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Abstract

This paper presents several results on consistency properties of simulation-based
estimators for a general class of continuous dynamic models. The consistency of these
estimators follows from a uniform convergence property of the sample paths over the
vector of parameters. This convergence property is established under certain contrac-
tivity and monotonicity conditions on the dynamics of the system.
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1 INTRODUCTION

As in other applied sciences, economic theories build upon the analysis of abstract, highly-

stylized models that are often simulated by numerical techniques. The estimation and test-

ing of these models can be quite challenging because of the nonlinearities embodied in the

decision rules of private and public agents in environments which may comprise time and

uncertainty, and the mechanisms of allocation of commodities in these economies. Most com-

putable dynamic models are recursive, and their analysis is usually confined to equilibrium

solutions generated by a dynamical system or policy function that defines a Markov equilib-

rium. It becomes then of interest to characterize the invariant probabilities or steady-state

solutions, which commonly determine the long-run behavior of a model. But because of lack

of information about the domain and form of these invariant probabilities the model must

be simulated to compute the moments and other statistics of these distributions. Therefore,

the process of estimation may entail the simulation of a family of models indexed by a vector

of parameters. Moreover, properties of these estimators such as consistency and asymptotic

normality are going to depend on the dynamics of the system. The study of these asymptotic

properties may then require methods of analysis of probability theory in its interconnection

with dynamical systems.

In a remarkable paper, Dubins and Freedman (1966) established certain stability prop-

erties of invariant probabilities for some families of Markov processes. As these authors

observe, a continuity condition on the Markov process defined over a compact state space
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guarantees the existence of an invariant probability measure. Then, within the class of con-

tinuous Markov processes Dubins and Freedman focus on two seemingly simple cases: (i) For

every realization of the shock process the dynamical system is contractive, and (ii) for every

realization of the shock process the dynamical system is monotone.1 For these two separate

families of models they show that under mild regularity conditions the Markov process has a

unique invariant probability measure, and such probability is globally stable in that starting

from any initial distribution the system will converge in a certain defined sense to the unique

invariant probability.

My purpose in this essay is to present a fairly systematic study of consistency properties

of some simulation-based estimators for the above two families of continuous dynamical

systems singled out by Dubins and Freedman. The consistency of these estimators for

contractive systems has been explored by Duffie and Singleton (1993), and for monotone

systems by Santos (2003). Here, I offer several extensions and generalizations of these results.

A key step in the method of proof is to establish the uniform convergence of the simulated

moments to their exact values in the vector of parameters. This is a standard strategy of

proof in econometrics, but such convergence property is much harder to obtain for stochastic

dynamical systems, and has been largely unexplored in the context of these models. This

convergence property amounts to a uniform law of large numbers over a parameterized family

of stochastic processes; in contrast, the stability of an invariant probability measure refers to

the convergence of a sequence of distributions generated by an individual stochastic process.

1For present purposes, a mapping h : X → X is contractive if ‖h(x)− h(x′)‖ < ‖x− x′‖, where ‖x‖ is
the max norm on X. A mapping h : X → X is monotone increasing if h(x) ≥ h(x′) for x ≥ x′ where ≥ is
an order on X, and h is monotone decreasing if h(x) ≥ h(x′) for x′ ≥ x.
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A broad conclusion of the present study is then that the two families of Markov processes

investigated in Dubins and Freedman (1966) also have the aforementioned property of uni-

form convergence of the sample moments. Therefore, these models can generate consistent

simulation-based estimators. Of course, several important classes of dynamic models are

left out of this study. First, some recent contributions [e.g., Bhattacharya and Lee (1988),

Hopenhayn and Prescott (1992), Stenflo (2001) and Bhattacharya and Majumdar (2003)]

have emphasized that for a random contraction or a random monotone process there could

be a unique, globally stable invariant probability measure even in the absence of the conti-

nuity assumption. Hence, an open issue is whether some non-continuous families of models

may also generate consistent estimators. Second, continuous Markov models with a unique

invariant probability measure have the property that such distribution is globally stable in

a mean sense [e.g., see Futia (1982, p. 383)] and in some cases the convergence is geometric.

Hence, within the class of continuous stochastic processes it should be of interest to charac-

terize some other families of models that generate consistent simulated estimators. It seems

plausible that the consistency of these estimators may be validated under differentiability

conditions. Fundamental developments in this area [cf. Arnold (1998)] have extended some

classical results in the theory of dynamical systems to stochastic dynamics. For present

purposes it would be useful to have in hand an analogous version of the infinite-dimensional

implicit function theorem that is now available for deterministic systems [see Araujo and

Scheinkman (1977), Santos and Bona (1989) and Burke (1990)]. This implicit function

theorem has become a powerful tool in the comparative study of dynamic solutions.
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In spite of all these possible extensions it should be stressed that there could be important

families of models for which the aforementioned property of uniform convergence of the

simulated moments in the vector of parameters may not be satisfied. The analysis centers

on a system of stochastic difference equations of the following form

xt+1 = ξ(xt, zt, εt+1, θ) (1.1)

zt+1 = ψ(zt, εt+1, θ2) t = 0, 1, 2, · · · .

These equations frequently arise in economic applications as Markovian equilibrium solutions

of dynamic models. Here, xt is a vector of endogenous state variables that may represent

investment decisions or the corresponding levels of the capital stocks, zt is a vector of exoge-

nous state variables that may represent some indices of productivity, or intensity of tastes

and population, and εt is a vector of stochastic perturbations to the economy realized at the

beginning of every time period t and which follows an iid process. The vector θ = (θ1, θ2)

specifies the model’s parameters such as those parameters defining the utility and produc-

tion functions. Observe that in this framework the vector of parameters θ2 characterizing

the evolution of the exogenous state variables z may influence the law of motion of the en-

dogenous variables x, but this endogenous process may also be influenced by some additional

parameters θ1. Functions ξ and ψ may represent the exact solution of a dynamic model or

some numerical approximation. One should realize that the assumptions underlying these

functions may be of a different economic significance, since ξ governs the law of motion of

the vector of endogenous variables x and ψ represents the evolution of the exogenous process

z.
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For a given notion of distance the estimation problem may be defined as follows: Find

a parameter vector θ0 such that a selected set of the model’s predictions are best matched

with those of the data generating process. An estimator is a rule that yields a sequence

{θ̂T} of candidate solutions for θ0 from finite samples of model’s simulations and data. It

is generally agreed that a reasonable estimator should possess the following consistency

property: As sampling and simulation errors vanish the sequence of estimated values {θ̂T}

should converge to the optimal solution θ0.

Since a change in θ may feed into the dynamics of the system in rather complex ways, tra-

ditional (data-based) estimators are of limited applicability for non-linear dynamic models.

These estimators are just defined over data samples, and hence can only be applied to fully-

fledged, structural dynamic models under fairly specific conditions. For instance, maximum

likelihood posits a probability law for the process (xt, zt) with explicit dependence on the

parameter vector θ. Likewise, standard non-linear least squares [e.g., Jennrich (1969)] and

other generalized estimators [cf., Newey and McFadden (1994)] presuppose that functions ξ

and ψ have analytical representations. Along these lines, one should consider the estimation

procedures for continuous-time models of Ait-Sahalia (1996) and Hansen and Scheinkman

(1995). All these methods postulate a closed-form representation for the process of state

variables in the vector of parameters. This condition is particularly restrictive for the law

of motion of the endogenous state variables: Only under rather especial circumstances one

obtains a closed-form representation for the solution of a non-linear dynamic model.2

2The analysis of these estimators may be extended to numerical approximations in which functional
evaluations can be performed by a computer program or by some other algorithmic method. But as stressed
below data-based estimators can only be applied under certain functional restrictions. The analysis may
break down in the presence of latent variables or some private information not available to the econometrician.
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An alternative route to the estimation of non-linear dynamic models is via the Euler equa-

tions [e.g., see Hansen and Singleton (1982)] where the vector of parameters is determined

by a set of orthogonality conditions conforming the first-order conditions or Euler equations

of the optimization problem. A main advantage of this approach is that one does not need

to model the shock process or to know the functional dependence of the law of motion of

the state variables on the vector of parameters, since the objective is to find the best fit for

the Euler equations over available data samples, within the admissible region of parameter

values. The estimation of the Euler equations can then be carried out by standard non-linear

least squares or by some other generalized estimator. However, model estimation via the

Euler equations under traditional statistical methods is not always feasible. These methods

are only valid for convex optimization problems with interior solutions in which the decision

variables outnumber the parameters; moreover, the objective and feasibility constraints of

the optimization problem must satisfy certain strict separability conditions along with the

process of exogenous shocks. Sometimes the model may feature some latent variables or some

private information which is not observed by the econometrician (e.g., shocks to preferences);

lack of knowledge about these components of the model may preclude the specification of

the Euler equations. An even more fundamental limitation is that the estimation is confined

to orthogonality conditions generated by the Euler equations, whereas it may be of more

economic relevance to estimate or test a model along some other dimensions such as those

including certain moments of the invariant distributions or the process of convergence to

Moreover, these estimators search for the best fit of the equilibrium solution, but do not target directly the
moments of the model’s invariant distributions or some other quantitative properties of the equilibrium
dynamics.
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such stationary solutions.

Therefore, traditional data-based estimators usually search for a best fit of the equilibrium

law of motion –or of the corresponding Euler equations and equilibrium conditions– from

data samples, and can be implemented whenever these equations are explicitly written down.

These estimation methods are not intended to evaluate the moments of the model’s invariant

distributions or some other aspects of the dynamics. Even if the model admits a closed-form

solution, the statistics of an invariant distribution may not have an analytical representation

and must be computed by numerical simulation. At a more practical operational level, these

estimation methods may be infeasible in cases in which the minimization of the likelihood

function –or any distance function involved in the estimation– is computationally costly

or cannot be achieved by standard optimization routines. This problem may occur if the

optimization involves a large number of parameters, local minima, or highly pronounced

non-linearities.

The aforementioned limitations of traditional, data-based estimation methods for non-

linear systems along with advances in computing have fostered the more recent use of esti-

mation and testing based upon simulations of the model. Estimation by model simulation

offers more scope to evaluate the behavior of the model by computing statistics of its in-

variant distributions that can be compared with their data counterparts. But this greater

flexibility inherent in simulation-based estimators entails a major computational cost: Ex-

tensive model’s simulations may be needed to sample the entire parameter space. Relatively

little is known about the family of models in which simulation-based estimators would have
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good asymptotic properties such as consistency and normality. These properties would seem

a minimal requirement for a rigorous application of estimation methods under the rather

complex and delicate techniques of numerical simulation in which approximation errors may

propagate in unexpected ways.

For establishing consistency of a simulation-based estimator the following major analyti-

cal difficulty arises. Each vector of parameters is manifested in a different dynamical system

and so the proof of consistency has to cope with a continuous family of invariant distribu-

tions defined over the parameter space. In contrast, in data-based estimation there is only a

unique distribution generated by the data process, and such distribution is not influenced by

the vector of parameters. Then, the proof of consistency for a prototypical data-based esti-

mator builds upon a uniform convergence argument over the parameter space under a fixed

empirical process. For extensive accounts of work in this area, see Pollard (1984) and van der

Vaart and Wellner (2000). In Dehardt (1971) the proof of uniform convergence relies on the

monotonicity of a family of functions under a fixed invariant distribution. Also, Billingsley

and Topsoe (1967) prove various uniform convergence results for compact classes of func-

tions. All these results fall short of what is generally required to substantiate consistency

for simulation-based estimators.

For some recent applications of simulation-based estimation, see Feinberg and Keane

(2002), Gourinchas and Parker (2002), Hall and Rust (2002), and the collection of papers

in Mariano, Schuermann and Weeks (1999). The present research should also be of inter-

est to provide theoretical foundations for some efficient methods such as indirect inference
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[Gourieroux, Monfort and Renault (1993)] and score methods [Gallant and Tauchen (1996)]

and for the estimation of numerical approximations under continuity properties of invariant

distributions [cf., Gaspar and Judd (1997), Krusell and Smith (1998), Williams (2002) and

Santos and Peralta-Alva (2003)]. At this point, it is worth pointing out another strand of the

literature concerned with simulation-based estimation in microeconomic settings [e.g., Mc-

Fadden (1989), Pakes and Pollard (1989) and Rust (1994)]. This latter work is not suitable

for the estimation of Markov models of the form (1.1) that one usually sees in macroeconomic

applications.

Section 2 presents a simulation-based estimator along with the basic underlying assump-

tions. This estimator was proposed by Lee and Ingram (1991), and has been further analyzed

by Duffie and Singleton (1993). It should be stressed that the methods of analysis developed

here are not particularly tailored to this estimator, and hence these methods are of interest

for the consistency of other simulation-based estimators. Consistency is to be understood

in a strong sense, since familiar versions of the ergodic theorem for stochastic processes deal

with almost sure convergence.

Section 3 derives several consistency properties of the estimator under certain contrac-

tivity conditions on the dynamics. This section extends work by Duffie and Singleton (1993)

in several directions. Our assumptions are easier to check in macroeconomic applications,

and the contractivity conditions are further weakened in cases in which alternative estimates

of θ2 are available. Also, there is a third group of results concerned with the convergence

of the estimated values from numerical approximations to the true vector of parameters, as
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the approximation errors of these numerical solutions converge to zero.

For a random contraction, each orbit converges exponentially to a fixed-point solution

[e.g., see Schmalfuss (1996)]. Hence, one way to proceed in the proof of consistency of the

estimator is to focuss on such fixed-point solution defined over the parameter space. The

analytical framework is then formally equivalent to the more familiar problem of consistency

of a traditional estimator for which this asymptotic property can be established by well known

methods. Therefore, the consistency of a simulated estimator for a random contraction

is ensured by the dampening behavior of the dynamics which leaves little scope for the

propagation of small perturbations over time and guarantees the uniform convergence of

the simulated moments. Contractivity conditions, however, are difficult to check for laws

of motion of endogenous variables, and may appear rather restrictive for several economic

applications.

Section 4 validates analogous consistency properties of the estimator under monotonicity

conditions on the dynamics. These systems also preserve the uniform convergence of the

simulated moments over the parameter space through an interaction of continuity and order-

preserving properties, but an intuitive explanation for this result may seem now rather

convoluted. The proof relies on the construction of local majorizing and minorizing mappings

that bound the dynamics within small neighborhoods of parameter values. This type of local

sandwich argument is familiar from the literature on empirical processes [e.g., Jennrich

(1969) and Dehardt (1971)], and it is extended here to stochastic dynamical systems under

the aforementioned continuity and order-preserving properties. Certain technical difficulties
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are involved in the method of proof such as the validity of a law of large numbers for the

family of local majorizing and minorizing functions that may contain multiple invariant

distributions.

Section 5 is devoted to a discussion of the main assumptions in the context of the one-

sector neoclassical growth model, but several other economic applications are covered by

the present results. Finally, let me conclude this long introduction with a word of caution

about this research. Some simple dynamic economic models are hard to compute [e.g., see

Ortigueira and Santos (2002)], and the application of standard numerical methods requires

certain mathematical conditions. Consequently, one should expect that the assumptions

under which these models may generate consistent simulation-based estimators are even

more restrictive. Therefore, a primary objective of this line of research is to characterize

those families of models that can be estimated under the powerful methods of numerical

analysis. Simulation-based estimation offers an attractive framework to expose economic

models to the data. Traditional, data-based estimation may constrain the analysis of an

economic model and such estimators are not well suited to perform policy experiments.

2 A SIMULATION-BASED ESTIMATOR

As already pointed out, the analysis will focus on a simulation-based estimator proposed

by Lee and Ingram (1991) and later analyzed by Duffie and Singleton (1993). This estimation

method allows the researcher to assess the behavior of the model along various dimensions.

Indeed, the conditions characterizing the estimation process may involve some moments
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of the model’s invariant distributions or some other features of the dynamics on which the

desired vector of parameters must be selected. There is, however, a major computational cost

associated with this estimation exercise as extensive model’s simulations may be required

over representative samples of the parameter space.

2.1 Assumptions

Let X denote the space of endogenous state variables x, and let Z be the space of

exogenous state variables z. For the sake of simplicity, both X and Z are compact domains

that belong to some Euclidean space. The vector of shocks εt follows an iid process with

base space E . The set Θ ≡ Θ1 × Θ2 denotes the region of parameter vectors θ = (θ1, θ2).

The set Θ is also a compact domain.

Let S = X ×Z and ϕ = (ξ, ψ). Then, s = (x, z) denotes an element in S, and ‖s‖ is the

max norm of vector s. Also, ‖ϕ‖ = sup(s,ε,θ)∈S×E×Θ ‖ϕ(s, ε, θ)‖.

(A.1) Function ϕ : S × E ×Θ → S is bounded.

(A.2) For every (s, θ), the mapping ϕ(s, ·, θ) : E → S is measurable.

(A.3) For every (ε, θ), the mapping ϕ(·, ε, θ) : S → S is continuous.

(A.4) For all (s, ε), the mapping ϕ(s, ε, ·) : Θ → Θ is uniformly continuous. (That is,

for every δ > 0 there exists η > 0 such that for all (s, ε) if ‖θ − θ′‖ < η then

‖ϕ(s, ε, θ)− ϕ(s, ε, θ′)‖ < δ.)
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Observe that (A.1)−(A.4) will all be satisfied if ϕ is a continuous function over a compact

domain S × E × Θ. Under (A.1) − (A.3) and the compactness of S it follows that for each

given value θ there exists an invariant distribution µθ on S for the mapping ϕ(·, ·, θ). For a

random contraction this invariant distribution µθ is unique [e.g., see Stenflo (2001)]. Also,

some simple conditions guarantee the existence of a unique invariant distribution µθ for a

random monotone system [e.g., Bhattacharya and Lee (1988), Dubins and Freedman (1966),

and Hopenhayn and Prescott (1992)]. In what follows, it is assumed that there exists a

unique invariant distribution µθ corresponding to each parameter θ. The uniqueness of the

invariant distribution will simplify the analysis considerably, and it is necessary to obtain

the global convergence results presented below.

2.2 The Simulated Moments Estimator (SME)

Several elements conform the SME. First, one specifies a target function which typically

would characterize a selected set of moments of the invariant distribution of the model and

those of the data generating process. Second, a notion of distance is defined between the

selected statistics of the model and its data counterparts. The minimum distance between

these statistics is attained at some vector of parameters θ0 = (θ0
1, θ

0
2). Then, the estimation

process yields a sequence of candidate solutions {θ̂
T
} over increasing finite samples of model’s

simulations and data so as to approximate the vector θ0.

(A) The target function f : S → Rp is assumed to be continuous. This function may

represent p moments of an invariant distribution µθ defined as Eθ(f) =
∫
f(s)µθ(ds).
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The expected value of f over the invariant distribution of the data generating process

will be denoted by f̄ .

(B) The distance function G : Rp × Rp → R is assumed to be continuous. The minimum

distance is attained at a vector of parameter values

θ0 = arg min
θ∈Θ

G(Eθ(f), f̄). (2.1)

A typical specification of the distance function G(Eθ(f), f̄) is the following quadratic

form

G(Eθ(f), f̄) = (Eθ(f)− f̄) ·W · (Eθ(f)− f̄)

where W is a positive definite p × p matrix. Under the foregoing assumptions, one

can show [cf., Santos and Peralta-Alva (2003, Th. 3.2)] that for (2.1) there exists

an optimal solution θ0. Moreover, for the analysis below there is no restriction of

generality to consider that θ0 is unique.

(C) The estimation process yields a sequence of estimated values {θ̂T} so as to approximate

the solution θ0. These estimated values are obtained from associated optimization

problems with finite samples of model’s simulations and data.

Let s̃ = {s̃t} be a sample path of observations of the data generating process. Let ω =

{εt} be a corresponding sequence of realizations of the shock process. Then, for each

parameter value θ and initial condition s0 = (x0, z0) let {st(s0, ω, θ)} be the sequence

generated by the dynamical system (1.1); that is, st+1(s0, ω, θ) = ϕ(st(s0, ω, θ), εt+1, θ)

for all t ≥ 0 and ϕ ≡ (ξ, ψ). For a given distance function GT and a simulation rule
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τ(T ), an estimate θ̂T (s0, ω, s̃) is obtained as a solution to the following minimization

problem

θ̂T (s0, ω, s̃) = arg min
θ∈Θ

GT (
1

τ(T )
Σ

τ(T )
t=1 f(st(s0, ω, θ)),

1

T
ΣT

t=1f(s̃t)). (2.2)

The rule τ(T ) reflects that model’s simulations may be of a different length than data

samples, but it is required that τ(T ) → ∞ as T → ∞. The sequence of functions

{GT}T≥1 is assumed to converge uniformly to function G as T →∞.

In this framework, the presumption is that the researcher has access to a random re-

alization s̃ = {s̃t} and can perform evaluations of function ϕ at any given point (s, ε, θ);

later, the analysis will consider the more typical situation in which the researcher can only

obtain values for a numerical approximation ϕn. Also, as is typical in numerical simulation

the postulated distribution of {εt} is known, but no knowledge of the actual realization of

shocks {εt} is required. This latter assumption is too strong but it is sometimes needed for

the implementation of some data-based estimators. For the SME this assumption can be

supplanted by the weaker condition that the researcher can draw sequences from a generat-

ing process {ε̂n} that can mimic the distribution of {εt}. A measure γ̃ is defined over the

space of sequences s̃ = {s̃t} and a measure γ is defined over the space of random shocks

ω = {ε}. (The construction of measure γ follows from standard arguments [e.g., see Stokey,

Lucas and Prescott (1989, Ch. 8)].) Let λ represent the product measure λ = γ × γ̃.

Definition: The SME is a sequence of measurable functions {θ̂T (s0, ω, s̃)}T≥1 such that

each function θ̂T satisfies (2.2) for all s0 and λ-almost all (ω, s̃).
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Remark: Because of the recursive structure embedded in the parameter space Θ, sometimes

the value θ0
2 may be known or may be estimated independently by a more efficient method.

In those situations, for a fixed θ0
2 one may consider a constrained version of optimization

problem (2.2) over Θ1, and define the constrained SME as {θ̂1T (s0, ω, s̃, θ
0
2)}T≥1.

3 RANDOM CONTRACTIONS

This section analyzes various consistency properties of the SME under certain contractiv-

ity conditions on the dynamics of system (1.1). For stochastic systems several contractivity

properties can be found in the literature that depend on the domain of definition and on the

metric or distance function. Our analysis will focus on two main contractivity conditions.

The consistency of the SME is established for the whole vector of parameters θ, and for the

first component θ1 when the true value θ0
2 is known. Further convergence results are derived

for estimates obtained from numerical approximations of function ϕ.

3.1 Consistency of the SME

As already pointed out, the analysis rests on two alternative contractivity conditions on

the dynamics of system (1.1). The first condition draws on some methods developed by

Kifer (1986) who proposed a notion of characteristic exponent in metric spaces. This notion

seems appropriate for non-smooth functions. Let

Aδ(s, ε, θ) = sup
s′∈Bδ(s),s′ 6=s

‖ϕ(s′, ε, θ)− ϕ(s, ε, θ)‖
‖s′ − s‖

(3.1)
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where Bδ(s) = {s′ : ‖s′ − s‖ < δ}. Hence, Aδ(s, ε, θ) provides an upper bound for the slope

of function ϕ at point (s, ε, θ) over all s′ in Bδ(s). If ϕ is a Lipschitz function, then Aδ(s, ε, θ)

is a finite number.

(C.1) For every θ there is a neighborhood V (θ) such that for some δ > 0 and all θ̂ in V (θ)

there exists a measurable function c(ε) with the following properties

(i) logAδ(ε, θ̂) < c(ε), where Aδ(ε, θ̂) = sups∈S Aδ(s, ε, θ̂).

(ii) Ec(ε) < 0.

Remark: Roughly speaking, (C.1) asserts that over a small neighborhood V (θ) the maxi-

mum log value of the slope of function ϕ with respect to s is on average a negative number.

For fixed θ, a similar condition is stated in Kifer (1986, p. 23) and a differentiable version of

this condition can be found in Schmalfuss (1996). Condition (C.1) is closely related to the

Asymptotic Unit−Circle condition of Duffie and Singleton (1993), and it is stated here in a

more compact form following the work of Kifer (1986) and Schmalfuss (1996). An alternative

contractivity condition that it is often easier to check in macroeconomic applications is the

following:

(C.2) For almost all ω, for every vector θ and initial condition s0 we have

(i) There are constantsN(s0, ω, θ) > 0 and 0 < α(s0, ω, θ) < 1 and a ballBδ(s0,ω,θ)(s0) =

{s : ‖s− s0‖ < δ(s0, ω, θ)} such that

‖st(s, ω, θ)− st(s0, ω, θ)‖ ≤ N(s0, ω, θ)α
t(s0, ω, θ) ‖s− s0‖ (3.2)

for all s in Bδ(s0,ω,θ)(s0) and all t ≥ 1.
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(ii) If s1 = ϕ(s0, ω, θ) and ω−1 = {εt}t≥2, thenN(s0, ω, θ) ≥ N(s1, ω
−1, θ), α(s0, ω, θ) ≥

α(s1, ω
−1, θ) and δ(s0, ω

−1, θ) ≤ δ(s1, ω
−1, θ).

In (3.2) the expression αt(s0, ω, θ) means constant α(s0, ω, θ) to the power t, and st+1(s, ω, θ)

is defined recursively as st+1(s, ω, θ) = ϕ(st(s, ω, θ), εt+1, θ) for all t ≥ 1. Hence, the first

part of (C.2) imposes a local contractivity condition on the dynamics since

‖st(s, ω, θ)− st(s0, ω, θ)‖ ≤ Nαt ‖s− s0‖ for some constants N > 0 and 0 < α < 1.

Then, the second part requires these local bounds to be uniform along the orbit. For models

with a globally attractive invariant distribution, Condition (C.2) may be relevant for points

s0 outside the ergodic set in which constant N may become arbitrarily large. For these

models, (C.1) is very restrictive since this latter condition imposes bounds that apply for all

s0 in S. Of course, if we neglect transitional dynamic behavior then (C.2) is usually more

stringent.

Theorem 3.1: Let (A.1)-(A.4) be satisfied. Then under either (C.1) or (C.2), for all s0

and λ-almost all (ω, s̃) the SME {θ̂
T
(s0, ω, s̃)}T≥1 converges to θ0.

Theorem 3.1 is proved in the appendix. Two separate proofs are given corresponding

to Conditions (C.1) and (C.2). The proof under (C.2) is relatively simple, and builds on a

familiar stability argument for local contractions. The proof under (C.1) is more involved,

and proceeds along the lines of Duffie and Singleton (1993). Under the simple Assumptions

(A.1)-(A.4) one major objective in this section is to dispense with some rather technical

conditions invoked by these authors. The method of proof is based on some auxiliary results

of independent interest. These results will be discussed presently.
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The first lemma requires an innocuous extension of the space of shocks [cf., Krengel

(1985, Ch. 2)] in which t ranges from −∞ to ∞. Hence, for this result every sequence of

shocks ω̃ is of the form ω̃ = (· · · , ε−1, ε0, ε1, · · · ).

Lemma 3.2: Under (A.1)-(A.4) and (C.1), for almost all ω̃ there exists a unique fixed-

point solution {s∗t (ω̃, θ)} for −∞ < t <∞ such that for each θ,

s∗t+1(ω̃, θ) = ϕ(s∗t (ω̃, θ), εt+1, θ) for all t. (3.3)

For each θ the mapping s∗t (·, θ) is measurable. Moreover, for every initial condition s0 all

sample paths st(s0, ω̃, θ) converges uniformly to s∗t+1(ω̃, θ) in θ as t goes to ∞.

This lemma is a extension of earlier results by Kifer (1986, Ch. 1) and Schmalfuss

(1986) to the parameterized family of stochastic processes in (1.1). Then for the purposes of

the proof of Theorem 3.1 it suffices to analyze the convergence properties of the sequences

1
τ(T )

∑τ(T )
t=1 f(s∗t (ω̃, θ)). Hence, standard proofs of consistency for data-based estimation [e.g.,

Jennrich (1969)] can be applied to the present context provided that s∗t (ω̃, θ) is a continuous

function of θ. This latter result is established in the following lemma.

Lemma 3.3: Under the conditions of Lemma 3.2, for each t the mapping s∗t (ω̃, ·) is

continuous on Θ for almost all ω̃.

3.2 Constrained Estimation

In some applications it may be possible to get independent estimates of the true value

θ0
2 by more practical estimation methods. In those situations simulation-based estimation

can be restricted to the first component vector θ1. Consequently, the above contractivity
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conditions can be relaxed, since it is only necessary to secure the almost sure convergence of

the sequence of estimates {θ̂1T} to the true value {θ0
1}. These contractivity conditions will

now be required to hold for the law of motion of the vector of endogenous variables x. Let

Hδ(x, z, ε, θ1, θ
0
2) = sup

x′∈Bδ(x),x′ 6=x

‖ζ(x′, z, ε, θ1, θ
0
2)− ζ(x, z, ε, θ1, θ

0
2)‖

‖x′ − x‖
(3.4)

where Bδ(x) = {x′ : ‖x− x′‖ < δ}.

(C.1′) For every θ1 there is a neighborhood V (θ1) such that for some δ > 0 and all θ̂1 in

V (θ1) there exists a measurable function c(z, ε) with the following properties

(i) logHδ(z, ε, θ̂1, θ
0
2) < c(z, ε), where Hδ(z, ε, θ̂1, θ

0
2) = supx∈XHδ(x, z, ε, θ̂1, θ

0
2).

(ii) E(c(z, ε)) < 0

In this condition the expectation E(c(z, ε)) is taken with respect to the invariant distri-

bution of vector (z, ε). Since ε is an iid process, then this invariant distribution is a product

measure conformed by the invariant distributions of variables z and ε. Note that the in-

variant distribution of z is determined by θ0
2. Also, regarding Condition (C.2) the following

weakened version applies to the dynamics of the vector of endogenous state variables, x.

(C.2′) For almost all ω, for every vector θ and initial condition s0 = (x0, z0) we have

(i) There are constantsN(s0, ω, θ) > 0 and 0 < α(s0, ω, θ) < 1 and a ballBδ(s0,ω,θ)(x0) =

{x : ‖x0 − x‖ < δ(s0, ω, θ)} such that

‖xt(s, ω, θ)− xt(s0, ω, θ)‖ ≤ N(s0, ω, θ)α
t(s0, ω, θ) ‖s− s0‖ (3.5)
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for all x in Bδ(s0,ω,θ)(x0) and all t ≥ 1.

(ii) If s1 = ϕ(s0, ω, θ) and ω−1 = {εt}t≥2, thenN(s0, ω, θ) ≥ N(s1, ω
−1, θ), α(s0, ω, θ) ≥

α(s1, ω
−1, θ) and δ(s0, ω

−1, θ) ≤ δ(s1, ω, θ).

Notice that xt(s0, ω, θ) in (C.2′) refers to the first component vector of st(s0, ω, θ) as

referred to in (C.2).

Theorem 3.4: Let (A.1)-(A.4) be satisfied. Then, under either (C.1)′ or (C.2)′ for all

x0, and almost all (z0, ω, s̃) the SME {θ̂1T (x0, z0, ω, s̃, θ
2
0)}T≥1 converges to θ0

1.

Corollary 3.5: Suppose that for almost all (z0, ω, s̃0) the estimator {θ̂2T (z0, ω, s̃)}T≥1

converges to θ0
2. Then, under the conditions of Theorem 3.4, for all x0, and almost all

(z0, ω, s̃) the SME {θ̂1T (x0, z0, ω, s̃, θ̂2T (z0, ω, s̃))}T≥1 converges to θ0
2.

3.3 Estimation of Numerical Approximations

In most dynamical models the equilibrium solution ϕ cannot be computed exactly. Hence,

a typical situation is that the researcher can only perform functional evaluations of a numer-

ical approximation ϕn. This approximate function ϕn generates a new vector of parameters

θn as a solution to optimization problem (2.1). More specifically,

θn = arg min
θ∈Θ

G(

∫
f(s)µn

θ (ds), f̄) (3.6)

where µn
θ is an invariant distribution for the mapping ϕn(·, ·, θ) for each θ in Θ. The invariant

distribution µn
θ may not be unique, even though for each θ the original mapping ϕ(·, ·, θ)

is assumed to have a unique invariant distribution µθ. Also, the solution θn may not be
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unique. The idea is that certain economic assumptions may guarantee the existence of

an invariant distribution µθ for ϕ(·, ·, θ) but uniqueness of the invariant distribution is not

generally preserved under numerical approximations or under some other perturbations of

the model. Hence, problem (3.6) may be understood as a minimization over all possible

invariant distributions µn
θ . Then, it is of interest to know whether the set of solutions {θn}

defined by (3.6) converge to the original solution θ0 defined by (2.1) as ϕn approaches ϕ.

To substantiate this latter convergence property, Condition (C.1) will be replaced by a

related contractivity condition which is widely used in the literature on random contractions

[cf., Norman (1972), Futia (1982), and Stenflo (2001)].

(C.3) For every θ there exists a constant 0 < α < 1 such that
∫
‖ϕ(s′, ε, θ)− ϕ(s, ε, θ)‖Q(dε) ≤

α ‖s′ − s‖ for all s′, s in S.

Theorem 3.6: Assume that the sequence of functions {ϕn} converges to ϕn. Let ϕn

satisfy (A.2)-(A.3) for each n. Let ϕ satisfy (A.1)-(A.4), and either (C.2) or (C.3). Then

every sequence of optimal solutions {θn} defined by (3.6) must converge to θ0 defined by

(2.1).

Remark: (a) The convergence of the sequence of functions {ϕn} should be understood in

the sup norm defined in Section 2. Observe that no contractivity conditions are imposed on

the approximate functions {ϕn}. This is relevant for numerical approximations since these

contractivity properties may not hold true for numerical interpolations.

(b) The main step in the proof of Theorem 3.6 is to establish the uniform convergence in

the weak topology of the sequence of invariant distributions {µn
θ} to µθ in θ as n goes to ∞.
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(c) The above results on constrained estimation (Theorems 3.4 and Corollary 3.5) can also

be extended to the present setting of estimation of numerical approximations. Also, for each

n one can define the SME {θ̂n
T
(s0, ω, s̃)}T≥1 over all sample paths sn

t (s0, ω, s̃) generated by

the approximate function ϕn. Then, combining Theorems 3.1 and 3.6 we get that generically

θ̂n
T (s0, ω, s̃) and θ̂T (s0, ω, s̃) will be arbitrarily close provided that n and T are large enough.

4 RANDOM MONOTONE PROCESSES

This section studies analogous consistency properties of the SME under order-preserving

conditions on the dynamics of system (2.1). These order preserving conditions are usually

easier to verify, since they can be derived from primitive assumptions of economic models

[cf., Hopenhayn and Prescott (1992) and Mirman, Morand and Reffet (2003)].

The analysis draws on earlier paper [Santos (2003)]. These earlier results are now ex-

tended using the following weaker assumptions: (i) (A.1)− (A.4) replace a stronger continu-

ity assumption on function ϕ, (ii) the moment function f is only assumed to be continuous

whereas previously this function was also assumed to be monotone, and (iii) a suitable law

of large numbers from Santos and Peralta-Alva (2003) is invoked –rather than the familiar

ergodic theorem– so that convergence holds for all initial conditions s0 over λ-almost all

(ω, s̃).
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4.1 Consistency of the SME

Assume that an order relation ≥ is defined on S. For concreteness, let ≥ be the Euclidean

order. Hence, if s = (· · · , si, · · · ) and s′ = (· · · , s′i, · · · ) are two vectors in S, then s ≥ s′

means that si ≥ s′i for each coordinate i. A function h : S → S is called order preserving

or monotone increasing if h(s) ≥ h(s′) for all s ≥ s′. Conversely, a function h : S → S is

called order reversing or monotone decreasing if h(s) ≥ h(s′) for all s′ ≥ s. All results in

this section are stated for monotone increasing functions.

(M) For all (ε, θ) the mapping ϕ(·, ε, θ) : S → S is monotone increasing.

One should realize that no order preserving assumptions are made over the space of

shocks E and over the parameter space Θ.

Theorem 4.1: Under (A.1)-(A.4) and (M), for all s0 and λ-almost all (ω, s̃) the SME

{θ̂
T
(s0, ω, s̃)}T≥1 converges to θ0.

The proof of Theorem 4.1 relies on a repeated application of a law of large numbers from

Santos and Peralta-Alva (2003) to a countable collection of local majorizing and minorizing

functions for the parameterized family of dynamical systems (1.1) over small neighborhoods

of the parameter space Θ. The orbits generated by these local bounding functions place

upper an lower limits on the orbits generated by the individual dynamical systems (1.1)

over these small neighborhoods of parameter values. Then, the uniform convergence of the

simulated moments { 1
T

∑T
t=1 f(st(s0, ω, θ))} to Eθ(f) in θ follows from a sandwich argument

which is familiar in the theory of estimation under a fixed empirical process [e.g., see Jennrich
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(1969), Pollard (1984), and van der Vaart and Wellner (2000)]. The extension of this familiar

argument to a continuum family of stochastic processes involves the use of Condition (M)

and a continuity property on the set of invariant distributions from Santos and Peralta-Alva

(2003).

Here are the main elements of the proof of Theorem 4.1. For each given (ε, θ) and constant

κ > 0 define the majorizing function

ϕsup(s, ε, θ, κ) = sup
θ′
ϕ(s, ε, θ′) (4.1)

s. t. {θ′ :‖ θ′ − θ ‖< κ}

and the minorizing function,

ϕinf (s, ε, θ, κ) = inf
θ′
ϕ(s, ε, θ′) (4.2)

s. t. {θ′ :‖ θ′ − θ ‖< κ}.

In these definitions the sup and inf are taken coordinate by coordinate. The following simple

results are stated for function ϕsup, but analogous results hold for function ϕinf .

Lemma 4.2: Let (A.1)-(A.4) be satisfied. Then,

(i) For each (s, θ, κ) the mapping ϕsup(s, ·, θ, κ) : E → S is measurable.

(ii) For each ε the mapping ϕsup(·, ε, ·, ·) : S ×Θ×R+ → S is continuous.

(iii) For each (s, θ, κ) the mapping ϕsup(·, ε, θ, κ) : S → S is monotone.
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This lemma is a straightforward consequence of the definition (4.1) and the above as-

sumptions. Observe that

ϕsup(·, ε, θ, κ) ≥ ϕ(·, ε, θ′) ≥ ϕinf (·, ε, θ, κ) (4.3)

for every θ′ such that ‖ θ′ − θ ‖< κ. Hence,

ssup
1 = ϕsup(s0, ε1, θ, κ) ≥ s1 = ϕ(s0, ε1, θ

′) ≥ sinf
1 = ϕinf (s0, ε1, θ, κ) (4.4)

for all s0. Now, by (4.3)-(4.4) and (M),

ssup
2 = ϕsup(ssup

1 , ε2, θ, κ) ≥ s2 = ϕ(s1, ε2, θ
′) ≥ ssup

2 = ϕsup(ssup
1 , ε2, θ, κ). (4.5)

Therefore, proceeding by induction

ssup
t ≥ st ≥ ssup

t (4.6)

for all t ≥ 1.

This order-preserving property of the dynamics reduces the proof of uniform convergence

of the simulated moments { 1
T

∑T
t=1 f(st(s0, ω, θ))} to Eθ(f) in θ to a sandwich argument over

a countable sequence of functions ϕsup(s0, ε1, θ, κ) and ϕinf (s0, ε1, θ, κ) for selected (θ, κ).

To carry out this argument the following auxiliary results are needed: (i) A continuity

property on the set of invariant distributions, and (ii) a law of large numbers for the bounding

functions ϕsup(s0, ε1, θ, κ) and ϕinf (s0, ε1, θ, κ) for all arbitrary initial conditions s0, even if

these functions contain multiple invariant distributions. Both results are established in an

earlier paper [Santos and Peralta-Alva (2003)].

Let µsup
θ,κ be an invariant distribution under function ϕsup(s, ε, θ, κ) and µθ be the unique

invariant distribution for function ϕ(s, ε, θ). Function ϕsup(s, ε, θ, κ) may contain multiple

27



invariant distributions. Let ∆sup
θ,κ be the set of all the invariant distributions µsup

θ,κ under

ϕsup(s, ε, θ, κ). Note that ∆sup
θ,κ is a compact convex set in the weak topology of measures.

Also, for every sequence of shocks ω = {εn} and initial condition s0, let ssup
t+1(s0, ω, θ, κ) =

ϕsup(ssup
t (s0, ω, θ, κ), εt+1, θ, κ) for all t ≥ 1.

Lemma 4.3: Every sequence of probability measures {µsup
θ,κ } converges to {µθ} as κ goes

to zero.

This lemma follows from the upper semicontinuity of the correspondence of invariant

distributions. The next result shows that these invariant distributions bound the range of

variation of the average behavior of a typical sample path.

Lemma 4.4: For all s0 and almost all ω,

lim sup
1

N
ΣN

n=1f(ssup
n (s0, ω, θ, κ)) ≤ max

µsup
θ,κ ∈∆sup

∫
f(s)µsup

θ,κ
(ds) (4.7)

lim inf
1

N
ΣN

n=1f(ssup
n (s0, ω, θ, κ)) ≥ min

µsup
θ,κ ∈∆sup

∫
f(s)µsup

θ,κ
(ds). (4.8)

If there is a unique invariant distribution {µsup
θ,κ }, then Lemma 4.4 reduces to the law of

large numbers by Breiman (1960). Hence, the lemma places upper and lower bounds for the

average behavior of a typical orbit in the presence of multiple invariant distributions.

4.2 Constrained Estimation

As discussed in Section 5 below, the monotonicity of ξ(x, z, ε, θ) in x is usually derived

from monotonicity and concavity assumptions on the utility and functions. The monotonicity

of ξ(x, z, ε, θ) in z is, however, a more delicate assumption, since after the occurrence of a
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good realization z the associated income effects may reverse the order-preserving property

of the dynamics. Hence, the following milder monotonicity condition should be useful in

applications.

(M′) For each vector (z, ε, θ) the mapping ξ(·, z, ε, θ) : X → X is monotone increasing.

Theorem 4.5: Under (A.1)-(A.4) and (M ′), for all s0 and λ-almost all (ω, s̃) the SME

{θ̂
1T

(s0, ω, s̃, θ
0
2)}T≥1 converges to θ0

1.

Corollary 4.6: Suppose that for almost all (z0, ω, s̃0) the estimator {θ̂2T (z0, ω, s̃)}T≥1

converges to θ0
2. Then, under the conditions of Theorem 4.5, for all x0, and almost all

(z0, ω, s̃) the SME {θ̂1T (x0, z0, ω, s̃, θ̂2T (z0, ω, s̃))}T≥1 converges to θ0
2.

4.3 Estimation of Numerical Approximations

As in the preceding section, let us now consider a sequence of approximate functions {ϕn}.

As before, assume that for each approximate mapping ϕn(·, ·, θ) there exists an invariant

distribution µn
θ for every θ in Θ, and let θn solve optimization problem (3.6).

Theorem 4.7: Assume that the sequence of functions {ϕn} converges to ϕ. Then, under

(A.1)-(A.4) and (M) every sequence of optimal solutions θn defined by (3.6) must converge

to the original solution θ0 defined by (2.1).

Remark: Note that in this result every approximate function ϕn is also required to satisfy

Condition (M).

29



5 THE ONE-SECTOR GROWTH MODEL

This section contains a discussion of the above assumptions in the context of the one-

sector stochastic growth model with correlated shocks. In this version of the model Condition

(M ′) holds under regular standard assumptions of the utility and production functions, but

Conditions (M) and (C1) − (C2) require further specific restrictions. Formally, the model

is summarized by the following dynamic optimization program:

W (x0, z0, θ) = max
{c0,x1}

u(c0) + βEW (x1, z1, θ) (5.1)

s. t. x1 + c0 = z0f(x0, α) + (1− δ)x0

z1 = ψ(z0, ε1, ρ)
x0 and z0 given, 0 < β < 1, 0 < δ < 1,

where E denotes the expectations operator. The vector of state variables s0 = (x0, z0) is

known at time t = 0, and the realization of the exogenous stochastic perturbation ε1 takes

place next period. Total production of the aggregate good y0 = z0f(x0, α) depends on the

exogenous level of productivity z0 and the amount of initial capital x0. Capital x0 can also

be consumed, and it is subject to a depreciation factor δ. The optimization problem is to

choose the amounts of consumption c0 and capital for the next period x1 so as to attain a

maximum value for the discounted objective in (5.1). Parameters σ and α characterize the

utility function u(·, σ) and the production function f(·, α) respectively. Standard regular

conditions are that functions u : R+ × R → R and f : R+ × R → R are bounded and

continuous, and u(·, σ) and f(·, α) are monotone increasing and strictly concave. Also, it
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is typical to assume that function ψ : R+ × R+ × R → R+ is bounded and continuous.

The shock ε follows an iid process, and function ψ(z, ε, ρ) is assumed to contain a unique

invariant Markovian distribution. The parameter region Θ is conformed by vectors of the

form θ = (β, σ, α, δ, ρ).

Equation (5.1) is Bellman’s equation of dynamic programming, and the value function

W is the unique fixed-point solution of this functional equation. Function W is bounded and

continuous. Moreover, for each (z0, θ) the mapping W (·, z0, θ) is monotone increasing and

strictly concave. The optimal solution to (5.1) is attained at unique x1 given by the policy

function x1 = ξ(x0, z0, θ). Function ξ is jointly continuous in all arguments, and characterizes

the dynamics of optimal paths.

Monotonicity properties of the policy function ξ in x and z have been amply documented.

For instance, Donaldson and Mehra (1983) illustrate that the strict concavity of functions

u(·, σ) and f(·, α) imply that for each given z the mapping ξ(·, z, θ) is monotone increasing.

The monotonicity of ξ jointly in (x, z), however, requires some further limiting restrictions.

The logic underlying these results is quite simple. After an increase in x0 it becomes optimal

to spread out the gain in consumption over time. Indeed, the concavity of functions u(·, σ)

and f(·, α) entails that the marginal utility of consumption and marginal productivity of

capital are monotone decreasing. Hence, after an increase in x0 both c0 and x1 should go up.

But this argument does not extend to changes in z0. Thus, if function ψ(·, σ) is monotone

increasing, then a higher z0 signals higher values for z in the future. The expectations

of future gains in z may stimulate c0 to a level such that x1 may actually go down after
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the increase in z0. Of course, if z is modelled as an iid process [e.g., Brock and Mirman

(1972)], then expectations about future income effects vanish, and so ξ(·, ·, θ) must be jointly

monotone. Indeed, if z follows an iid process then the only state variable is y = zf(x, α),

and increases in x0 and z0 must have the same qualitative effects.

Therefore, under standard regular assumptions, for correlated values of z the mapping

ξ(·, z, θ) is monotone increasing. But the joint monotonicity of ξ in (x, z) is a much more

restrictive condition, and requires some additional joint assumptions on the utility and pro-

duction functions and on the evolution of the exogenous shock [cf., Donaldson and Mehra

(1983)]. Condition (M ′) is then easier to check and is much weaker than Condition (M),

and so Theorem 4.2 seems relevant for economic applications.

In multidimensional models, to preserve the above monotonicity properties the concav-

ity of functions u(·, σ) and f(·, α) needs to be strengthened. For the monotonicity of the

mapping ξ(·, z, θ) some key properties are that the objective must be supermodular and

the feasible correspondence must be increasing in x. Supermodularity implies some form

of complementarity among the various goods, or that the cross-partial derivatives must be

non-negative. For recent developments in this area and further economic applications with

monotone laws of motion, see Hopenhayn and Prescott (1994) and Mirman, Morand and

Reffett (2003).

Monotonicity properties play a fundamental role in competitive-markets economies with

distortions such as taxes, externalities, and money. In the presence of distortions, a Markov

equilibrium may fail to exist. The monotonicity of ξ(·, z, θ) has been the most effective
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tool to establish the existence of a Markov equilibrium for these economies [e.g., see Bizer

and Judd (1989), Coleman (1991), Datta, Mirman and Reffett (2002), and Greenwood and

Huffman (1995)]. Moreover, Santos (2002) provides some examples of non-existence of a

Markov equilibrium in simple models with taxes and externalities in which this monotonicity

property does not hold.

Conditions (C.1)− (C.2) are much harder to verify in the above stochastic growth model.

If the policy function is known and it is a differentiable function, an operational way to

find if the system is a random contraction is to produce a large sample path to locate the

ergodic set.3 Then one can evaluate the derivatives of the policy function over the ergodic

region. As a matter of fact, one could appeal directly to the multiplicative ergodic theorem

[cf. Arnold (1998)] and get the expected value of the function log(‖D1ξ(x, z, θ)‖), where

D1ξ(x, z, θ) denotes the derivative of ξ with respect to the the first component variable x.

This procedure yields the value of the maximum characteristic exponent of the dynamical

system, and this exponent must be less than zero for Condition (C.1′) to be satisfied.

Also, the policy function ξ(x, z, θ) is contractive in x if the domain of variation of the

exogenous variable z is small enough. Broadly speaking the argument goes as follows. If

the utility and production functions are strongly concave and continuously differentiable,

then under mild regularity conditions the deterministic version of the above growth model

has a unique interior steady state in which the derivative of the policy function is less than

one. Hence, by a continuity argument for a small stochastic differentiable perturbation of

3Under certain regularity conditions, by the law of large numbers the empirical measure generated by
a typical sample path must converge weakly to the model’s invariant distribution, assuming that such
distribution is unique. Hence, the closure of a typical sample path must contain the ergodic set.
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the model such derivative will be less than one over the corresponding ergodic set.

Random contractive systems are familiar from the literature on Markov chains [e.g., see

Norman (1972) for an early analysis and applications, and Stenflo (2001) for a recent up-

date of the literature]. Related contractivity conditions are studied in Dubins and Freedman

(1966), Schmalfuss (1996) and Bhattacharya and Majumdar (2003). In the macroeconomics

literature, Conditions (C1)−(C2) arise naturally in the one-sector Solow model [e.g., Schenk-

Hoppé and Schmalfuss (2001)] and in some concave dynamic programs [e.g., see Foley and

Hellwig (1975) and Examples 4.2-4.3 in Santos and Peralta-Alva (2003)]. Stochastic contrac-

tivity properties are also found in learning models [e.g., Schmalensee (1975), and Ellison and

Fudenberg (1993)] and in certain types of stochastic games [e.g., Sanghvi and Sobel (1976)].
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