Christiano

FINC 520, Spring 2007
Homework 1, due Monday, April 9.

1. Prove:

$$
P\left[Y_{1}+Y_{2} \mid X\right]=P\left[Y_{1} \mid X\right]+P\left[Y_{2} \mid X\right]
$$

where Y_{1} and Y_{2} are scalar random variables and $X=\left[X_{1}, \ldots, X_{n}\right]^{\prime}$, where X_{i} is a scalar random variable.
2. Suppose x_{t} is a mean-zero covariance stationary process. Let

$$
\varepsilon_{t}=x_{t}-P\left[x_{t} \mid x_{t-1}, x_{t-2}, \ldots\right], E \varepsilon_{t}^{2}=\sigma^{2}
$$

denote the one-step-ahead forecast error in x_{t}. Let the indeterministic part of x_{t} that is the subject of the Wold decomposition theorem be denoted

$$
\sum_{j=0}^{\infty} d_{j} \varepsilon_{t-j}, d_{j}=\frac{E x_{t} \varepsilon_{t-j}}{\sigma^{2}}, j=0,1, \ldots
$$

Show:

$$
x_{t}-P\left[x_{t} \mid x_{t-3}, x_{t-4}, \ldots\right]=\varepsilon_{t}+d_{1} \varepsilon_{t-1}+d_{2} \varepsilon_{t-2} .
$$

3. Consider a stochastic process with covariance function, $\gamma_{j}=E x_{t} x_{t-j}$, where

$$
\begin{aligned}
\gamma_{j} & =\phi^{|j|}, \text { for integer } j \\
-1 & <\phi<1
\end{aligned}
$$

Construct the objects in the Wold decomposition of this stochastic process. That is, find (i) the linear representation,

$$
\varepsilon_{t}=f\left(x_{t}, x_{t-1}, \ldots\right),
$$

where

$$
\varepsilon_{t}=x_{t}-P\left[x_{t} \mid x_{t-1}, \ldots\right] .
$$

Also, (ii), express the $\left\{d_{j}\right\}$ identified by the Wold theorem:

$$
P\left[x_{t} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right]=\sum_{j=0}^{\infty} d_{j} \varepsilon_{t-j}
$$

explicitly in terms of ϕ. Finally, (iii) display η_{t}, the purely deterministic (i.e., perfectly forecastable) part of x_{t}.
4. Consider a stochastic process with covariance function, $\gamma_{0}>0,\left|\gamma_{1}\right|<$ $\frac{1}{2} \gamma_{0}, \gamma_{j}=0, j \geq 2$. Identify two MA(1) representations for x_{t} :

$$
\begin{aligned}
x_{t} & =\nu_{t}+\theta \nu_{t-1}, \nu_{t} \tilde{} \text { white noise with variance } \sigma_{\nu}^{2} \\
x_{t} & =u_{t}+\frac{1}{\theta} u_{t-1}, u_{t} \tilde{} \text { white noise with variance } \sigma_{u}^{2} .
\end{aligned}
$$

Derive explicit expressions relating $\theta, \sigma_{\nu}^{2}, \sigma_{u}^{2}$ to the γ_{j} 's. Construct the objects in (i)-(iii) in question 4 . Which white noise, ν_{t} or u_{t}, corresponds to the one-step-ahead forecast error in the Wold decomposition theorem?
5. The Markov Chain is a model of a stochastic process (see Hamilton, section 22.2). Consider a random variable,

$$
x_{t} \in\left\{x^{1}, x^{2}, \ldots, x^{n}\right\} .
$$

Consider the matrix

$$
P=\left[p_{i j}\right],
$$

where

$$
p_{i j}=\operatorname{prob}\left[x_{t+1}=x^{i} \mid x_{t}=x^{j}\right] .
$$

(I am following Hamilton's convention here. Ljungqvist and Sargent and others work with P^{\prime} rather than P.) The elements of the $j^{\text {th }}$ column of P is the distribution of x_{t+1} given that $x_{t}=x^{j}$. It is easy to confirm that the $j^{\text {th }}$ column of P^{k} is the distribution of x_{t+k} given that $x_{t}=x^{j}$. Note that because the columns of P are probability distributions, it must be that

$$
\iota^{\prime} P=\iota^{\prime}
$$

where ι is an $n \times 1$ column vector with unity in each element. Note, $\iota^{\prime} P^{2}=\iota^{\prime} P=\iota^{\prime}$, and similarly, $\iota^{\prime} P^{k}=\iota^{\prime}$, as is required by the fact that the columns of P^{k} are probability distributions. When, a column vector, g, and a scalar, λ, satisfy the property, $g^{\prime} P=\lambda g^{\prime}$, we say that g is the left column vector of P associated with the eigenvalue, λ. Thus, we know that P has a unit eigenvalue and that the associated left column vector is ι.

Suppose the eigenvalues of P are all distinct, and that - apart from the unity eigenvalue - they are all less than unity in absolute value. That the eigenvalues are distinct implies that P can be written

$$
P=T \Lambda T^{-1}
$$

where Λ is a diagonal matrix of eigenvalues, T_{i} is the $i^{\text {th }}$ (right) eigenvector associated with the $i^{\text {th }}$ eigenvalue (i.e., the $i^{\text {th }}$ diagonal element of Λ), where

$$
T=\left[T_{1} \vdots \cdots: T_{n}\right], T^{-1}=\left[\begin{array}{c}
\tilde{T}_{1} \\
\vdots \\
\tilde{T}_{n}
\end{array}\right]
$$

Here, \tilde{T}_{i} is the $i^{\text {th }}$ row of T^{-1}, which is the left eigenvector of P associated with the $i^{t h}$ eigenvalue. For convenience, we order the eigenvalues so that the top left element of Λ is unity. Thus, $\tilde{T}_{1}=\iota^{\prime}$. Recall that

$$
P^{k}=T \Lambda^{k} T^{-1}
$$

so that, as $k \rightarrow \infty$,

$$
P^{k} \rightarrow \pi \iota^{\prime}
$$

where $\pi \equiv T_{1}$. That is, P^{k} converges to a matrix in which each column is π. Put differently the distribution of x_{t+k} converges to π as $k \rightarrow \infty$, regardless of the value of x_{t}. As a result, the doubly infinite stochastic process, $\left\{\ldots, x_{t-3}, x_{t-2}, x_{t-1}, x_{t}, x_{t+1}, x_{t+2}, \ldots\right\}$ is strictly stationary, with the distribution of x_{t} corresponding to π, for each t.
For the remainder of this problem, consider the following two-state Markov Chain:

$$
P=\left[\begin{array}{cc}
\alpha & 1-\alpha \\
1-\alpha & \alpha
\end{array}\right], 0<\alpha<1
$$

so that the probability of the value of x_{t} changing is $1-\alpha$ and probability of x_{t} not changing is α. Suppose that $x^{1}=\sigma, x^{2}=-\sigma$.
(a) Obtain analytic expressions for the eigenvalues of P, the columns of T and the rows of \tilde{T}.
(b) Compute

$$
\begin{aligned}
\gamma_{0} & =E x_{t}^{2} \\
\gamma_{1} & =E x_{t} x_{t+1}
\end{aligned}
$$

(Hint: use the law of iterated mathematical expectations to compute $\gamma_{1}: E x_{t} x_{t+1}=E\left\{E\left[x_{t} x_{t+1} \mid x_{t}\right]\right\}$. This requires first computing $E\left[x_{t+1} \mid x_{t}\right]$ for each possible x_{t}.)
(c) Show that

$$
\gamma_{j}=(2 \alpha-1)^{j} \gamma_{0}, j \geq 0
$$

and construct the Wold decomposition, (i)-(iii), in question 4.
(d) Is the two-state Markov Chain ergodic? Explain.

