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Abstract

I consider the example analyzed in Eggertsson and Woodford (2003a,b), which
shows that the zero lower bound on the nominal rate of interest, in conjunction with
a low-inflation policy by the central bank, can cause output to collapse in response
to certain shocks. I present evidence which suggests that when capital is introduced
into the model, the problem is less likely to occur. This analysis is carried out for the
case when shocks are to the rate at which households discount future consumption.
Additional analysis with other shocks (especially shocks to investment) and a wider
range of economic frictions is of interest.

1 Introduction

Since the high inflation of the 1970s, central banks around the world have struggled to bring
down inflation. With the fall in inflation, interest rates have come down so much that the
zero lower bound might well bind sometime in the near future. Increasingly, there is a
concern that this combination - nearly zero interest rates and a dedication to low inflation
- exposes economies to a new threat. As Bernanke (2003) has recently emphasized, they
create a possibility of a ‘worst case scenario’, in which an otherwise mild economic shock
causes a collapse in output and a downward spiral in prices.1

These concerns raise two related questions. Can they be given a coherent intellectual
foundation? If the answer is ‘yes’, then - given the best current econometric estimates of the
economy - what is the likelihood that the worst case scenario will occur?
In two important papers, Eggertsson and Woodford (2003a,b) show that the answer to

the first question is ‘yes’. They present a fully articulated model which illustrates how the
worst case scenario could occur.2 In the example, the efficient response to a particular shock

∗This elaborates on my comments on Eggertsson and Woodford (2003b) at the American Economic
Association meetings in San Diego, January 2004.

†Northwestern University and NBER. I am grateful for advice and comments from Ben Bernanke, Gadi
Barlevy, Gauti Eggertsson, Patrick Kehoe, Massimo Rostagno and Mike Woodford. Also, I wish to ac-
knowledge the financial support of a grant from the National Science Foundation to the National Bureau of
Economic Research.

1For similar discussions, see also Sims (1999) and Svensson (2003).
2An important precursor to this work is Krugman (1998).
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requires that the real rate of interest decline. However, this cannot happen because (i) the
zero lower bound on the nominal interest rate binds, and (ii) the central bank’s inability to
commit to future monetary policy prevents it from being able to raise inflation expectations.3

With the real interest rate unable to play its role in efficiently directing the allocation of
resources, the result is the sort of welfare-reducing downward spiral in output and inflation
that concerns observers such as Bernanke. Eggertsson and Woodford construct a numerical
example of this which is dramatic and hard to ignore.4 In the example there are welfare
losses that exceed anything one can find in monetary economics, outside of models with
sunspot fluctuations.
The design of Eggertsson and Woodford’s example is heavily influenced by their desire

for tractability. On this dimension, they have succeed abundantly. To reproduce the essence
of their quantitative analysis all one needs is a cocktail napkin and a pencil. However,
to determine whether the scenario illustrated by Eggertsson and Woodford’s example is a
practical concern, one must determine whether their conclusions are robust to relaxing some
of their model simplifications. In my comment, I explore robustness to the introduction
of investment, by embedding their model into the model with capital found in Woodford
(2003, Chapter 5). I find that the introduction of investment reduces the likelihood that
the downward-spiral scenario will occur. It now takes a bigger shock to trigger the scenario.
However, the parameters in Woodford (2003) imply a very high Frisch elasticity of labor
supply. When I use a more standard elasticity, the lower bound no longer binds, even for
very large shocks.
I discuss the intuition behind the Eggertsson-Woodford results in the first section below.

It should be familier to many economists because it closely resembles the logic of the Para-
dox of Thrift, discussed in standard undergraduate macroeconomics textbooks. Section 3
presents the models used in the analysis. Section 4 presents the results. Section 5 concludes.
The computational algorithm used to obtain the results is described in the appendix.

3Eggertsson and Woodford (2003a,b) show that raising inflation expectations is the optimal policy when
the central bank has the ability to commit to its future monetary policy. When the central bank cannot
commit to future policy, everyone understands that ex post the central bank will always choose zero inflation
if it can (more on this in section 3 below). This is because Eggertsson and Woodford assume that any sources
of inflation bias in monetary policy have been removed by the appropriate setting of taxes and subsidies.

4Eggertsson and Woodford and others (see, for example, Svensson (2003)) describe solutions to the
problem. I am not concerned with these here, and so I do not discuss them in the main text. Briefly, one
feasible strategy is to shift to an average inflation rate that is significantly above zero, say 4 percent or so.
Although a level of inflation like this generates welfare losses, economists have generally found that the losses
associated with an inflation rate like this are quite small. However, Eggertsson and Woodford show that one
can do better. They show that the optimal strategy involves very low inflation on average. The strategy
involves increasing inflation by very small amounts in the periods after the realization of certain shocks.
There may be difficulties with implementation of this policy if the shocks are not observable. Eggertsson and
Woodford show, however, that the optimal policy is closely approximated by a policy of price level targetting.
As noted in a previous footnote, to implement this policy in the Eggertsson-Woodford environment requires
that the central bank be able to commit to its future policies. This may require institutional change.
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2 Simple Intuition

Although the formal analysis on which my conclusions are based is dynamic (see the next
section below), intuition can be obtained from a simple static analysis. Consider Figure 1.
The real rate of interest,

1 + it
πt+1

,

appears on the vertical axis. Here, it denotes the nominal interest rate and πt+1 denotes the
gross rate of change in the price level from the current period to the next. Also, investment
and saving appear on the horizontal axis. The figure shows a shift to the right in the supply
of savings (induced in the formal analysis by a shock to the discount rate). The demand for
saving arises from firms seeking to finance investment. There are two savings demand curves
in the figure, each exhibiting a different elasticity of investment with respect to the real
interest rate. The inelastic investment case corresponds to the one considered by Eggertsson
and Woodford, who exclude capital from their model. This case is captured by the vertical
line. The negatively sloped line corresponds to the interest elastic case, modeled formally
in the next section. There is a lower bound on the real interest rate because it cannot drop
below zero and Eggertsson and Woodford assume that next period’s monetary authority will
do what it can to set πt+1 to unity.5 The lower bound on the real interest rate is indicated
by the horizontal line in the figure.
Consider the interest-inelastic case first. The shock induces people to cut spending and

increase saving. Because the quantity of investment cannot change by hypothesis, the quan-
tity saved also cannot change in equilibrium. Something must happen to cause the quantity
saved to remain unchanged, despite the shock to the supply of saving. This can be accom-
plished efficiently by a drop in the real interest rate to point B. However, because of the lower
bound on the real interest rate, this cannot happen. Something else must happen instead,
to discourage a rise in the quantity saved. In the model, a fall in output and income does
the job. The drop in output occurs naturally as households cut back on consumption in an
effort to increase saving. Through a standard sticky price mechanism, this leads to a fall in
income and employment (as well as the current price level). The decline in economic activity
exerts downward pressure the quantity saved, for consumption-smoothing reasons. In effect,
the decline in income causes the saving function to shift back to the left, so that the saving
function intersects the vertical investment curve at the lower bound.
Actually, the scenario is worse than the reasoning just described suggests. In the formal

analysis, the shift in the discount rate is assumed to be persistent, so that a similar thing
is expected to occur in the future. That means that consumption and the price level are
expected to fall in the future too. In fact, they fall so much that the expected gross inflation
rate from the current period to the next, πt+1, falls below unity. This has the effect of
shifting the lower bound in Figure 1 up, increasing the distance that the saving function

5They conjecture that this is actually an equilibrium of a version of the model in which the monetary
cannot commit to its future policy and it chooses inflation to maximize the utility of the representative
household. The reason for this is that with their assumed price frictions, a policy which makes the current
price level deviate from its previous period’s level distorts the allocation of resources. Moreover (assuming a
tax subsidy is used to eliminate monopoly distortions), there is no gain from a policy that makes the current
price level deviate from its value in the previous period.
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must be induced to shift back left. Put differently, the fall in expected inflation stimulates
households’ desire to save even further, increasing the amount by which income must fall to
maintain equilibrium.6

The point of the example is that ordinarily the discount rate shock would be met by a
suitable drop in the real interest rate and no change in output. In the formal analysis this is
the welfare-efficient response. With the central bank’s dedication to low inflation and with
the lower bound on the interest rate, the real interest rate mechanism cannot do its job.
Instead, households are prevented from increasing their saving by a welfare-reducing fall in
income. In their numerical example, discussed below, Eggertsson and Woodford show that
this drop in income can be quite large, and deserves to be called a “downward spiral”.
Now consider the elastic investment case. In this case, the real interest rate only has

to drop to point C to maintain equilibrium. This cut in the real interest rate is enough
that the resulting expansion in investment absorbs the rise in investment. Evidently, the
size of the saving shock that produces the downward spiral in the economy with inelastic
investment does not do so in the economy with elastic investment. This is the sense in which
the downward spiral is less likely when investment is elastic.
The intuitive analysis suggests various policy conclusions. For example, one way to

reduce the likelihood of the downward spiral is to create the expectation that there will
be higher inflation in the period after the shock. Eggertsson and Woodford show that
this is the optimal monetary policy of a monetary authority that is able to commit to its
future policies. Interestingly, they show that the quantity of extra inflation required is quite
modest, especially by comparison to the large deflation that occurs in their downward-spiral
equilibrium. However, in Eggertsson and Woodford’s model, creating expectations of higher
inflation requires commitment. Their environment has the property that once the shock is
over, the monetary authority without commitment has no incentive to deliver on a promise
of high inflation made in the past. Because absence of commitment forecloses this painless
way to respond to a shock, Eggertsson and Woodford’s analysis in effect provides another
example of the value of commitment in monetary policy.7

3 Formal Models

The first part of this section replicates the example reported by Eggertsson and Woodford.
After that, I embed their model into the model with capital in Woodford (2003, Chapter 5),
to determine the impact of investment and other shocks on the analysis.

3.1 Eggertsson-Woodford Model

The algebra of the Eggertsson and Woodford example is strikingly simple. There are two
equations that characterize equilibrium for the private sector in their economy, an intertem-
poral Euler equation associated with the household saving decision and the standard Calvo

6The reasoning here is close to that in DeLong and Summers (1986).
7For another, see Albanesi, Chari and Christiano (2003).
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pricing equation:

xt = Etxt+1 − σ (̂ıt −Etπ̂t+1 − r̂nt ) (1)

π̂t = βEtπ̂t+1 + κxt. (2)

Here, xt, ı̂, πt and r̂nt denote consumption, the nominal rate of interest, gross inflation and
the discount rate. Each is expressed in deviation from its value in a zero-inflation steady
state. Also, β−1 − 1 is the steady state value of the discount rate and κ, σ are parameters.
The model is completed with a description of monetary policy. Policy sets ı̂t to ensure
π̂t = 0, subject to the constraint that the nominal rate of interest is non-negative. When the
constraint is binding then the nominal rate of interest is simply set to zero and the inflation
rate is determined by the equilibrium conditions. Since ı̂t is the percent deviation in the
interest rate from its zero-inflation steady state, the lower bound on the actual nominal rate
of interest translates into a negative lower bound for ι̂t : ı̂t ≥ β−1.8 From (1) it is clear that
if ı̂t = r̂nt for all t, then there is an equilibrium in which consumption remains at its steady
state value and inflation is always zero. However, if it should ever happen that r̂nt < β − 1,
then ı̂t = r̂nt is not possible, as it would imply a violation of the zero lower bound on the
interest rate.
To obtain a sense of what would happen in this case, Eggertsson and Woodford construct

the following scenario. Suppose the economy is in a deterministic steady state with no shocks
up until period 0. Then, unexpectedly in period 1 there is a shock to r̂nt which causes it to
drop to r̂nl < β − 1. In each subsequent period, with probability p, r̂nt remains low, and with
probability 1− p it returns to its steady state value of zero. Once zero, r̂nt can never change
value again.
The variables to be solved for in equilibrium are the levels of output and inflation, x̂l and

π̂l, that prevail while r̂nt = r̂nl . To find these, just solve the versions of (1) and (2) that occur
as long as r̂nt = r̂nl : xl = pxl − σ((β − 1)− pπl − r̂nl ) and πl = βpπl + κxl. This represents
two equations in the two unknowns. Eggertsson and Woodford assume the time period in
their model is one quarter, and adopt the following parameterization:

p = 0.9, σ = 0.5, κ = 0.02, β = 0.99, rnl = −.02/4.
It is easy to confirm that for these parameter values,

xl = −0.14, πl = −0.0263.
That is, output is 14 percent below steady state and inflation is -12 percent annualy as long
as the discount rate remains low. The discount rate is expected to stay low for 1/(1−p) = 10
periods, a notably long time. The intuition for these results was described in the previous
section. Since any drop in output represents an inefficient response to the r̂nt shock, this
represents a substantial inefficiency.

8In particular, the

ı̂t ≡
it − i

1 + i
,

where it is the nominal rate of interest and i is its steady state value. In a zero-inflation steady state,
1/(1 + i) = β, so that

ı̂t = β (it + 1)− 1,
so that when it is at its lower bound of zero, ı̂t = β − 1.
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3.2 A More General Model with Capital

I embed the Eggertsson and Woodford (2003a,b) model into the more general model with
capital in Woodford (2003, section 5). In addition, to simplify the analysis the model is
deterministic.
The preferences of households are as follows:

∞X
t=0

βt

∙
u(Ct,Mt/Pt)−

Z 1

0

v(Ht(j))dj

¸
,

where u is increasing and concave in its first argument, v is increasing and convex, and

βt =
1

(1 + rn0 ) (1 + rn1 ) · · ·
¡
1 + rnt−1

¢ ,
for t = 1, 2, ... . Also, β0 ≡ 1 and

βt+1
βt

=
1

1 + rnt
.

Each household supplies every type of labor, j ∈ (0, 1). Here, Ct denotes consumption and
Mt denotes the household’s end-of-period t stock of money. Finally, Pt denotes the price of
the consumption good. The household’s flow budget constraint is:

PtCt +Mt +Bt+1 ≤Mt−1 +Bt(1 + it+1) +

Z 1

0

Ptwt(j)Ht(j)dj + Tt, (3)

where Bt denotes the beginning-of-period t stock of bonds, purchased in period t− 1. Also,
wt(j) denotes the real wage rate paid to type j labor, and Tt denotes lump sum transfers
from the government. We suppose there is a lower bound constraint on Bt. Households are
competitive in goods and labor markets.
Given this setup, a rise in the real rate of interest, (1 + it) /πt+1, induces a household to

“tilt” its consumption profile towards the future. Doing so without violating its intertemporal
budget constraint requires reducing consumption - hence, increasing saving - in the current
period. In this way, the positively sloped saving function in Figure 1 captures a basic
economic force in the model. Similarly, a drop in rnt induces households to save more for
every value of the real interest rate, which corresponds to the right-shift displayed in Figure
1.
Final goods are produced using intermediate goods by a representative, competitive firm

using the following Dixit-Stiglitz production function:

Yt =

∙Z 1

0

yt(j)
θ−1
θ di

¸ θ
θ−1

, θ > 1.

The first order condition for profit maximization by the final good firm is:µ
Yt

yt(j)

¶ 1
θ

=
Pt(j)

Pt
. (4)
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The ith intermediate good is produced by a monopolist using the following technology:

yt(i) = Kt(i)f

µ
ht(i)

Kt(i)

¶
. (5)

Here, Kt(i) is the capital owned by the monopolist, and ht(i) is the quantity of labor hired.
The firm is competitive in the market for type i labor, and takes the wage rate, wt(i), as
given.9 Investment by the ith monopolist produces new capital in the next period according
to the following adjustment cost function:

It(i) = I

µ
kt+1(i)

kt(i)

¶
kt(i). (6)

Here, investment, It(i), corresponds to purchases of the final good. Also, I(1) = δ, I 0(1) = 1,
I 00(1) = �ψ > 0.
The ith intermediate good firm faces frictions in the setting of its price, Pt(i). With

probability 1− α it may set its price optimally, and with probability α is must set Pt(i) =
Pt−1(i).
The present discounted value of profits of the intermediate good firm are:

Et

∞X
j=0

βt+jΛt+j {(1 + τ)Pt+j(i)yt+j(i)− Pt+jwt+j(i)ht+j(i)− Pt+jIt+j(i)} . (7)

Here, Λt denotes the shadow value of a dollar to the household, the owner of the intermediate
good firm. It is the multiplier on (3) in the Lagrangian representation of the household’s
problem. Also, the subsidy, τ , is designed to eliminate the distorying effects of monopoly
power in the model. The ith intermediate good firm chooses Pt+j(i), yt+j(i), ht+j(i), It+j(i)
to maximize profits, subject to (4), (5), (6). It takes Pt+j, τ and wt+j(i) as given.
The resource constraint is:

Ct + It +Gt = Yt,

where

It =

Z 1

0

It(i)di.

Finally, the monetary authority controls it, which it sets with an objective of achieving
πt = 1. In periods when doing so would (infeasibly) imply a negative interest rate, it sets

9At first glance, this may seem odd, because according to the formalism in the text, the jth intermediate
good producer is the only employer of type j labor. This suggests that the producer must be a monopsonist.
We follow an alternative interpretation suggested by Woodford (2003), which rationalizes competitive labor
markets. Think of the jth intermediate good producer as being a member of an industry composed of
intermediate goods producers with indeces lying in a small neighborhood, J, of j. Suppose there is a finite,
but large, number of such industries that do not intersect, but whose union is the unit interval. Imagine
that instead of there being a continuum of labor types in the household utility function, there is a discrete
number as in the Riemann approximation to the integral of the household utility function. Each of these
labor types works in one of the industries. With this setup, there is a continuum of suppliers and demanders
in the labor market corresponding to each industry, so that competition makes sense. This is the case even
for intervals, J, whose length is very small. This is how we interpret the model. For further discussion, see
Woodford (2003, pp. 148-149).
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it = 0 and lets πt be free to be determined by the equilibrium conditions. I assume that the
fiscal authorities set lump sum taxes to guarantee that the government’s budget constraint
is balanced in each period.
When the curvature on investment adjustment costs, �ψ, is large, then the stock of cap-

ital is a constant. This is my representation of the model in Woodford and Eggertsson
(2003a,b).10 The elastic investment case corresponds to smaller values of �ψ.
I now summarize the parameters of the model. Since I study a log-linear approximation

to the model economy, I need only specify its properties in a neighborhood of steady state.
In particular, I parameterize the curvature, σu, σv, and σf of the utility of consumption,
disutility of labor and production function, respectively, as follows:

σu = −
u00C

u0
> 0, σv =

v00h

v0
> 0, σf = −

f 00h̄

f 0
> 0.

Here, one and two primes, ‘0’, ‘00’ denote the first and second derivatives, respectively, of
the associated function. In each case, the second derivative is multiplied by the argument
of the function, evaluated in steady state. Thus, C, h, and h̄ denote consumption, hours
worked and the hours to capital ratio, all evaluated in steady state. In addition, there is
the parameter, �ψ, which controls the curvature of the investment adjustment cost function,
which was mentioned above. In the case of the production function, I followWoodford (2003)
in parameterizing the (inverse of the) elasticity f with respect to its argument:

φ =
f

f 0h̄
.

Finally, I require g, the steady state value of the ratio, Gt/Yt. The complete set of nine
parameters which need to be assigned values in order to solve a log-linear approximation of
the model, is:

σu, σv, σf , �ψ, φ, δ, α, θ, β, g.

I follow Woodford (2003) in setting these parameters. In particular, σu = 1.0, σv = 0.11,
σf = 0.25, �ψ = 3, φ = 1/0.75, δ = 0.012, α = 0.66, θ = 1 + 1/0.15, and β = 0.99. In
addition, I set g = 0.18, roughly the ratio of actual government purchases of goods and
services to gross output. If utility were a constant elasticity function of consumption, then
σu = 1 corresponds to the log. Similarly, σv = 0.11 corresponds to a power of 1.11 on labor
if v where a constant elasticity function. If the production function were Cobb-Douglas then
σf and φ both indicate a power on labor equal to 0.75. The value of α implies that on average
a price is fixed for 3 quarters. The values of δ and β are standard in the real business cycle
literature. The value of θ corresponds to a steady-state markup over marginal cost of 15
percent, also not far from standard estimates. Except for σv, these parameter values are all
fairly standard. The value of σv implies a Frisch labor supply elasticity of 9 = 1/0.11, which
is higher than is often used in the literature. For this reason, in my analysis I also consider
the unit Frisch elasticity case, σv = 1.

10Even with �ψ =∞, the model differs slightly from the one in Eggertsson and Woodford (2003) because
they set investment to zero while it is a positive constant here. The difference is relatively unimportant,
because my results are very similar to theirs.
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4 Results

I suppose that the economy has been in a deterministic steady state up until period 0. In
period 1, rnt unexpectedly drops from its steady state annualized percent value of 4 percent.
I consider three cases. In the “small shock”, “medium shock”, “large shock”, and “larger
shock” cases, rnt drops to −2, −4, −5, and −6 percent, respectively. In each case, rnt remains
low until period 14. In period 15 it switches back to its steady state value. The small shock
corresponds to the shock size used in the Eggertsson and Woodford example discussed in
section 3.1.
Consider Figure 2 first. This corresponds closely to the Eggertsson and Woodford exam-

ple, because it is the model without investment, i.e., with �ψ = ∞.11 Notice that for each
shock size, the lower bound constraint on the nominal interest rate is binding, and output
drops substantially. In the Eggertsson and Woodford small shock case, output drops nearly
20 percent in the period of the shock. After that the magnitude of the drop shrinks as
the horizon over which the discount rate will remain low becomes shorter.12 The results in
Figure 2 match the intuition in section 2 of the paper.
Now consider Figure 3. The results here correspond to the same experiment as in Figure

2, with the sole exception that �ψ takes on the value suggested in Woodford (2003), namely,
�ψ = 3. Note that for the small shock the lower bound constraint is not binding. The
real interest rate falls, and consumption is reallocated from the present to the future. This
intertemporal reallocation is accomplished by way of a strong increase in investment. The
rise in investment exceeds the fall in consumption, so that there is an increase in output in
excess of 10 percent.
Interestingly, even though the lower bound on the interest rate is binding for the medium

sized shock (see the starred line in Figure 3), the response of output is still strong, indeed, it
is stronger than it is for the small sized shock. It seems fair to conclude that when investment
is elastic, the scenario in which the zero lower bound binds and output and inflation collapse
is less likely.
The zero lower bound on the interest is also binding for the large and larger shocks,

however now output, consumption, investment and inflation all collapse. In the case of the
larger shock, the collapse is enormous: the fall in output is 60 percent and deflation is in
excess of 30 percent.
Figures 4 and 5 report the same experiments as in Figures 2 and 3, respectively, with

the exception that now the Frisch labor supply elasticity is unity, with σv = 1. Note that
in the no investment case (Figure 4), the drop in consumption is somewhat smaller than
before (see Figure 2). However, qualitatively the results are not very different. In contrast,
the results for the variable investment case are substantially different. Now the lower bound
is never binding. In this case, the larger is the discount rate shock the more households
intertemporally substitute consumption.

11Actually, I set �ψ =30000000000.
12A difference between the deterministic example here and the one in Eggertsson and Woodford is that

the equilibrium values of variables in the latter case are independent of how long the discount rate has been
low. This is because the stochastic process on r̂nt has the property that the horizon over which r̂

n
t is expected

to remain low is independent of how long r̂nt has been down.
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5 Conclusion

I incorporated the Eggertsson and Woodford (2003a,b) example into the more general model
with capital studied in Woodford (2003). Using the parameters in Woodford (2003), I found
that the likelihood of output collapse and price deflation is reduced. Still, it can happen.
However, this parameterization incorporates a Frisch elasticity of labor supply equal to nearly
100, which is considerably higher than the values used in the literature. When I assign a
value of unity to this elasticity, then the results in the Eggertsson and Woodford model with
no capital are qualitatively unaffected. However, the model with investment is strikingly
sensitive to this change. The lower bound does not bind, even for extremely large values of
the shock.
The Eggertsson and Woodford example suggests that the stakes are very high. Even if

we only assign a low probability to the output collapse scenario in their example, the welfare
losses are so great that it behooves us to pay attention. The analysis in this paper suggests
that the output-collapse scenario is less likely once we take into account investment. Still,
considerably more work - with other frictions and other shocks - needs to be done before
we can safely ignore the output collapse scenario.13 One shock that would be particularly
interesting to study is a negative disturbance to investment. This too would require a fall in
the real interest rate to encourage households to cut back on saving. If the zero bound makes
a big enough drop infeasible, the result could be output collapse and price deflation. Pursuing
this further requires constructing stochastic, dynamic general equilibrium models based on
solid empirical foundations. In addition, it requires developing model solution methods which
can accommodate occasionally binding constraints. Devising appropriate solution methods
is a particularly big challenge. Some progress has been made (see, e.g., Christiano and Fisher
(2000)). However, these methods are very burdensome computationally.

A Appendix: Computational Algorithm

Here, I describe the shooting algorithm used to solve the model. The first part of this ap-
pendix explains the equations used to characterize the equilibrium. Following Eggertsson and
Woodford, I log-linearize the equations which must always hold with equality in equilibrium.
This discussion follows Woodford (2003, Chapter 5), and is included here for completeness.
The second part of this appendix describes the actual shooting algorithm. The algorithm is
constructed to ensure that the lower bound constraint on the interest rate is always satisfied.

A.1 Log-Linearized Equations Characterizing Equilibrium

I begin with a statement of the first-order necessary conditions for household and firm opti-
mality. I then compute the features of the steady state that are required. After this, I derive
three log-linear equations that I use to characterize equilibrium.

First-order Conditions
13Initial work on this may be found in Adam and Billi (2003).
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The first order necessary conditions for household optimization include a transversality
condition and:

v0(Ht(j))

u0t
= wt(j)

u0t =
1

1 + rnt
u0t+1

1 + it
πt+1

um,t

u0t
=

it
1 + it

Here, u0t denotes the marginal utility of consumption. The first equation is the intratemporal
Euler equation for labor. The second equation is the intertemporal Euler equation associated
with the household saving decision. By concavity of the utility function, current consumption
falls - hence saving rises as in Figure 1 - when the real interest rate rises, for given values of
rnt and u0t+1. The third is the Euler equation associated with real balances. From here on,
we assume u0t is not a function of Mt/Pt, and we ignore the last first order condition.
The first order necessary condition associated with the optimal choice of capital by the

ith firm is:

I 0
µ
kt+1(i)

kt(i)

¶
=

1

(1 + it) /πt+1

½
ρt+1(i)− I

µ
kt+2(i)

kt+1(i)

¶
+ I 0

µ
kt+2(i)

kt+1(i)

¶
kt+2(i)

kt+1(i)

¾
. (8)

Here, we have made use of the household’s intertemporal Euler equation and the fact, Λt =
uc,t/Pt. With some algebra it can be shown that ρt+1(i) in (8) can be written:

ρt+1(i) = wt+1(i)
f(h̄t+1(i))− h̄t+1(i)f

0(h̄t+1(i))

f 0(h̄t+1(i))
. (9)

One interpretation of ρt+1(i) is that it is the real rental rate of capital that would rationalize
the amount of capital used by the intermediate good firm in t+1, if there were a competitive
capital rental market.14

Note that a rise in the real rate of interest, holding the objects in braces on the right of
(8) fixed, leads to a fall in I 0. Given the assumption, I 00(1) > 0, it follows that kt+1(i) falls,
i.e., investment falls, as in Figure 1.
If the ith firm has the opportunity to reoptimize its price, then it does so, taking into

account that it must satisfy its demand curve and that it will not be able to reoptimize
again, with probability α. The firm’s first order condition is, after some algebra,

∞X
j=0

αjβt+jλt+jP
θ
t+jYt+j

½
(1 + τ)pt+j(i)−

θ

θ − 1st+j(i)
¾
= 0.

Setting 1 + τ = θ/(θ − 1) and multiplying by (1 + τ)−1,

∞X
j=0

αjβt+jλt+jP
θ
t+jYt+j {pt+j(i)− st+j(i)} = 0, (10)

14See Woodford (2003, p. 355) for an alternative interpretation.
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where

pt+j(i) =
Pt(i)

Pt+j
,

where Pt(i) is the price set in period t. Also, st+j(i) is the marginal cost of producing an
extra unit of output:

st(i) =
wt(i)

f 0
³

ht(i)
Kt(i)

´ . (11)

According to (10), the firm sets its price to marginal cost on average, given the setting of
the revenue subsidy, τ .

Steady State

To compute the log-linear expansion about steady state, we require the capital-to-output
ratio, k, and consumption-to-output ratio, c. We compute these first. In steady state, (8)
reduces to:

1

β
= ρ− δ + 1,

where ρ is the steady state value of the first object in braces in (8). Then, ρ = (1/β)+ δ−1.
In steady state, all prices are equal, so that pt(i) = 1. This, and the fact that the object in
braces in (10) is zero in steady state imply s = 1. Combining this with (11), we obtain:

w = f 0.

That is, in steady state the real wage is equated to the marginal product of labor. Combine
these results with (9) to obtain, in steady state:

1

β
+ δ − 1 = w

f − h̄f 0

f 0

= f 0
f − h̄f 0

f 0

= f ×
µ
φ− 1
φ

¶
=

1

k

µ
φ− 1
φ

¶
,

where k ≡ K/Y. Then,

k =

φ−1
φ

1
β
+ δ − 1 .

Finally, note that in steady state:

Y = C + δK +G,

so that

c ≡ C

Y
= 1− δk − g,

where

g =
G

Y
.
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Log-Linear Expansion

Consider the national income identity:

Yt = Ct + It +Gt,

where Gt denotes the exogenous level of government spending. Then,

Ŷt = Ĉt + Ît + Ĝt.

Unless otherwise noted, a hat over a variable indicates deviation from steady state, as a
fraction from steady state. That is, ẑt ≡ dzt/z, where z is the steady state value of zt and
dzt is a small deviation, zt − z. However, in the case of the aggregate quantities appearing
in the national income identity, a hat indicates deviation from steady state, expressed as a
fraction of steady state aggregate output:

Ît =
dIt
Y

, Ŷt =
dYt
Y

, Ĉt =
dCt

Y
, Ĝt =

dGt

Y
.

Log-linearizing the household’s intertemporal Euler equation:

ûc,t = ûc,t+1 − r̂nt + ı̂t − π̂t+1, (12)

where

ı̂t ≡
it − i

1 + i
, r̂nt ≡

drnt
1 + rn

.

The non-negativity constraint on it implies, since 1 + i = 1/β in steady state,

ı̂t ≥ ı̂l = β − 1.

It is useful to develop an expression for ûc,t. We have

ûc,t ≡
duc,t
uc

=
uccY

uc
Ĉt

=
uccC

uc

Y

C
Ĉt

= −σ−1Ĉt,

where

σ = σ−1u c > 0

σu = −uccC
uc

Then,
ûct = −σ−1

h
Ŷt − Ît − Ĝt

i
. (13)
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We now turn to the firms. Integrating (4) over j ∈ (0, 1) and imposing the final goods
firm technology, the following relationship between the aggregate and intermediate good
prices must hold:

Pt =

∙Z
Pt(j)

1−θdj

¸ 1
1−θ

. (14)

Loglinearizing (8) about steady state and integrating the result over i ∈ (0, 1), we obtain:15

ûc,t + �ψ
h
K̂t+1 − K̂t

i
= (1− δ)βûc,t+1 − r̂nt

+ [1− (1− δ)β]
h
ρyŶt+1 − ρkK̂t+1

i
(15)

+β�ψ
h
K̂t+2 − K̂t+1

i
,

where

ρy = σvφ+
ωpφ

φ− 1 , ωp = σfφ

ρk = ρy − σv.

That (15) only involves aggregate output and the aggregate capital stock reflects that we
have integrated the linearized first order conditions of the firms in a neighborhood of a
symmetric steady state equilibrium. Note that (15) implies K̂t+1 − K̂t = (1/β)

t
h
K̂1 − K̂0

i
when �ψ =∞. So, the only K̂1− K̂0 which implies a non-explosive path for the capital stock
is one in which K̂1 − K̂0 = 0, in which case the capital stock is constant. This is what one
would expect when adjustment costs are infinite.
Loglinearizing the investment equation, (6):

Ît = k
h
K̂t+1 − (1− δ)K̂t

i
, (16)

where

k =
K

Y
.

Now consider the pricing decision of the firm. Log-linearizing (10) we obtain (after
considerable algebra, see Woodford 2003, page 360):

π̂t = ξ0ŝt − ξ1ŝt+1 + ψ1π̂t+1 − ψ2π̂t+2, (17)

where st is the real marginal cost of production for the firm. Here, st denotes real marginal
cost and, after log-linearizing:

ŝt = ω
³
Ŷt − K̂t

´
+ σvK̂t − ûc,t, (18)

where
ω = σvφ+ ωp.

15Expression (15) corresponds to Woodford (2003, equation 3.7, page 356).
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In (17),

ξ0 =
1− α

α

1

a− b
, ξ1 = µ−12 ξ0,

and

ψ1 =
a
¡
β + µ−12

¢
− b(αβ + α−1µ−12 )

a− b
, ψ2 = βµ−12 .

Also,

a =
1 + ωθ

1− αβ
+ (ω − σv)

α

1− αβ

Ξ

(1− αβµ1) (1− αβµ2)

b = (ω − σv)
α

1− µ−12

Ξ

(1− αβµ1) (1− αβµ2)

Ξ = (1− β(1− δ)) ρyθ�
−1
ψ

Finally, µ2 is the root greater than β−1 in the equation

βµ2 −
£
1 + β + (1− β(1− δ)) ρk�

−1
ψ

¤
µ+ 1 = 0,

and µ1 is the other root, which is less than unity.
I reduce the system of private economy equations to three equations, (12), (15), (17) in

the four unknowns, K̂t+1, Ŷt, π̂t, ı̂t. This is accomplished by substituting out for ûc,t using
(13), Ît using (16), and ŝt using (18). The inflation equation becomes:

π̂t − ξ0

n¡
ω + σ−1

¢
Ŷt −

£
(ω − σv)− σ−1k(1− δ)

¤
K̂t − σ−1kK̂t+1 − σ−1Ĝt

o
+ξ1

n¡
ω + σ−1

¢
Ŷt+1 −

£
(ω − σv)− σ−1k(1− δ)

¤
K̂t+1 − σ−1kK̂t+2 − σ−1Ĝt+1

o
−ψ1π̂t+1 + ψ2π̂t+2 = 0

Writing this in vector notation,
Fπzt = 0, (19)

where zt is the 12× 1 vector:

zt = (π̂t, π̂t+1, π̂t+2, Ŷt, Ŷt+1, K̂t, K̂t+1, K̂t+2, Ĝt, Ĝt+1, r̂
n
t , ı̂t)

0

and Fπ is the 1× 12 vector:

Fπ1 = 1, Fπ2 = −ψ1, Fπ3 = ψ2
Fπ4 = −

¡
ω + σ−1

¢
ξ0, Fπ5 =

¡
ω + σ−1

¢
ξ1

Fπ6 = ξ0
£
(ω − σv)− σ−1k(1− δ)

¤
,

Fπ7 = ξ0σ
−1k − ξ1

£
(ω − σv)− σ−1k(1− δ)

¤
Fπ8 = −ξ1σ−1k, Fπ9 = ξ0(1 + σv), Fπ10 = −ξ1(1 + σv)

Fπ11 = ξ0σ
−1, Fπ12 = −ξ1σ−1, Fπ13 = Fπ14 = 0.
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The intertemporal Euler equation associated with investment becomes:

�−1ψ Ŷt − �−1ψ k
h
K̂t+1 − (1− δ)K̂t

i
− �−1ψ Ĝt − σ

h
K̂t+1 − K̂t

i
−�−1ψ (1− δ)β

³
Ŷt+1 − k

h
K̂t+2 − (1− δ)K̂t+1

i
− Ĝt+1

´
− �−1ψ σr̂nt

+�−1ψ σ [1− (1− δ)β]
h
ρyŶt+1 − ρkK̂t+1 − (1 + σv) Ât+1

i
+σβ

h
K̂t+2 − K̂t+1

i
= 0,

or,
Fkzt = 0, (20)

where the 1× 12 vector Fk is:

Fk1 = Fk2 = Fk3 = 0, Fk4 = �−1ψ ,

Fk5 = −�−1ψ (1− δ)β + �−1ψ σ [1− (1− δ)β] ρy

Fk6 = �−1ψ k(1− δ) + σ,

Fk7 = −�−1ψ k − σ − �−1ψ (1− δ)β(1− δ)k − �−1ψ σ [1− (1− δ)β] ρk − σβ

Fk8 = �−1ψ (1− δ)βk + σβ, Fk9 = 0, Fk10 = −�−1ψ σ [1− (1− δ)β] (1 + σv)

Fk11 = −�−1ψ , Fk12 = �−1ψ (1− δ)β, Fk13 = −�−1ψ σ, Fk14 = 0.

The household’s intertemporal Euler equation is:

Ŷt − k
h
K̂t+1 − (1− δ)K̂t

i
− Ĝt (21)

= Ŷt+1 − k
h
K̂t+2 − (1− δ)K̂t+1

i
− Ĝt+1 − σ (̂ıt − π̂t+1 − r̂nt )

or,
Fizt = 0, (22)

where the 1× 12 vector Fi is:

Fi,1 = 0, Fi2 = −σ, Fi3 = 0, Fi4 = 1, Fi5 = −1, Fi6 = k(1− δ)

Fi7 = −k − k(1− δ), Fi8 = k, Fi9 = Fi10 = 0, Fi11 = −1, Fi12 = 1

Fi13 = −σ, Fi14 = σ.

Let

F =

⎡⎣ Fπ

Fk

Fi

⎤⎦ ,
so that the equations are written:

Fzt = 0, for all t.

It is convenient to write this as:

Fzt = F1z1t + F2z2t,

16



where F1 includes all but the 5th and 8th columns of F and F2 is composed just of these two.
In addition, z1t includes all but the 5th and 8th elements of zt, while z2t includes the 5th and
8th only. So, F1 is 3 × 10 and F2 is 3 × 2. It is useful to consider two 2 × 2 pieces of F2:
let F 1

2 denote the first two rows, and let F
2
2 denote the second two rows. Define F

1
1 and F 2

2

analogously.
Write:

z1t = (πt, πt+1, πt+2, Ŷt, K̂t, K̂t+1, Ĝt, Ĝt+1, r̂
n
t , ı̂t)

0

z2t =
³
Ŷt+1, K̂t+2

´0
.

A.2 A Shooting Algorithm

Suppose that the economy has been in a deterministic, zero-inflation steady state until period
0, so that K̂1 = 0. Then, in t = 1, rnt , drops unexpectedly to r̂

n
l < β − 1. The discount rate,

rnt , remains low T −1 periods, and returns to its steady state value in the T th period, where
it remains forever after. I study the equilibrium allocations in response to the savings shock,
rnt . Government spending, Gt, is allowed to change values in the same periods.
Monetary policy has the property that πt = 0, unless this implies the interest rate violates

its lower bound, ı̂t ≥ β − 1, in which case ı̂t = β − 1. I conjecture (and then verify) that the
zero bound becomes binding in one particular period, t∗1 ≥ 1, and then continues to bind in
each period until period t∗2, when it ceases to bind. Thus,

ı̂t = β − 1 t∗1 ≤ t < t∗2
ı̂t > β − 1, πt = 0 t ≥ t∗2, t < t∗1.

.

The algorithm described below finds t∗1, t
∗
2, as well as the other equilibrium variables of the

model.
The basic idea of the algorithm is as follows. There is one initial condition for the

economy, K̂1 = 0. I then simulate the equations that characterize equilibrium forward in
time. Because of the dimension of the equations, to initiate the simulations I need to assign
values to four endogenous variables, aside from the given value of K̂1. I adjust the values of
these four variables to ensure that the system eventually converge to steady state, and that
another side condition is satisfied.
Suppose that t∗1 = 1, so that the system is assumed to bind in period 1. Arbitrarily, assign

a set of values to the four variables, Ŷ1, π̂1, π̂2, K̂2. Temporarily normalize π̂3 = 0, and set
ı̂1 = β − 1. We can now construct z1t for t = 1. Use (20)-(22) for t = 1 to compute Ŷ2, K̂3 :

z2,1 = −
£
F 2
2

¤−1
F 2
1 z1,1. (23)

Note that π̂3 does not appear in (20)-(22) for t = 1, so that setting π̂3 = 0 has no impact
on the calculations in (23). I now use (19) to compute π̂3 and I insert this into the third
element of z1,1.
Now consider t = 2.We have enough information to determine the values of z1t for t = 2,

as long as we normalize π̂4 = 0. Use (20)-(22) to compute Ŷ3 and K̂4 using:

z2,t = −
£
F 2
2

¤−1
F 2
1 z1,t,
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for t = 2. Then, use (19) to compute π̂4. Proceed in this way until t = t∗2 − 1.
Consider t ≥ t∗. I set π̂t = 0 for t ≥ t∗. As before, we have enough information to put

together the values of z1t. Now we use (19)-(20) to compute Ŷt∗+1, K̂t∗+2 :

z2,t = −
£
F 1
2

¤−1
F 1
1 z1,t. (24)

Then, (22) is used to solve for ı̂t. Simulate this forward for many periods, say until t = T ∗ >
T.
Adjust the values of Ŷ1, π̂1, π̂2, K̂2 until

ŶT∗ = 0, K̂T∗+1 = 0, (25)

and the second and third elements of z1,t∗2−1 are zero.
Now consider the case, t∗1 ≥ 2. For t = 1, ..., t∗1 − 1, I use (24) to simulate the system. To

initiate these simulations, I assign values to Ŷ1, K̂2. In addition, I require values for π̂t∗1 and
π̂t∗1+1. It is necessary to include these in z1,t∗1−2 and z1,t∗1−1 when evaluating (24) for t = t∗1−2,
t∗1 − 1. I assign values to these arbitrarily. I adjust the values of Ŷ1, K̂2, π̂t∗1 and π̂t∗1+1 until
the same criterion used for the case, t∗1 = 1 is satisfied. The MATLAB routine, FSOLVE.M,
was able to solve this problem without incident in less than 2 seconds.
To determine values of t∗1 and t

∗
2, I proceeded as follows. First, I solved the model without

imposing the lower bound constraint on ı̂t. I then determined the first date when the lower
bound constraint was violated, and made that my initial guess of t∗1. I then determined the
first date thereafter when the lower bound constraint ceased to bind and made that my guess
of t∗2. For the model without investment, i.e., �ψ =∞, this procedure led to an initial guess,
t∗1 = 1, and I did not deviate from that. The initial guess for t∗2 was 15. I kept that value
because the lower bound constraint was violated when I dropped t∗2 to a lower value.
For the model with investment, �ψ = 3, my procedure led to an initial guess, t∗1 = 7 and

t∗2 = 15.When I solved the model with these values, I found that the lower bound constraint
was violated. I then found that it was also violated for values of t∗1 that exceeded 7 and for
every admissible value of t∗1 below 7 except t

∗
1 = 1. So, I fixed t∗1 = 1. I then tried t∗2 = 14,

and found that the lower bound constraint was violated. So, I remained with t∗1 = 1 and
t∗2 = 15 for the �ψ = 3 model.
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Figure 2: Discount Rate Shock in Model without Investment, Three Discount Rate Shocks
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Figure 3: Discount Rate Shock in Model with Investment, Three Discount Rate Shocks
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Figure 4: Discount Rate Shock in Model without Investment, Low Labor Supply Elasticity, Three Discount Rate Shocks
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Figure 5: Discount Rate Shock in Model with Investment, Low Labor Supply Elasticity, Three Discount Rate Shocks

5 10 15 20

1

1.5

2

2.5

3

3.5

Real Rate of Interest

A
nn

ua
l P

er
ce

nt
ag

e 
R

et
ur

n


