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Abstract

This paper studies optimal monetary policy in a stochastic equilibrium
model with monopolistically competitive firms and sticky goods prices. In
an otherwise deterministic environment, a benevolent monetary authority
can improve upon Friedman’s rule by adding a purely random component to
the money growth rate. This result is more likely when money is not impor-
tant as a medium of exchange. Under parametric restrictions, we compute
the welfare-maximizing stochastic process for money growth and calculate
the welfare gains of a random monetary policy relative to Friedman’s rule.

In a 1980 Journal of Monetary Economics paper “Banking in the Theory
of Finance,” Eugene Fama describes an economy with a sophisticated account-
ing system where transfers of wealth are conducted through bookkeeping en-
tries. This economy does not require any physical medium, such as currency,
to facilitate transactions. In the world Fama describes, an individual transfers
wealth to a second individual by making a phone call or sending electronic mail
to a “broker-banker” that signals the sale of securities in the first individual’s
portfolio. Another broker-banker, in turn, credits the portfolio of the second
individual.!

Fama’s paper was prophetic. Both technological innovations, in the form of
high speed communication and powerful record-keeping computers, and financial
deregulation have moved the financial systems of developed economies closer to
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world Fama describes. Today, individuals in the U.S. can write checks against
a portfolio of short-term Treasury securities using money market mutual funds
and money market deposit accounts. Stock market mutual funds currently allow
investors to write checks against a portfolio of equity shares.? Other changes
to financial systems include the removal of reserve requirements on many types
of assets, better cash management techniques and the introduction of sweep
accounts. See Dotsey (1984, 1985) for case studies. The effect of these changes
has been a reduced use of money for transactions. For example, Cole and Ohanian
(1997) report that the ratio of M1 to output has fallen by a factor of three in
the postwar U.S.

A number of researchers have begun to analyze the effect of financial innova-
tion on the construction and evaluation of equilibrium monetary models. Cole
and Ohanian (1997) analyze the implications of the reduced role of money on two
classes of models with monetary non-neutrality: limited participation and sticky
price models. They find that these real effects of a reduced role of money are
very different across these two classes of models. Woodford (1998) and Rotem-
berg and Woodford (1997) argue that if money is sufficiently unimportant in
facilitating transactions, then one may study the real effects of monetary policy
without explicitly modelling money. In financially sophisticated economies, the
authors argue that more important monetary phenomenon, such as nominal price
dynamics, can be brought to the forefront by abstracting from the complications
of modelling the transactions role of money.

This paper also addresses implications of the diminished role of money. We
consider the effect on optimal monetary policy of the diminished role of money
in a model with imperfect competition and sticky prices (ICSP). In an other-
wise deterministic environment, we show a monetary authority can improve on
Friedman’s rule from the standpoint of households’ ex ante expected utility by
adding a purely random component to the money growth rate. This result holds
if currency is sufficiently unimportant in facilitating transactions. We introduce
a varying role for money in facilitating exchange by modelling both cash and
credit goods as in Lucas and Stokey (1983, 1987).

We model imperfectly competitive product markets by assuming that firms
engage in monopolistic competition. We model sticky product prices by assuming
firms must set nominal prices one period prior to the realization of the money
shock. There are two distinct mechanisms that make randomness welfare im-
proving: (a) a monopolistically competitive firm that must set its future price
under uncertainty about the future money supply chooses a price to be a linear
function of the expected state-price-deflated wage. We derive this policy as a sto-
chastic generalization of the Dixit-Stiglitz constant markup rule under certainty.
Next, if the monetary authority adopts a random money rule, sticky prices induce
positive comovement between aggregate consumption and the real wage. This
positive comovement may lower the expected state-price-deflated wage, leading

*Innovations like these are not exactly the same as the system Fama describes. Transactions
conducted with money market funds are conducted through banks that hold reserves.



firms to hire more workers, increase output and reduce the distortion associated
with imperfect competition. (b) If the steady-state markup is sufficiently large,
the indirect utility function in terms of the markup may be in a convex region.
In the convex region, random monetary policy induces random variation in the
markup that is welfare improving.

We study an ICSP model because it has become a standard model of mon-
etary nonneutrality. Goodfriend and King (1997) lay out the ‘new synthesis’
in macroeconomics as requiring models with both imperfect competition and
sticky prices. Additionally, ICSP models are useful because policy prescriptions
of these models have become standard. Many analyses of optimal policy in ICSP
economies conclude that the monetary authority should maintain a constant
rate of inflation. Ireland (1997) reaches this conclusion by formally studying
the decision of a benevolent monetary authority in an economy with imperfect
competition and sticky prices. Our model differs from Ireland in that we assume
money does not play an important role in facilitating transactions.

Another paper closely related to ours is Blanchard and Kiyotaki (BK, 1987).
These authors study a environment with monopolistic competition and fixed
prices. One main result of their paper is that holding nominal prices fixed,
monetary injections can raise aggregate demand, thereby increasing output and
welfare. Our model can be thought of as an extension of BK on two dimensions.?
First, whereas BK place money in the utility function, we use the Lucas-Stokey
cash-credit goods model as a primitive model of money demand. This is nec-
essary for our purpose as we would like to think about an economy where the
transactions role of money is diminishing. Second, we provide an explicitly dy-
namic model of staggered nominal price setting. BK, on the other hand, consider
a static model. As we explained above, the negative comovement between the
asset pricing kernel and wages can cause firms to reduce the average markup.
Interest rate effects are not present in a static model.

This paper establishes that, in a standard imperfect competition-sticky price
model with a diminished role of money, optimal monetary policy may involve a
purely random component. This translates into a stochastic law of motion for
the inflation rate. In the next section, we describe the model and its associated
equilibria. In section 2, we prove the main theorems concerning the optimality
of random monetary policy, as well as several extensions. Section 3 concludes.

1 An Expectational Phillips Curve Model

In this section, we present a dynamic equilibrium cash-in-advance (CIA) model
with imperfect competition in product markets and sticky prices.* This model
generates an expectational Phillips curve because unanticipated increases in the
money supply generate unexpected inflation. Unexpected inflation reduces the
real price of goods, whose nominal prices are set in advance. Lower real good

3Both of these potential extensions are mentioned but not explored in BK.
1The model presented here is exactly Ireland (1997) except that we allow for stochastic
monetary policy and model both cash and credit goods.



prices generate a temporary increase in output.

The economy consists of a continuum of identical households, a continuum
of firms that produce good 1, the cash good, a continuum of firms that produce
good 2, the credit good, and a government. Each firm produces a distinct good,
indexed by its producer (7, j), where i lies on the unit interval and j = 1 or 2.
The government controls the nominal quantity of money via nominal lump-sum
injections. The per-household money stock at the beginning of period ¢ is M.
The law of motion for the money supply is

Mg,y = M (1)

where x; is an iid random variable with density f that has support [3, +00).

At the beginning of period ¢, the representative household enters the period
with nominal money M; and firm (4, j) enters the period having chosen a nominal
price P, (i) for its output in the previous period.” At the beginning of the period,
each household receives a nominal transfer (z; — 1) M.

The representative household maximizes

— ¢ v

ZﬁtEo {— (c1t)® + = (o)™ — nt} (2)
o Q@

t=0

where ¢y, cot, ¢ denote period ¢ consumption of the cash good composite, credit

good composite and labor respectively, and o < 1. Composite goods are defined

by
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Cash and credit goods are produced according to a linear technology

/1 [c1t (7) 4 coe (1)) di = ny
0

Consumers have rational expectations regarding and take as given the sto-
chastic processes for {MF, P, (i) ,W:}, where P; (i) denotes the dollar price of
the cash and credit good ¢ and W; denotes the nominal wage. As in Lucas and
Stokey (1987), cash and credit goods sell at the same price. Money from sales of
cash goods collect in the register while trading occurs, while IOUs from the sale
of credit goods accrue to the seller while trading occurs. For both goods, sales
revenues become available for use only after goods trading ends. To the seller,
there is no liquidity value of holding cash versus IOUs. Also, the two goods
share the same linear production technology. Therefore, when both goods are in
positive supply, they have identical prices.

®We explain below why the nominal price at time ¢ does not depend on j.



Each household chooses cash and credit goods, labor supply and money de-
mand {cy; (2) , co¢ (¢) ,n¢, My} to maximize (2) subject to (3),(4) and

/01 Py (i) 1y (i) di < My + (¢ — 1) M} (5)
C1t (Z) , Cot (Z) ,]\/_[t Z 0 (6)
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We follow Cole and Kocherlakota (1998) and Ireland (1997) in assuming that
if the CIA constraint does not bind, then households carry just enough cash to
make (5) hold with equality.

Next, consider the firms’ problem. As explained above, producers of cash and
credit goods charge identical prices. It suffices, therefore, to study the maximiza-
tion problem of a typical producer of either the cash or credit good. Each cash
good firm sells output on demand at a fixed price P; (i) during period ¢. At the
end of period ¢, the firm makes wage payments, pays out profits as a dividend to
the representative household, and chooses the next period nominal price. This
price is set before the next period monetary shock is known. Firm (i, 1) chooses
Pi11 (i) to maximize Ey [re41 D141 (4)], where
P ()77 @ M3

D141 (2) = [Pry1 (1) — Wiga] Py
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P

and r.y1 is the asset pricing kernel. A step-by-step derivation of the dividend
of a monopolistically competitive firm in a CIA economy, expressed in (8), is
derived in the appendix to Ireland (1997).

The sequence of events and the timing of decisions that firms and households
make is described in Diagram 1. Diagram 1 also includes a market for one-period
state-contingent nominal debt that may be available to the household. This asset
market is described completely in an appendix. Given our representative agent
assumption, the existence of this market does not affect decisions of firms or
households or equilibrium variables.

We are ready to define a rational expectations equilibrium for the model. We
consider equilibria where currency is valued at all dates and in all states of the
world.

Definition: A rational expectations equilibrium is a set of stochastic processes
{c1t (7) , cat (3) , e, My, M, Dry (2) , Dot (2) , Py (i) , We} such that

(1) Households solve their problem.

(ii) Firms solve their problem.

(iii) The markets for cash goods, credit goods, labor and money clear.

(iv) The government specifies a random variable x;, and the law of motion
for the money supply obeys (1).



Consider a recursive formulation of the household’s problem. First, let lower
case variables denote the corresponding upper case variables scaled by the cur-
rent per capita money stock, i.e., p: (i) = P; (i) /M. To study the recursive
representation, we remove time subscripts from variables to denote this period’s
value of the variable and use a prime to denote next period’s value. With this
convention, the household Bellman equation is

vimpa) = e fL )+ )~ 5B [o (o))}

c1(2),c2(?),m(i) (&

subject to m+x — 1 = fol p (2) c1 (7) di, where definitions of composite goods are
given by (3) and (4), and
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We wish to study symmetric stationary monetary equilibria (SSME). By
symmetric, we mean that in any period all firms choose identical nominal prices.
By stationary, we wish to restrict attention away from sunspot, self-fulfilling
inflationary and self-fulfilling deflationary equilibria. By monetary equilibria, we
mean that the nominal price level is finite at all dates and under all contingencies.

The first order conditions for optimization in a symmetric equilibrium, where
p (i) =p and ¢; (i) = c;, are

¢ (c1)* " = Ap— BE [vg, (m,p),2) p/a] =0 9)
U (ca)® = BE [vg (m',p/,2) p/x] (10)
1 = BE [y, (m/,p',2") w/x] (11)

where A denotes the multiplier on the CIA constraint. The envelope condition
requires

Um (M, p, x) = BE [vm, (m/,p',2) Jx] + A (12)

Throughout this paper, E (-) represents the expectation operator conditioned on
the current money growth rate x.

In equilibrium, m = m’ = 1 since the representative household holds the
per capita quantity of money in every period and all states. Eliminating A\ and
substituting out the envelope condition, the necessary conditions for optimization
by households are

pep =x (13)
1= Q;f—;”E ((c’l)a_1> (14)
P (ea)* ! = i—?E ((C,1>a1> (15)
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Optimization by firms requires

-t L

Equation (16) states that risk-neutral monopolistically competitive firms set price
over expected state-price-deflated marginal cost equal to 6/ (6 —1). Equation
(16) is a stochastic generalization of the deterministic Dixit-Stiglitz constant
markup rule. The equilibrium asset pricing kernel is

Before continuing on to solve the imperfect competition-sticky price model,
the following lemma demonstrates that with flexible prices and perfect competi-
tion the model collapses to that of Lucas and Stokey (1987).

Lemma 1: If product markets are competitive and prices are flexible, the re-

source allocation does not depend on the realized money growth rate and is given
by

o1 = [BoE (1/2/)] 07
ey = Pt/ (1=

Proof: The first-order conditions for consumer optimization are (9), (10), (11),
(12) and (13). With flexible prices and perfect competition, price equals marginal
cost p = w.

Combining (10), (11) and p = w, we know that

ey = /(-
Next, substituting A out of (9) using the envelope condition, we have

-1
VU = — (1)
m= )

Using the CIA constraint and setting this equation one period forward,
o, == () (18)
Substituting (18) into (11) and using the CIA constraint again,

c1 = BOE (1) /2]

The single stationary solution to this equation for an iid = is

a1 = [B6E (1/a/)]4



Our first lemma states that with iid money growth, competitive product
markets and flexible prices, the resource allocation does not depend upon the
realization of the money growth rate, but only upon a single moment of the
distribution of z. Recall that in the Lucas-Stokey model, only anticipated in-
flation affects households decisions. Furthermore, note that the pareto optimal
allocation is achieved if x = 3.

Now, let us return to the general model that admits imperfect competition
and one-period ahead price setting. Summarizing, the recursive representation
of a SSME consists of {c1,co,w,p'}, a set of nonnegative functions of z, and 7/,
a nonnegative function of (x, '), that satisfy (13), (14), (15), (16), (17) as well
as the restriction that E (') < 1 for all 2.9

Theorem 1: The law of motion for the scaled wage in a SSME is w = Fu,
where

a/(1-a) —(14a)/(1—«
F= <%E(($,)Q)> (ﬁqg)l/(afl) E ((x/)a71> (1+a)/(1-a) (19)

Proof: We have five equations that characterize every SSME. First, we may
ignore (15), the first-order condition for choice of ¢, since ¢z only appears in that
equation. Of the remaining four equations, use the CIA constraint to substitute
out ¢; and ¢}. This leaves us with three equations: (16) and

e p](2)"]

-2(2)

in three unknown endogenous variables, 7, p, w.
Next, substitute out ' using the last of these equations.

;o [E(@)w)
=9 E ((x/)a—l)

P = {@ ((m’)a_l)} .

x

Substituting out p’ returns a single first-order nonlinear stochastic difference
equation

-1

4 E (CBI)& w,) d’ﬁw na—1 Lo

—*| = =B ()" (20)
0—-1| g ((x’)a ) T

®The gross nominal interest rate [F (r')Tl must be greater than or equal to one in all states

of the world. If not, agents could earn infinite profits in a monetary equilibrium by taking short
positions in nominal bonds (not explicitly modelled here) and long positions in money.




Since z is iid, a solution to (20) corresponds to a law of motion for the scaled wage
in a particular equilibrium. The single stationary solution to (20) is w = Fz.
Using the method of undetermined coefficients, F' is given by (19). B

Not surprisingly, a high money growth rate increases the scaled wage, since
F > 0. A larger money supply implies that the real price of goods, whose
nominal values are pre-set, falls. This increases demand for goods. In order to
meet demand at the fixed nominal prices, firms hire more workers. This bids
up the real wage. Interpreting the coefficient F' is difficult since it involves both
preference parameters as well as several moments of the distribution of the money
growth rate.

It is straightforward to find the remaining endogenous variables. Solving for
equilibrium cash and credit good consumption, we have

1/(1-a)

E ((w’)a_l) . (21)

A= | "B

N\ V(1w
E ((2")*!
e (B

where n; = (¢3(0—1)/0)Y "% and n, = (¥ (0 —1) /). The scaled
nominal price p is given by the following expression.

wl)z 1/(a-1)

p=p=(m)" (23)

Note that p is independent of the current realization of the money shock because
we have assumed that x is iid. Using (17) and our assumption that the CIA
constraint holds with equality, the asset pricing kernel is

r = xﬂa (xl)a ' (24)
Equations (21) and (22) are instructive for understanding how and when ran-
domizing monetary policy can be welfare improving.

Examining (22), note that ¢ is convex and increasing in the current money
shock x. This convexity generates one of the benefits of adopting a random
monetary policy. We call this the unanticipated inflation effect. Imperfect com-
petition generates too little consumption of both the cash and credit goods in
the model. In periods of high money growth, unanticipated inflation drives up
the real wage. Since the scaled price of goods is fixed, the markup falls when
money is injected and this reduces the distortion arising from imperfect compe-
tition. We explore the source of this convexity in the next section of the paper;



however, this is not the end of the story. In addition, we must also consider the
effect of introducing randomness on the conditional moments of 2’ that appear
in the policy function for cz;. We discuss this in the next section as well.

On the other hand, from (21) ¢; is linear in the current money shock. Since
preferences are concave in ¢, by Jensen’s inequality, adding randomness tends
to reduce the expected utility contribution of the cash good. This works against
the possibility that randomness is pareto improving. It is for this reason that our
theorems hold only when the cash good is sufficiently unimportant in the utility
function, that is, when ¢ is close to zero.

In this section, we constructed a closed-form expression for the endogenous
variables in this stochastic ICSP model. These expressions are used repeatedly in
the next section to develop several theorems concerning household welfare under
alternative monetary policies.

2 Optimal Monetary Policy

This section develops a partial pareto ranking of alternative monetary policies
in the ICSP model. Our ultimate goal is to demonstrate that a random policy
for the money growth rate may dominate a deterministic one. As a prelude to
the main result, we first characterize the optimal deterministic monetary policy.

Theorem 2: Restricting attention to deterministic monetary policies, the Ram-
sey outcome sets x = (.

Proof: Given that the next period money supply growth rate is known with
certainty in this period, from (21), the quantity of the cash good is

B (0 — D]
- 2
“ [ x6 ] (25)
By equation (22), the quantity of the credit good is
& = <@> ¢
2 o 1
Simplifying, ¢, does not depend upon the money growth rate
er=[p(0~1) /0] (26)

It is clear from (26) that to compute the Ramsey policy it is sufficient to study
the effect of changing x on the cash good.

Substituting (25) into the instantaneous utility function and suppressing the
utility contribution of ¢y since it does not change as x varies:

Ux) =2 (W)am“) ~ <%>U(la)

«

The deterministic Ramsey problem becomes

max U (x) subject to z > f3 (27)
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The money growth rate must be no lower than the discount factor in order that
R > 1, a condition required for existence of a monetary equilibrium. The solution
to (27) is to choose z* = 5. W

Deviating from Friedman’s rule with a deterministic policy cannot alleviate
the distortion generated by imperfect competition. The intuition for Theorem 2 is
straightforward. With x = 3 there is no monetary distortion; however, imperfect
competition in product markets creates too little consumption and hence too
much leisure relative to the social optimum. Increasing the gross money growth
rate above 3 makes the cash good even more expensive. This leads households
to substitute even further away from the cash good and into leisure. Both a
high money growth rate and market power distort households’ cash good-leisure
margin in the same direction. Introducing a nonstochastic monetary distortion
cannot undo the distortion generated by imperfect competition.

Next, we show that introducing a stochastic monetary policy can improve
upon Friedman’s rule. As we established in section 1, the unanticipated inflation
effect increases the expected utility contribution of the credit good by driving
down the markup. On the other hand, the potential for inflation leads to inflation
expectation in every period, even if realized inflation only occurs occasionally.
Expected inflation leads households to substitute out of cash goods and amplifies
the distortion generated by imperfect competition, as demonstrated in Theorem
2. The size of this distortion is increasing in the gross nominal interest rate on a
risk-free bond, which we denote R. This is because the private marginal rate of
substitution between the cash and credit good is the opportunity cost of holding

money in order to satisfy the CIA constraint. The following Lemma characterizes
R.

Lemma 2: The gross one-period nominal interest rate is

R=q*/ (6B [(=)*]) (28)

Proof: To compute the nominal interest rate, we price a risk-free nominal bond.
The gross risk-free nominal rate of return is given by R = [E (/)] !. Substituting
out the asset pricing kernel using ' (17), we have

_ (c)*
R = (z/B) = e [(0’1)%1}

Simplifying (29) by substituting in (13) and noting that p = p’ from (23), we
have (28). H

(29)

Under Friedman’s rule, x = (3 in all states. In this case, (13) demonstrates
consumption is constant. From (28), R = 1. No monetary distortion occurs;
however, there is also no possibility for surprise inflation.

From (28), we will show that any policy other than Friedman’s rule, that is
any policy with a density that does not concentrate all mass on 3, will lead to a

11



nominal interest rate that is greater than one in some states of the world. Since
we would like to show that R > 1 in all states of the world, as long as Friedman’s
rule is not pursued, the lowest possible interest rate that can occur is when the
money growth rate is 5. By (28), R > 1 as long as

E [(x/)afl} > ﬁl_a

To see this, note that as long as f is a density on [3, c0) without all mass on £,

then ~ )
/ (xafl) [mlfa — Blfa} f(x)de >0
B
Simple algebra implies
/ 2L (x) de > g
B

If the government pursues a random monetary policy, the net nominal interest
rate is positive in at least some states of the world; therefore, a monetary distor-
tion arises from random monetary policy that is not present when the monetary
authority follows Friedman’s rule.

Anticipated inflation tends to reduce the quantity of the cash good held
by households. One way to reduce the negative effects associated with random
monetary policy is to reduce the preference for cash goods in the household utility
function. As explained in the introduction, this assumption can be justified
by developments in financially sophisticated economies that have reduced the
reliance on money as a medium of exchange. For this reason, we assume that ¢
is close to zero.

The next lemma concerns the effect on the markup of introducing a small
random component to the money growth rate.

Lemma 3: If a < 0, there exists a random monetary policy with a lower
expected markup than every deterministic policy.

Proof: By considering perturbations to the deterministic money growth rate, we
can show that the expected markup falls upon the introduction of a small degree
of uncertainty. Assume that the deterministic money growth rate is equal to
z > 3. For this policy, the markup is given by p = p/ =6/ (6 —1). For any iid
money growth rate, the expected markup next period is:

B (@) E (@)™
B (@)

To simplify notation for the remainder of the proof, we suppress the prime on p
and x. We will consider perturbations of the random variable z indexed by 6.
Let = T + ¢ where € is a mean zero random variable with finite variance o2.
Since the expected markup depends on moments of x that have a similar form,

it is useful to define the following function.

E (i) = (30)

E(@™6) = Ap (8) = / (2 + 66)™] dF (¢)
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where F' is a cdf with mean zero. In this case, it is straightforward to compute
the first and second derivatives of A,,:

A (6 =m / (@ + 86| edF ()

Al (8) =m(m — 1)/ [(a‘: + 66)m_2} €2dF (¢)
Evaluating these derivatives at § = 0, we have:
Ay (0)=2™
Al (0)=0
A (0) = m (m — 1) (2)"2 o
From (30), the expected markup, indexed by ¢, is

0 E(z%6)E (z71;9)
0—1 E (ze-1;6)

E(p;6) =
Writing the RHS of this expression in terms of A, we have
E (1;6) = [0/ (0 — 1)] Aa (8) A1 (6) [Aa1 (8)]

First of all, since A/, (0) = 0, it is clear that 0E (1;0) /06 = 0. In order to
consider the effect on the markup of uncertainty, we must look at the second
derivative. This also means that the formula for 9%E (u;0) /08° is relatively
simple (every term with a first derivative in it equals zero):

OE (1:0) _ ¥ {Ag<o>A1<o>[Aa1<on1+Aa<o>Azl<o>[Aa1<o>}1}
962 0—1 —Aq (0) A1 (0) [Aa—1 (0)] % AL_ (0)

a—1
Using the moments computed above, we know

O*E (11;0) 0?0
98> 6-1

ale =@ 2@ 2@ @) - (=D (@-2) @ @)
Simplifying, we have,

OE (1;0) 026
26> 6-1

a(@—1)+2—(a—1)(a—2)] ()
Simplifying more, we have

O*E (1;0) 0 2002
-1

662 jZ
Therefore, Z2%:0 < 0 if o < 0. W
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Lemma 3 demonstrates that a mean preserving increase in the variance of the
money growth rate can imply a decrease in the expected markup. A fall in the
average markup reduces the distortion associated with imperfect competition.
This occurs if there is sufficient negative comovement between the asset pricing
kernel and the real wage. To see this, consider how the representative firm
chooses the price. Recall that the firm chooses the next period price so that
p=100/(0—1)]E(r'w)/E(r"). The firm sets a scaled price next period to be a
linear function of the expected wage using the stochastic discount factor.

Substituting out p’ using (16), we have

, 0 E(r'u)
H= 0—1E(r)uw

Next, multiply the numerator and denominator of the right-hand side of the
above equation by E (w').

AP .

Using the definition of covariance, (31) becomes

, 0 E®W) [Cov(r’vw’)) 1} (32)

H =% E()E (W

With a nonstochastic money growth rate, £ (w') = w’" and Cov (r',w") = 0 since
r" and w’ are not stochastic. In this case, the markup is /(6 — 1).

Let us examine the effect on the markup of introducing a small random
component to the money growth rate. First, consider the effect on the bracketed
term in (32). We know that w’ is increasing in 2’ because higher money growth
decreases the real price of the credit good. In order to meet greater demand for
goods, firms must hire more workers which drives up the wage. On the other
hand, 7’ is decreasing in 2’ since goods are less expensive when they are more
plentiful. This implies that the covariance between the pricing kernel and the
real wage goes from being zero in the nonstochastic case to being negative upon
the introduction of a small degree of randomness to the money growth rate. With
randomness, when the wage is high the pricing kernel is low. This tends to drive
down the state-price deflated expected wage and therefore lowers the price of
consumption.

Examining (32), the markup is also a function of E (w’) /w’. The effects in
the numerator and denominator work in opposite directions. The term in the
denominator states that the markup is decreasing in the realized wage. Since
w = Fux, this is another way to express the unanticipated inflation effect dis-
cussed previously. The term in the numerator reflects the fact that the markup
is increasing in the average wage. By Jensen’s inequality, the term E [E (w') /u']
tends to increase upon the introduction of randomness. In order that the co-
variance term dominates the E [E (w’) /w'] term, this requires that the elasticity

-1
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of the pricing kernel with respect to the real wage is sufficiently negative. This
occurs when a < 0.

Although we have described the effect on the average markup of introducing
a small amount of uncertainty, the benevolent monetary authority is interested
in the effect on utility of the introduction of uncertainty. This will certainly
depend upon the expected markup, but it will also depend upon the concavity or
convexity of the utility function. The following theorem concerns the optimality
of random monetary policy, under the maintained assumption that ¢ is close to
Z€ro.

Theorem 3: For a sufficiently small ¢, there exists a random monetary policy
that ex ante pareto dominates every deterministic policy if
0 - 2(l—a)+a
0—1" 1-2a+2a2

Proof: As in Lemma 3, we will consider small perturbations to a deterministic
monetary policy. Each random monetary policy will be indexed by ¢, and defined
by x = T + 8¢, where € is mean zero with finite variance o2. Every expression in
the utility function can be expressed using the following:

p

Doy (6) = | [ 12+ 8" aF (0] = [An (9
We can compute the first two derivatives of D:
-1
Dy (8) = p[Am (8)]7 Ay, (6)

Dy, (6) =p(p—1) [Am ()2 (A}, (8)* + p [Am (6)F " AL, (6)

We can evaluate these derivatives at ¢ = 0, making use of expressions in the
proof of Lemma 3:

Dinp (0) = (2)™
D;n,p (0)=0
Dy, (0) = mp (m — 1) ()"~
The expected utility of a representative agent, indexed by 0, is

gu () = L1 (Eéiﬂf;)_))) h B ()75 ) -, (%) h E((x/)ﬁ>

where the expectations on the RHS depend on the random variable x through 6.
We will attack this in two parts. First, let EU; be defined by

P (5) = L) (E () )) B ())

a E((2)%)
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In our D notation, this is equal to

‘a—1

20, (5) = 22 D, e (6) Do (6) Do (6)

By the same argument as in the proof of Lemma 3, 0EU; () /06 = 0. Also, the
expression for the second derivative is relatively simple:

/! /i
D (0) Doy o (0) D1 (0) + D1, (0) D!\ _a_(0) x

o
ail’lfa —a’ a—1

D_a_1(0) + Da-1,-=_ (0) Dy = (0) Dlll%ag (0)

1— a—1

SEV0) <w<zg>“>

Using our expressions for D and D" evaluated at zero, we have:

2EU; (0)

a — 202 a? 9
o = ()" /) [&] * (a)”

(1-a)
Next, the second term of EU (0) is given by

EU, (8) = =D, 2 (6) Dy 1 () D1 (9)

Similarly,
92EUs (0) DYy 3 (0)Dy 2 (00D, (0)+ Doy 1 (DY (0)D_, (0)+
= Dy 1, (0) Dy 2 (0) D2y, (0)

Substituting in our expression for D and D", and then simplifying,

9*EU, (0)
96>

-2

= —ny [2 + s —aa)Z] o ()

Combining these two expressions, we see that

PEU(0) < o
98%

) ()" (1- 20+ 20%) [0 - @ +a])

T(l-—«
Since we are solely interested in the sign of this function, we can ignore the first
term on the RHS, which is always positive.

0?EU (0)

90? ] = sgn [v(n2)" (1= 20+ 20%) — g (2(1 = 0)* £ o)

sgn [

Then, for sufficiently small ¢, a random monetary policy is preferred to every
deterministic policy if

¥ ()" (1-20+20%) > (21— a)’ +a)
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Since from the paper 7, = (¢ (6 — 1) /6)Y/17) the term 1 cancels from the
above expression when we substitute out 7,. Therefore, a sufficiently small ¢, a
sufficient condition for randomness to be optimal is:

0 >2(1—a)2+a
0—1 1 —2a + 2a2

There are two additional comments. First, we assumed that & > (3. This is
necessary in order to rule out a negative net nominal interest rate upon the
introduction of uncertainty. If we considered the contribution of the cash good
to preferences, having an average money growth rate greater than 3 would be
pareto dominated. We are assuming that ¢ is sufficiently small, that we can
ignore the utility contribution of the cash good.

Second, ignoring the cash good requires that the derivative of the expected
utility contribution of the cash good with respect to ¢ evaluated at 0 is finite.
This is straightforward to verify using (2) and (21). ®

The above expression involves the interaction of several different influences.
The first influence is that the average markup may fall upon the introduction of
uncertainty into the monetary policy. In addition, there may be convex regions of
the indirect utility function V' (u). It is straightforward to show that V" (u) >0
as long as u > 2 — a. This effect implies that introducing random fluctuations
in the money growth rate will tend to increase utility so long as households are
in the convex region of the indirect utility function.

For the remainder of this section, we take up two extensions of our analysis:
globally optimal random monetary policy and the quantitative significance of the
cash good.

Globally Optimal Monetary Policy

Theorem 3 provided conditions under which a random money growth rate
pareto dominates every deterministic policy. This leads one to ask what is the
globally optimal random monetary policy. In this section, we solve a restricted
version of this problem by placing two parametric forms on the density.”

Our first parameterization of a random monetary policy is

where u is a uniform random variable on the unit interval. We then maximize (2)
by choice of a nonnegative 7,. Note that this parameterization is equal to the
deterministic policy (specifically, Friedman’s rule) when ~, = 0. For the second
parameterization, we choose

TInstead of restrictively parameterizing the set of admissible distributions for x, we could
use perturbation methods to characterize the general welfare-maximizing random money growth
distribution. Bassetto (1998) applies these techniques in an optimal-taxation problem.
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xe:6+766

where € has an exponential distribution.®

Next we must select parameters for the model. The model has five preference
parameters and one policy parameter. The preference parameters consist of 6,
governing the degree of imperfect competition, «, the utility function parameter
determining the coefficient of relative risk aversion, 3, the discount factor, ¥ and
¢, determining the utility weights on the cash and credit goods. We choose 6 = 3,

Y =1,8=0.9 and « = —5. We maintain our assumption that ¢ is very close to
zero. Figure 1 displays the density functions of the optimal policies under both
parameterizations.

We also list the expectation, variance and expected utility associated with
each monetary policy as well as Friedman’s rule. As the figure indicates, the
uniform money supply rule is the welfare maximizing policy among the three,
and both random policies are preferred to Friedman’s rule. Our second extension
asks what is the quantitative significance of introducing a non-negligible cash
good to the welfare implications of random monetary policy.

Introducing A Non-Negligible Cash Good

Next, we show that a significant fraction of cash goods may exist in an econ-
omy and still imply a random optimal monetary policy; therefore, Theorem 3 of
the previous section is robust to allowing for a quantitatively significant prefer-
ence for cash goods.

First, we must select policy parameters. The single government policy para-
meter is f, the density function for the money supply growth rate. Let 6 = 3.0,
a=0.8,0=0.98, ¢ =0.2, ¢ =0.8. The value of 8 implies that in an equilib-
rium with a constant growth rate of money, the markup is 1.5, which lies within
a range of empirical estimates. Setting ¢ = 0.2 and ¥ = 0.8 gives more weight to
credit than cash goods in the utility function. In the future, we plan to impose
more discipline on parameter choices. This example is intended to be illustrative.

Next, we parameterize two distinct monetary policies, f! and f?. First, we
let f!(B) = 1, which corresponds to a constant decrease in the money supply
at the rate of time preference. By Theorem 2, among the class of deterministic
monetary policies, f1 maximizes consumer welfare.

Our second rule money growth rate is a two-point discrete distribution given
by

m=Pr(x=0) andl —7m=Pr(z=1)
where 7 = 0.5. In most periods, the government decreases the money supply

at the rate of time preference, however, occasionally the government does not
change the money stock.

8The density of € is e %z.
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We can compute the unconditional expected utility EU (f) under monetary
policy f. Since among the class of deterministic monetary policies, f! is optimal,
we know that if EU (f?) > EU (f!) then a random policy is preferred to all
deterministic monetary policies. Table 1 lists EU, expected interest rate and
expected total consumption under both monetary regimes. Next, c¢] denotes the
percentage increase in consumption of the cash good that would make someone
who lives under the deterministic policy f! be indifferent between f! and f2.
The two point distribution for f? was chosen arbitrarily. It is likely that other
distributions for f correspond to higher utility. As we expect from the discussion
in the previous section, £ (R) > 1 under f2. In addition, average total output
of the cash and credit good is greater under f? because in the periods where the
monetary injection occurs, aggregate production increases, becoming closer to
the competitive equilibrium.

The above parameterization establishes that a random monetary policy can
pareto dominate deterministic monetary policy in a dynamic equilibrium ICSP
model for a plausible parameterization of the model. It is not true that for any
parameterization of the model, the optimal monetary policy involves a random
component. For example, if 0 is sufficiently large, the product market becomes
arbitrarily close to competitive. In this case, the potential benefits from surprise
inflation go to zero while the distortions associated with R > 1 remain. Clearly,
if @ is sufficiently high Friedman’s rule is optimal.

3 Conclusion

This paper establishes that optimal monetary policy in an imperfect competition-
sticky price model may contain a purely random component. This result was
developed using a dynamic equilibrium monetary model with rational expec-
tations where money played a minimal role in facilitating transactions. Two
frictions caused a departure from the Lucas-Stokey cash-credit model—nominal
price rigidity and imperfect competition. These frictions generate an expecta-
tional Phillips curve, where unexpected inflation can lead to a welfare-improving
increases in physical output. Two distinct features generate a role for random-
ization. First, random monetary policy reduces the state-price-deflated expected
wage that firms face. On average, this leads to a lower markup and higher out-
put. Second, randomization allows the monetary authority to improve welfare
in convex regions of the indirect utility function. Our results have two alterna-
tive interpretations: (a) the welfare benefits of inflation targeting and nominal
price stabilization policies may be overstated, or (b) this version of the imperfect
competition-sticky price model may have problems measuring the welfare costs
of inflation.

Under interpretation (a), policies that attempt to minimize fluctuations in
the inflation rate may hurt society. It has been observed for a long time that
estimated policy functions of the Federal Reserve contain an idiosyncratic com-
ponent. Cochrane (1994) asks, “Money VARs recognize that policy responds
to the economy, and try to isolate the exogenous shocks as residuals to a policy
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rule. But why should a policy-maker deliberately introduce a random component
to its decision?” Our results provide a resolution of Cochrane’s puzzle using a
standard imperfect competition-sticky price model.

Is the Federal Open Market Committee choosing monetary policy with a
roulette wheel? Probably not; however, national economies are constantly being
hit by small, random shocks to money demand. Whereas the model of this pa-
per considered random money supply disturbances, alternatively random money
demand shocks can generate variation in the markup. If a monetary authority
chooses not to or cannot neutralize every shock, then these monetary demand
shocks act as a natural randomization device. This may be one interpretation of
the residual “exogenous” shock that is consistently identified in money VARs.

From the standpoint of policy, our results speak to an important operational
question of monetary policy: how costly is low, variable inflation? Recently, a
number of authors have attempted to characterize the welfare losses associated
with low inflation in the U.S. (See Feldstein 1996, Lucas 1994 and Bullard and
Russell, 1997).” Others advocate policies that, in principle, can insure price
stability, such as targeting CPI futures (Cowen, 1997) and targeting inflation
(Mishkin and Posen, 1997). This paper raises a new potential benefit of small,
random movements in the money supply—small, random inflation allows a mon-
etary authority to reduce the distortion of imperfect competition.

The research mentioned in the previous paragraph reflects a recent interest in
understanding the potential welfare benefits of going from low to zero or negative
inflation. Under interpretation (b) of the paper’s results, an observer may ask
what motivates prescriptions for a constant price level or inflation rate. If the
primary reason for reducing the size and volatility of inflation stems from Mil-
ton Friedman’s (1960, p. 73) concern that inflation increases “the discrepancy
between social and private costs that lead individuals to hold smaller than opti-
mal cash balances,” then the reduced use of money as a medium of exchange in
financially sophisticated economies may ease these concerns. If the primary rea-
son for advocating price level or inflation rate stability stems from nominal price
frictions, then the results of this paper may call this justification into question.
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5 Appendix: A Contingent Claims Market in Nominal Debt

Here is a description of the model with a complete contingent claims market
in nominal bonds. Each period is divided into two subperiods. Let §2; denote
the nominal consumer wealth at the beginning of the first subperiod of ¢ after
the money injection is announced but before the injection occurs. When the
household enters a period with nominal wealth, each must first allocate wealth
between money and bonds:

]\/ft + Et {Tt+1Bt+1] S Qt (33)

Let Biy1 be a random variable measurable with respect to I;1 chosen by house-
holds at time ¢. If 7,41 is the asset pricing kernel, then Fj [ry11B;1] denotes the
time t dollar price of a bond portfolio that pays out at time ¢ + 1.

Second the law of motion for nominal wealth is given by

Qepr = My + (2 — 1) M + Wing — Py (c1e + ¢c2t) + Biyr + Die + Doy (34)

Here we suppress ¢ for simplicity. Note that 2,11 may depend upon z¢y; since
households may receive payoffs of state contingent debt B;yi. After the bond
market closes, households receive a nominal sum transfer (z; — 1) M.

The second subperiod then begins with the opening of cash goods, credit
goods and labor markets. The CIA constraint requires

Ptclt S Mt + (xt — 1) Mts (35)

The nonnegativity constraints are identical to those presented in section 1. Also,
the introduction of nominal debt requires a standard constraints to rule out Ponzi
schemes. At the end of the second subperiod, firms pay dividends and choose
next period’s price. The sequence of events and the timing of decisions that firms
and households make are represented in Diagram 1.

There are three things to note regarding the addition of a nominal asset
market. First of all, the Euler equations for the choice of ¢y, cor, ny, My are not
changed. Second, setting By = 0 and combining (33) and (34), we get back
the flow budget constraint without bonds (7) presented in section 1. Third,
one may verify by taking the first order condition with respect to By;1 of the
asset-market augmented household problem that the asset pricing kernel is that
posited in (17).

Alternative Firm Objective

Let us consider more closely the structure of trading in bonds and the delivery
of dividends in this economy. Recall that firm 7 chooses P41 () at time ¢t. In
the body of the paper, we assume firms maximize F [r¢11D¢41 (7)]. It should be
clear why firms discount one-period ahead dollar profits by the nominal pricing
kernel. However, examining (34), one may note that dividends acquired at time ¢
cannot be transformed into cash to purchase the cash good until time t+1. That
is, although all uncertainty regarding the dollar value of time ¢ + 1 dividends in
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resolved at time t + 1, the structure of trading requires these dividends to ‘sit
out’ an additional period.

In this case, firms may discount dividends for an additional period. Under
this assumption, the objective of the firm becomes

max Bt [re117¢42D1e11 (7)) (36)
Piyi1(d
Our original motivation for the paper, that money is becoming less important in
facilitating transactions, provides some justification for ignoring the term 749
in the firm’s objective. Including r;42 in the firms objective implies that even
if cash goods are not important to households, cash frictions still impinge on
the decisions of firms. It may be reasonable to assume that in financially so-
phisticated economies, both firms and households find ways to reduce the costs
associated with money as medium of exchange.
In any case, we will now sketch out why, under (36), the optimal monetary
policy still contains a purely random component. Using the law of iterated
expectations, this expression become

max Et [re11 D141 (1) Bt (re42)]
Pt+1 (2

From our discussion in the paper, Eii1 (rty2) is the inverse of the gross one
period nominal interest rate Ry 1. Let us define p, . = 711 FEs 41 (1¢42). If the
normalized price is time independent p = p/, then (17) implies

-1
B (w41 )\
Tty1 = — | —
Tt Tt

This implies

62E a—1
Pry1 = Hl([afgl;ﬂ) } (w41) !

Note that all the terms in the fraction are predetermined at time t. This means
that they can be dropped without affecting the firm’s first order condition. The
argmax from (36) is equal to

arg max Fj [(xt+1)_1 Dy (z)}

Pyy1(3)

The first-order condition for optimization is therefore

0 b [(wt—kl)il VVt+1]

By (1) = (37)
-1 [(%H)_l]
Writing (37) in the recursive, normalized form,
0 E[@)tw
P=3 | | (38)

-1 g [(x’)_l}
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Note that (38) is extremely similar to the first-order condition for firm optimiza-
tion (16) presented in section 1. The only difference between the two is that 7/
is replaced here with 1/2/. We can use (38) to replicate the argument made in
section 2 that a small amount of randomness lowers the markup. Following the
steps described in section 2,

, 0 E@) Cov [(w’)_l ,w’}
H=9_1 w E [(x’)_l] E (w)

Under this firm objective, it is straightfoward to show that, to a second order,
the expected markup does not change upon the introduction of randomness;
however, there remains a convex region of households’ indirect utility function.
Therefore, randomness may be welfare improving even if the firms use (36) to
select next period’s nominal price.
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Diagram 1. Sequence of Events

Government and Money (Asset Money Goods & Settlement
Markets shock, x ,, market injection labor markets
announced  meets) occurs meet
t t+1
Firms Enter period with Choose P,,,(i),

preset price Py(i) pay dividends

Households Enter period with Collect B,(x,) Receive Buy goods,
Q, - B, where Allocate portolio  (x (-1)MS, sell labor
B, isarandom variable between M, and
E(r 1By

Notes: 1. Recall Q,,; =M+ (X -DMSZ + Wn, - p(C;; + Cy) + By + Dy, + Dy
2. Availability of asset market and nomina bondsis optional.



Table 1: Simulation of Model under Alternative
Parameterizations

F1 F2
EU 1.88071 1.88976
E(R) 1.00000 1.00101

E(c.+ ©) 0.04319 0.04320
o 1.46 %




