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Abstract

This paper is concerned with the approximation errors involved in the statistics
from the sample paths generated by an approximate or computed policy function.
Under fairly general assumptions, we establish convergence of these statistics to
their true expected values as the approximation error of the policy function con-
verges to zero. Furthermore, under additional regularity conditions we also show
that the approximation errors of these statistics are of the same order of magnitude
as that of the computed policy function. The constants bounding these orders of
convergence are explicitly computed, and are shown to depend on primitive param-
eters.

Keywords: Statistic, Random Dynamical System, Invariant Probability
Measure, Convergence, Approximation Error.

1 Introduction

One common procedure for the calibration and testing of an economic model is to lay
out a notion of distance in which the model’s performance is compared against a selected
set of basic observations. In the real business cycle literature [e.g. Cooley and Prescott
(1995)], this notion of distance is determined as the difference between the second-order
moments generated by numerical simulations and the sample moments. In financial
economics, measures of skewness and kurtosis are often invoked. These are just some
simple examples of statistics that can be considered.

As emphasized in Christiano and Eichenbaum (1992), the moments from time series
data are subject to sampling error. This error can generally be estimated by well
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established statistical techniques, which usually yield confidence intervals for the true
moments of the postulated data generating process. Much less attention, however,
has been devoted to the approximation error of the moments generated by numerical
simulations. This approximation error may be hard to appraise for stochastic models
with pronounced non-linearities.

A widely used method for checking the accuracy properties of a given numerical
algorithm [e.g., Taylor and Uhlig (1990)] is to compare the moments generated by the
putative solution with those of the available exact solution or with those generated from
a more reliable algorithm. Of course, it should be clear that these simple accuracy checks
may only be justified under certain stability properties of the stationary or invariant
distribution of the original economic model. Indeed, a simple example below illustrates
that an arbitrarily small perturbation of the transition probability defining a Markov
process may change drastically the set of invariant distributions. Correspondingly, a
very small error in the specification of the law of motion of a dynamic equilibrium
system may propagate over time, and alter substantially the simulated moments.

In this paper we establish several convergence results for the statistics of sample
paths generated by approximate stochastic equilibrium laws of motion or decision rules.
If the original law of motion contains a unique invariant distribution, then we show that
the statistics from numerical simulations converge to their true expected values as the
approximate policy function converges to the original one. In addition, if the original law
of motion satisfies a certain contractive property, then we show that the approximation
errors of the simulated statistical values are of the same order of magnitude as the error
of the approximate decision rule. As is well understood, this contractive property can
usually be verified for solutions involving small shocks around a stationary point, and
it guarantees uniqueness of the invariant distribution. In the absence of this condition,
we cannot insure that both approximation errors are of the same order of magnitude.

There are several available results on the accuracy properties of the value and policy
functions based upon the size of the Euler equation residuals or on the grid size of some
discretizations [cf. Santos (1999)]. Given the impossibility of sorting out sample paths
in stochastic modelizations, however, error bounds on the policy and value functions are
not operative for the calibration and testing of a model. For such purposes, one usually
needs to define a notion of distance for the model’s performance based upon a selected
set of statistics as compared to their data counterparts, and where proper account can
be taken of approximation and sampling errors.

In our study we make repetitive use of standard results from the theory of Markov
processes concerning the existence and uniqueness of invariant distributions and laws
of large numbers. [For most of purposes, these results are adequately covered in Futia
(1982) and Stokey, Lucas and Prescott (1989); see, of course, the further sources quoted
therein.] As part of our analysis, we also establish certain basic convergence properties of
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invariant distributions for random dynamic systems; these results seem to be important
in their own right. Moreover, contrary to some common practices, our analysis suggests
a specific way for the simulation and testing of dynamic models. We take up this latter
issue in the final section.

The paper is structured as follows. In Section 2 we set out our basic framework
of analysis. Our main analytic results are presented in Section 3. The assumptions
underlying these results are further discussed in Section 4 along with some illustrative
examples. We then conclude in Section 5 with some final remarks.

2 Random Dynamical Systems

In several economic models, the equilibrium law of motion of the state variables can be
specified by a dynamical system of the following form

zn+1 = ξ(zn, εn)
kn+1 = g(kn, zn), n = 0, 1, 2, . . . (RDS)

Here, z may represent a vector made up of stochastic exogenous variables such as some
indices of factor productivity or market prices. This random vector is always contained
in a space Z, and is subject to an i.i.d. shock, ε, in a set of ”events” E, governed
by a probability law Q. Then, k is a vector of endogenous state variables, and may
correspond to several types of capital stocks and measures of wealth. The evolution
of k is determined by an equilibrium decision rule g taking values on a set K. Hence,
s = (k, z) is the vector of state variables belonging to the set S = K × Z. Let (S,S)
denote a measurable space.

Assumption 1 The set S = K ×Z ⊂ Rl ×Rm is compact, and S is the Borel σ−field.
(E,E, Q) is a probability space.

Assumption 2 Function g : K×Z is continuous. For each z in Z, ξ(z, ·) is measurable,
and for each ε in E, ξ(·, ε) is continuous.

For expository purposes, let us express (RDS) in the more compact form

sn+1 = ψ(sn, εn) n = 0, 1, 2, . . . (2.1)

Under the foregoing regularity conditions, the evolution of state variable s may be
described by a transition probability on the state space. For a Borel set A ∈ S, let
Aψ

−1

s = {ε in E|ψ(s, ε) ∈ A}. Then, one can define a function P : S × S by the rule

P (s,A) = Q(Aψ
−1

s ) (2.2)
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for every s in S and every Borel set A in S. As is well known [cf., Futia (1982, Th. 5.2)]
P is a transition function on (S,S). That is, for each s in S, P (s, ·) is a probability on S,
and for each A ∈ S, P (·, A) is measurable. Moreover, it follows from a standard result
in measure theory that function ψ is measurable on the product space (E × S,E× S).

The transition probability P completely characterizes the Markov process. For any
initial probability measure µ0 on (S,S), the evolution of future distributions is deter-
mined by the law

µn+1(A) =
∫
P (s,A)µn(ds) (2.3)

for all Borel sets A ∈ S and n ≥ 0. An invariant distribution or invariant probability
measure is a fixed point of (2.3). The invariant distribution is some sort of stochastic
steady state on which the system may settle down. Then the analysis of invariant dis-
tributions seems a very first step to understand the dynamics of the system. Further,
uniqueness of the invariant distribution is a highly desirable property, since the model
has sharper predictions. In this paper we shall confine the analysis to dynamical sys-
tems with a unique, globally stable invariant distribution, but some convergence results
extend to more general settings.

In many economic applications, the most one can hope for is to get an approximate
function ψ̂, which may have been calculated by some numerical procedure. Even though
function ψ remains unknown, with the aid of some accuracy checks [cf. Santos (2000)]
we may be able to bound the distance between functions ψ and ψ̂. Of course, function ψ̂
may give rise to a transition probability P̂ on (S,S). But even if function ψ̂ is arbitrarily
close to ψ, the following questions may come to the fore:

How different are the dynamics generated by function P̂?
More specifically, how different is the set of invariant distributions under P̂ ?
And, what can be said about the accuracy of the statistics from numerical simula-

tions?
As the present well known example illustrates, without further specific assumptions

we cannot expect good stability results.
EXAMPLE 2.1: The state space S is a discrete set with three possible states,

s1, s2, s3. The transition probability P on S is defined by the following Markov matrix

Π =

 1 0 0
0 1/2 1/2
0 1/2 1/2


Here, the rows of Π describe the corresponding functions P (si, ·), for i = 1, 2, 3. That is,
each row i specifies the probabilities of moving from state i to any state in S. Note that
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Πn = Π for all n ≥ 1. Hence, probabilities p = (1, 0, 0), and p = (0, 1/2, 1/2) are invari-
ant distributions under Π. All other invariant distributions are convex combinations of
these two probabilities. Therefore, {s1} and {s2, s3} are the only ergodic sets.

Let us now perturb Π slightly so that the new stochastic matrix is the following

Π̂ =

 1− 2α α α
0 1/2 1/2
0 1/2 1/2

 for 0 < α < 1/2.

As n→∞, the sequence of stochastic matrices {Π̂n} converges to 0 1/2 1/2
0 1/2 1/2
0 1/2 1/2


Hence, p = (0, 1/2, 1/2) is the only invariant distribution under Π̂. Moreover, {s1} is

a transient state, and {s2, s3} is the only ergodic set. Consequently, a small perturbation
on a transition probability P may lead to a pronounced change in the set of invariant
distributions. Indeed, small errors may propagate over time and alter the existing
ergodic sets.

If we consider the correspondence from Π to the set of invariant distributions under
Π, then the example shows that this correspondence fails to be lower semicontinuous.
A key step below is to establish that this correspondence is upper semicontinuous for
Markov processes generated by random dynamical systems. A much simpler reasoning
is sufficient to validate upper semicontinuity for the present case with a finite number
of states. Hence, the lack of continuity occurs from sudden implosions in the set of
invariant distributions.

Even more troublesome may be the fact that the matrix sequence {Πn}n≥1 does
not always converge, and hence for certain paths the system may not settle down to a
long-run distribution or invariant probability. There could be situations in which results
along lines of laws of large numbers fail to exist, and hence statistical inference may
lose its full strength. As is well known [e.g. Stokey, Lucas and Prescott (1989, Ch.
11)], for some important purposes what it is needed is a weak notion of convergence of
the mapping AN (Π) = limN→∞

1
N

∑N
n=1 Πn. For discrete state spaces, AN (Π) always

converges to an invariant stochastic matrix. But for more general state spaces, further
regularity conditions are required. A typical case is if the Markov process satisfies
Doeblin’s Condition below.
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3 Main Results

This section contains our main analytical results. Our first goal is to establish conver-
gence of the statistics generated by numerical approximations to their expected values
under the invariant distribution associated with ψ. Then we impose a contractive prop-
erty on ψ and show that the approximation error involved in these statistical measures
is of the same order of magnitude as the error of the numerical approximation. As
a step toward this analysis, we first review some fundamental results in the theory of
Markov processes.

3.1 Mathematical Preliminaries

Let B(S) be the set of all bounded, S−measurable, real-valued functions on S. Then,
B(S) is a Banach space when endowed with the norm ‖f‖ = sups∈S |f(s)|. A transition
probability P on (S,S) defines a Markov operator T from B(S) to itself via the following
integration law

(Tf)(s) =
∫
f(s′)P (s, ds′) all s ∈ S. (3.1)

We can associate with every operator T its adjoint T ∗. Thus, if we write 〈f, µ〉 =∫
f(s)µ(ds) then 〈Tf, µ〉 = 〈f, T ∗µ〉 for all f and µ. Moreover, T ∗ can be specified by

the corresponding integration law

(T ∗µ)(A) =
∫
P (s,A)µ(ds) all A ∈ S (3.2)

mapping the space of probability measures on (S,S) to itself. We shall also refer to
operators Tn and T ∗n, for all n. Let Pn(s,A) = (T ∗nδs)(A), where δs is the Dirac
probability measure assigning unit value to point s.

A sequence {µj} of probability measures on (S,S) is said to converge weakly to a
probability measure µ if

∫
f(s)µj(ds) →j

∫
f(s)µ(ds) for every f in the space C(S)

of continuous functions. The weak topology is the coarsest topology such that every
linear functional in the set {µ →

∫
f(s)µ(ds), f ∈ C(S)} is continuous. It should be

remembered that every weakly convergent sequence {µj} of probability measures has a
unique limit point; further, in the weak topology the set of all probability measures on
(S,S) is compact.

Theorem 3.1 There exists a probability measure µ∗ such that µ∗ = T ∗µ∗.

The existence of an invariant probability measure µ∗ can be established as follows.
First, one can show [e.g., see Futia (1982, Prop. 5.6)] that T maps the space C(S)
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of continuous functions into itself. Then, operator T ∗ must be weakly continuous.
Moreover, in the weak topology the set of all probability measures on (S,S) is compact,
and it is obviously a convex set. Therefore, T ∗ must have a fixed-point solution, µ∗ =
T ∗µ∗.

Define the linear operator AN (T ) = 1
N

∑N
n=1 T

n. Then, AN (T ∗) = 1
N

∑N
n=1 T

∗n

is the adjoint of operator AN (T ). By a compactness argument, for every probability
measure µ on (S,S), the sequence {AN (T ∗)µ} must have a weak limit point and so there
must be a convergent subsequence {AN ′(T ∗)µ}. Every limit point µ∗ of {AN (T ∗)µ} is
an invariant probability measure on (S,S). Proper convergence of the full sequence is
guaranteed if there exists a unique solution µ∗ = T ∗µ∗, or if the transition probability
P satisfies Doeblin’s Condition.

CONDITION D: There exists a probability measure λ, an integer n, and a δ with
0 < δ < 1, such that if A ∈ S and λ(A) ≤ δ, then Pn(s,A) ≤ 1− δ for all s.

The importance of this condition is exemplified in the following result [cf. Stokey,
Lucas and Prescott (1989)]

Theorem 3.2 Assume that P satisfies Condition D. Then
(a) S can be partitioned into a transient set and M ergodic sets, where 1 ≤ M ≤

λ(S)
δ .

(b)For every probability measure µ, the sequence {AN (T ∗)µ} converges to an invari-
ant probability, µ∗ = T ∗µ∗.

(c) Each of the M ergodic sets is the support1of a unique probability measure. Every
other invariant probability measure µ∗ is a convex combination of these M probabilities.

Finally, we shall also invoke the following strong law of large numbers due to Breiman
(1960). Let Ω = S × S × S × . . . be the infinite product of the state space. Let
G = S × S × S × . . . be the product σ−field. It is well known that for any s0 in S
the transition function P induces a corresponding product probability measure µ(s0, ·)
on (Ω,G). For a fixed s0 in S and ω = {εn}n≥0 let s(ω) = {sn(ω)}n≥1 be the infinite
sequence of state variables generated by (2.1). That is, sn(ω) = ψ(sn−1(ω), εn−1) for
all n ≥ 1. Recall that if a property holds for all ω in a set of probability one, then it is
said to hold almost surely (a. s.).

Theorem 3.3 [cf., Stokey, Lucas and Prescott (1989, Th. 14.7)]: Assume that {AN (T ∗)µ}
converges weakly to µ∗. Then, for every s0 in S and every function f in C(S),

lim
N→∞

1
N

N∑
n=1

f(sn(ω)) =
∫
f(s)µ∗(ds), µ(s0, ·)− a. s.

1The support σ(µ∗) of a probability measure µ∗ is the smallest close set F such that µ∗(F ) = 1.
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3.2 Convergence of the Statistics from Numerical Approximations

For every f in C(S) and ”almost all” sample paths {ŝn(ω)}n≥1 generated under an
approximate function ψ̂, we now establish the convergence of limN→∞

1
N

∑∞
n=1 f(ŝ(ω))

to
∫
f(s)µ(ds), as function ψ̂ approaches ψ. To this end, we assume that system (2.1)

contains a unique invariant distribution. A key result in this part is Proposition 3.4,
where an upper semicontinuity property of the set of invariant probability measures is
established. This convergence property holds for every Markov process induced by a
random dynamical system.

CONDITION U:
(i)There exists a unique probability measure µ∗ such that µ∗ = T ∗µ∗.
(ii) σ(µ∗) has non-empty interior.

There are many economic applications in which Condition U is satisfied, as for in-
stance in the stochastic growth model of Brock and Mirman (1972), or in the industry
investment model of Lucas and Prescott (1971). As discussed below, with some mi-
nor qualifications our main results can be extended to systems with multiple invariant
distributions.

Even though in many economic models the invariant distribution µ∗ is unique, it is
rarely the case that the equilibrium law of motion corresponding to ψ has an analytical
representation. But via a numerical procedure we may be able to obtain an approxima-
tion ψ̂ of the true function ψ. We shall always suppose that this approximation ψ̂ can
be specified by a pair of functions (ξ̂, ĝ) satisfying Assumptions 1-2. Then, for each ψ̂
there is associated a transitional probability P̂ and a corresponding pair of operators
T̂ and T̂ ∗. In some cases we assume that the transition probability P̂ generated by a
random dynamical system ψ̂ satisfies Condition D. As discussed below, Condition D is
a fairly mild restriction.

For a vector-valued function ψ = (. . . , ψi, . . . ), let ‖ψ‖ = max1≤i≤l+m
∥∥ψi∥∥. In the

following result, convergence of the sequence {ψ̂j} should be understood as uniform
convergence, that is, in the metric induced by this norm. Also, every approximate
function ψ̂j defines the associated triple (P̂j , T̂j , T̂ ∗j ). By Theorem 3.1, there always
exists a fixed-point solution, µ̂∗j = T̂ ∗j µ̂

∗
j . There is no guarantee, however, that the

invariant probability measure µ̂∗j is unique, since ψ̂j may have been derived from some
numerical procedure.

Proposition 3.4 Assume that ψ̂j →j ψ. Let {µ̂∗j} be a corresponding sequence of
invariant probability measures, µ̂∗j = T̂ ∗µ̂∗j , for every j. Then, every weak limit point µ∗

of {µ̂∗j} is an invariant probability measure, µ∗ = T ∗µ∗.

Observe that the proposition asserts the bilinear convergence of 〈T̂ ∗j , widehatµ∗j 〉 =
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T̂ ∗j µ̂
∗
j to 〈T ∗, µ∗〉 = T ∗µ∗. This property is usually much stronger than the standard

notion of convergence in the weak topology. Stokey, Lucas and Prescott (1989, Theorem
12.3) present a related result [see also Manuelli (1985)], but their condition (b) seems
to be hard to check in applications. The practical importance of Proposition 3.4 is that
it applies to all Markov processes generated by random dynamical systems satisfying
Assumptions 1-2.

The following result is a simple consequence of Proposition 3.4.

Corollary 3.5 For fixed ψ, assume that P satisfies Condition U. For all ψ̂j, assume
that P̂j satisfies Condition D. Then, there exists δ > 0 such that for every ψ̂j with∥∥∥ψ̂j − ψ

∥∥∥ ≤ δ, there is a unique invariant distribution, µ̂∗j = T̂ ∗j µ̂
∗
j .

As before, for a fixed s0 and a sequence of realizations, ω = {εn}n≥0, let s(ω) =
{sn(ω)}n≥1 be the sample path generated by ψ. Also, let ŝj(ω) = {ŝjn(ω)} be the
corresponding sample path generated by ψ̂j .

Theorem 3.6 For a given ψ, assume that P satisfies Condition U(i). For all ψ̂j,
assume that P̂j satisfies Condition D. Let ψ̂j →j ψ. Then, for every s0 in S and every
function f in C(S),

lim
N→∞

1
N

N∑
n=1

f(ŝjn) −→j

∫
f(s)µ∗(ds), µ̂∗j (s0, ·)− and µ∗(s0, ·)− a. s.

Proof: Observe that

| lim
N→∞

1
N

N∑
n=1

f(ŝjn(ω))−
∫
f(s)µ∗(ds)| ≤

| lim
N→∞

1
N

N∑
n=1

f(ŝjn(ω))−
∫
f(s)µ̂∗j (ds)|+ |

∫
f(s)µ̂∗j (ds)−

∫
f(s)µ∗(ds)|.

By Theorems 3.2 and 3.3, the first term is equal to zero. Regarding the second
term, note that under Condition U(i) the invariant distribution µ∗ is unique. More-
over, by Proposition 3.4 the sequence {µ̂∗j} must weakly converge to µ∗. Therefore,∫
f(s)µ̂∗j (ds) −→j

∫
f(s)µ∗(ds). These two facts together prove the theorem.

It is readily seen that Theorem 3.6 implies the convergence of the first- and second-
order moments from numerical simulations. Let Êj(ŝj) = limN→∞

1
N

∑N
n=1 ŝjn(ω), and

E(s) =
∫
sµ∗(ds).
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Corollary 3.7 Under the conditions of Theorem 3.6,

Êj(s) −→j E(s), µ∗j (s0, ·)− and µ∗(s0, ·)− a. s.

Let s = (. . . , si, . . . , sr, . . . ), for s in S. Then V̂ arj(ŝj i) = limN→∞
∑N

n=1[ŝ
i
jn(ω) −

Êj(ŝij)]
2, and Ĉovj(ŝj i, ŝjr) = limN→∞

∑N
n=1[ŝ

i
jn(ω)−Êj(ŝij)][ŝrjn(ω)−Êj(ŝrj)]. Also, de-

fine V ar(si) =
∫

(si−E(si))2µ∗(ds), and Cov(si, sr) =
∫

((si−E(si))(sr−E(sr))µ∗(ds).

Corollary 3.8 Under the conditions of Theorem 3.6,

V̂ arj(ŝj i) −→j V ar(si), µ̂∗j (s0, ·)− and µ∗(s0, ·)− a. s.

Corollary 3.9 Under the conditions of Theorem 3.6,

Ĉovj(ŝj i, ŝjr) −→ Cov(si, sr), µ̂∗j (s0, ·)− and µ∗(s0, ·)− a. s.

Proof of Proposition 3.4: Without loss of generality, assume that {µ̂∗j} converges
weakly to µ∗, where µ̂∗j = T̂ ∗j µ̂

∗
j , for every j. We have to show that µ∗ = T ∗µ∗.

For every f in C(S) we have

(T̂jf)(s) =
∫
f(s′)P̂j(s, ds′) =

∫
f(ψ̂j(s, ε))Q(dε).

Since S is a compact set, function f is uniformly continuous. Hence, for every η > 0
there exists δ > 0 such that

|f(ψ̂(s, ε))− f(ψ(s, ε))| < η

whenever ∥∥∥ψ̂i(·, ε)− ψ(·, ε)
∥∥∥ < δ for all ε.

Therefore, for every η > 0 there exists J such that∥∥∥T̂jf − Tf
∥∥∥ ≤ η for all j ≥ J.

We then have,

|〈f, µ∗〉 − 〈f, T ∗µ∗〉| ≤

|〈f, µ∗〉 − 〈f, µ̂∗j 〉|+ |〈f, T̂ ∗j µ̂∗j 〉 − 〈f, T ∗µ̂∗j 〉|+
|〈f, T ∗µ̂∗j 〉 − 〈f, T ∗µ∗〉|
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By assumption, |〈f, µ∗〉−〈f, µ̂∗j 〉| −→j 0. Regarding the second term of this inequuality,

|〈f, T̂ ∗j µ̂∗j 〉 − 〈f, T ∗µ̂∗j 〉| = |〈T̂jf, µ̂∗j 〉 − 〈Tf, µ̂∗j 〉|

and |〈T̂jf, µ̂∗j 〉 − 〈Tf, µ̂∗j 〉| −→j 0, since T̂jf →j Tf uniformly. Finally, regarding the
third term of the above inequality,

|〈f, T ∗µ̂∗j 〉 − 〈f, T ∗µ∗〉| = |〈T ∗f, µ̂∗j 〉 − 〈T ∗f, µ∗〉|.

By assumption, |〈T ∗f, µ̂∗j 〉 − 〈T ∗f, µ̂∗〉| −→j 0. Therefore, |〈f, µ∗〉 − 〈f, T ∗µ∗〉| = 0. As
this latter equality holds for every f in C(S), we get that µ∗ = T ∗µ∗. The result is thus
established.

Proof of Corollary 3.5: It suffices to show that there is no sequence ψ̂j →j ψ

such that every ψ̂j contains two distinct measures µ̂∗j and υ̂∗j . By Theorem 3.2, these
measures can be chosen with non-overlapping supports, σ(µ̂∗j )

⋂
σ(υ̂∗j ) = φ for every j.

Furthermore, by Proposition 3.4 we may assume that each of these sequences {µ̂∗j} and
{υ̂∗j } converges weakly to the invariant probability measure µ∗, where µ∗ = T ∗µ∗. Hence,
the corresponding sequences of sets {σ(µ̂∗j )} and {σ(υ̂∗j )} must both converge to σ(µ∗)
in the topology induced by the Hausdorff distance [cf. Hildenbrand (1974, p.17)]. But
by Condition U(ii) the set σ(µ∗) has non-empty interior, and hence σ(µ̂∗j )

⋂
σ(υ̂∗j ) 6= φ

for j large enough. We therefore arrive to a contradiction, since measures µ̂∗j and υ̂∗j
were assumed to have non-overlapping supports. This contradiction proves the result.

3.3 Error Bounds

The preceding convergence results are usually not adequate for computational work.
Computations must stop in finite time; hence, one generally needs fairly specific guide-
lines on the admissable size of the error. Under the following simple contradictive
property on ψ, we establish that the approximation error of the statistic from a nu-
merical simulation is of the same order of magnitude as the error of the approximate
function ψ̂.

CONDITION C: There is γ with 0 < γ < 1 such that ‖ψ(s, ε)− ψ(s′, ε)‖ ≤
γ ‖s− s′‖ for all ε in E and all pairs of vectors s and s′ in S.

As discussed below, Condition C seems to be indispensable for some of our main
results. Of course, certain familiar extensions can be accommodated without substantial
changes. All that is needed in our proofs is that the mapping ψ be an N -contraction
on s over the ergodic set. Condition C holds in familiar stochastic growth models [e.g.
Kydland and Prescott (1982)] in which the i.i.d. component has a small variance, and
eventually all sample paths fluctuate around the corresponding deterministic steady-
state solution.
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Theorem 3.10 Assume that ψ satisfies condition C. Then, there exists a unique µ∗

such that µ∗ = T ∗µ∗.

Proof: By Theorem 3.1 there exists a solution µ∗ such that µ∗ = T ∗µ∗. We next show
that µ∗ is unique.

Accordingly, assume that T ∗ contains two fixed-point solutions, µ∗ and υ∗. Let σ(µ∗)
and σ(υ∗) be the corresponding supports of these invariant probability measures. Then,
by Condition C the distance between the two sets σ(µ∗) and σ(υ∗) must converge to
zero. Therefore, σ(µ∗) = σ(υ∗). That is, all invariant distributions must have a common
support.

Finally, to establish that there is a unique invariant distribution, we shall show that
the following uniqueness criterion [cf. Futia (1982, p. 385)] is satisfied: There is a point
s̃ in S such that for every neighborhood U of s̃, and any initial point s in S, one can
find an integer n such that Pn(s, U) > 0.

Pick any point s̃ in the support σ(µ∗). Let s be an arbitrary point in S, and let δs
be the Dirac measure. Then, a subsequence of {AN (T ∗)δs}N≥1 must converge weakly
to an invariant distribution, µ∗. Hence, there is some n̂ such that An̂(T ∗)δs(U) > 0;
for, if not, s̃ does not belong to the common support of all the invariant distributions.
But An(T ∗)δs(U) > 0 implies that Pn(s, U) > 0 for some n. Therefore, there exists a
unique µ∗ such that µ∗ = T ∗µ∗.

As above, we now pick an initial condition s0 in S, and let ω = {εn}n≥0 denote
a sequence of stochastic pertubations. Let s(ω) = {sn(ω)}≥0 be the corresponding
ψ-sample path; let ŝ(ω) = {ŝn(ω)}n≥1 be the ψ̂-sample path.

Proposition 3.11 Assume that ψ satisfies Condition C. Assume that
∥∥∥ψ̂ − ψ

∥∥∥ ≤ δ for
δ > 0. Then, for any initial condition s0, and any sequence ω = {εn}n≥0,

‖ŝn(ω)− sn(ω)‖ ≤ δ

1− γ
for all n ≥ 1.

Proof: By assumption,

‖ŝ1(ω)− s1(ω)‖ =
∥∥∥ψ̂(s0, ε0)− ψ(s0, ε0)

∥∥∥ ≤ δ.

Now, the proof procedes by a recursive argument. First, note that

‖ŝ2(ω)− s2(ω)‖ =
∥∥∥ψ̂(ŝ1(ω), ε1)− ψ(s1(ω), ε1)

∥∥∥ ≤∥∥∥ψ̂(ŝ1(ω), ε1)− ψ(ŝ1(ω), ε1)
∥∥∥ + ‖ψ(ŝ1(ω), ε1)− ψ(s1(ω), ε1)‖ ≤

δ + γδ,
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where the first inequality comes from the triangle inequality of the norm, and the second
inequality is true by Condition C and our induction argument.

Then, for any other n > 2,

‖ŝn(ω)− sn(ω)‖ =
∥∥∥ψ̂(ŝn−1(ω), εn−1)− ψ(sn−1(ω), εn−1)

∥∥∥ ≤∥∥∥ψ̂(ŝn−1(ω), εn−1)− ψ(ŝn−1(ω), εn−1)
∥∥∥ + ‖ψ(ŝn−1(ω), εn−1)− ψ(sn−1(ω), εn−1)‖ ≤

δ + γ(
n−2∑
i=0

γiδ) =
n−1∑
i=0

γiδ,

where again the first inequality comes from the triangle inequality, and the second
inequality is true by Condition C and our induction argument. Therefore,

‖ŝn(ω)− sn(ω)‖ ≤ δ

1− γ
for all n ≥ 1.

We say that f in C(S) is a Lipschitz function with constant L if |f(s) − f(s′)| ≤
L ‖s− s′‖ for all s, s′ in S. Note that in the next convergence result, we are not assuming
that ψ̂ satisfies Condition D. Hence, the sequence { 1

N

∑N
n≥1 f(ŝn(ω))} may not have a

unique limit point.

Theorem 3.12 Let f be a Lipschitz function with constant L. Assume that ψ satisfies
Condition C. Assume that

∥∥∥ψ̂ − ψ
∥∥∥ ≤ δ, for δ > 0. Then, for a fixed s0, every limit

point Ê(f) of the sequence { 1
N

∑N
n≥1 f(ŝn(ω))}N≥1 has the property

|Ê(f)−
∫
f(s)µ(ds)| ≤ L

1− γ
δ, µ∗(s0, ·)− a. s.

Proof: By Theorem 3.3,

| lim
N→∞

1
N

N∑
n=1

f(sn(ω))−
∫
f(s)µ∗(ds)| = 0, µ∗(s0, ·)− a. s.

Now, for present purposes there is no restriction of generality to assume that limN→∞
1
N

∑N
n=1 f(ŝn(ω))

13



is well defined. Then,

| lim
N→∞

1
N

N∑
n=1

f(ŝn(ω))− lim
N→∞

1
N

N∑
n=1

f(sn(ω))| =

| lim
N→∞

∑∞
n=1(f(ŝn(ω))− f(sn(ω)))

N
| ≤

| lim
N→∞

∑N
n=1 |f(ŝn(ω))− f(sn(ω))|

N
| ≤

| lim
N→∞

∑N
n=1 L ‖ŝn(ω)− sn(ω)‖

N
| ≤

Lδ| lim
N→∞

1
N

N∑
n=1

n−1∑
i=0

γi|

Observe that the first weak inequality comes from the triangle inequality. The other
two inequalities follow from the Lipschitz property of f and from the upper bounds
derived in Proposition 3.11.

Now,

Lδ| lim
N→∞

1
N

N∑
n=1

n−1∑
i=0

γi| = Lδ| lim
N→∞

N∑
n=1

1
N

1− γn+1

1− γ
|

=
Lδ

1− γ
|1− lim

N→∞

1
(1− γ)N

| = Lδ

1− γ
.

The proof is complete.

Corollary 3.13 Under the conditions of Theorem 3.12, every limit point Ê(ŝ) of the
sequence { 1

N

∑N
n=1 ŝn(ω)}N≥0 has the property

|Ê(ŝ)− E(s)| ≤ δ

1− γ
, µ∗(s0, ·)− a. s.

Corollary 3.14 Under the Conditions of Theorem 3.12, there exists a constant κ > 0
such that every limit point V̂ ar(ŝi) of the sequence { 1

N

∑N
n=1[ŝ

i
n(ω) − Ê(ŝi)]2} has the

property

|V̂ ar(ŝi)− V ar(si)| ≤ κδ µ∗(s0, ·)− a. s.
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Corollary 3.15 Under the Conditions of Theorem 3.12, there exists a constant ζ > 0
such that every limit point Ĉov(ŝi, ŝr) of the sequence { 1

N

∑N
n=1[ŝ

i
n(ω)− Ê(ŝi)][ŝrn(ω)−

Ê(ŝr)]} has the property

|Ĉov(ŝi, ŝr)− Cov(si, sr)| ≤ ζδ µ∗(s0, ·)− a. s.

In the Appendix below, we provide upper bound estimates for constants κ and ζ.

4 Further Discussion of the Assumptions

(1) Uniqueness of the Invariant Distribution: Proposition 3.4 proves the upper semi-
continuity of the set of invariant distributions. Lower semicontinuity holds if there is
a unique invariant distribution. Example 2.1 illustrates that lower semicontinuity may
fail. Some important economic models contain a unique invariant distribution.

(2) Doeblin’s Condition: Condition D can be derived from primitive assumptions. Fol-
lowing Futia (1982, Th. 4.9 and Prop. 5.7) we can show that Condition D is satisfied
for some basic stochastic processes.

(3) Error Bounds: The contraction property is indispensable. Examples can be con-
structed to illustrate that our error bounds are fairly tight.
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