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Abstract

We describe an algorithm for computing the equilibrium response of endogenous
variables to a realization of shocks from a stochastic process. We illustrate the algorithm
with two numerical experiments. These experiments are of interest in their own right
and they illustrate the dynamic properties of the simple New Keynesian model when
the zero lower bound on the interest rate is binding. In the first experiment, we show
that with an empirically reasonable amount of persistence, a negative technology shock
results in a decrease in consumption and employment. In the second set of experiments,
we show that the e§ects of an increase in government spending in the zero lower bound
are very similar, whether the increase must be financed by adjustments in distortionary
or lump sum taxes. For the sake of simplicity, the second experiment is deterministic.
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1. Introduction

The objective of this document is two-fold:

1. We describe the nonlinear stochastic simulation method implemented in Christiano-

Eichenbaum-Trabant, ‘Understanding the Great Recession’. The method corresponds

to the extended path method proposed by Fair and Taylor (1989) (see also Gagnon and

Taylor, 1990).

2. We work two examples with the code. Both use the simple New Keynesian model

without capital. The first example is fully stochastic and the second is not. The code

for the examples is available online. Following is a brief description of the two examples:

• — We investigate the inflation and output e§ect of a negative technology shock that
hits while the economy is in a binding zero lower bound (ZLB). We examine how

that impact changes as the degree of persistence in the technology is increased.

When technology has the degree of persistence usually assumed in the Real Busi-

ness Cycle literature, then consumption and employment fall with the negative

technology shock.

— We examine the economic e§ects of an expansionary government consumption
shock while the economy is in the zero lower bound. We find that results for

increasing welfare and output are robust to whether shocks to the government

budget constraint are financed with distortionary or lump sum taxes.

The first section below describes the computational strategy. The next section describes

the model used in the experiments. After that we report on the two numerical examples.

2. Stochastic Simulation of the Model

We denote the vector of exogenous shocks realized at time t by yt. The N×1 vector of endoge-
nous variables whose values are determined at time t is denoted by zt. Time starts at time

t = 1, when z0 is given. We draw a sequence, yt, ..., yT , from a time series representation, and

we compute the responses of the endogenous variables, z1, ..., zT , subject to the equilibrium

conditions, which we specify below. Our method adopts one approximation, that the system

satisfies certainty equivalence, so that objects like Ef (x) are replaced with f (Ex) .1

1See Adjemian and Juillard (2013) for a strategy to improve on the certainty equivalence assumption. The
extended path method is implemented in Dynare’s command, extended_path. When the parameter, order,
is set to zero then the type of calculations described in this manuscript are implemented. When order > 0,
then the approach described by Adjemian and Juillard is implemented.
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It is convenient to define the nonstochastic steady state values of zt and yt. We denote

these by z and y, respectively. In particular, y = limj!1ETyt+j and z solves:

v (z, z, z, y, y) = 0,

where v is anN×1 vector of functions that contains the steady state version of the equilibrium
conditions in non-stochastic steady state.

The system starts at time 0 when z−1 is given and z0 is determined. The time t realized

value of zt, t ≥ 0, is a function of time t information, Ωt, where

Ωt = {z0, z1, ..., zt−1, y1, ..., yt} .

Given Ωt, the N × 1 vector of endogenous variables, zt, must satisfy

Etv (zt−1, zt, zt+1, yt, yt+1) = 0,

where v denotes the equilibrium conditions. According to our certainty equivalence approxi-

mation,

Etv (zt−1, zt, zt+1, yt, yt+1) ≈ v
(
zt−1, zt, z

t
t+1, yt, y

t
t+1

)
,

where xtt+j denotes the conditional expectation of xt+j given Ωt. Thus, we require

v
(
zt−1, zt, z

t
t+1, yt, y

t
t+1

)
= 0. (2.1)

At time t it must also be that

Etv (zt, zt+1, zt+2, yt+1, yt+2) = 0,

or, using certainty equivalence,

v
(
zt, z

t
t+1, z

t
t+2, y

t
t+1, y

t
t+2

)
= 0. (2.2)

More generally, at time t is is required that, for all j ≥ 0,

v
(
ztt+j−1, z

t
t+j, z

t
t+j+1, y

t
t+j, y

t
t+j+1

)
= 0, (2.3)

where it is understood that ztt−1 ≡ zt−1, ztt ≡ zt. We assume that there exists a T ∗ > T such
that zTT ∗ = z and y

T
T ∗ = y, where z and y are defined above.

Motivated by the above expressions, we compute z1, ..., zT as follows. Suppose that we

have computed z1, ..., zt−1 as functions of Ω1, ...,Ωt−1, respectively. We compute zt as a

function of Ωt in two steps. First, we compute the date t forecast of yt+j, for j > 0 using

the information in Ωt and the time series representation for yt. We denote these forecasts by

ytt+j, j = 1, 2, ..., y
t
T ∗ .
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In our second step, we use the forecasts for the exogenous shocks and (2.1)-(2.3) to solve

for zt, ztt+1, z
t
t+2,..., z

t
T ∗ , where T

∗ > T. To this end, we define the following stacked system:

v
(
zt−1, zt, z

t
t+1, yt, y

t
t+1

)
= 0

v
(
zt, z

t
t+1, z

t
t+2, y

t
t+1, y

t
t+2

)
= 0

...

v
(
ztT ∗−3, z

t
T ∗−2, z

t
T ∗−1, y

t
T ∗−2, y

t
T ∗−1

)
= 0

v
(
ztT ∗−2, z

t
T ∗−1, z, y

t
T ∗−1, y

)
= 0.

This represents T ∗−t systems ofN equations in theN (T ∗ − t) unknowns, zt, ztt+1, ztt+2, ..., ztT ∗−1.
The value of T ∗ should be chosen so that the above equations actually have a solution with

ztT ∗ = z. The equations can be solved relatively quickly using a numerical routine for solving a

system of nonlinear equations with multiple variables. But, it is important to take advantage

of the structure of the equations. To see this, express the equations to be solved as follows:

V (γ) =

0

B@
v
(
zt−1, zt, z

t
t+1, yt, y

t
t+1

)

...
v
(
ztT ∗−2, z

t
T ∗−1, z, y

t
T ∗−1, y

)

1

CA , γ =

0

BBB@

zt
ztt+1
...

ztT ∗−1

1

CCCA
, (2.4)

where zt−1, z, yt and y are taken as given. We seek γ∗ such that V (γ∗) = 0. A gradient

method for doing so computes a sequence, γ1, γ2, ... that is guaranteed to converge to γ
∗ as

long as the initial guess, γ0, is su¢ciently close to γ
∗. Thus, suppose γ0, ..., γr−1 are given

and we seek the next vector of parameters, γr, in the sequence. Let

V (γ) ' V̂r (γ) ≡ Vt
(
γr−1

)
+ V 0

(
γr−1

) (
γ − γr−1

)
,

where

V 0
(
γr−1

)
=
dV
(
γr−1

)

dγ0r−1
,

so that V 0 is a square, (T ∗ − 1)N × (T ∗ − 1)N, matrix with a block-Toeplitz pattern, and
composed mostly zeros. The computational time required for the algorithm is reduced sub-

stantially by taking into account the structure of V 0
(
γr−1

)
when computing its matrix inverse.

The value of γr is the value of γ such that V̂ = 0. That is,

γ = γr−1 −
[
V 0
(
γr−1

)]−1
V
(
γr−1

)
.

We have found that the MATLAB routine, fsolve, works well in the application reported

below and in the much larger model studied in ‘Understanding the Great Recession’.2

2The numerical problem might appear to be amenable to solution by ‘shooting’ methods. We did not have
success with these methods.
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After completing the calculations for
(
zt, z

t
t+1, z

t
t+2, ..., z

t
T ∗

)
, we (i) increment the value of

t by one; (ii) compute the forecasts, ytt+j, j = 2, 3, ..., using yt+1; and (iii) use the t+1 version

of (2.4) to solve for
(
zt+1, z

t+1
t+2 , z

t+1
t+3 , ..., z

t+1
T ∗

)
The computationally intensive step is (iii), where

it is valuable to have a good initial guess, γ0, for solving (2.4). In practice, one can use the

steady state values of the variables to initiate the calculations for t = 1 in (2.4). For values

of t > 1 we set γ0 to γ
∗ from the t− 1 version of (2.4). We proceed in this way until we have

obtained the objects sought, z1, ..., zT .

3. Model

We first describe the equilibrium conditions associated with the private sector. We then

describe monetary and fiscal policy.

3.1. Private Sector Equilibrium Conditions

The period t intertemporal first order condition of the representative household is:

uc,t =
1

1 + rt
Etuc,t+1

Rt
1 + πt+1

, (3.1)

where uc,t denotes the marginal utility of consumption, Ct, in period t. Also, rt denotes the

rate at which the household at time t discounts time t+1 utility. The conventional assumption

is that β = 1/ (1 + rt) is a constant over time, but in the first example below we allow for

the possibility that the discount rate is time varying. Also, 1 + πt+1 = Pt+1/Pt, where Pt
denotes the time t money price of the consumption good. The household’s intratemporal

Euler equation is:
mrst
1− τ t

=
Wt

Pt
,

where τ t denotes the labor tax rate and mrst denotes the marginal rate of substitution,

−un,t/uc,t. The object, mrst, is the marginal cost of working, in consumption units. The
object on the right of the equality is the real wage earned by the household, i.e., the nominal

wage, Wt, divided by the price level.

Final output, Yt, is produced by a representative, competitive firm using the following

production function:

Yt =

[Z 1

0

Y
"−1
"

i,t dj

] "
"−1

.

The firm selects Yt and Yi,t, i 2 (0, 1) to maximize profits,

PtYt −
Z 1

0

Pi,tYi,tdj,
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subject to given output and input prices. The first order necessary conditions associated with

an interior solution to this optimum problem are:

Yi,t = Yt

(
Pt
Pi,t

)"
, i 2 (0, 1) .

Substituting the latter into the production function implies:

Pt =

(Z 1

0

P
(1−")
i,t di

) 1
1−"

.

The ith intermediate good, Yi,t, is produced by a monopoly producer using the following

production function:

Yi,t = exp (at)Ni,t,

where the time series representation of at has been given above and Ni,t denotes the amount

of labor used by the ith monopolist.

Because of the monopolist’s linear technology of production and the assumption that he

hires labor in a competitive labor market, the marginal cost of production is

st =
(1− ν)Wt/Pt

eat
,

for each i. In the above expression, ν is a subsidy paid by the government (and, financed

by a lump sum tax on households) in an e§ort to correct the distortions due to monopoly

power and labor taxation in the steady state. Note that in this model wages in the labor

market are completely flexible and the cost of working by households is always equated to

the corresponding benefit provided by the market. To see the implication for ν, recall that

e¢ciency in steady state requires that the cost of working is equated to the social marginal

product of work, namely eat. In steady state, st is equated by monopoly firms to the inverse

of the markup, ("− 1) /". Thus,

st =
Wt

Pt
(1− ν)

MPL,t
=

Wt

Pt
(1− ν)

eat

household Eulerz}|{
=

1−ν
1−τ t

mrst

eat

in steady statez}|{
=

"− 1
"
. (3.2)

From this expression it is evident that we require

1− ν

1− τ
=
"− 1
"
.

Since monopolists all face the same marginal cost, st, if prices were flexible and τ were

constant at its steady state value, then the employment and consumption allocations are first

best, conditional on the value of government consumption, Gt. However, we assume that

prices are not set flexibly. Instead, the ith intermediate good can only set his price, Pi,t, with
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probability θ. In particular, we suppose that the monopolist must satisfy the Calvo price

distortions:

Pi,t =

{
P̃t with probability 1− θ
Pi,t−1 with probability θ

,

where P̃t denotes the price that the monopolist sets in case he is able set his price in period

t.Under these conditions, the expression that relates total purchases of goods to aggregate

employment, technology and price dispersion is as follows (see, e.g., Tack Yun, 1996 ):3

Gt + Ct = p∗t e
atNt (3.3)

p∗t =

2

4(1− θ)

 
1− θ (1 + πt)

"−1

1− θ

! "
"=1

+ θ
(1 + πt)

"

p∗t−1

3

5
−1

(3.4)

The conditions associated with optimal price setting must be adjusted slightly to accom-

modate our assumption that the discount rate of households, rt, is potentially time varying.

As usual, the prices of the 1− θ intermediate good producers that have the right to optimize
their price are set as a function of current and future marginal costs, st. In particular,

p̃t =
Kt

Ft
,

where4

Kt = Et

1X

j=0

βt,jθ
j (Xt,j)

−" "

"− 1
st+j.

Here,

βt,j =

{ 1
1+rt

1
1+rt+1

· · · 1
1+rt+j−1

j ≥ 1
1 j = 0

, βt,j =
1

1 + rt
βt+1,j−1

Xt,j =

{ 1
π̄t+1

1
π̄t+2

· · · 1
π̄t+j

j ≥ 1
1 j = 0

, Xt,j = Xt+1,j−1
1

π̄t+1
.

Then, using (3.2) to substitute out for st,

Kt = (1− ν)
"

"− 1
mrst

(1− τ t) eat
+

1

1 + rt
θEt (1 + πt+1)

"Kt+1. (3.5)

Similarly,

Ft = 1 +
1

1 + rt
θEt (1 + πt+1)

"−1 Ft+1. (3.6)

Finally,

Kt

Ft
=

"
1− θ (1 + πt)

"−1

1− θ

# 1
1="

. (3.7)

3For a derivation in the case, βt,j = β
j , see http://faculty.wcas.northwestern.edu/~lchrist/course/Korea_2012/intro_NK.pdf

4For a derivation in the case, βt,j = β
j , see http://faculty.wcas.northwestern.edu/~lchrist/course/Korea_2012/intro_NK.pdf
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3.2. Monetary and Fiscal Policy

The flow government budget constraint is:

νWtNt + PtGt + (1 +Rt)B
g
t = T

g
t + τ tWtNt +B

g
t+1,

where T gt denotes (negative of) lump sum transfers. The household’s budget constraint is:

PtCt +Bt+1 = (1− τ t)WtNt +Rt−1Bt +

profits - T gtz}|{
Tt ,

where

Tt = profits - T
g
t .

We consider two policy regimes. In the ‘distortionary tax regime’, the labor tax rate is

adjusted to enforce the government’s intertemporal budget constraint and the lump sum tax

is an exogenous stochastic process. In the ‘lump sum tax regime’ the (real value of the) lump

sum tax is adjusted to satisfy the flow budget constraint with a constant real value of the

debt, while the distortionary labor tax is an exogenous stochastic process.

In the distortionary tax regime, the rule for adjusting τ t so that the government’s in-

tertemporal budget constraint is satisfied is as follows:

τ t = τ + η (Ωt − bg) , (3.8)

where η controls the response of the tax to the discrepancy between an average of past real

value of government debt and a target level of the real debt, bg. The average of past real

debts is given by the following expression:

Ωt =

(
Bgt
Pt−1

)(1−!)
Ω!t−1, 0 < ! ≤ 1. (3.9)

Divide the government budget constraint by Pt :

ν
Wt

Pt
Nt +Gt +

Rt−1
πt

bgt = t
g
t + τ t

Wt

Pt
Nt + b

g
t+1,

where

πt ≡
Pt
Pt−1

, bgt+1 ≡
Bgt+1
Pt

, tgt ≡
T gt
Pt
.

Note that bgt is a state variable at time t. We can rewrite the budget constraint as follows:

Primary government deficitz }| {0

BBB@
Gt −

2

6664
(τ t − ν)

=Wt/Ptz }| {(
mrst
1− τ t

)
Nt + t

g
t

3

7775

1

CCCA
+
Rt−1
πt

bgt = b
g
t+1. (3.10)
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This expression determines the real value of the government debt, which in turn a§ects taxes

by way of the tax rule.

The final equilibrium condition is provided by the monetary policy rule:

Rt = max

8
>>>><

>>>>:

1,

Ztz }| {

Rss
(
Rt−1
Rss

)ρR
"
(1 + πt)

φ1

(
Ct
Css

)φ2
#1−ρR

9
>>>>=

>>>>;

. (3.11)

We say the zlb is ‘strictly binding’ in period t if Zt < 1 and is ‘marginally binding’ if Zt = 1.

The zlb is ‘nonbinding’ if Zt > 1.

3.3. Equilibrium Conditions

In the distortionary tax regime, we have ten equilibrium conditions. The first six are the

equilibrium conditions of the standard NK economy with lump sum taxes: (3.1), (3.3), (3.4),

(3.5), (3.6), (3.7). There are three equations associated with distortionary taxes: (3.8),

(3.9), (3.10). Finally, there is the equation associated with monetary policy, (3.11). The ten

endogenous variables are:

Kt, Ft, πt, Ct, p
∗
t , Nt, Rt, τ t, b

g
t+1,Ωt.

In the lump sum tax regime, bgt+1 = Ωt = b
g for all t and tgt is determined by (3.10). In this

case, the government budget constraint and taxes play no role in the equilibrium allocations

and can be solved for after the equilibrium allocations have been computed. So, there are

e§ectively 7 endogenous variables in this case,

Kt, Ft, πt, Ct, p
∗
t , Nt, Rt,

with seven equilibrium conditions. These are composed of the six equilibrium conditions

associated with the standard NK economy with lump sum taxes plus the monetary policy

rule.

4. The Impact of a Technology Shock While in the Zero Lower
Bound

We now consider our first computational experiment. We examine the e§ects of a negative

technology shock when the economy is in the zero lower bound. Such a shock generates two

e§ects. First, by raising marginal costs it results in higher inflation because of sticky prices.

Because the interest rate is at its lower bound, the real interest rate is reduced. Other things

the same, this implies that consumption must rise. However, there is also a wealth e§ect
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which, if su¢ciently large, can be expected to drive consumption down. The wealth e§ect is

obviously larger, the greater is the degree of persistence in the technology shock. We show

that with a fairly standard degree of persistence, consumption falls. For this example, we

can ignore distortionary taxes and the government budget constraint.

The model has four exogenous shocks, rt, t
g
t , Gt and at. We follow Eggertsson and Wood-

ford in positing that rt is the realization of a two-state Markov chain in which the larger of

the two possible values of rt, namely rh, is an absorbing state. The system starts in period

1 with rt = rl < rh, and remains in that state with constant probability, q. The forecast of

rt+j, j > 0, is computed as follows:

Et
[
rt+j|rt = rl

]
=
[
0 1

] [ 1 0
1− q q

]j (
rh

rl

)
, (4.1)

for j = 1, 2, ... . When rt = rh, then the forecast of rt+j, j > 0, is simply rh itself. Also,

limj!1Etrt+j = r
h for this process. The time series representation for the log of technology,

at, is assumed to be:

at = (ρ
a
1 + ρa2) at−1 − ρa1ρ

a
2at−2 + "at . (4.2)

Note that the parameters are specified in terms of the roots of the characteristic equation

associated with the autoregression. In this case, limj!1Etat+j = 0.

For this experiment we assume that the economy is in the lump-sum tax regime. Let the

time t endogenous variables of the system be denoted:

zt =

0

BBBBBBBB@

Ct
p∗t
Nt
π̄t
Kt

Ft
Rt

1

CCCCCCCCA

.

In terms of the discussion in the previous section, N = 7. Let the time t exogenous variables

be denoted:

yt =

(
rt
at

)
.

We adopt the following parameterization of uc and mrs :

uc,t =
1

Ct
, mrst = CtN

'
t .

We adopt the following model parameterization:

ρ1 = 0.95, ρ2 = 0.
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Also,

" = 6, β = 0.99, ρR = 0, φπ = 1.5, φc = 0, θ = 0.75, σ = 1, ' = 1,

q = 0.8, ν = 1− ("− 1) /"

and

r =
1

β
− 1, rl = −0.01

We set rt = rl for t = 1, ..., 16 and rt = r for t > 16. In the case of at we set a−1 = a0 = 0

and "t = −0.1 for t = 1 and "t = 0 for t 6= 1. In addition, we set T ∗ = 116.5 We perform the

same simulation with "1 = 0, and we display both simultions. In both cases, the realization

of rt is the same.

The results are reported in Figure 1. Consider first the results for the case in which

there is not disturbance in technology (solid line). Note that the equilibrium is characterized

by sets of constants, as in the sort of linear approximations that Eggertsson and Woodford

(2003) use to study the ZLB.6 The starred line shows what happens when technology drops

by 10 percent in the initial period. Note that output is lower both in the ZLB, as well as

afterward.
5In this case, a1116 = −0.000027429292657, which we approximate by zero.
6It is interesting to compare some of the results in Figures 1-3 with what one obtains using the linearization

solution strategy implemented in Eggertsson and Woodford (2003). The log-linear approximation of equation
(3.1) around a zero inflation steady state is:

Et

h
−Ĉt+1 + (β [Rt − rt]− πt+1) + Ĉt

i
= 0.

We consider an equilibrium (as emerged in Figures 1-3) in which deviations from steady state are zero when
the economy emerges from the ZLB and output and inflation are constant at Ĉt = Ŷ l and πt = πl, respectively.
Thus, in the ZLB,

Ŷ l = βrl + pπl + pŶ l.

Log-linearizing (3.5), (3.6) and (3.7) around steady state and rearranging, we obtain the usual Phillips curve:

πt = κ (1 + ') Ĉt + βEtπt+1, κ ≡
(1− θ) (1− βθ)

θ
.

In the ZLB, this reduces to:

πl =
(1− θ) (1− βθ)

θ
(1 + ') Ŷ l + βpπl

Solving, we obtain:

πl =
κ (1 + ')βrl

(1− p) (1− βp)− κp (1 + ')

Ŷ l =
βrl + pπl

1− p
.

Interestingly, the values of πl and Ŷ l that solve these expressions are di§erent from the values exhibited in
Figures 1-3. For example, in our baseline parameterization, (1− p) (1− βp) − κp (1 + ') = −0.096, so that
πl > 0. We are investigating why the reason for this di§erence.
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Figure 2 reproduces the same results reported in Figure 1, except that ρ1 is now set to

0.5, so that there is less persistence in the technology shock. Note that now consumption

actually rises in the ZLB. The intuition is that when there is a lot of persistence in at,

then a negative shock to at is associated with a strong negative wealth e§ect (i.e., ρ1 =

0.95), producing a decline in consumption and, hence, aggravating the drop in output in

the zlb. When the wealth e§ect is more modest (as when ρ1 = 0.5), then the response of

consumption is dominated by a rate of return e§ect, an observation that has been stressed by

Eggertsson (2010). In particular, the negative shock to technology raises the marginal cost

of production and hence raises expected inflation. This in turn reduces the real interest rate

(this is necessarily so because the nominal rate of interest is at its lowest possible level) and

so encourages consumption and reduces the severity of the output drop in the zlb.

We also considered the parameterization, ρ1 = 0.95 and ρ2 = 0.20 in Figure 3. In this

case, the wealth e§ect is even stronger than what it is in the experiment studied in Figure 1.

Note that the fall in consumption is now greater, consistent with the wealth e§ect intuition

sketched here.

5. The Impact of Government Spending In the Presence of Distor-
tionary Taxes

We consider a second computational experiment. This experiment is deterministic and has

to do with the economic e§ects in the zero lower bound when taxes are distortionary. Several

papers have shown than when the zero lower bound is binding, then an increase in government

spending can drive output up substantially and raise welfare. Much of that literature assumes

that we are in the lump sum tax regime. Here, we consider the e§ects of government spending

on output and welfare in the distortionary tax regime. Our results resemble those in Erceg

and Linde (JEEA, 2014) who argue that results obtained under the assumption that taxes

are lump sum are robust to the assumption that taxes are distortionary and must be adjusted

to ensure intertemporal government budget balance.

The first subsection lays out the details - including utility function, parameter values and

the nature of the shocks - of the experiment. The second subsection reviews the results of

the computational experiments.

5.1. Preliminaries

We assume that in periods 1, 2, ..., 12, rt = rl and rt = rh for t > 12, where rt appears in (3.1).

We set rl = −0.005 and rh = 1/β − 1 for β = 0.99. We suppose that prior to t the system
was in steady state and the period 1 drop in rt was unanticipated. Although the period 1

drop in rt was unanticipated, once it occurs the subsequent sequence of rt’s is deterministic.
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We consider two scenarios. In one, Gt jumps in period 1 and returns to steady state. In the

other, Gt = G for all t ≥ 1. The law of motion for Gt is:

Gt = G1−0.8G0.8t−1 exp ("
g
t ) ,

"g1 = σ", "
g
t = 0, t > 1, G0 = G

We consider several di§erent values of σ", 0.2, 0.4, 0.6, 0.8. The di§erence (percent or

otherwise) between the equilibrium in which Gt jumps and Gt does not jump defines the

‘impulse response function to Gt’. Based on this impulse response function we can compute,

for example, the multiplier associated with the jump in government spending.

We adopt the specification of utility used in Christiano, Eichenbaum and Rebelo (JPE,

2011):

u (c,N) =

[
Cγ (1−N)1−γ

]1−σ

1− σ
+  g

G1−σ

1− σ
so that

uc = γCγ(1−σ)−1 (1−N)(1−γ)(1−σ) , mrs =
(1− γ)C

γ (1−N)
.

We calibrate the ratio of G to output to be 20 percent. We calibrate N to be 0.33, so that

the household works one-third of its available time of unity. We calibrate a value for  g by

requiring that the marginal utility of consumption be equal to the marginal utility of G in

steady state:

γCγ(1−σ)−1 (1−N)(1−γ)(1−σ) =  gG
−σ. (5.1)

Implicitly, we assume that in the steady state the marginal social cost of G is one unit of

consumption, and tax distortions are zero. If tax distortions were positive in the steady state,

then optimality of G would imply that the marginal utility of government consumption would

be higher than the marginal utility of private consumption. In this case, the value assigned

to  g would be higher. Thus, our calibration of  g is ‘conservative’ because it depresses the

implication of our model for the rise in welfare with a rise in G.

As noted above, we choose the subsidy to intermediate goods producers to be such that

the monopoly and labor tax distortions disappear in steady state. Thus, there are three

steady state conditions: (5.1), the requirement that the marginal rate of substitution between

consumption and leisure (i.e., mrs) equals the marginal product of labor, and the resource

constraint. The latter two are given, respectively, by:

(1− γ)C

γ (1−N)
= 1, (5.2)

C +G = N. (5.3)

Note the absence of price distortions on the right side of the resource constraint, (5.3). This

imposes that, in steady state, monetary policy drives inflation to zero. In addition, we have
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imposed that the technology shock, at, is zero in steady state. We use equations (5.1)-(5.3)

to compute C, γ and  g. Then, the assumption, G/ (C +G) = 0.20, allows us to compute G.

Thus,

γ = 0.282655246252677, C = 0.264,  g = 0.009057159317789, G = 0.066.

We set " = 6 and τ = 1/3, so that ν = 0.444. The subsidy must be higher than the labor

tax rate in steady state because it must not only undo the e§ects of that tax rate, but also of

monopoly power. This setting for the subsidy rate is conservative from the point of view of

our analysis, for two reasons. As we show below, in our calibration of the model an increase

in government consumption in the zero lower bound raises welfare. If ν were smaller, say

zero, then the monopoly power and labor tax rate distortions would be large in steady state.

An unanticipated jump in Gt would ameliorate these distortions by reducing the markup

of price over marginal cost.7 Thus, by setting the subsidy the way we do, we remove this

welfare-based motive for raising G. There is a second reason that our setting of the subsidy

rate is ‘conservative’ in light of our ultimate conclusion that a rise in Gt raises welfare. In

particular, when ν > 0 a rise in Gt produces an increase in government transfers to firms and

these additional transfers add to the deadweight losses of the tax system.

In our calibration, we set the ratio of government debt to GDP, rb, to 1/2. That is,

rb ≡ bg/ (C +G) = 1/2, so that bg = 0.165. Then, from the steady state government budget

constraint,

tg =

(
rbR +

(
ν − τ

1− τ
+ g

))
N

=

(
rb
(
1

β
− 1
)
+

(
ν − τ

1− τ
+ g

))
N

= 0.1227.

We set

σ = 2, η = 0.05, β = 0.99, φ1 = 1.5, φ2 = 0, ρR = 0, θ = 0.844956044718208, ! = 0.95.

We follow convention in reporting welfare in consumption equivalents. In particular to

evaluate the welfare gain of an increase in government spending we compute the permanent

subsidy to consumption that makes the welfare in the equilibrium without government spend-

ing equal to the welfare of the equilibrium with government spending. Steady state welfare

is:

V =

[
Cγ (1−N)1−γ

]1−σ
+  g

G1−σ

1−σ

(1− σ) (1− β)
,

7As the economy expands, Pt rises relatively little because of price setting frictions, while nominal marginal
cost, Wt, rises relatively more with the expansion in labor demand.
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and this is the same across the equilibria with and without the increase in G. Suppose that we

solve for T observations, imposing that the system is in steady state after T (we set T = 412).

Welfare in period 1 is:

V1 =
1X

t=1

βt−1
[
Cγ
t (1−Nt)

1−γ]1−σ +  gG
1−σ
t

1− σ
=

TX

t=1

βt−1
[
Cγ
t (1−Nt)

1−γ]1−σ +  gG
1−σ
t

1− σ
+βTV.

The allocations in the equilibrium where Gt = G are denoted by a star superscript. The

present discounted value of utility in that equilibrium is V ∗1 :

V ∗1 =
TX

t=1

βt−1
[
(C∗t )

γ (1−N∗
t )
1−γ]1−σ +  gG

1−σ

1− σ
+ βTV.

We now compute welfare in an equilibrium in which there is a permanent consumption

subsidy, so that Ct is replaced by Ct (1 + λ) . The e§ect of λ on steady state equilibrium is

denoted V (λ) , or,

V (λ) =

[
((1 + λ)C)γ (1−N)1−γ

]1−σ
+  gG

1−σ

(1− σ) (1− β)

=
(1 + λ)γ(1−σ)

[
Cγ (1−N)1−γ

]1−σ
+  gG

1−σ

(1− σ) (1− β)
.

Let V ∗1 (λ) denote the discounted utility of a permanent subsidy on consumption in the

equilibrium in which Gt = G for all t :

V ∗1 (λ) =
TX

t=1

βt−1
(1 + λ)γ(1−σ)

[
(C∗t )

γ (1−N∗
t )
1−γ]1−σ +  gG

1−σ

1− σ
+ βTV (λ)

= (1 + λ)γ(1−σ)
TX

t=1

βt−1
[
(C∗t )

γ (1−N∗
t )
1−γ]1−σ

1− σ
+  g

G1−σ

(1− σ) (1− β)

+βT
(1 + λ)γ(1−σ)

[
Cγ (1−N)1−γ

]1−σ
+  gG

1−σ

(1− σ) (1− β)
.

We wish to identify the value of λ having the property that

V ∗1 (λ) = V1.
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Solving this for λ gives rise to

V1 = (1 + λ)γ(1−σ)
TX

t=1

βt−1
[
(C∗t )

γ (1−N∗
t )
1−γ]1−σ

1− σ
+  g

G1−σ

(1− σ) (1− β)

+βT
(1 + λ)γ(1−σ)

[
Cγ (1−N)1−γ

]1−σ
+  gG

1−σ

(1− σ) (1− β)

= (1 + λ)γ(1−σ)

2

6666664

=V ∗1 − g
G1−σ

(1−σ)(1−β)z }| {
TX

t=1

βt−1
[
(C∗t )

γ (1−N∗
t )
1−γ]1−σ

1− σ
+ βT

[
Cγ (1−N)1−γ

]1−σ

(1− σ) (1− β)

3

7777775

+ g

(
1 + βT

)
G1−σ

(1− σ) (1− β)

or, after rearranging,

λ =

2

4
V1 −  g

(1+βT )G1−σ
(1−σ)(1−β)

V ∗1 −  g
G(1−σ)

(1−β)(1−σ)

3

5

1
γ(1−σ)

− 1

=

"
V1 (1− σ) (1− β)−  g

(
1 + βT

)
G1−σ

V ∗1 (1− β) (1− σ)−  gG
1−σ

# 1
γ(1−σ)

− 1

We also compute various measures of the impact of the change in government consumption

on output. We compute a static multiplier as the ratio,

Yt − Y ∗t
Gt −G

, for t = 1, ..., 10.

This multiplier is not well defined for t must larger than 10 because eventually the numerator

is zero, while the numerator remains non-zero for a while. Another measure of the multiplier

is the long run multiplier stressed by Uhlig and Drautzburg and Uhlig. This is defined as

follows:

Ψk =

Pk
t=1mt (Yt − Y ∗t )Pk
t=1mt (Gt −G)

, mt =

{
(R1R2 · · ·Rt−1)

−1 t > 1
1 t = 1

, (5.4)

for k = 1, 2, ..., 1. The ‘long run multiplier’ is Ψ1.

5.2. Computational Results

Consider Table 1 first. This reports λ in percent terms, the short run multiplier, Ψ1, and

the long run multiplier, Ψ1. Results are reported for di§erent size shocks to time t = 1

government consumption: 0.20, 0.40 and 0.60. These represent 22, 49 and 82 percent jumps
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in government consumption in period 1, respectively.8 Consider the welfare numbers first.

Note first of all that they are all positive. Each increase in government spending, though quite

large, leads to an increase in welfare. Second, the results are similar whether adjustments to

taxes are to the lump sum or the distortionary component of taxes. For example, the optimal

value of σ" is somewhere in the neighborhood of σ" for both the lump sum and distortionary

case. Third, the welfare increases from greater government spending are (slightly) larger

when negative shocks to revenues are made up by adjustments to distortionary taxes. This

is what one would expect, but it is perhaps surprising that the e§ects are so very small.

Now consider the government spending multipliers. First, note that all the short run

multipliers are greater than unity. Second, note that in the distortionary tax case, long run

multipliers are substantially smaller than the short run multipliers, while the two are roughly

the same in the case of lump sum taxes. We may infer from (5.4) that the pattern in Ψk
reflects that Yt − Y ∗t is positive for small values of t and turns negative for larger values of
t when taxes are distortionary (this will be confirmed below). Thus, there is a trade o§ as

output initially increases in response to the rise in Gt and output subsequently falls when the

higher distortionary taxes to finance Gt occur.9

In our setting, the ‘correct’ way to aggregate the dynamic e§ects of government spending

and the associated financing is to use the welfare measure and that measure indicates that

the lump sum and distortionary tax cases are very similar. Presumably this is because the

addition to welfare from the initial increase in output - which occurs at a time when output

is very low - is smaller than the reduction in welfare later on as tax distortions increase.

In any case, a naive reading of the results based on the long-run multiplier suggests that

government spending is relatively ine§ective in the zero lower bound, in the (plausible) case

that taxes are distortionary. But, according to the welfare measure this inference is simply

wrong. Thus, the long run multiplier is not a very useful measure of the e§ectiveness of

government spending in the zero lower bound.

Table 1: Welfare Gain and Long-Run Multiplier, Shock to G Innovation in First Period
Gt = G

1−0.8G0.8t−1 exp ("
g
t ) , "

g
1 = σ", "

g
t = 0, t > 1, G0 = G

financing arrangement σ" =0.2 σ" =0.4 σ" =0.6

lump sum
100× λ = 0.53

Ψ1,Ψ1 = 1.36, 1.21
100× λ = 0.60

Ψ1,Ψ1 = 1.36, 1.22
100× λ = 0.59

Ψ1,Ψ1 = 1.37, 1.23

distortionary
100× λ = 0.50

Ψ1,Ψ1 = 1.29, 0.58
100× λ = 0.54

Ψ1,Ψ1 = 1.30, 0.58
100× λ = 0.52

Ψ1,Ψ1 = 1.31, 0.57

8For example, exp(0.6)=1.82, after rounding.
9A priori, one might have suspected that the longer term decline in Yt would drag down Yt in the initial

dates too. This e§ect, which operates via the e§ect of future consumption on present consumption in the
Euler equation, is apparently quantitatively small.
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Figures 4 to 8 investigate the dynamic e§ects of government consumption in the zero lower

bound more closely. Figure 4 displays the economic responses to a drop in the discount rate

in the first 12 periods when the government consumption remains unchanged. The interest

rate falls to its zero lower bound and lifts o§ for the first time in period 8. Consumption

drops by 20 percent right away and it is back to steady state by period 13. Note the very

substantial drop in the Tak Yun distortion, p∗. It falls by nearly 8 percent. This is almost

half of the almost 18 percent drop in GDP, with the rest coming from the fall in employment.

The drop in p∗ presumably reflects the very substantial 10 percent drop in inflation in the

first period.

Turning to the government debt, note that it drops. One factor operating on the debt

is the big deflation, which pushes the debt up (see how the real interest rate jumps). This

is obviously not the reason why the debt falls! We can see the various elements in the

government budget constraint in the bottom left figure. Note that, as expected, revenues

from the labor tax rate drop. Of course, this by itself also raises the debt. The key reason for

the drop in the debt is the fall in the tax subsidies to firms as the economy slows down (see the

solid line). Presumably, this drop in transfers to firms is counterfactual. Our model does not

include the many factors which make actual government transfer payments countercyclical.

As discussed above, however, this feature of the model should make it harder to get a big

positive e§ect on output and welfare when government consumption increases and taxes are

distortionary. So, from our present point of view, this feature of our model is not necessarily

a negative.

Figure 5 displays the response of the economy to an increase in government consumption.

The increase in government spending does not change the date of ‘lift o§’ in the interest

rate, which still occurs in period 8. Note that now the debt does rise. Not surprisingly, the

average value of the debt moves more gradually, by less and peaks later. Since the labor tax

rate moves with the latter, it also rises only gradually and by relatively little. Note too that

inflation falls a little less with the rise in government consumption, so that - not surprisingly

- the Tak Yun distortion, p∗, now falls by less.

Perhaps the most useful way to understand the economic response to the increase in

government consumption is to study Figure 6. That figure compares the results when G

increases with the results when it does not. The top left figure shows the di§erence, Ct−C∗t ,
expressed as a percent of C∗t (recall, starred variables are the variables in Figure 5 and

unstarred variables are the variables when government consumption rises). Thus, note how

consumption rises initially by 2 percent and then goes negative just as the zero lower bound

ceases to bind. Note too that consumption is below C∗t for an extended period, over 100

quarters. The cumulative multiplier, Ψk, for k = 1, 2, 3, ... , is reported in the bottom left

figure, and note how rapidly it falls. This is not surprising in view of the negative value
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of Ct − C∗t .10 We see a similar pattern in employment. Presumably, the relative fall in

consumption and employment reflects the distortionary e§ect of the labor tax, which slowly

rises until reaching a peak in period 42 and is very slow to return to steady state. The fact

that the movement in the tax rate is gradual and long lasting is why at the same time the

absolute movements are very small. Note that the maximal response of the labor tax rate is

only 0.3 percentage points. In terms of the actual tax rate it only moves in the third digit

after the decimal.

The bottom right graph in Figure 6 yields insight into the e¢ciency implications of the

increase in government spending. The first best allocations are characterized by equality

between the marginal cost of working (i.e., mrs, or the marginal rate of substitution between

consumption and leisure) and the marginal benefit, which is unity (the mrs in this case is

also referred to as the labor wedge). The bottom right graph displays the marginal cost

of working when G increases and when its is constant. When G is constant, the marginal

cost of working plunges immediately to 0.76 consumption goods, versus the unchanged unit

marginal product of labor. When G increases, the drop in the cost of working is less, at 0.80

consumption goods. Thus, in the early period, the rise in G increases the e¢ciency in the level

of employment (from p∗ we also see that it improves e¢ciency in the allocation of employment

across sectors11). Interestingly, after the zero lower bound is over, the marginal cost of working

is further from its e¢cient point when government consumption is expansionary than when

it is not, because of the higher tax distortions. Thus, there is improved e¢ciency early on

and less e¢ciency later on, with the increase in G. Another way to see this is to compare

period by period utility under the two di§erent government consumption scenarios. The 3,3

graph in Figure 6 displays utility with G positive minus utility when G is held constant. It is

clear from this figure that the di§erence is positive initially. Later in the figure the di§erence

appears to go to zero. In fact, it goes to a small negative number and remains there.

Figures 7, 8 and 9 display results for the lump sum tax case. Consider the summary results

in Figure 9. Note that now employment and consumption do not go negative eventually. This

is not surprising because there is no rising distortionary tax rate later on. An implication of

this is that the multiplier, Ψk, does not fall so rapidly as it does in the distortionary case.

This is why the long and short run multipliers are not to drastically di§erent as they are in

the distortionary tax case. Similarly, the bottom right graph shows that the cost of working

is boosted early on when government consumption is high. But, the two curves are roughly

the same - both equal to unity - later on. In the case of the 3,3 graph, flow utility in the

expansionary G equilibrium minus flow utility in the constant G equilibrium approaches zero

10However, recall that the multiplier is based on GDP, Ct +Gt − (C∗t +G∗t ) .
11This is accomplished by the smaller drop in inflation, which reduces the amount of price dispersion. The

welfare benefit of reduced price dispersion is that the allocation of labor across sectors is closer to its first-best
pattern, which is equal employment across sectors.
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monotonically from positive numbers and never goes negative.
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Figure 4: Shocks to Budget Constraint Financed by Adjusting
Distortionary Tax Rate – No change in G



Figure 5: Shocks to Government Budged Constraint Financed by
Adjusting Distortionary Taxes – Increase in G.



Figure 6: Response to increase in G in ZLB When Shocks to Budget Constraint Financed by Adjusting Distorting Taxes



Figure 7: Shocks to Budget Constraint Financed by Adjusting
Lump Sum Taxes – No change G



Figure 8: Shocks to Government Budged Constraint Financed by
Adjusting Lump Sum Taxes – Increase in G.



Figure 9: Response to increase in G in ZLB When Shocks to Budget Constraint Financed by Adjusting Lump Sum Taxes


