Christiano

FINC 520, Spring 2008
Final Exam.
This is a closed book exam. Points associated with each question are provided in parentheses. Good luck!

1. (20) Consider a stochastic process, a_{t}, which is the sum of two stochastic processes, a_{t}^{T}, and a_{t}^{P}, with

$$
\begin{aligned}
a_{t} & =a_{t}^{1}+a_{t}^{2} \\
a_{t}^{1} & =\lambda a_{t-1}^{1}+\varepsilon_{t}^{1} \\
a_{t}^{2} & =\rho_{1} a_{t-1}^{2}+\rho_{2} a_{t-2}^{2}+\varepsilon_{t}^{2}
\end{aligned}
$$

where ε_{t}^{1} and ε_{t}^{2} are mean-zero processes that are iid across time, independent of each other, with variances σ_{1}^{2} and σ_{2}^{2}, respectively. The variable, a_{t}, is observed, as is a signal about ε_{t}^{2} :

$$
S_{t}=\varepsilon_{t}^{2}+\omega_{t}
$$

Here, ω_{t} is a mean-zero measurement error, iid across time and independent of ε_{t}^{1} and ε_{t}^{2} at all leads and lags. Its variance is σ_{ω}^{2}. Set this process up in state-space, observer form. That is, specify ξ_{t}, F, Q, H, R and x_{t}

$$
\begin{aligned}
\xi_{t} & =F \xi_{t-1}+\varepsilon_{t}, E \varepsilon_{t} \varepsilon_{t}^{\prime}=Q \\
x_{t} & =H^{\prime} \xi_{t}+\bar{\omega}_{t}, E \bar{\omega}_{t} \bar{\omega}_{t}^{\prime}=R
\end{aligned}
$$

where x_{t} is the list of observed variables.
2. (20) Let $f(\theta)$ denote the prior distribution of the vector of parameters; let $f(y \mid \theta)$ denote the likelihood of the data, y, conditional on the values of the parameters, θ; let $f(y, \theta)$ denote the joint distribution of θ and y. Let θ_{i} denote the $i^{\text {th }}$ element of θ, where $\theta=\left[\begin{array}{lllll}\theta_{1} & \cdots & \theta_{i} & \cdots & \theta_{n}\end{array}\right]$, and n is the number of elements in θ.

- Derive Bayes' rule, a formula that relates $f(\theta \mid y)$, the posterior distribution of θ after observing y, to $f(y \mid \theta), f(\theta)$ and the marginal distribution of y.
- Bayesians report what they learn from observing y by comparing $f(\theta \mid y)$ with $f(\theta)$. When θ has more than one element, this comparison turns out in practice to be a computationaly intensive exercise.
(a) Consider first a possibility that is not usually considered in practice. In this approach one compares the graphs of $f(\theta \mid y)$ and $f(\theta)$, allowing θ_{i} to vary and holding $\theta_{j \neq i}$ fixed (say, at the mode of $f(\theta \mid y))$. Explain the relatively minor computational complication that is involved in computing $f(\theta \mid y)$ for various values of θ_{i}, holding θ_{j} for $j \neq i$ fixed. Why is it that in practice, Bayesians do not display graphs like this?
(b) Provide a formal definition of the posterior marginal distribution of θ_{i}. Why is it that Bayesians prefer to compare the marginal posterior distribution of θ_{i} with its marginal prior, over the object considered in (a)?
(c) In practice, prior distributions over the different elements of θ are assumed to be independent. Provide an example to illustrate why this assumption might be questionable in some cases. Show why the computation of the marginal prior distribution of θ_{i} is trivial under the independence assumption.

3. (30) Consider a filter, $h(L)$, and let y_{t} be

$$
y_{t}=h(L) x_{t},
$$

where x_{t} is a covariance stationary process with spectral density, $S_{x}\left(e^{-i \omega}\right)$. Suppose that $h(L)$ is the 'band pass filter':

$$
h\left(e^{-i \omega}\right)=\left\{\begin{array}{cc}
1 & -b<\omega<-a, a<\omega<b \\
0 & \text { otherwise } .
\end{array} .\right.
$$

It is said that " y_{t} is the output of a filter, $h(L)$, which passes through components of x_{t} with frequencies ω such that $h\left(e^{-i \omega}\right)=1$ and shuts out all other frequencies".
(a) Establish the result in the quote rigorously in the case of the following stochastic process for x_{t} :

$$
x_{t}=\frac{\alpha}{2}\left[e^{-i \omega_{1} t}+e^{i \omega_{1} t}\right]+\frac{\beta}{2}\left[e^{-i \omega_{2} t}+e^{i \omega_{2} t}\right]
$$

$$
=\alpha \cos \left(\omega_{1} t\right)+\beta \cos \left(\omega_{2} t\right)
$$

where $h\left(e^{-i \omega_{1}}\right)=1$ and $h\left(e^{-i \omega_{2}}\right)=0$. In addition, α and β are two independent random variables with $E \alpha=E \beta=0, E \alpha^{2}=\sigma_{\alpha}^{2}$, $E \beta^{2}=\sigma_{\beta}^{2}$.
(b) Does the x_{t} process in (a) satisfy covariance stationarity? Explain.
(c) Derive a formula for $h_{j}, j=0, \pm 1, \pm 2, \ldots$ where

$$
h(L)=\sum_{j=-\infty}^{\infty} h_{j} L^{j} .
$$

4. (30) Shorter questions:
(a) prove that $E[x]=E\{E[x \mid y]\}$.
(b) provide the intuition underlying the Kalman 'updating formula' that pertains to the state-space/observer system in question (1):

$$
\xi_{t \mid t}=\xi_{t \mid t-1}+P\left[\xi_{t}-\xi_{t \mid t-1} \mid x_{t}-H^{\prime} \xi_{t \mid t-1}\right] .
$$

Here, $P[x \mid \Omega]$ denotes the projection of x onto the space composed of linear combinations of the elements in Ω. Also, $\xi_{t \mid t-j} \equiv$ $P\left[\xi_{t} \mid x_{t-j}, x_{t-j-1}, \ldots, x_{1}\right]$, for $j \geq 0$.
(c) Derive an expression for the Kalman gain matrix, K_{t}

$$
P\left[\xi_{t}-\xi_{t \mid t-1} \mid x_{t}-H^{\prime} \xi_{t \mid t-1}\right]=K_{t}\left[x_{t}-H^{\prime} \xi_{t \mid t-1}\right] .
$$

You may use a result concerning a necessary and sufficient condition for projections. But, if you use it, you must state it precisely.
(d) Prove that $\xi_{t \mid t-1}=F \xi_{t-1 \mid t-1}$.
(e) Use the preceding results to derive an explicit expression for the projection,

$$
P\left[\xi_{t} \mid x_{t}, x_{t-1}, \ldots .\right]
$$

(f) Provide a counterexample to the proposition that convergence in probability implies convergence in mean square.
(g) Consider the following ARCH process:

$$
y_{t}=\varepsilon_{t} \sqrt{\alpha_{0}+\alpha_{1} y_{t-1}^{2}},
$$

where $\alpha_{i}>0, i=1,2$ and ε_{t} is iid over time and independent of $y_{t-j}, j>0$. Define a martingale difference sequence (m.d.s.) and show that y_{t} is a m.d.s.

