Time-Consistent Policy

Paul Klein University of Western Ontario

Per Krusell, University of Rochester

José-Víctor Ríos-Rull University of Pennsylvania

October 1, 2001

Preliminary

Motivation

- A pervasive problem: a decision maker at time t cares about the future, disagrees with the decision maker at t + 1, but has no direct influence over it (e.g. the optimal taxation problem without commitment).
- Early literature (Kydland-Prescott (1977)) focused on finding the Markov equilibrium that is a limit of the corresponding finite-horizon economies.
- Later: use of "reputation mechanisms" (using Abreu, Pearce, & Stacchetti (1990), as in Chari & Kehoe (1990)).
- We are interested in the (differentiable) Markov equilibrium in models with state variables such as capital, debt, income distribution, etc.
- The Markov equilibrium is interesting as a benchmark where no reputation mechanism is operative: it is *fundamental* in emphasizing the basic economics dictated by the state variables.

Earlier Work On Markov Equilibria

- Lots of work on finite-horizon models. Solution procedure: solve it backwards. See, e.g., Basar and Olsder (1982).
- With infinite horizon, some linear-quadratic models can be solved explicitly (e.g., Basar and Olsder (1983), Cohen and Michel (1988) and Currie and Levine (1993)).
- Some work on differential games in various literatures (imperfect altruism, resource extraction problems); we have not yet digested these papers.
- Numerical approach: Krusell, Quadrini & Ríos-Rull (1997) and related papers; more recently, e.g., Klein and Ríos-Rull (2001). Problem here: these methods are of the "black-box" type and they did not deliver controlled accuracy.

Contributions

• We show how to characterize and solve for the Markov equilibrium:

- 1. We derive a "generalized Euler equation"—GEE—allowing us to interpret the incentives facing the decision maker; this equation does not appear in the existing literature, and it allows qualitative and quantitative interpretations.
- 2. We show how to solve this functional equation; a much harder problem than that of solving a standard Euler equation. Reason: to solve for a steady state, one needs to solve jointly for dynamics; to solve for first-order dynamics, one needs to solve for second-order dynamics, and so on ...

... Contributions

- 3. We study a simple, canonical problem in public economics: how to optimally provide public goods over time. We compare the predictions of the Pareto, Ramsey, and Markov allocations and find (among other things)
 - Governments without commitment may use capital taxation "strategically" and not just as a lump sum.
 - Often the Markov allocation has lower taxes.
 - The difference between Ramsey and Markov may be large.

The methods are entirely general and seem widely applicable: optimal fiscal and monetary policy, dynamic political economy, dynamic I.O. (durable goods monopoly, dynamic oligopoly), impure intergenerational altruism.

Our Economy: Public Goods Provision And Finance

• Standard growth model with a non-committing benevolent government, a period-by-period balanced budget, and proportional taxation. In the presentation, the tax base is total income and leisure is not valued.

Households maximize
$$\sum_{t=0}^{\infty} \beta^t u(c_t, g_t)$$

s.t.
$$c_t + k_{t+1} = k_t + (1 - \tau_t) [w_t + (r_t - \delta)k_t].$$

Resource constraint: $C_t + K_{t+1} + G_t = f(K_t, 1) + (1 - \delta)K_t$

Balanced budget constraint:
$$G_t = \tau_t \left[f(K_t, 1) - \delta K_t \right].$$

Analysis

In a subgame-perfect equilibrium, the government compares the effects of any current policy choice, τ , on endogenous variables given any current value of the state, K. Thus we need to find the two key equilibrium objects:

$$K' = \mathcal{H}(K,\tau)$$

$$\tau = \Psi(K).$$

The idea: the government and private agents expect the future governments to obey the *rule* Ψ , but the current tax rate is free. This is a *one-period deviation* from Ψ .

 \mathcal{H} and Ψ are unknown—they are the **key equilibrium objects**.

- $\bullet \ \mathcal{H}$ is determined so as to satisfy the FOC's for the household.
- Ψ is determined by the government's FOC (GEE).

There are two other, auxiliary functions that are convenient to define:

$$C = \mathcal{C}(K, \tau)$$
$$G = \mathcal{G}(K, \tau)$$

satisfying

$$\mathcal{G}(K,\tau) = \tau \left[f(K,1) - \delta K \right]$$

$$\mathcal{C}(K,\tau) = f(K,1) + (1-\delta)K - \mathcal{H}(K,\tau) - \mathcal{G}(K,\tau).$$

The private sector's first-order conditions

 \mathcal{H} satisfies the functional-eqtn version of the FOC for savings $\forall t$:

$$u_c(C_t, G_t) = \beta \ u_c(C_{t+1}, G_{t+1}) \ [1 + (1 - \tau_{t+1})(f_k(K_{t+1}, 1) - \delta)].$$

It is obtained by using ${\mathcal H}$ and Ψ in this equation: for all (K, τ) ,

$$u_{c} \left[\mathcal{C}(K,\tau), \mathcal{G}(K,\tau) \right] = \beta u_{c} \left\{ \mathcal{C}[\mathcal{H}(K,\tau), \Psi(\mathcal{H}(K,\tau))] \mathcal{G}[\mathcal{H}(K,\tau), \Psi(\mathcal{H}(K,\tau))] \right\} \cdot \left\{ 1 + \left[1 - \Psi(\mathcal{H}(K,\tau)) \right] \left[f_{K}(\mathcal{H}(K,\tau),1) - \delta \right] \right\}.$$

Note: Ψ is a determinant of \mathcal{H} : the expectations of future government behavior influence how consumers save.

The government's problem

Gov't problem:
$$\max_{\tau} u [\mathcal{C}(K,\tau), \mathcal{G}(K,\tau)] + \beta v [\mathcal{H}(K,\tau)],$$

where $v(K) \equiv u \left[\mathcal{C}(K, \Psi(K)), \mathcal{G}(K, \Psi(K)) \right] + \beta v \left[\mathcal{H}(K, \Psi(K)) \right].$

Optimal policy:
$$\Psi(K) = \arg \max_{\tau} \{ u [\mathcal{C}(K,\tau), \mathcal{G}(K,\tau)] + \beta v (\mathcal{H}(K,\tau)) \}$$

Hence $v(K) = \max_{\tau} u [\mathcal{C}(K, \tau), \mathcal{G}(K, \tau)] + \beta v [\mathcal{H}(K, \tau)].$ This is a *recursive problem*!

A sequential formulation: derivation of the GEE

Because the government's problem is recursive, we can characterize the optimal policy sequence, $\{\tau_t\}_{t=0}^{\infty}$, in sequential form

$$\max_{\{\tau_t, K_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u[\mathcal{C}(K_t, \tau_t), \mathcal{G}(K_t, \tau_t)]$$

subject: to
$$\mathcal{H}(K_t, \tau_t)$$
.

• This problem is not in terms of primitives: \mathcal{H} (and \mathcal{C} and \mathcal{G}) are endogenous, and depend on Ψ ; there is still a fixed-point problem to solve.

• To derive the GEE is now easy: just differentiate, like in a standard optimal growth context. The tax sequence here is the "control" sequence: it plays the role of consumption. We will assume that the GEE is sufficient for an optimum.

The GEE

Differentiation yields

$$u_c \left[-\mathcal{H}_\tau - \mathcal{G}_\tau \right] + u_g \, \mathcal{G}_\tau +$$

$$\beta \mathcal{H}_{\tau} \left\{ u_c' \left[f_K' + 1 - \delta - \mathcal{H}_K' - \mathcal{G}_K' \right] + u_g' \mathcal{G}_K' + \frac{\mathcal{H}_K'}{\mathcal{H}_{\tau}'} \left(u_c' \left[\mathcal{H}_{\tau}' + \mathcal{G}_{\tau}' \right] + u_{\tau}' \mathcal{G}_{\tau}' \right) \right\} = 0,$$

It holds for all K, and is a *functional equation* in $\Psi(K)$, given $\mathcal{H}(K, \tau)$.

Equilibrium: A *time-consistent policy equilibrium* is a set of differentiable functions Ψ and \mathcal{H} (and \mathcal{C} and \mathcal{G}) such that

- $\mathcal{H}(k,\tau)$ solves the functional FOC of the private sector; and
- $\Psi(K)$ solves the functional FOC of the government.

Interpretations

• The "raw" version of the GEE (same as above). Look at the marginal utility effects of changing the level of savings today, using τ :

$$u_c \left[-\mathcal{H}_\tau - \mathcal{G}_\tau \right] + u_g \, \mathcal{G}_\tau +$$

$$\beta \mathcal{H}_{\tau} \left\{ u_c' \left[f_K' + 1 - \delta - \mathcal{H}_K' - \mathcal{G}_K' \right] + u_g' \mathcal{G}_K' + \frac{\mathcal{H}_K'}{\mathcal{H}_{\tau}'} \left(u_c' \left[\mathcal{H}_{\tau}' + \mathcal{G}_{\tau}' \right] + u_{\tau}' \mathcal{G}_{\tau}' \right) \right\} = 0,$$

The term $\mathcal{H}'_K/\mathcal{H}'_{\tau}$ reflects the **variational** nature of the GEE: How to vary optimally τ and τ' subject to keeping K and K'' unchanged. Thus, $-\mathcal{H}'_K/\mathcal{H}'_{\tau}$ is the increase in τ' needed in order not to change K''.

The "public economics" version of the GEE. Trade off wedges:

$$\mathcal{G}_{\tau}\left[u_{g}-u_{c}\right]+\mathcal{H}_{\tau}\left\{-u_{c}+\beta u_{c}^{\prime}(1+f_{K}^{\prime}-\delta)\right\}+\beta \mathcal{H}_{\tau}\left(1-\frac{\mathcal{H}_{K}^{\prime}}{\mathcal{H}_{\tau}^{\prime}}\right)\mathcal{G}_{\tau}^{\prime}\left[u_{g}^{\prime}-u_{c}^{\prime}\right]=0.$$

Computation of a steady state

- •• We need to find functions that jointly satisfy the two functional FOCs.
- Can we find a steady state by just evaluating at \overline{K} and $\overline{\tau}$? No: 2 equations and 4 unknowns: \mathcal{H}_k and \mathcal{H}_{τ} appear.
- Can we specify flexible functional forms and require the FOCs to hold over some grid? No—this method doesn't work (see Krusell and Smith (2001)).
- •• Instead, we use a Perturbation method.

- STEP 1: Make *H* a linear function (3 coefficients) and *Ψ* a constant. Use the FOC for savings and its 2 derivatives and use the GEE. Solve a nonlinear equation system. It delivers the steady state.
- STEP 2: Make H a quadratic function (6 coefficients) and Ψ a linear one (2 coefficients). Use the FOC for savings and its 1st- and 2nd-order derivatives (1+2+3 eqn's) and the GEE and its derivative (1+1 eqn's). Solve a nonlinear equation system. It delivers a new steady state.
- Go on until the steady state level, and perhaps the low-order derivatives, do not change.
- Notice that differentiability is used critically.
- Notice also that the method can be used in a standard model (where lack of commitment is not binding). Here it is *necessary* though. Also, for a standard model the steady state does not change across iterations.

Quantitative analysis: Baseline example

We specify the period utility function as

$$u(c,\ell,g) = (1-\alpha_p)\alpha_c \ln c + (1-\alpha_p)(1-\alpha_c) \ln \ell + \alpha_p \ln g$$

The production function is

$$f(K,L) = A \cdot K^{\theta} L^{1-\theta}.$$

Parameter Values				
$\theta = .36$ $\beta = .96$	$\begin{array}{l} \alpha_c = .30\\ \delta = .08 \end{array}$	$\alpha_p = .13$		

Table 1: Parameterization of the Baseline Model Economy.

Labor taxes only

Statistic	Pareto	Ramsey	Markov
Y	1.000	0.700	0.719
K/Y	2.959	2.959	2.959
C/G	2.005	2.005	3.017
L	0.350	0.245	0.252
au	_	0.397	0.297

No intertemporal distortion. Ramsey has the right ratio between C and G. Markov does not: it ignores the positive effect of a higher τ_t on L_{t-1} .

Capital taxes only

Statistic	Pareto	Ramsey	Markov
Y	1.000	0.588	0.488
K/Y	2.959	1.734	1.193
C/G	2.005	4.779	3.211
L	0.350	0.278	0.255
au	_	0.673	0.812

Very large taxes. Small expenditures in Ramsey. Also small in Markov, even though τ is lump-sum: a decrease in τ increases K'.

Total Income taxes

Statistic	Pareto	Ramsey	Markov
Y	1.000	0.669	0.693
K/Y	2.959	2.527	2.649
C/G	2.005	2.005	2.928
L	0.350	0.256	0.258
au	_	0.334	0.255

Markov again taxes less; it does not take into account the effect of the tax on yesterday work effort, and it uses τ strategically.

Conclusions

•1 We derived a GEE to interpret the decision of time inconsistent agents; a new equation that allows qualitative and quantitative interpretations.

•2 We show how to solve this functional equation; a much harder problem than that of solving a standard Euler equation. The numerical methods seem to work very well.

•3 We document some interesting properties for the problem of optimal provision of public goods: Markov does not necessarily tax more heavily than Ramsey, and the difference between the two is nontrivial.

- •4 The class of problems for which these methods are relevant seems large.
- •5 Remaining issues: existence.