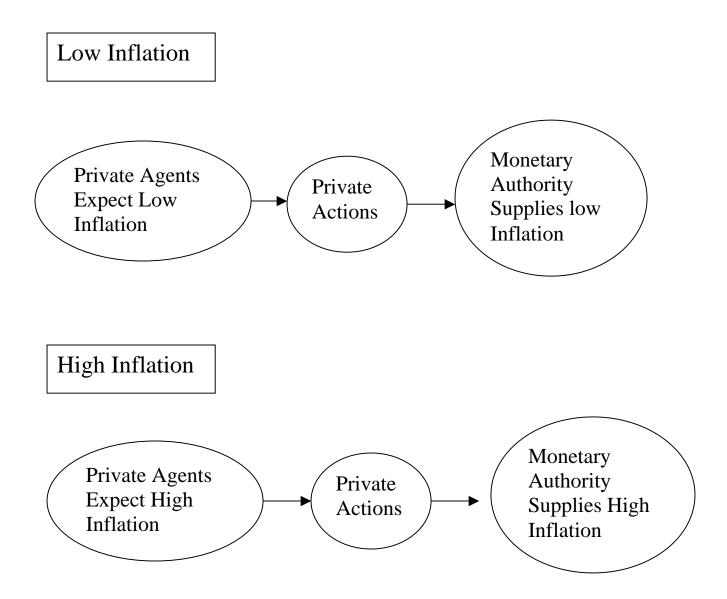
Expectation Traps and Monetary Policy

by

Stefania Albanesi, Bocconi University

V.V. Chari, University of Minnesota


Lawrence J. Christiano, Northwestern University

- ² Countries Have Experienced Destructive Periods of High and Variable Inflation ('Great Inflation' of 1970s).
- ² Can Absence of Commitment in Monetary Policy Account for This?

Absence of Commitment and Variable Inflation

- ² Kydland-Prescott, Barro-Gordon: Variability Reflects Movements in Fundamentals
- ² Possibility Explored Here: Variability Reflects Movements in Expectations.

Expectation Traps

Objective:

- ² This Paper:
 - Study the Nature of Equilibria in Standard Models
 - Are there Expectation Trap Equilibria?
- ² Longer-Term:

Quantitative, Empirical Assessment of Expectation Trap Hypothesis.

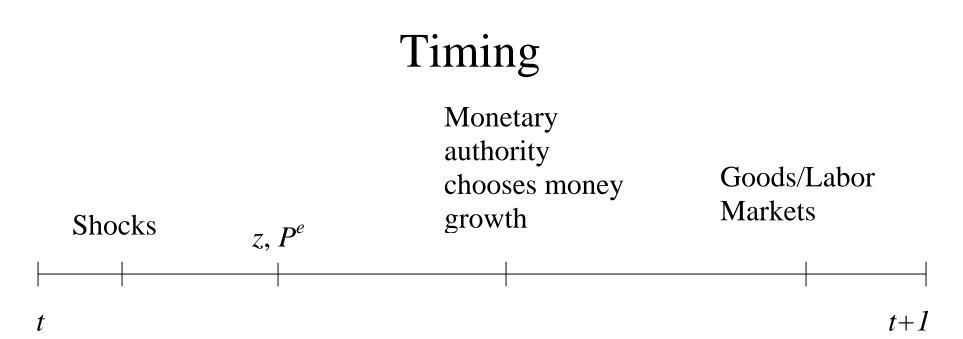
² What's At Stake?

Under Expectation Trap Hypothesis, Institutional Reform Is Needed To Prevent Recurrence of 1970s-Style Inflation.

Outline:

- (1) Version of Lucas-Stokey Cash-Credit Good Model With
 - Some Preset Prices.
 - Svensson Timing ($Pc \cdot M_{i-1}$).
 - Endogeneity of Cash/Credit Good Distinction.
- (2) Findings
- (3) Conclusion.

Preview of Findings


- ² Expectation Traps Can Occur.
- ² Financial Variables More Variable When Inflation is High.
- ² Money Demand Implications of the Model Promising.

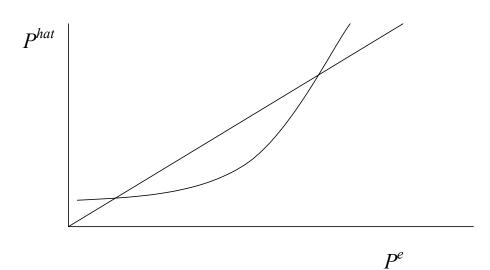
The Model

² Households, Firms, Monetary Authority.

² Continuum of Goods.

² Infinite Horizon.

- Private Agents Expect High Inflation
 - $\circ P^e$ Set High


o Number of Goods Bought With Cash Reduced

Monetary Authority May Produce High Inflation

 Monopoly Distortion
 Inflation Distortion

Basic Idea

Drive Towards a 'Best Response Function'. Will Do So By Constructing a Mapping from P^e to \hat{P} for each possible θ, g, z .

State of The Economy At Various Points in the Period

• Shocks Realized, After Which the State is:

heta,g,z

(z is a 'money demand shock' which is later endogenized)

Sticky Price Firms Select P^e. After this the State is:

$$S = (\theta, g, z, P^e)$$

Monetary Authority Selects Money Growth Rate,
 x. After this the State is:

$$S_1 = (S, x).$$

Firms

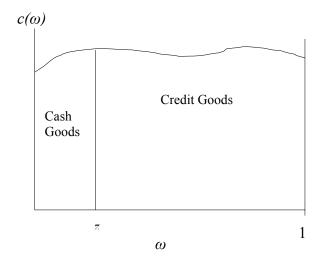
• Each Good Produced by a Monopolist:

$$y(\omega)= heta n(\omega),\,\,\omega\in(0,1).$$

• Wage Rate:

- 1μ 'flexible price firms' set $\hat{P}(S, x)$ $\hat{P}(S, x) = \frac{W(S, x)}{\theta \rho}, \ 0 < \rho < 1$
- μ 'sticky price firms' set P^e Before Observing x. They 'Conjecture' x = X(S)

$$= \frac{P^{e}(\theta, g, z)}{W(\theta, g, z, P^{e}(\theta, g, z), X(\theta, g, z, P^{e}(\theta, g, z)))}}{\theta \rho}$$


Representative Household

Preferences:

$$\sum_{t=0}^\infty eta^t u(c_t,n_t), \,\, c_t = \left[\int_0^1 c_t(\omega)^
ho d\omega
ight]^{1\over
ho},$$

 $c_t(\omega)$ ~ consumption of type ω good

 $\omega > z$ ~ credit goods $\omega < z$ ~ cash goods n_t ~ labor time

• Asset Allocation Constraint:

$$M + B \le A.$$

All Nominal Quantities Scaled by Aggregate Stock of Money.

• Cash In Advance Constraint:

$$M - \left[P^{e} \mu z c_{11} + \hat{P}(S, x) (1 - \mu) z c_{12} \right] \ge 0$$

 c_{11} ~ cash goods from sticky price producers c_{12} ~cash goods from flexible price producers

• Asset Evolution Equation:

$$\begin{array}{ll} \mathsf{0} & \leq & W(S,x)n + (1-R(S,x))M \\ & & -z \left[P^e \mu c_{11} + \hat{P}(S,x)(1-\mu)c_{12} \right] \\ & & -(1-z) \left[P^e \mu c_{21} + \hat{P}(S,x)(1-\mu)c_{22} \right] \\ & & + R(S,x)A + (x-1) + D(S,x) - xA'. \end{array}$$

 c_{21} ~ credit goods from sticky price producers c_{22} ~credit goods from flexible price producers

Recursive Representation of Household Problem

$$egin{aligned} v(A,S,x) = \ &\max_{n,M,A',c_{ij};i,j=1,2} \{u(c,n) \ &+eta E_{ heta',g',z'}[v(A',S',X(S'))| heta,g,z]\} \end{aligned}$$

with:

$$egin{aligned} c &= & [z\mu c_{11}^{
ho}+z(1-\mu)c_{12}^{
ho}\ &+(1-z)\mu c_{21}^{
ho}+(1-z)(1-\mu)c_{22}^{
ho}]^{rac{1}{
ho}}.\ &S' &= (heta',g',z',P^e(heta',g',z')). \end{aligned}$$

Solution to Household Problem

 $n(A, S, x), M(A, S, x), v(A, S, x), A'(A, S, x), c_{ij}(A, S, x), i, j = 1, 2$

Private Sector Equilibrium

Definition: Given a monetary policy rule, X(S), and a current money growth rate, x, a *Private Sector Equilibrium* is a collection of functions $P^e(\theta, g, z)$, $\hat{P}(S_1)$, $W(S_1)$, $v(A, S_1)$, $c_{ij}(A, S_1)$, $n(A, S_1)$, $M(A, S_1)$, $A'(A, S_1)$, $R(S_1)$, where $S_1 = (\theta, g, z, P^e(\theta, g, z), x)$, such that:

- 1. Functions v, c_{ij}, n, M, A' solve household problem,
- 2. Firm optimization conditions satisfied,
- 3. Asset markets clear:

$$A'(1, S_1) = 1$$
 and $M(1, S_1) = 1$,

4. Resource constraint satisfied: $\theta n(1, S_1) = g + z \left[\mu c_{11} + (1 - \mu) c_{12} \right] + (1 - z) \left[\mu c_{21} + (1 - \mu) c_{22} \right].$

Monetary Authority Problem

$$\begin{split} \max_{x} u(c(1,S,x),n(1,S,x)) \\ + \beta E_{\theta',g',z'}[v(1,S',X(S'))|\theta,g,z], \end{split}$$

where

$$S' = (\theta', g', z', P^e(\theta', g', z'))$$

Definition A *Markov equilibrium* is a private sector equilibrium and a monetary policy rule such that X(S)solves Monetary Authority's Problem.

Monetary Authority

² Problem:

$$\max_{\vec{P}} U(\vec{P}; P^e; \mu; g; z)$$

Equilibrium

² (off R , 1 corner):

 $\begin{array}{rcl} U_{\vec{P}} &=& 0; \ \vec{P} \,=\, P^{\,e}, \\ C_{cash;preset\,price} &=& C_{cash;flex\,price} & \ \ C_{cash} \\ C_{credit;preset\,price} &=& C_{credit;flex\,price} & \ \ C_{credit} \end{array}$

Findings

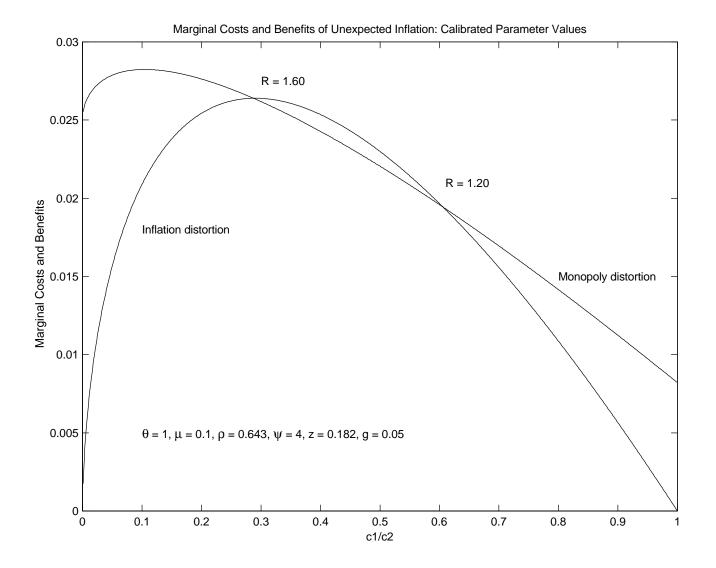
² Equilibrium First Order Necessary Conditions Can Be Written:

$$U_{\vec{P}} \gg \tilde{A}(\frac{c_{cash}}{c_{credit}}; z) = i \tilde{A}_{ID}(\frac{c_{cash}}{c_{credit}}; z) + \tilde{A}_{MD}(\frac{c_{cash}}{c_{credit}}; z):$$

Inflation Distortion:

$$\tilde{A}_{ID} \stackrel{\mu}{\xrightarrow{C_{cash}}} z \approx (R_{i} 1) \frac{M}{P}$$

Monopoly Distortion:


$$\tilde{A}_{MD} \stackrel{\mu}{=} \frac{C_{cash}}{C_{credit}}; z = [u_n + \mu u_{credit}] n_{\vec{P}}$$

Two Examples

² Cash-Credit Distinction Exogenous Calibration:

'Money Demand Regression' » Z = 0.182; ½ = 0.643; Parks » ¹ = 0.01 Christiano-Eichenbaum » $\tilde{A} = 4$ $\mu = 1$; g = 0.05Two Markov Equilibria : R = 1.20; 1.60:

² Cash-Credit Distinction Endogenous

Money Demand Implications of Endogenous z Model

Money Demand Equation $(u_1=u_2 = R)$

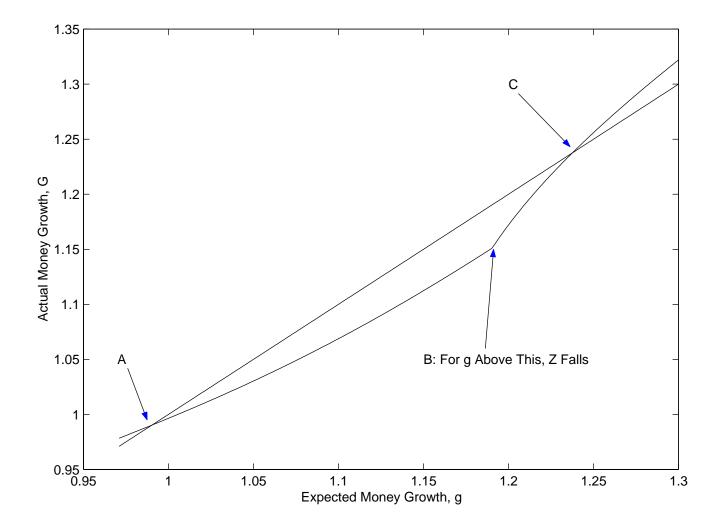
$$\frac{\text{consumption}}{M=P} = 1 + \frac{1}{z} R^{\frac{1}{1} \frac{1}{1}}$$

Has potential to resolve money demand puzzles:

- (1) 'Short Run Elasticity of Demand Lower Than Long Run'.
- (2) Money Demand Disturbances Highly Persistent.
- (3) Upward Drift in Velocity.

Numerical Example

² Non-Shock Parameters:


$$\tilde{A} = 1=1:03;$$
 $\tilde{A} = :063;$ $\tilde{A} = 1:64;$ $\frac{1}{2} = :83;$
 $1 = 0:1;$ $\frac{1}{2} = 0:3;$ $\frac{3}{4} = 1:01:$

Shock Parameters, g; µ; ´:

means	•	0:55; 1; 0:01
std deviations	•	0.001, 0.05, 0.0005
autocorrelations	•	0.9, 0:9; 0:9:

² Simulation Results:

	High Inflation	Low Inflation.
³ ⁄4y	0.020	0.020
³ ⁄4 _n	0.003	0.003
³ ⁄4 _R	0.002	0.00
3/41/4	0.025	0.017

Conclusion

- ² Expectation Traps Equilibria Occur in Simple Monetary Models.
- ² They are More Likely, the More Elastic is Money Demand.
- ² There is Reason to Expect that Models with Expectation Trap Equilibria Can Account for Other Key Features of the Data:
 - Classic Money Demand Puzzles.
 - Properties of High and Low Inflation Economies.
- ² The Expectation Trap Hypothesis About Variable Inflation Deserves Further Consideration.