∙µ
1 + ν − ε

ε− 1

¶
(1− ε) + ε (st − 1)

¸ ∙
1 +

φ

2
(πt − 1)2

¸
+βEt (πt+1 − 1)πt+1.

d [(πt − 1)πt]
totally differentiatez}|{= πtdπt+(πt − 1) dπt

evaluate in steady state, π=1z}|{= πdπt ≡ π2π̂t = π̂t.

• Doing the log-linearization:

π̂t =
ε

φ
ŝt + βEtπ̂t+1.

‘marginal cost affects price less the bigger is φ’

so Rotemberg IS Calvo, up to linear approximation and with a different
interpretation of slope on marginal cost.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Summarizing equilibrium conditions:

– household intertemporal efficiency condition:
1

1 +Rt
= βEt

PtCt

Pt+1Ct+1

– firm efficiency condition for prices (after rearranging) -∙µ
1 + ν − ε

ε− 1

¶
(1− ε) + ε (st − 1)

¸µ
1 +

φ

2
(πt − 1)2

¶
− φ (πt − 1)πt

+βφEt (πt+1 − 1)πt+1 = 0

– marginal cost:

st =

uses household intratemporal efficiency conditionz }| {
χhtCt

At
– Resource constraint:

Ct

∙
1 +

φ

2
(πt − 1)2

¸
= Atht, at = ρat−1 + ut
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Ramsey optimal problem:

max
{ν,Ct,ht,πt,Rt}

E0

∞X
t=0

βt
n{
³
log (Ct)−

χ

2
h2t

´
+

λ1t

µ
1

1 +Rt
− βEt

Ct

πt+1Ct+1

¶

+λ2t[

µµ
1 + ν − ε

ε− 1

¶
(1− ε) + ε

µ
χhtCt

At
− 1
¶¶µ

1 +
φ

2
(πt − 1)2

¶

−φ (πt − 1)πt + βφEt (πt+1 − 1)πt+1]

+λ3t

∙
Ct

µ
1 +

φ

2
(πt − 1)2

¶
−Atht

¸
}
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Conjecture about solution to Ramsey problem:

λ1t = λ2t = 0.

• We will implement, and then verify the conjecture formally.

• Intuition:

– intertemporal equation non-binding from the point of view of maximizing
utility, because Rt (a variable of no direct interest in utility) can always be
chosen to enforce intertemporal Euler equation).

– price equation non-binding from the point of view of maximizing utility,
because ν (a variable of no direct interest in utility) can always be chosen to
enforce the price equation.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Simplified Ramsey problem (ν,Rt are a matter of indifference here)

max
{Ct,ht,πt}

E0

∞X
t=0

βt
n{
³
log (Ct)−

χ

2
h2t

´
+ λ3t

∙
Ct

µ
1 +

φ

2
(πt − 1)2

¶
−Atht

¸
}.

• – first order necessary condition for πt:

λ3tCtφ (πt − 1) = 0→ πt = 1 (obviously, λ3t = 0, or Ct = 0 is not the solution!)

– first order condition for ht, Ct :

−χht − λ3tAt = 0,
1

Ct
+ λ3t

µ
1 +

φ

2
(πt − 1)2

¶
= 0→ λ3t = −

1

Ct
.

or

χht =
1

Ct
At, →

MRSz }| {
χhtCt =

MPLz}|{
At

so solution to Ramsey problem achieves ‘first best’:

max
Ct,ht

Et

∞X
t=0

βt
h
log (Ct)−

χ

2
h2t

i
, subject to Ct = Atht.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Solution to Ramsey problem:

Ct = Atht

χhtCt = At→ h2t =

∙
1

χ

¸1/2
,

πt = 1,

Rt =
1

βEt
PtCt

Pt+1Ct+1

− 1,

1 + ν =
ε

ε− 1.

• Notice:
– this is first best, and there is no time inconsistency problem!
– treatment of ν crucial here (reason that price equation is non-binding)

31



Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Ramsey problem with ν fixed, 6= ε/ (ε− 1)

max
{Ct,ht,πt,Rt}

E0

∞X
t=0

βt
n{
³
log (Ct)−

χ

2
h2t

´
+

λ1t

µ
1

1 +Rt
− βEt

Ct

πt+1Ct+1

¶
+λ2t[

µµ
1 + ν − ε

ε− 1

¶
(1− ε) + ε

µ
χhtCt

At
− 1
¶¶µ

1 +
φ

2
(πt − 1)2

¶
−φ (πt − 1)πt + βφEt (πt+1 − 1)πt+1]

+λ3t

∙
Ct

µ
1 +

φ

2
(πt − 1)2

¶
−Atht

¸
},

• Note: intertemporal condition still non-binding.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• First order conditions for Ramsey problem (impose λ1t ≡ 0, βn is discount
rate in planner objective, λi,−1 = 0) for ht, πt, Ct :

−χht + λ2tε
χCt

At

³
1 + φ

2 (πt − 1)
2
´
− λ3,tAt = 0.

λ2t[
³¡
1 + ν − ε

ε−1
¢
(1− ε) + ε

³
χhtCt

At
− 1
´
− 1
´
φ (πt − 1)− φπt]

+λ2,t−1β
−1
n βφ [(πt − 1) + πt] + λ3tCtφ (πt − 1) = 0

1
Ct
+ λ2tε

χht
At

³
1 + φ

2 (πt − 1)
2
´
+ λ3t

³
1 + φ

2 (πt − 1)
2
´
= 0

• Plus, intertemporal household equation, price equation and resource constraint
yields 6 equations in Rt, ht, Ct, πt, λ2t, λ3t.
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• It is instructive to study the steady state of the previous equations.

• Let

ω =
1 + ν

ε
ε−1

=
subsidy

steady state markup in the absence of a subsidy

Then, in steady state with βn = β :

π = 1, C = h =

∙
ω

χ

¸1/2
, λ2 =

ω − 1
2εω

, λ3 = −χh
ω + 1

2ω
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Example #3: Optimal Monetary Policy - Rotemberg Model ...

• Notes on Ramsey steady state....

π = 1, C = h =

∙
ω

χ

¸1/2
, λ2 =

ω − 1
2εω

, λ3 = −χh
ω + 1

2ω

– Although Ramsey has only one degree of freedom (i.e., an excess of only
one variable over equations) and two barriers to first best (i.e., monopoly
power and inflation), it chooses to neutralize only inflation (i.e., π = 1).

– Steady state hours is bigger than first best if subsidy is too high (i.e., ω > 1)
and smaller in case the subsidy is too low.

– Sign of λ2 depends on whether the subsidy is too high (then, λ2 > 0) or too
low.

– λ3 < 0 always, as expected.

– Can verify numerically that λ2,t−1 enters policy rules for ht, Ct, Rt.
∗ So, when λ2 6= 0 the Ramsey problem is not time consistent.
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Example 3: Time inconsistency and ‘inflation bias’

• Consider the following model parameter values:

β = 0.99, ε = 5, φ = 100, ρ = 0.9, ν = 0, χ = 0.8.

• Note that the subsidy rate has been set to zero.

• The model solution, after linearizing the equilibrium conditions about steady
state:

ht = 1 + 2.4 (λ2,t−1 + 0.025)

Rt = 0.01− 0.71 (λ2,t−1 + 0.025)− 0.10 (At − 1)
Ct = 1 + 2.4 (λ2,t−1 + 0.025) + (At − 1)
πt = 1 + 0.45 (λ2,t−1 + 0.025)

λ2,t = −0.025 + 0.59 (λ2,t−1 + 0.025)
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Example 3: Time inconsistency and ‘inflation bias’ ...

• Suppose the system is in a Ramsey steady state, with At = 1 in each t.

– with no deviation, obtain:
Ct = ht = 1, Rt = 0.01, πt = 1, λ2t = −0.025.

– suppose the monetary authority deviates in period, t, by restarting the
Ramsey program. The values of the variables in period t :

Ct = ht = 1 + 2.4× 0.025 = 1.06, Rt = −0.0078, πt = 1.01.
– the deviation pushes consumption, hours worked and inflation up, and the

interest rate down. This pushes employment in the direction of first best:
ht = 1.12.

– in effect, the ‘surprise inflation deviation’ is the only way monetary policy
can address the monopoly power problem. The problem is that if there is a
deviation, then credibility breaks down and the Ramsey optimal plan is not
implemented. What occurs instead may be very bad.

– the nature of the temptation to deviate under this parameterization
corresponds to the famous ‘inflation bias’ studied by Kydland-Prescott
and Barro-Gordon and many others.
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Example 3: Time inconsistency and ‘deflation bias’

• Suppose that ν = 1, so that ν over stimulates the economy (this seems
implausible to me...)

• Otherwise, all parameter values are unchanged.

• The linear approximation is now:

ht = 1.41 + 3.4 (λ2,t−1 − 0.0375)
Rt = 0.01− 1.53 (λ2,t−1 − 0.0375)− 0.10 (At − 1)
Ct = 1.41 + 3.4 (λ2,t−1 − 0.0375) + 1.41 (At − 1)
πt = 1 + 0.54 (λ2,t−1 − 0.0375)
λ2,t = 0.0375 + 0.30 (λ2,t−1 − 0.0375)

• Note how much higher steady hours worked and consumption are.
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Example 3: Time inconsistency and ‘deflation bias’ ...

• Suppose the system is in a Ramsey steady state, with At = 1 in each t.

– with no deviation, obtain:
Ct = ht = 1.41, Rt = 0.01, πt = 1, λ2t = 0.0375.

– suppose the monetary authority deviates in period, t, by restarting the
Ramsey program. The values of the variables in period t :

Ct = ht = 1.41− 3.4× 0.0375 = 1.28, Rt = 0.07, πt = 0.98.

– the deviation pushes consumption, hours worked and inflation down, and
the interest rate up. This pushes employment in the direction of first best:
ht = 1.12.

– in effect, the ‘surprise deflation deviation’ is the only way monetary
policy can address the monopoly power problem. Again, if there is a
deviation, then credibility breaks down and the Ramsey optimal plan is not
implemented. What occurs instead may be very bad.

– the nature of the temptation to deviate under this parameterization can be
called a ‘deflation bias’.
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Example 3: Conclusion

• When labor market is treated optimally, policy achieves first best (i.e., it solves
both the monopoly and inflation problems) and there is no time consistency
problem.

• When labor market not treated optimally, Ramsey optimal policy solves the
inflation problem, but does not touch the monopoly power problem. There is
now a time consistency problem. One interpretation is that surprise deviations
from Ramsey policy are the only way to address the monopoly problem.

• Good news: linearization methods apply.

• Bad news: Ramsey first order conditions painful to compute in practice.

• Good news: there exists computer code for deriving the Ramsey first order
conditions symbolically (this is explored in a homework with Dynare).
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Example #4: Optimal Monetary Policy - CGG

max
νt,p∗t ,Nt,Rt,π̄t,Ft,Kt

E0

∞X
t=0

βt{
Ã
logNt + log p

∗
t − exp (τ t)

N1+ϕ
t

1 + ϕ

!
+λ1t

∙
1

p∗tNt
−Et

Atβ

p∗t+1At+1Nt+1

Rt

π̄t+1

¸
+λ2t

⎡⎣ 1
p∗t
−

⎛⎝(1− θ)

Ã
1− θ (π̄t)

ε−1

1− θ

! ε
ε−1

+
θπ̄εt
p∗t−1

⎞⎠⎤⎦
+λ3t

£
1 +Etπ̄

ε−1
t+1βθFt+1 − Ft

¤
+λ4t

∙
(1− νt)

ε

ε− 1 exp (τ t)N
1+ϕ
t p∗t (1− ψ + ψRt) + Etπ̄

ε
t+1βθKt+1 −Kt

¸
+λ5t

"
Ft

∙
1− θπ̄ε−1t

1− θ

¸ 1
1−ε

−Kt

#
}

• ‘two degree of freedom’ 7 variables, 5 equilibrium conditions
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Example #4: Optimal Monetary Policy - CGG ...

• Law of motion of technology:
At = ρAt−1 + ut.

• We only consider the case,
(1− ν)

ε

ε− 1 = 1.
• First consider the case, ψ = 0

– Conjecture: restrictions 1, 3, 4, 5 nonbinding (i.e., λ1t = λ3t = λ4t = λ5t =
0)

∗ Step 1: Optimize w.r.t. p∗t , π̄t, Nt ignoring restrictions 1, 3, 4, 5.

∗ Step 2: Solve for νt, Rt, Ft, Kt, to satisfy restrictions 1, 3, 4, 5.

– If this can be done, then the conjecture is verified.
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Example #4: Optimal Monetary Policy - CGG ...

• Simplified problem under conjecture:

max
π̄t,p∗t ,Nt

E0

∞X
t=0

βt{
Ã
logNt + log p

∗
t − exp (τ t)

N1+ϕ
t

1 + ϕ

!

+λ2t

⎡⎣ 1
p∗t
−

⎛⎝(1− θ)

Ã
1− θ (π̄t)

ε−1

1− θ

! ε
ε−1

+
θπ̄εt
p∗t−1

⎞⎠⎤⎦}
first order conditions with respect to p∗t , π̄t, Nt (after rearranging):

p∗t + βλ2,t+1θπ̄
ε
t+1 = λ2t, π̄t =

" ¡
p∗t−1

¢ε−1
1− θ + θ

¡
p∗t−1

¢ε−1
# 1

ε−1

, Nt = exp

µ
− τ t
ϕ+ 1

¶
– Substituting the solution for π̄t into the law of motion for p∗t :

p∗t =
h
(1− θ) + θ

¡
p∗t−1

¢(ε−1)i 1
(ε−1)

.
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Example #4: Optimal Monetary Policy - CGG ...

• Can the other constraints be satisfied?

– Choose Rt so the intertemporal constraint is satisfied:

Rt =

1
p∗tNt

Et
Atβ

p∗t+1At+1Nt+1π̄t+1

.

– Remaining constraints: three price-setting conditions.
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Example #4: Optimal Monetary Policy - CGG ...

• Price setting conditions:
1 +Etπ̄

ε−1
t+1βθFt+1 = Ft (1)

(1− νt)
ε

ε− 1 exp (τ t)N
1+ϕ
t p∗t + Etπ̄

ε
t+1βθKt+1 = Kt (2)

Ft

∙
1− θπ̄ε−1t

1− θ

¸ 1
1−ε (making use of the expression for optimal inflation)z}|{= Ftp

∗
t = Kt (3)

• Divide (2) by p∗t , impose (3) and use π̄t+1 = p∗t /p
∗
t+1 :

markupz }| {
ε

ε− 1 ×

=firm marginal cost/Ptz }| {
(1− νt)×

= Wt
PtAt

=MRS
A

by optimality of Ntz}|{= 1z }| {
exp (τ t)N

1+ϕ
t +Etπ̄

ε−1
t+1βθFt+1 = Ft

• Subtract from (1) (subsidy must cancel markup and interest rate distortion):
(1− ν)

ε

ε− 1 = 1.
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Example #4: Optimal Monetary Policy - CGG ...

• Bottom line. Optimality under state-contingent νt implies:

p∗t =
h
(1− θ) + θ

¡
p∗t−1

¢(ε−1)i 1
(ε−1)

π̄t =
p∗t−1
p∗t

Nt = exp

µ
− τ t
1 + ϕ

¶
1− ν =

ε− 1
ε

Ct = p∗tAtNt.

• Ramsey-optimal policy is time consistent (no forward-looking constraints on
core problem).

• If ψ > 0 and νt not state-contingent must work out Ramsey solution
numerically.
(For further discussion, see Christiano-Motto-Rostagno, ‘Two Reasons Why
Money Might be Useful in Monetary Policy’, 2007 NBER WP.)
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Example #4: Optimal Monetary Policy - CGG ...

• Example - no working capital channel (ψ = 0):

θ = 0.75, ε = 2, β = 0.99, ρ = 0.5, ϕ = 1.

• In this case:
Nt = 1 + 0.45(λ1t−1 − λ1) + .06(λ3,t−1 − λ3) + 0.63(λ4,t−1 − λ4)

rt = 0.01− 0.50(λ1t−1 − λ1) + 0.10(λ3,t−1 − λ3)− 0.02(λ4,t−1 − λ4)− 0.25at−1
−0.51ut

πt = 1 + 0.07(λ1t−1 − λ1) + 0.09(λ3,t−1 − λ3) + 0.31(λ4,t−1 − λ4) + 0.25(p
∗
t−1 − 1)

λ1t = 0,

λ2,t = 3.88 + 0.82(λ1t−1 − λ1) + 1.46(λ3,t−1 − λ3) + 3.65(λ4,t−1 − λ4)

+4.13(p∗t−1 − 1)
λ3,t = 0.05(λ1t−1 − λ1) + 0.69(λ3,t−1 − λ3) + 0.12(λ4,t−1 − λ4)

λ4,t = −0.05(λ1t−1 − λ1) + 0.06(λ3,t−1 − λ3) + 0.63(λ4,t−1 − λ4)

λ5,t = 0.05(λ1t−1 − λ1)− 0.06(λ3,t−1 − λ3) + 0.12(λ4,t−1 − λ4)

λ1 = λ3 = λ4 = λ5 = 0, λ2 = 3.88

• ‘Resetting multipliers’ makes no difference: no time inconsistency problem.
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Example #4: Optimal Monetary Policy - CGG ...

• Example with ψ = 0.7 :

Nt = 1 + 0.50λ1t−1 + .03λ3,t−1 + 0.40λ4,t−1 + 0.02at−1 + 0.03ut
rt = 0.01− 0.51λ1t−1 + 0.12λ3,t−1 + 0.30λ4,t−1 − 0.24at−1 − 0.49ut
πt = 1 + 0.05λ1t−1 + 0.10λ3,t−1 + 0.31λ4,t−1 − 0.01at−1 + 0.25(p∗t−1 − 1)− 0.02ut
p∗t = 1 + .75(p∗t−1 − 1)
λ1t = −0.01λ1t−1 + 0.04λ3,t−1 + 0.44λ4,t−1 + 0.02At−1 + 0.03ut
λ2,t = 3.88 + 0.95λ1t−1 + 1.42λ3,t−1 + 3.63λ4,t−1 + 0.09At−1 + 0.18ut + 4.13(p

∗
t−1 − 1)

λ3,t = 0.01λ1t−1 + 0.70λ3,t−1 + 0.13λ4,t−1 − 0.02at−1 − 0.05ut
λ4,t = −0.01λ1t−1 + 0.05λ3,t−1 + 0.62λ4,t−1 + 0.02at−1 + 0.05ut
λ5,t = 0.015λ1t−1 − 0.05λ3,t−1 + 0.13λ4,t−1 − .02at−1 − 0.05ut

λ1 = λ3 = λ4 = λ5 = 0, λ2 = 3.88

• Properties: all multipliers respond to ut; optimal plan not time consistent;
employment and inflation respond to ut; rt drops a little less than before (it’s a
tax now); Nt falls somewhat because of the interest rate ‘tax’.
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Example #4: Optimal Monetary Policy - Clarida-Gali-Gertler Model ...

• Experiment:

– Economy is in steady state of optimal plan up to period t.

– A positive shock to technology occurs.

– Monetary authority computes optimal policy and displays it in a set of
charts.

– Redo charts one period later.
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Example #4: Optimal Monetary Policy - Clarida-Gali-Gertler Model ...

• Discussion of the results

– In the absence of a working capital channel (i.e., ψ = 0) it is optimal to cut
the interest rate, to encourage households not smooth consumption away
from what is optimal.

– In the presence of a working capital channel, (i.e., ψ > 0), the cut in the
interest rate reduces the marginal cost of labor and expands output and
employment. By reducing marginal cost, inflation drops.

– The rise in employment and fall in inflation are both costly, and so:

∗ it is optimal when ψ > 0 to cut the interest rate by less.

∗ it is optimal to manage expectations so that the incentive to cut prices in
the present is reduced.
· announce inflation close to zero in the next period
· announce relatively small interest rate drop in the next period.
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Example #4: Optimal Monetary Policy - Clarida-Gali-Gertler Model ...

• Previous example illustrates importance of working capital channel (‘lending
channel’)

– CCG model with Taylor rule illustrates this too

Rt = 1.5π
e
t+1

– With ψ = 0, obtain standard result that inflation expectations cannot be
self-fulfilling.

– With ψ > 0, results turn upside down (see CMR, ‘Two Reasons...’)
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