
Expectation Traps and Discretion: the Markov Case

1. The Markov Equilibrium and the Monetary Authority’s Problem

Following is the state, s, from the perspective of the monetary authority:

s = (p−1, z, ζ1) .

Here, p−1 denotes the price level set last period by those who set prices then, scaled by last

period’s end-of-period money stock, M (i.e., this period’s beginning of period stock); ζ1 is a

sunspot variable; and z is a shock to technology.

The state, s2, at the time private agents make their decisions is:

s2 = (s, µ, ζ2) ,

where µ is the money growth rate selected by the monetary authority in the current period:

µ =
M 0

M
.

Here, M is the beginning of current period stock of money, and M 0 is the beginning of next

period’s stock of money. Also, ζ2 is another sunspot variable.

Let

σ(s), c(s2;σ), l(s2;σ), p(s2;σ),

denote functions characterizing the monetary authority’s money growth decision, competitive

consumption and employment allocations, and the price (scaled byM) set by current period

price setters. The latter three are contingent upon the current monetary action, µ (via s2)

and the view that the monetary action in the future will be the output of the function, σ.

The law of motion for s is:

s0 =

Ã
p(s2;σ)

µ
, z0, ζ 01

!
.

Consider the following function:

V (s;σ) = E [u (c (s,σ(s), ζ2;σ) , l (s,σ(s), ζ2;σ)) + βV (s0;σ)|s;σ] . (1.1)

This is the utility value of the equilibrium allocations associated with following the policy

rule, σ, forever, given that the current state, s, has been observed.

The monetary authority takes future policy, σ, as given and selects the current policy

action, µ. Let σ̃(s;σ) denote this action, expressed as a function of s:

σ̃(s;σ) = argmax
µ
E [u (c(s2;σ), l(s2;σ)) + βV (s0;σ)|s;σ] . (1.2)

A Markov equilibrium is a σ(s) such that:

σ(s) = σ̃(s;σ). (1.3)

2

2. The Private Economy

We now proceed to characterize the objects, c(s2;σ), l(s2;σ), p(s2;σ). From here on, for

notational simplicity, we delete the argument, σ.

2.1. Firms

Final Good Firms

Output is produced by final goods firms and intermediate goods firms. Final goods are

produced by a perfectly competitive firm that combines a continuum of intermediate goods,

indexed by i ∈ (0, 1), using the following technology:

c(s2) =
·Z 1

0
(yi(s2))

λ di
¸ 1
λ

=
·
1

2
y(s2)

λ +
1

2
y−1(s2)λ

¸ 1
λ

. (2.1)

Here, y denotes the output of intermediate good firms setting their prices in the current

period and y−1 denotes the output of firms who set their prices in the previous period, and

0 < λ < 1.

The final good producer’s problem is:

max
c(s2),{yi(s2)}

p̄(s2)c(s2)−
Z 1

0
pi(s2)yi(s2)di, (2.2)

subject to (2.1). Here, p̄(s2) denotes the price of the final good, and pi(s2) denotes the price

of the ith intermediate good, where each has been scaled by the beginning of period stock of

3

money. Problem (2.2) gives rise to the following input demand functions:

yi(s2) = c(s2)

Ã
p̄(s2)

pi(s2)

! 1
1−λ
. (2.3)

In conjunction with (2.1), this implies:

p̄(s2) =
·Z 1

0
pi(s2)

λ
λ−1di

¸λ−1
λ

=
·
1

2
p(s2)

λ
λ−1 +

1

2
p

λ
λ−1
−1

¸λ−1
λ

. (2.4)

Each of these price functions are functions of σ.

Intermediate Good Firms

The ith intermediate good firm has the following production function:

yi(s2) = zli(s2).

It is a monopolist in the provision of its good. It sets price, and then supplies whatever

demand materializes at that price. It sets its price at a constant value for two periods.

Each period, half the firms do so. The firms setting prices in the current period do so after

observing s2. Profits, scaled by the beginning of period money stock, for firm i in the current

period are:

πi(s2; pi) = pi(s2)yi(s2)−
"
R(s2)w(s2)

z

#
yi(s2),

4

where the term in square brackets is marginal cost. According to the demand curve, piyi =

c (p̄)1/(1−λ) (pi)
λ/(λ−1) and yi = c (p̄)

1/(1−λ) (pi)
−1/(1−λ) . Substituting:

πi(s2; pi) = c(s2) (p̄(s2))
1/(1−λ)

(
(pi(s2))

λ
λ−1 −

"
R(s2)w(s2)

z

#
(pi(s2))

1
λ−1

)

The only decision made by firms is to set their own price, and they do this every other

period. Consider the situation of a firm setting its price, given that the state is s2. The firm

is owned by the households, and it must weigh profits in different states of nature in a way

that is consistent with this. The valuation of profits must take into account that a current

period’s profits cannot be spent by the household until the next period, after s02 is realized.

A dollar next period is worth

π(s02|s2)
βuc(s

0
2)

Mµp̄(s02)
,

where π(s02|s2) denotes the probability of s02, conditional on s2 = (s, µ, ζ2), and M is the

beginning-of-period stock of money. Then,Mµp̄(s02) is the next period money price of a unit

of the consumption good. It follows that the value to the household of a dollar at the end

of a period when the state is s2 is q(s2)/M, where

q(s2) =
X
s02|s2

π(s02|s2)
βuc(s

0
2)

µp̄(s02)
.

5

Then, if the state is s2 and the beginning of period stock of money is M, then the value of

Mπ(s2) dollars of profits is Mπ(s2)q(s2)/M = π(s2)q(s2). The firm’s objective is:

max
pi(s2)

π(s2)q(s2) + β
X
s02|s2

π(s02|s2)q(s02)π(s02)
 ,

subject to:

πi(s
0
2; pi) = c(s

0
2) (p̄(s

0
2))

1/(1−λ)

Ã
pi(s2)

µ

! λ
λ−1
−
"
R(s02)w(s

0
2)

z0

#Ã
pi(s2)

µ

! 1
λ−1

 , s02 = (s0,σ(s0), ζ 02).

The presence of pi(s2)/µ in this expression reflects that the formula requires the firm’s next

period price to be scaled in terms of next period’s beginning of period money stock, M 0.

This leads to the following first order condition for price setting firms:

p (s2) =
q(s2)p̄(s2)

2−λ
1−λ w

p̄
(s2)

R(s2)
z
c(s2) +

β
µ

P
s02|s2 π(s

0
2|s2)q(s02) (p̄(s02)µ)

2−λ
1−λ w

p̄
(s02)

R(s02)
z0 c(s

0
2)

λ
³
q(s2)p̄(s2)

1
1−λ c(s2) +

β
µ

P
s02|s2 π(s

0
2|s2)q(s02) (p̄(s02)µ)

1
1−λ c(s02)

´ .

(2.5)

2.2. Households

Household optimization requires:

w

p̄
(s2) = −ul(s2)

uc(s2)
,

and

R(s2) =
c(s2)uc(s2)

βE
h
c(s02)uc(s

0
2)

σ(s0) |s2
i .

6

2.3. Equilibrium Relationships

We now derive the following equilibrium relationship:

c(s2) = zl(s2)
g(s2)

h(s2)
,

where

g(s2) =

1
2
+
1

2

Ã
p(s2)

p−1

! λ
1−λ


1
λ

h(s2) =
1

2
+
1

2

Ã
p(s2)

p−1

! 1
1−λ
.

First,

c(s2)

y−1(s2)
=

Ã
p̄(s2)

p−1(s2)

! 1
λ−1

=

1
2
+
1

2

Ã
p(s2)

p−1(s2)

! λ
λ−1


1
λ

,

where the first equality corresponds to the final good producer’s euler equation, and the

second equality is a manipulation on the expression for p̄. Second,

y−1(s2) =
µ
1

2
y(s2) +

1

2
y−1(s2)

¶
1

1
2
+ 1

2
y(s2)
y−1(s2)

=
zl(s2)

1
2
+ 1

2

³
p−1
p(s2)

´ 1
1−λ
,

where the second equality involves dividing the final good firm’s euler equations: y/c =

(p̄/p)1/(1−λ) and y−1/c = (p̄/p−1)
1/(1−λ) . Combining the previous two results:

c(s2) =
zl(s2)

·
1
2
+ 1

2

³
p(s2)
p−1

´ λ
λ−1

¸ 1
λ

1
2
+ 1

2

³
p−1
p(s2)

´ 1
1−λ

³
p(s2)
p−1

´ 1
1−λ

³
p(s2)
p−1

´ 1
1−λ

= zl(s2)
g(s2)

h(s2)

7

Also,

l(s2) =
1

2
l(firms setting prices now) +

1

2
l(firms with pre-set prices).

The amount by which the object, g/h, deviates from unity measures the degree of resource

misallocation in the economy. It is useful to understand how this object varies with x =

p/p−1. Thus:

d(g/h)

dx
=
g

h

"
1

g

dg

dx
− 1
h

dh

dx

#
.

But,

dh

dx
=
1

2

1

1− λ
x

λ
1−λ ,

dg

dx
=
1

2

1

1− λ
g(1−λ)x

2λ−1
1−λ .

Then,

d(g/h)

dx
=

1

1− λ

g

h
x

λ
1−λ

"
1

1 + x
λ

1−λ

1

x
− 1

1 + x
1

1−λ

#

= κ(1− x),

where

κ =
(g/h)x

2λ−1
1−λ

(1− λ)(1 + x
λ

1−λ)(1 + x
1

1−λ)
.

Evidently, for positive inflation (x > 1), then d(g/h)/dx < 0.

The household cash constraint and the loan market clearing condition imply:

p̄(s2)c(s2) = µ.

8

3. Computations For A Deterministic Model1

Here, we consider the special case, z = 1, ζ1 = ζ2 = 0, so that s = (p−1), s2 = (p−1, µ).

The computational strategy involves looking for three functions: the policy function, σ(p−1) :

P → R, the pricing function, p(p−1, µ) : P×Λ→ R, and the value function, V (p−1) : P → R,

in finite parameter function spaces. The parameters of these functions are denoted by the

column vectors, γσ, γp, γV , respectively. The basic strategy selects these parameter values to

mimick certain properties satisfied by the exact solution. In particular, in the exact solution,

the three functions satisfy three functional equations: the Euler equation associated with

the monetary authority’s problem, (1.2), the equilibrium pricing equation, (2.5), and the

functional equation, (1.1), that must be satisfied by V (p−1). So, our computational strategy

selects values for γσ, γp, γV so that these functional equations are approximately satisfied.

If the finite parameter function spaces we worked with contained the exact solution, then

we could expect to find values for γσ, γp, γV so that the functional equations are satisfied

exactly. We choose a function space so that, if the exact functions of interest satisfied the

appropriate smoothness conditions, then by making the vectors, γσ, γp, γV , long enough we

can get arbitrarily close to the exact solution.

3.1. General Strategy

We begin by defining precisely the functional equations we work with. To start, we assume

a value of γσ is given, that is, σ(p−1) is initially treated as known.

1For other game-theoretic models, see McGuire and Pakes (Rand Journal a couple of years ago), Mariel
Miranda (Judd will send references), Kotlikov, Shoven and Spivak (‘Saving Book’) and Judd will send us his
work on this. Our work is related to work on “differential games”, and contrasts with McGuire and Pakes’
which focusses on jump processes.

9

1. In the following we define the equations used to pin down γp, given γσ.

1. For each (p−1, µ) belonging to a grid of points in (P × Λ), evaluate the following

expressions in (x, y) ∈ R2, for (x, y) = (xi, yi), i = 0, 1, 2, with

(x0, y0) = (p−1, µ), (xi, yi) =

"
p(xi−1, yi−1)

yi−1
,σ

Ã
p(xi−1, yi−1)

yi−1

!#
, i = 1, 2.

We assume that the functions have the property that (xi, yi) ∈ (P×Λ) , i = 0, 1, 2.

The expressions are:

p̄(x, y) =
·
1

2
p(x, y)

λ
λ−1 +

1

2
x

λ
λ−1

¸λ−1
λ

,

c(x, y) =
y

p̄(x, y)
,

g(x, y) =

1
2
+
1

2

Ã
p(x, y)

x

! λ
1−λ


1
λ

,

h(x, y) =
1

2
+
1

2

Ã
p(x, y)

x

! 1
1−λ
,

l(x, y) =
h(x, y)

g(x, y)
c(x, y), (3.1)

w

p̄
(x, y) = −ul

uc
(x, y),

cuc(x, y) = c(x, y)uc(x, y)
(1−σ) [1− l(x, y)](1−σ)ψ .

The last two expressions require taking a stand on preferences. One possibility is

10

a unit elasticity of substitution between consumption and leisure. In this case

w

p̄
(x, y) =

ψc(x, y)

1− l(x, y) ,

and

cuc(x, y) = c(x, y)
(1−σ) [1− l(x, y)](1−σ)ψ .

A potential problem with this utility function is that the constraint, 0 ≤ l ≤ 1,

may be binding, in the sense that for an arbitrary γσ and γp, (3.1) may imply a

value of l in excess of 1. Restricting γσ and γp to guarantee l ≤ 1 is likely to be

computationally cumbersome. An alternative utility function that does not have

this property is the zero income effect on leisure utility function:

u(c, l) =



h
c−ψ0 l1+ψ1+ψ

i(1−σ)
1−σ , for σ 6= 1

log
³
c− ψ0

l1+ψ

1+ψ

´
, for σ = 1.

However, with this utility function, the requirement that marginal utility be well

defined requires c ≥ ψ0
l1+ψ

1+ψ
, which imposes some restrictions on γσ and γp. Another

utility function:

u(c, l) =


c(1−σ)
1−σ − ψ0

l1+ψ

1+ψ
, for σ 6= 1

log(c)− ψ0
l1+ψ

1+ψ
, for σ = 1.

.

This utility function looks attractive, because it helps makes the algorithm de-

scribed below ‘bullet proof’ by making things well defined for any γσ and γp.

11

2. Evaluate the following objects for the indicated values of (x, y) only:

q(xi, yi) =
βuc (xi+1, yi+1)

yip̄ (xi+1, yi+1)
, i = 0, 1.

R(x0, y0) =
1

β

σ (x1) cuc(x0, y0)

cuc (x1, y1)

a1(x0, y0) = q(x0, y0)p̄(x0, y0)
2−λ
1−λ
w

p̄
(x0, y0)R(x0, y0)c(x0, y0),

a2(x0, y0) = q(x0, y0)p̄(x0, y0)
1

1−λ c(x0, y0).

a3(x0, y0) =
β

y0
q(x1, y1) (p̄(x1, y1)µ)

2−λ
1−λ

w

p̄
(x1, y1)R(x1, y1)c(x1, y1)

a4(x0, y0) =
β

µ
q(x1, y1) (p̄(x1, y1)µ)

1
1−λ c(x1, y1)

3. Finally:

Fp(p−1, µ; γp|γσ) = p (x0, y0)− a1(x0, y0) + a3(x0, y0)

λ (a2(x0, y0) + a4(x0, y0))

Note, Fp : (P × Λ) → R. If we somehow managed to have in hand the exact

function, σ(p−1), and the function space in which we looked for p(p−1, µ) contained

the exact function, p(p−1, µ), then it would be possible to select γp so that F :

(P × Λ)→ 0. Presumably we can’t do this, but we’ll select γp to come as ‘close’

to this as possible instead.

2. In the following we define the equations used to select γV . These calculations presume

values for γp and γσ are available. We find γV so that

FV (p−1; γV |γp, γσ) = V (p−1)−u (c (p−1,σ(p−1)) , l (p−1,σ(p−1)))−βV
Ã
p (p−1,σ(p−1))

σ(p−1)

!
,

12

is small p−1 ∈ P.

As noted before, the values of γV and γp that satisfy the above equations, do so conditional

on a presumed value for γσ. To find γσ, we select a value for it so that

Fσ(p−1; γσ) = σ̂(p−1; γσ)− argmax
µ

"
u (c (p−1, µ) , l (p−1, µ)) + βV

Ã
p (p−1, µ)

µ

!#
,

is small for p−1 ∈ P. Here, for each γσ, Fσ is evaluated by first obtaining values of γp and

γV , as discussed above. The parameter vector γp determines the functions c and l, while γV

determines V.

To summarize, a ‘solution’ to our problem is a set of parameters, γV , γp, γσ, such that:

Fσ(p−1; γσ) small for p−1 ∈ P

Fp(p−1, µ; γp|γσ) small for (p−1, µ) ∈ (P × Λ)

FV (p−1; γV |γp, γσ) small for p−1 ∈ P.

(3.2)

3.2. Details About the Strategy

Three things need to be addressed: nature of the sets, P, Λ; the metric for determining that

Fσ(p−1; γσ), FV (p−1; γV |γp, γσ), and Fp(p−1, µ; γp|γσ) are small; and a space of functions for

σ(p−1), p(p−1, µ), V (p−1). Let pl−1 and p
u
−1 define the lower and upper boundaries of P, and

let µl and µu define the lower and upper boundaries of Λ.We discuss the problem of finding

γσ first.

13

3.2.1. The Function, Fσ

The strategy we will adopt in solving (3.2) is to convert it into a problem in solving three

equations in three sets of parameters, γµ, γp, γσ. These equations could be solved simultane-

ously. However, we will in effect substitute the second two into the first. Thus, we set up

the problem as one of finding γσ to make Fσ small. The other two equations will then be

used to define Fσ. Let σ̂(p−1; γσ) denote the function we use to approximate σ(p−1), and let

nσ denote the number of elements in the column vector, γσ. To discuss the computational

issues relevant to solving our problem, it is useful to write it in weighted residual form:

Z pu−1

pl−1
Fσ(p−1; γσ)wi(p−1)dp−1 = 0, i = 1, ..., nσ, (3.3)

where the choice of weighting functions, wi(p−1), operationalizes the notion of ‘small’. The

three issues that have to be confronted are evident in the weighted residual representation:

a choice of σ̂(p−1; γσ) is need, we require a set of nσ weighting functions, and P must be

constructed. The menu is as follows.

There are two types of finite parameter functions: spectral and finite-element. In spec-

tral functions (e.g., polynomials) each element of γσ has a global impact on the function,

σ̂(p−1; γσ). In finite-element functions (e.g., sequences of straight lines, or polynomials) each

element of γσ controls σ̂(p−1; γσ) only for p−1 belonging to a strict subset of P (an important

text on finite element methods is Reddy.) For functions whose behavior looks very different

in some regions than others, finite-element approximations are presumably efficient.

There are two major types of weighting functions, among others. These correspond to

the Galerkin and Collocation methods for approximating functions.

14

1. Galerkin. Here, the weighting functions, wi, are constructed from the basis functions

generating σ̂(p−1; γσ).

2. Collocation. Here, the weighting functions are delta functions, so that the weighted

residual form just reduces to Fσ(p−1; γσ) = 0 for n values of p−1 ∈ P.

Regardless of which method is used, there is an excellent accuracy check available, based

in part on comparing the graph of Fσ(p−1; γσ) for p−1 ∈ P, with the zero line. This cannot

be the only check, however. That’s because the function Fσ is itself only an approximation,

since it is constructed using approximations to p(p−1, µ) and V (p−1) (see below). Further

checks, which focus on derivatives of (2.5) and the first order condition associated with the

maximization problem in (1.2) are also important.

3.2.2. The Spectral-Galerkin Method

We will now describe a Spectral-Galerkin method, which uses Chebyshev polynomials to

approximate σ̂(p−1; γσ). This method has been advocated by Judd for solving dynamic,

economic problems. The policy function is:

σ̂(p−1; γσ) = µl +
µu − µl

1 + exp [−γ0σT (ϕp (log(p−1)))]
, (3.4)

where

γσ =



γσ,1

γσ,2

...

γσ,nσ


, T (x) =



T0(x)

T1(x)

...

Tnσ−1(x)


, x ∈ [−1, 1] (3.5)

15

and

ϕp(x) = 2
x− x
x− x − 1, ϕp : [x, x]→ [−1, 1].

Here,

x = log(pl−1), x = log(p
u
−1).

Note:

ϕ−1p (r) = x+
1

2
(1 + r)(x− x).

Also, the Chebyshev polynomials, Ti : [−1, 1]→ [−1, 1], are defined as follows:

T0(r) = 1, T1(r) = r, Ti(r) = 2rTi−1(r)− Ti−2(r), i ≥ 2. (3.6)

The form of the policy function is restricted so that a money growth rate less than µl is

impossible. To illustrate (3.4), it is useful to consider the case nσ = 2 :

σ̂(p−1; γσ) = µl +
µu − µl

1 + exp {−γσ,1 − γσ,2ϕp (log(p−1))}
= µl +

µu − µl
1 + exp

n
−
h
γσ,1 − γσ,2

³
x+x
x−x

´i
− 2γσ,2

x−x log(p−1)
o

Note that, by construction, σ̂(p−1; γσ) : P → Λ. Also, as γσ → +∞, σ̂ → µu and as

γσ → −∞, σ̂ → µl for all p−1 ∈ P.

Next, compute r1, ..., rmσ , the mσ roots of Tmσ(r), mσ ≥ nσ, and the associated values of

p−1:

ri = cos

π
³
i− 1

2

´
mσ

 , p−1,i = exp hϕ−1p (ri)
i
, i = 1, ...,mσ,

16

and form the n×m matrix and m× 1 vector:

Aσ =



T0(r1) T0(r2) · · · T0(rmσ)

T1(r1) T1(r2) · · · T1(rmσ)

...
...

. . .
...

Tnσ−1(r1) Tnσ−1(r2) · · · Tnσ−1(rmσ)


, Fσ (γσ) =



Fσ(p−1,1; γσ)

Fσ(p−1,2; γσ)

...

Fσ(p−1,mσ ; γσ)


.

A property of the matrix Aσ is that each row is orthogonal to all the others. That is, AσA
0
σ is

a diagonal matrix. Form the following nonlinear system of nσ equations in the nσ unknowns,

γσ:

AσFσ (γσ) = 0. (3.7)

This can be solved using standard computational techniques. Solving these equations amounts

to solving (3.3) for a particular weighting function, usingmσ-point Guass-Chebyshev quadra-

ture to evaluate the integral. When nσ = mσ, solving (3.7) is equivalent to simply setting

Fσ (γσ) = 0, and the method corresponds to Collocation instead of Galerkin.

3.2.3. The Other Functions

As noted previously, to define the set of equations, (3.7), we need to approximate the func-

tions p(p−1, µ) and V (p−1).We do this using the Spectral-Galerkin method described above.

For this, suppose a function, σ(p−1) is available. This is the case, for example, if we’re in

the middle of evaluating (3.7) for some particular value of γσ.

We compute approximations to p(p−1, µ) and V (p−1) sequentially. Denote these approx-

imations by p̂(p−1, µ; γp) and V̂ (p−1; γV), respectively.

17

The Function, p(p−1, µ)

We denote the number of elements in the column vector, γp, by np, and we assume (np)
1/2

is an integer. For p̂(p−1, µ; γp), we adopt the tensor product basis for degree (np)
1/2 − 1

Chebyshev polynomial functions in 2 variables:

Φ =
n
Ti(x)Tj(y) : i, j = 0, 1, ..., n

1/2
p − 1

o
,

where (x, y) ∈ [−1, 1] × [−1, 1] and the Ti’s are defined in (3.6). Note that Φ contains np

elements, corresponding to the np possible values of (i, j). Denote these by the functions,

φl(x, y) : [−1, 1]× [−1, 1]→ [−1, 1]× [−1, 1], l = 1, ..., np.

To construct these functions, we use the Kronecker tensor product. Thus, define, as in (3.5),

T (x) =



T0(x)

T1(x)

...

T
n
1/2
p −1(x)


, T (y) =



T0(y)

T1(y)

...

T
n
1/2
p −1(y)


, x, y ∈ [−1, 1].

18

Then,2

φ(x, y) = T (x)⊗ T (y), φ(x, y) : [−1, 1]2 → [−1, 1]np.

That is, for any x, y ∈ [−1, 1]2, φ(x, y) is an np× 1 vector of numbers, each of which belongs

to [−1, 1]. Our approximating function is:

p̂(p−1, µ; γp) = µ

pl−1 + pu−1 − pl−1
1 + exp

h
−γ0pφ (ϕp (log(p−1)) ,ϕµ (µ))

i
 , (3.8)

where ϕp is defined above and

ϕµ(x) = 2
µ− µl
µu − µl − 1, ϕµ : [µ

l, µu]→ [−1, 1].

To illustrate (3.8), it is useful to consider the case np = 4:

p̂(p−1, µ; γp) = µ

(
pl−1 +

pu−1 − pl−1
1 + exp [−γp,1 − γp,2ϕµ (µ)− γp,3ϕp (log(p−1))− γp,4ϕp (log(p−1))ϕµ (µ)]

)

= µ

(
pl−1 +

pu−1 − pl−1
1 + exp [−ψ1 − ψ2µ− ψ3 log(p−1)− ψ4µ log(p−1)]

)

2Recall that the Kronecker product, ⊗, of the na × ma matrix a and the nb × mb matrix b is the
(nanb)× (mamb) matrix c, where

c =


a11b a12b · · · a1mab
a21b a22b · · · a2mab
...

...
. . .

...
anab anab · · · anamab

 .

19

where

ψ1 = γp,1 − γp,2

Ã
µu + µl

µu − µl
!
− γp,3

µ
x+ x

x− x
¶
+ γp,4

Ã
µu + µl

µu − µl
!µ

x+ x

x− x
¶

ψ2 =
2

µu − µl
·
γp,2 − γp,4

µ
x+ x

x− x
¶¸

ψ3 =
2

x− x
"
γp,3 − γp,4

Ã
µu + µl

µu − µl
!#

ψ4 =
4γp,4

(x− x) (µu − µl) .

Next, compute r1, ..., rm1/2
p
, the m1/2

p roots of T
m
1/2
p
(x), mp ≥ np. Let the mp × 2 matrix

r̄ be defined as follows:

r̄ =



r1 r1

r1 r2

...
...

r1 r
m
1/2
p

r2 r1

r2 r2

...
...

r2 r
m
1/2
p

...
...

...
...

r
m
1/2
p

r1

r
m
1/2
p

r2

...
...

r
m
1/2
p

r
m
1/2
p



20

Thus, r̄i = (r̄i,1, r̄i,2) is a 1× 2 vector, i = 1, ...,mp. Let

si,1 = exp
h
ϕ−1p (r̄1,i)

i
, si,2 = ϕ−1µ (r̄2,i), i = 1, ...,mp,

so that si = (si,1, si,2) is the value of (p−1, µ) ∈ P ×Λ associated with r̄i, i = 1, ...,mp. Form

the np ×mp matrix Ap based on the n
1/2
p ×m1/2

p matrix A :

Ap = A⊗A, A =



T0(r1) T0(r2) · · · T0(rm1/2
p
)

T1(r1) T1(r2) · · · T1(rm1/2
p
)

...
...

. . .
...

T
n
1/2
p −1(r1) T

n
1/2
p −1(r2) · · · T

n
1/2
p −1(rm1/2

p
)


.

Also, form the mp × 1 vector:

Fp (γp) =



Fp(s1; γσ)

Fp(s2; γσ)

...

Fp(smp; γσ)


.

Form the following nonlinear system of np equations in the np unknowns, γp:

ApFp (γp) = 0. (3.9)

A value for γp may be found by solving these equations using standard methods. Note that

each row of Ap is orthogonal to all the others, since ApA
0
p is a diagonal matrix.

21

The Function, V (p−1)

We find the approximating function to V (p−1), V̂ (p−1; γV), using the same strategy used

for approximating σ(p−1). Thus, we approximate V (p−1) as follows:

V̂ (p−1; γV) = γ0V T (ϕp (log(p−1))) ,

where nV is the number of elements in the column vector, γV . Conditional on values for γσ

and γp, we solve for γV by solving the appropriately modified version of equations (3.7).

22

