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Abstract

I consider the example analyzed in Eggertsson and Woodford (2003a,b), which
shows that the zero lower bound on the nominal rate of interest, in conjunction with a
zero-inflation policy by the central bank, can cause output to collapse in response to
certain shocks. I show that when capital and government spending are introduced into
the analysis, there is much less reason to fear the combination of a zero lower bound
and zero-inflation targeting. The zero bound is not likely to bind, and if it does the
consequences may not be severe. Moreover, the multiplier on government spending is
predicted to be very large in the event of a binding zero bound, so that in the worst
case scenario and increase in government spending should help substantially.
An examination of historical U.S. data suggests that this model analysis may pro-

vide an overly optimistic assessment of the operating characteristics of a monetary
policy that targets zero inflation. This suggests that additional model analysis which
allows for a broader range of shocks, a wider range of economic frictions and open-
economy considerations, is of interest.

1 Introduction

Since the high inflation of the 1970s, central banks around the world have successfully brought
down inflation. As a result, interest rates are so low that the zero lower bound might well
bind sometime in the near future. Increasingly, there is a concern that this combination -
nearly zero interest rates and a monetary policy that targets zero or low inflation - exposes
economies to a new threat. As Bernanke (2003) has recently emphasized, targetting zero
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inflation creates the possibility of a ‘worst case scenario’, in which an otherwise mild economic
shock causes a collapse in output and a downward spiral in prices.
These concerns raise two related questions. Can they be given a coherent intellectual

foundation? If the answer is ‘yes’, then what is the likelihood that the worst case scenario
will occur?
Several papers, including most recently Eggertsson and Woodford (2003a,b), show con-

vincingly that the ‘worst case scenario’ can be articulated in a coherent economic model.1

Eggertsson and Woodford construct an example in which the efficient response to a particu-
lar shock requires that the real rate of interest be negative. However, this is prevented from
occuring because the zero lower bound on the nominal interest rate binds, and the central
bank can do nothing to raise inflation expectations. This is because ex post, a zero-inflation-
targetting central bank will always choose to produce zero inflation, if it can.2 With the real
interest rate unable to play its role in efficiently directing the allocation of resources, the
result is the sort of welfare-reducing downward spiral in output and inflation that concerns
observers such as Bernanke. Eggertsson and Woodford’s example is dramatic and hard to
ignore. In the example there are welfare losses that exceed anything that one can find in
monetary economics, outside of models with sunspot fluctuations.
The policy issues at stake are substantial. Now that many countries have won the battle

to bring down inflation, there is a debate over what to do to ensure that the victory endures.
One possibility is for central banks to formally adopt a policy of targetting zero, or at least
low, inflation. Until recently, most economists would have taken it for granted that this
is a desirable thing. However, analyses such as those of Eggertsson and Woodford suggest
that this policy may actually be counterproductive. And, the problems they point to may
not just exist in theory. Some worry that the weak economic performance of Japan in the
1990s and the disasterous output collapse in the U.S. in the 1930s show that the dangers
highlighted by Eggertsson and Woodford’s example are very real.
Given the stakes, it is important to understand whether the Eggertsson and Woodford

results are sensitive to relaxing some of their simplifying assumptions. Their model does
not allow a role for capital. I introduce capital along the lines proposed in Woodford (2003,
Chapter 5). I find that allowing investment to be endogenous changes the results in two
ways. First, the introduction of investment reduces the likelihood that the zero lower bound
on the interest rate binds. It now takes a bigger shock for the lower bound to bind. Also,
the parameters in Woodford (2003, Chapter 5) imply a very high Frisch elasticity of labor
supply. When I use a more standard elasticity, the lower bound fails to bind for even for
very large shocks.3 Second, I find that if the zero lower bound does bind, there is a large

1An early, informal statement of the problem appears in Summers (1991) (see also De Long 1999, Sims
1999 and Svensson 2003.) More formal statements of the problem appear in Krugman (1998), Orphanides
and Wieland (1998), Uhlig (2000) and Wolman (1998,2003). Two distinguishing features of the Eggertsson
and Woodford (2003a,b) analysis are that (i) their analysis provides a more fully articulated statement of the
problem, by providing a natural explanation for why the central bank has cannot move inflation expectations;
and (ii) they compute the optimal monetary policy.

2In Eggertsson and Woodford’s model zero inflation targetting is rationalized as what an optimizing
central bank unable to commit to future policy will do. Eggertsson and Woodford assume away the sources
of inflation bias present in the models of Kydland and Prescott (1977) and Barro and Gordon (1983), and
the literature that followed.

3For implausibly large shocks, the lower bound still binds, even with the low Frish labor supply elasticity.
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range of values for the shocks when the consequences of a binding lower bound are relatively
mild.
I also introduce government consumption into the analysis. I find that the multiplier

effect on output of a rise in government spending is less than unity when the lower bound
on the interest rate is not binding, but very large when it is binding. As a result, in the
event that the lower bound does bind, a relatively small rise in government spending can
substantially reduce the likelihood of the ‘worst case scenario’.
In sum, the model analysis with investment and government spending presents a less

foreboding picture of the operating characteristics of a zero-inflation targetting rule than
does Eggertsson and Woodford’s example. I then turn to the U.S. historical data to assess
the likelihood that the lower bound on the nominal rate would bind in the event that the Fed
were to adopt a zero-inflation monetary policy target. For this I estimate the frequency of
times that the lower bound would have bound, if a zero inflation targetting policy had been
adopted in the past. The model analysis suggests estimating this by the frequency of times
that the real interest rate was negative in the past. The data suggests that the zero bound
would have been binding a nontrivial number of times. Exactly how often depends on what
tax rate one uses to compute after-tax returns, and what interest rate one uses. I conclude
that although the formal model analysis does not by itself justify alarm, the empirical results
and Eggertsson and Woodford’s dramatic example do give one pause. So, the prudent thing
to do is to study the consequences of hitting the lower bound in a much broader range of
models and shocks before writing this off as a problem not worth worrying about. I discuss
what range of models and shocks ought to be examined in my concluding remarks.
In the first section below, I discuss the intuition behind the Eggertsson-Woodford results.

It should be familier to many economists because it closely resembles the logic of the Para-
dox of Thrift, discussed in standard undergraduate macroeconomics textbooks. Section 3
presents the Eggertsson-Woodford analysis. This is carried out using a Calvo-sticky price
model which implies that inflation is entirely forward looking. I verify that the results are
at least qualitatively robust to introducing backward-looking elements. Section 4 describes
the model with investment, and displays the results of my numerical experiments. Finally,
section 5 reviews the data on real interest rates. Section 6 concludes. The computational
algorithm used to obtain the results is described in the appendix.

2 Simple Intuition

Although the formal analysis on which my conclusions are based is dynamic (see the next
two sections below), intuition can be obtained from a simple static analysis. Consider Figure
1. The real rate of interest,

1 + it
πt+1

,

appears on the vertical axis. Here, it denotes the nominal interest rate and πt+1 denotes the
gross rate of change in the price level from the current period to the next. Also, investment
and saving appear on the horizontal axis. The figure shows a shift to the right in the supply
of savings (induced in the formal analysis by a shock to the discount rate). The demand for
saving arises from firms seeking to finance investment. There are two savings demand curves
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in the figure, each exhibiting a different elasticity of investment with respect to the real
interest rate. The inelastic investment case corresponds to the one considered by Eggertsson
and Woodford, who exclude capital from their model. This case is captured by the vertical
line. The negatively sloped line corresponds to the interest elastic case, modeled formally in
section 4. There is a lower bound on the real interest rate because it cannot drop below zero
and under a zero-inflation targetting next period’s monetary authority will do what it can
to set πt+1 to unity. The lower bound on the real interest rate is indicated by the horizontal
line in the figure.
Consider the interest-inelastic case first. The shock induces people to cut spending and

increase saving. Because the quantity of investment cannot change by hypothesis, the quan-
tity saved also cannot change in equilibrium. Something must happen to cause the quantity
saved to remain unchanged, despite the shock to the supply of saving. This can be accom-
plished efficiently by a drop in the real interest rate to point B. However, because of the lower
bound on the real interest rate, this cannot happen. Something else must happen instead,
to discourage a rise in the quantity saved. In the model, a fall in output and income does
the job. The drop in output occurs naturally as households cut back on consumption in an
effort to increase saving. Through a standard sticky price mechanism, this leads to a fall in
income and employment (as well as the current price level). The decline in economic activity
exerts downward pressure the quantity saved, for consumption-smoothing reasons. In effect,
the decline in income causes the saving function to shift back to the left, so that the saving
function intersects the vertical investment curve at the lower bound.
Actually, the scenario is worse than the reasoning just described suggests. In the formal

analysis, the shift in the discount rate is assumed to be persistent, so that a similar thing is
expected to occur in the future. That is, consumption and the price level are expected to fall
in the future too. In fact, they fall so much that the expected gross inflation rate from the
current period to the next, πt+1, falls below unity. This has the effect of shifting the lower
bound in Figure 1 up, increasing the distance that the saving function must be induced to
shift back left. Put differently, the fall in expected inflation stimulates households’ desire to
save even further, increasing the amount by which income must fall to maintain equilibrium.4

The point of the example is that ordinarily the discount rate shock would be met by a
suitable drop in the real interest rate and no change in output. In the formal analysis this
is the welfare-efficient response. With a zero-inflation target and the lower bound on the
interest rate, the real interest rate is prevented from doing its job. Instead, households are
prevented from increasing their saving by a welfare-reducing fall in income. In their numerical
example, discussed below, Eggertsson and Woodford show that this drop in income can be
quite large, and deserves to be called a “downward spiral”.
Now consider the elastic investment case. In this case, the real interest rate only has

to drop to point C to maintain equilibrium. This cut in the real interest rate is enough
that the resulting expansion in investment absorbs the rise in investment. Evidently, the
size of the saving shock that produces the downward spiral in the economy with inelastic
investment does not do so in the economy with elastic investment. This is the sense in which

4See DeLong and Summers (1986) for a discussion of how a drop in the price level (which normally
stabilizes the output effect of a spending drop) can actually be destabilizing if the drop is associated with
an even bigger drop in the next period.
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the downward spiral is less likely when investment is elastic.
The intuitive analysis suggests various policy conclusions. For example, one way to

reduce the likelihood of the downward spiral is to create the expectation that there will
be higher inflation in the period after the shock. Eggertsson and Woodford show that
this is the optimal monetary policy of a monetary authority that is able to commit to its
future policy.5 Interestingly, they show that the quantity of extra inflation required is quite
modest, especially by comparison with the large deflation that occurs in their downward-
spiral equilibrium. However, in Eggertsson and Woodford’s model, creating expectations
of higher inflation requires that the monetary authority be able to commit to its future
monetary policy. Their environment has the property that once the shock is over, the
monetary authority without commitment has no incentive to deliver on a promise of high
inflation made in the past. Because absence of commitment forecloses this painless way to
respond to a shock, Eggertsson and Woodford’s analysis in effect provides another example
of the value of commitment in monetary policy.6

3 The Eggertsson-Woodford Model

The first part of this section replicates the example reported by Eggertsson and Woodford.
This model incorporates the standard version of Calvo-sticky prices, in which inflation is
purely forward looking. To investigate whether their results are sensitive to this assumption,
I also examine the version of the Calvo model proposed by Christiano, Eichenbaum and
Evans (2004), in which price level indexation introduces a backward-looking component to
inflation. I find that the Eggertsson-Woodford results are qualitatively similar with this
change. If anything, the downward spiral in inflation and output is made slightly worse.

3.1 Eggertsson-Woodford Model

The algebra of the Eggertsson and Woodford example is strikingly simple. There are two
equations that characterize equilibrium for the private sector in their economy, an intertem-
poral Euler equation associated with the household saving decision and the standard Calvo
pricing equation:

xt = Etxt+1 − σ (̂ıt −Etπ̂t+1 − r̂nt ) (1)

π̂t = βEtπ̂t+1 + κxt, (2)

where 0 < β < 1, σ, κ > 0. Here, xt, ı̂, πt and r̂nt denote consumption, the nominal rate of
interest, gross inflation and the discount rate. Each is expressed in deviation from its value in
a zero-inflation steady state. Also, β−1−1 is the steady state rate at which the households in
the economy discount future utility. The model is completed with a description of monetary
policy. Policy sets ı̂t to ensure π̂t = 0, subject to the requirement of equilibrium that the
nominal rate of interest is non-negative. When this constraint is binding then the nominal

5Christiano, Motto and Rostagno (2004) argue that this sort of policy, if followed in the 1930s, would
have greatly reduced the severity of the Great Depression.

6For another, see Albanesi, Chari and Christiano (2003).
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rate of interest is set to zero and the inflation rate is free to be determined by the equilibrium
conditions. Since ı̂t is the deviation in the interest rate from its zero-inflation steady state,
the zero lower bound on the nominal rate of interest translates into a negative lower bound
for ι̂t : ı̂t ≥ β− 1.7 From (1) it is clear that if ı̂t = r̂nt for all t, then there is an equilibrium in
which consumption remains at its steady state value and inflation is always zero. However,
if it should ever happen that r̂nt < β − 1, then ı̂t = r̂nt is not possible, as it would imply a
violation of the zero lower bound on the interest rate.
To obtain a sense of what would happen in this case, Eggertsson and Woodford construct

the following scenario. Suppose the economy is in a deterministic steady state with no shocks
up until period 0. Then, unexpectedly in period 1 there is a shock to r̂nt which causes it to
drop to r̂nl < β − 1. In each subsequent period, with probability p, r̂nt remains low, and with
probability 1− p it returns to its steady state value of zero. Once zero, r̂nt can never change
value again.
The variables to be solved for in equilibrium are the levels of output and inflation, x̂l and

π̂l, that prevail while r̂nt = r̂nl . To find these, just solve the versions of (1) and (2) that occur
as long as r̂nt = r̂nl : xl = pxl − σ((β − 1)− pπl − r̂nl ) and πl = βpπl + κxl. This represents
two equations in the two unknowns. Eggertsson and Woodford assume the time period in
their model is one quarter, and adopt the following parameterization:

p = 0.9, σ = 0.5, κ = 0.02, β = 0.99, rnl = −.02/4.

It is easy to confirm that for these parameter values,

xl = −0.14, πl = −0.0263.

That is, output is 14 percent below steady state and inflation is -12 percent annualy as long
as the discount rate remains low. The discount rate is expected to stay low for 1/(1−p) = 10
periods, a notably long time. The intuition for these results was described in the previous
section. Since any drop in output represents an inefficient response to the r̂nt shock, this
represents a substantial inefficiency.

3.2 Inflation Indexation

With inflation indexation, the inflation term in (2) is replaced by its first difference. The
two equations of the model are this adjusted version of (2) and (1). To simplify the analysis,
I consider a particular deterministic experiment, in which the economy is in a zero inflation
steady state up until period 1, whereupon rnt unexpectedly drops to -2 percent, at an annual
rate. The discount rate remains low from periods 1 to period 14, and then returns to its
previous value of 4 percent in period 15. It remains at that value forever after.

7In particular, the

ı̂t ≡
it − i

1 + i
,

where it is the nominal rate of interest and i is its steady state value. In a zero-inflation steady state,
1/(1 + i) = β, so that

ı̂t = β (it + 1)− 1,
so that when it is at its lower bound of zero, ı̂t = β − 1.
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The solid line in Figure 2 displays the dynamic behavior of the Eggertsson-Woodford
model in response to this shock.8 Note that deflation is a little over 2 percent in the period
of the shock, and after this it converges monotonically back to its steady state value in period
15. Output falls nearly 5 percent in the period of the shock and then converges monotonically
back to steady state too. Now consider the version of the model with inflation indexation.
The drop in output is nearly twice as large in the period of the shock. Output then oscillates
back to steady state, with output rising above steady state after period 10. The drop in
inflation is also more severe. Finally, the zero bound constraint is binding longer in the
version of the model with indexation.
According to the evidence in Figure 2, the results qualitatively robust to the presence of

indexation. They is some quantitative sensitivity, with output falling relatively more at the
beginning and less at the end.

4 Introducing Variable Investment into the Eggertsson-
Woodford Model

I first embed the Eggertsson andWoodford (2003a,b) model into the more general model with
capital in Woodford (2003, section 5). To simplify the analysis, I consider a deterministic
environment. I then report the quantitative results based on the same experiment discussed
in section 3.2.

4.1 The Model

The preferences of households are as follows:

∞X
t=0

βt

∙
u(Ct,Mt/Pt)−

Z 1

0

v(Ht(j))dj

¸
,

where u is increasing and concave in its first argument, v is increasing and convex, and

βt =
1

(1 + rn0 ) (1 + rn1 ) · · ·
¡
1 + rnt−1

¢ ,
for t = 1, 2, ... . Also, β0 ≡ 1 and

βt+1
βt

=
1

1 + rnt
.

Each household supplies every type of labor, j ∈ (0, 1). Here, Ct denotes consumption and
Mt denotes the household’s end-of-period t stock of money. Finally, Pt denotes the price of

8I solved the models using a shooting algorithm. I guessed the date, t∗, when the zero bound on the
nominal rate of interest ceases to bind. I set the period 0 inflation rate to its steady state value, and I put
the interest rate at its lower bound for periods t = 1, ..., t∗. I then guessed a value for the output gap and
inflation rate in period 1. It is now possible to use (1) and (2) to simulate the output gap and inflation. I
adjusted the period 1 output gap and rate of inflation to guarantee that the system arrives in a steady state.
I then assigned t∗ the smallest value that produced a sequence of interest rates consistent with the lower
bound constraint on the nominal rate of interest..
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the consumption good. The household’s flow budget constraint is:

PtCt +Mt +Bt+1 ≤Mt−1 +Bt(1 + it+1) +

Z 1

0

Ptwt(j)Ht(j)dj + Tt, (3)

where Bt denotes the beginning-of-period t stock of bonds, purchased in period t− 1. Also,
wt(j) denotes the real wage rate paid to type j labor, and Tt denotes lump sum profits
and transfers from the government. We suppose there is a lower bound constraint on Bt.
Households are competitive in goods and labor markets.
Given this setup, a rise in the real rate of interest, (1 + it) /πt+1, induces a household to

“tilt” its consumption profile towards the future. Doing so without violating its intertemporal
budget constraint requires reducing consumption - hence, increasing saving - in the current
period. In this way, the positively sloped saving function in Figure 1 captures a basic
economic force in the model. Similarly, a drop in rnt induces households to save more for
every value of the real interest rate, which corresponds to the right-shift displayed in Figure
1.
Final goods are produced using intermediate goods by a representative, competitive firm

using the following Dixit-Stiglitz production function:

Yt =

∙Z 1

0

yt(j)
θ−1
θ di

¸ θ
θ−1

, θ > 1.

The first order condition for profit maximization by the final good firm is:µ
Yt

yt(j)

¶ 1
θ

=
Pt(j)

Pt
. (4)

The ith intermediate good is produced by a monopolist using the following technology:

yt(i) = Kt(i)f

µ
ht(i)

Kt(i)

¶
. (5)

Here, Kt(i) is the capital owned by the monopolist, and ht(i) is the quantity of labor hired.
The firm is competitive in the market for type i labor, and takes the wage rate, wt(i), as
given.9 Investment by the ith monopolist produces new capital in the next period according
to the following adjustment cost function:

It(i) = I

µ
kt+1(i)

kt(i)

¶
kt(i). (6)

9At first glance, this may seem odd, because according to the formalism in the text, the jth intermediate
good producer is the only employer of type j labor. This suggests that the producer must be a monopsonist.
We follow an alternative interpretation suggested by Woodford (2003), which rationalizes competitive labor
markets. Think of the jth intermediate good producer as being a member of an industry composed of
intermediate goods producers with indeces lying in a small neighborhood, J, of j. Suppose there is a finite,
but large, number of such industries that do not intersect, but whose union is the unit interval. Imagine
that instead of there being a continuum of labor types in the household utility function, there is a discrete
number as in the Riemann approximation to the integral of the household utility function. Each of these
labor types works in one of the industries. With this setup, there is a continuum of suppliers and demanders
in the labor market corresponding to each industry, so that competition makes sense. This is the case even
for intervals, J, whose length is very small. This is how we interpret the model. For further discussion, see
Woodford (2003, pp. 148-149).
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Here, investment, It(i), corresponds to purchases of the final good. Also, I(1) = δ, I 0(1) = 1,
I 00(1) = �ψ > 0.
The ith intermediate good firm faces frictions in the setting of its price, Pt(i). With

probability 1− α it may set its price optimally, and with probability α is must set Pt(i) =
Pt−1(i).
The present discounted value of profits of the intermediate good firm are:

Et

∞X
j=0

βt+jΛt+j {(1 + τ)Pt+j(i)yt+j(i)− Pt+jwt+j(i)ht+j(i)− Pt+jIt+j(i)} . (7)

Here, Λt denotes the shadow value of a dollar to the household, the owner of the intermediate
good firm. It is the multiplier on (3) in the Lagrangian representation of the household’s
problem. Also, the subsidy, τ , is designed to eliminate the distoring effects of monopoly
power in the model. I assume

1 + τ =
θ

θ − 1 .

The ith intermediate good firm chooses Pt+j(i), yt+j(i), ht+j(i), It+j(i) to maximize profits,
subject to (4), (5), (6). It takes Pt+j, τ and wt+j(i) as given.
The resource constraint is:

Ct + It +Gt = Yt,

where

It =

Z 1

0

It(i)di.

Finally, the monetary authority controls it, which it sets with an objective of achieving
πt = 1. In periods when doing so would (infeasibly) imply a negative interest rate, it sets
it = 0 and lets πt be free to be determined by the equilibrium conditions. I assume that the
fiscal authorities set lump sum taxes to guarantee that the government’s budget constraint
is balanced in each period.
When the curvature on investment adjustment costs, �ψ, is large, then the stock of cap-

ital is a constant. This is my representation of the model in Woodford and Eggertsson
(2003a,b).10 The elastic investment case corresponds to smaller values of �ψ.
I now summarize the parameters of the model. Since I study a log-linear approximation

to the model economy, I need only specify its properties in a neighborhood of steady state.
In particular, I parameterize the curvature, σu, σv, and σf of the utility of consumption,
disutility of labor and production function, respectively, as follows:

σu = −
u00C

u0
> 0, σv =

v00h

v0
> 0, σf = −

f 00h̄

f 0
> 0.

Here, one and two primes, ‘0’, ‘00’ denote the first and second derivatives, respectively, of
the associated function. In each case, the second derivative is multiplied by the argument

10Even with �ψ =∞, the model differs slightly from the one in Eggertsson and Woodford (2003) because
they set investment to zero while it is a positive constant here. The difference is relatively unimportant,
because my results are very similar to theirs.
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of the function, evaluated in steady state. Thus, C, h, and h̄ denote consumption, hours
worked and the hours to capital ratio, all evaluated in steady state. In addition, there is
the parameter, �ψ, which controls the curvature of the investment adjustment cost function,
which was mentioned above. In the case of the production function, I followWoodford (2003)
in parameterizing the (inverse of the) elasticity f with respect to its argument:

φ =
f

f 0h̄
.

Finally, I require g, the steady state value of the ratio, Gt/Yt. The complete set of nine
parameters which need to be assigned values in order to solve a log-linear approximation of
the model, is:

σu, σv, σf , �ψ, φ, δ, α, θ, β, g. (8)

I follow Woodford (2003) in setting these parameters. In particular, σu = 1.0, σv = 0.11,
σf = 0.25, �ψ = 3, φ = 1/0.75, δ = 0.012, α = 0.66, θ = 1 + 1/0.15, and β = 0.99. In
addition, I set g = 0.18, roughly the ratio of actual government purchases of goods and
services to gross output. If utility were a constant elasticity function of consumption, then
σu = 1 corresponds to the log. Similarly, σv = 0.11 corresponds to a power of 1.11 on labor
if v where a constant elasticity function. If the production function were Cobb-Douglas then
σf and φ both indicate a power on labor equal to 0.75. The value of α implies that on average
a price is fixed for 3 quarters. The values of δ and β are standard in the real business cycle
literature. The value of θ corresponds to a steady-state markup over marginal cost of 15
percent, also not far from standard estimates. Except for σv, these parameter values are all
fairly standard. The value of σv implies a Frisch labor supply elasticity of 9 = 1/0.11, which
is higher than is often used in the literature. For this reason, in my analysis I also consider
the unit Frisch elasticity case, σv = 1.

4.2 Quantitative Results

As in the deterministic experiment in section 3, I suppose that the economy has been in
a deterministic steady state up until period 0. In period 1, rnt unexpectedly drops from its
steady state annualized percent value of 4 percent. I consider three cases. In the “small
shock”, “medium shock”, “large shock”, and “larger shock” cases, rnt drops to −2, −3, −4,
and −5 percent, respectively. In each case, rnt remains low until period 14. In period 15 it
switches back to its steady state value. The small shock corresponds to the shock size used
in the Eggertsson and Woodford example discussed in section 3.1.
Consider Figure 3 first. This corresponds closely to the Eggertsson and Woodford exam-

ple, because it is the model without investment, i.e., with �ψ = ∞.11 Notice that for each
shock size, the lower bound constraint on the nominal interest rate is binding, and output
drops substantially. In the Eggertsson and Woodford small shock case, output drops nearly
20 percent in the period of the shock. After that the magnitude of the drop shrinks as the
horizon over which the discount rate will remain low becomes shorter.12 With larger shock

11Actually, I set �ψ =30000000000.
12A difference between the deterministic example here and the one in Eggertsson and Woodford is that
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sizes, the magnitude of the drop in output increases. For example, in the larger shock case,
output drops over 40 percent in the period of the shock.
The results in Figure 3 match the intuition in section 2 of the paper. The increased

desire to save in the wake of the discount rate shock exerts a negative effect on inflation. To
keep inflation on target would require a negative nominal interest rate. Since the zero lower
bound now binds, the nominal rate of interest is set to zero. But, with the nominal interest
rate at its lower bound and future policy understood to be oriented to keeping inflation at
zero if possible, this means that the real interest rate is now also at its lower bound.13 In
this way, the real interest rate - the most efficient mechanism for ensuring that households
do not act on their increased desire to save - is ‘short-circuited’. Something else must occur
to prevent households from increasing their saving in equilibrium. This is so, because there
simply is no place for additional saving to go. What happens to discourage households from
increasing their saving is a fall in income. This is brought about as the desire to increase
saving leads households to reduce consumption. This cutback in spending leads to a drop in
the price level. Because the future price level is driven down by more than the current price
level, this implies drop in anticipated inflation. Perversely, the resulting increase in the real
interest rate further amplifies households’ incentive to save, so that an even larger drop in
output is required to ensure that saving in fact does not rise in equilibrium. As we can see
in the figure, the reductions in output that occur are very large.
Now consider Figure 4. The results here correspond to the same experiment as in Figure

3, with the sole exception that �ψ takes on the value suggested in Woodford (2003), namely,
�ψ = 3. Note that now the zero lower bound on the interest rate is less likely to bind.
For the small and medium-sized shocks, it does not bind at all. As explained in section 2,
when investment is elastic, the real interest rate does not have to fall by much to maintain
equilibrium. The rise in investment associated with a lower real rate implies that saving
does not have to be driven back to its pre-shock level. As one would expect, in the small and
medium shock cases consumption drops in the period of the shock, and then increases later
on. This intertemporal reallocation of consumption is accomplished by a rise in investment
in the initial periods, and a fall in later periods. The initial rise in investment is much larger
than the drop in consumption, so that output rises strongly in response to the shock. With
the small shock, the rise in output is nearly 20 percent.
The zero lower bound does bind for the large and larger shocks. In the case of the large

shock, it begins to bind in period 10, and then ceases to bind in period 15. Interestingly, the
binding zero bound does not produce the dramatic reduction in output and inflation that we
saw in the inelastic investment case in Figure 3. The dynamic response of the economy to
the large shock is similar to the response in the case of the small and medium shocks. In the
case of the larger shock, the lower bound constraint binds in each of periods 1 to 14. There
is a substantial drop in inflation in the first few periods after the shock. However, there is
no drop in output. By comparison with what happens after the small and medium shocks,

the equilibrium values of variables in the latter case are independent of how long the discount rate has been
low. This is because the stochastic process on r̂nt has the property that the horizon over which r̂

n
t is expected

to remain low is independent of how long r̂nt has been down.
13In the numerical experiments, it has always been the case that the inflation rate was negative whenever

the zero bound on the interest rate was binding. Thus, under the monetary policy studied in thie paper, the
inflation rate was always zero or negative.
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output is low for the first three periods. After this, all responses look similar.
Overall, the simulations in Figure 4 are not consistent with the dire implications for the

zero bound which emerge from Figure 3. Of course, if the shock is big enough then output
goes into a free-fall in the elastic investment case, just as it does in the inelastic case depicted
in Figure 3. For example, when rnt drops to 6 percent, I found that output drops 40 percent
in the period of the shock when investment is elastic, while it drops over 50 percent in the
inelastic case.
Figures 5 and 6 report the same experiments as in Figures 3 and 4, respectively, with

the exception that now the Frisch labor supply elasticity is unity, with σv = 1. Note that
in the inelastic investment case (Figure 5), the drop in consumption is somewhat smaller
than before (see Figure 3). However, qualitatively the results are not very different, since
the magnitude of the drop still qualifies it to be called a ‘worst case scenario’. In contrast,
the results for the elastic investment case are substantially different. Now the lower bound is
never binding. In results not reported here, I found that the lower bound is not even binding
when when rnt drops to 6 percent.

5 The Effects of Government Spending

I now investigate the effects of increasing government spending when there is a small and a
larger discount rate shock. Throughout, I assume that monetary policy targets a zero infla-
tion rate. My choice of shock sizes allows me to compare the magnitude of the government
spending multiplier under ‘normal’ circumstances and when the interest rate lower bound
binds. I find that the government spending multiplier is larger when the non-negativity
constraint on the interest rate is binding, than when it is not. I first show this in the version
of the model with inflexible investment, when the result is easily established analytically.
I then simulate the model with flexible investment, to show that the government spending
multiplier is very much bigger when the lower bound binds, than when it does not.

5.1 Model With Inelastic Investment

In Appendix 1, I show that after linearization about the zero inflation steady state, the
household’s intertemporal Euler equation is:

Ŷt = Ŷt+1 + Ĝt − Ĝt+1 + σ (π̂t+1 + r̂nt − ı̂t) . (9)

Here, Ŷt = (Yt − Y )/Y, where Y denotes output in the zero inflation steady state. Also,
Ĝt = (Gt − G)/Y, where G denotes government spending in steady state. Similarly, the
appendix shows that inflation equation is:

π̂t = βπ̂t+1 +
A

σ

n
(σω + 1) Ŷt − Ĝt

o
, (10)

where

ω = σvφ+ ωp, ωp = σfφ, A =
1− α

α

1− αβ

1 + ωθ
,

12



and σv, σf , φ were defined in the previous subsection. Equations (9) and (10) are standard
and can be found, for example, in Woodford (2003). Consider first the case in which it
is feasible for monetary policy to keep the inflation rate at zero in each period, without
violating the lower bound in the interest rate. In this case it is immediate from (10) that
the output multiplier associated with government spending, dYt/dGt, is:

dYt
dGt

=
1

σω + 1
< 1. (11)

Note from this expression that the government spending multiplier is necessarily less than
unity. That is, a one unit increase in government spending leads to less than one unit increase
in output. Interestingly, the impact of a government spending shock on current output is
independent of the degree of persistence in the shock.
I now consider the case when the lower bound on the interest rate is binding. By recursive

substitution, and using (10) to substitute out for π̂t in (9), I obtain:

Ŷt =
∞X
j=1

hGj Ĝt+j−1 +
∞X
j=1

hj
¡
r̂nt+j−1 − ı̂t+j−1

¢
. (12)

The objects of interest to us here are the hGj ’s. In Appendix 2, I show:

hG1 = 1 (13)

hG2 = Aσω

hGj =
Aσω

λ2 − λ1

¡
λj−12 − λj−11

¢
, j ≥ 3.

where
λ2 > 1, β > λ1 > 0, λ1λ2 = β, λ1 + λ2 = 1 + β +A(σω + 1). (14)

As in the previous section, I assume r̂nt drops in periods t = 1, ..., T − 1, and the drop
is sufficiently large to cause the interest rate lower bound to bind under the zero-inflation
targetting monetary policy. I assume r̂nt returns to its steady state value in period T, and that
all other variables return to their steady states then too (this is a feature of the equilibria
with inflexible investment studied in the previous section.) It is clear from (12) that the
output effect of a jump in government spending depends on how persistent that jump it.
At one extreme, consider the effect of a jump in government spending in period 1 which is
completely temporary, so that Ĝ1 = Ĝh > 0 and Ĝt = 0 for t ≥ 2. According to (13) the
multiplier effect of this on period 1 output is unity. Evidently, this exceeds the value of the
multiplier when the lower bound is not binding (see (11)). Suppose, at the other extreme,
that the jump in government spending lasts as long the interest rate lower bound is binding,
so that Ĝt = Ĝh > 0 for t = 1, 2, ..., T − 1, and Ĝt = 0 for t ≥ T. In this case, the multiplier
on period 1 output is obtained by summing over the relevant hGj ’s in (13):

T−1X
j=1

hGj = 1 +Aσω +
Aσω

λ2 − λ1

µ
λ22
1− λT−32

1− λ2
− λ21

1− λT−31

1− λ1

¶
.
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This definitely exceeds unity, because hGj > 0 for each j > 1. When the parameter values
after (8) are used, this multiplier is:

TX
j=1

hGj = 3.2,

well in excess of unity. At the same time, the multiplier in (11) is 0.75. So, in this ex-
ample, the government spending multiplier jumps by a factor of 4 when the zero bound is
encountered.

5.2 Model With Elastic Investment

I now compute the government spending multiplier a version of the model with elastic in-
vestment and inelastic labor supply. This corresponds to the model underlying the analysis
in Figure 4. I do two experiments, which are differentiated according to the size of the
discount rate shock. In each case, I consider the output effect of an increase in government
spending which remains in place as long as rnt is low. To understand the magnitude of the
government spending multiplier when the lower bound on the interest rate is not binding,
I consider the small shock to rnt . To understand the magnitude of the multiplier when the
bound does bind, I also consider an experiment with the larger shock. In both experiments,
government purchases, Gt, are increased to 19.25 percent of steady state output in periods
1 to 14. In period 15 they are returned to their steady state value of 18 percent of steady
state output.
Consider the small shock case first, which is reported in Figure 7. As a convenient

benchmark, the solid line displays the response of the economy to the shock when there is
no Gt response. This reproduces the solid line in Figure 4. The line indicated by stars shows
the response of the economy when there is a Gt response. Note that the two lines virtually
coincide, indicating a very small multiplier. I also report the difference in equilibrium output
across the two experiments, divided by the difference in government purchases, for periods 1
to 14. This multiplier, dYt/dGt, is very small. It is 0.76 in the period of the shock and then
converges monotonically to 0.41 by period 14.
Now consider the large shock case in Figure 8. Again, for convenience the solid line

reproduces the lines indicated by ‘+’ in Figure 4, when there is no Gt response. The line
indicated by stars shows the response of the economy when there is a Gt response. Notice
that now the response of the economy to the increase in government purchases is very large.
In the period of the shock, output rises by nearly 25 percent of its steady state value, in
contrast to no rise at all when there is no increase in government puchases. Similarly, there
is an increase (relative to the benchmark) in consumption and investment. Inflation shows
only a very small decline. The increase in government purchases in effect makes the zero
bound constraint less binding. A larger increase than the one reported here was found to
cause the zero bound constraint to cease binding altogether.
Figure 8 also reports the multiplier, dYt/dGt. Note that the multiplier in the first period

is nearly 20. Evidently, it is much larger than the multiplier in the model with inelastic
investment.
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6 An Informal Look at US Data

If a country adopts a monetary policy of targetting low or zero inflation, how likely is the
‘worst case scenario’ in which output and inflation collapse? That is, (i) how often will
the zero bound prevent the real interest rate from being negative, when efficient resource
allocations require it?, and when this happens, (ii) how severe are the consequences? Using
the model analysis as a informal guide, I attempt to answer these questions using the past
150 years’ observations on interest rates and inflation in the U.S.
A zero-inflation targetting policy can cause economic disruption by preventing the real

interest rate from becoming negative at times when the efficient allocation of resources
requires it. So, one way to answer (i) is to compute the frequency of times that the real
interest rate has been negative in the past. I do this in the first subsection below. A potential
pitfall of this approach occurs if there are periods in the past when the monetary authorities
pursued a zero-inflation targeting policy. In such periods, the real interest rate would never
be negative, even if efficient resource allocations required it. If there are such periods, then
the frequency of observed negative real rates may be a severe underestimate of the likelihood
that a zero-inflation targetting policy would lead to trouble. The second subsection below
addresses this concern, and addresses question (ii) as well. The final subsection summarizes.

6.1 Real Interest Rates in the Past 150 Years

I used two data sets. One covers a ‘long sample’, 1867-1996 and the other covers a ‘short
sample’, 1953-2002. For the long sample, data from 1867 to 1971 on the interest rate corre-
sponds to 60-90 day commercial paper rates in New York city and data from 1972 to 1996
are observations on the 3-month nonfinancial commerical rate.14 In addition, annual data
on the consumer price index were obtained from Historical Abstracts of the United States.
The inflation rate for a particular year was computed at the percent change in the price level
from that year to the next (using the log transform).
Consider the long sample first. The inflation and interest data are displayed in Figure

9a. Figure 9b reports the (ex post) real interest rate. The frequencies of negative real rates
are reported in Table 1 for various time periods. The real interest rate is negative 19 percent
of the years in the long sample. Because of price controls and other distortions, it is useful
to exclude the years of the two world wars, and the year immediately after. When I do this,
I find that the frequency of negative real interest rates falls to 14 percent. When I consider
only the period after World War II, 1946-1996, the fraction is up to 20 percent (see Table
1).
It is interesting that the probability of negative real rates is greater in the high inflation

period at the end of the sample. Note, for example, that the real interest rate is never
negative in the period before World War I. To see this more formally, consider the three solid
horizontal lines in Figure b. They indicate the average inflation rate over three intervals:
1867-1916, 1921-1928 and 1947-1996. The numbers in parentheses indicate the mean value
of the real rate over the period indicated by the solid, horizontal line. Note that in the first

14Data for 1857-1971 were taken from the historical database on the NBER website. The NBER series
number is 13002. Data for the other years are the 3 month nonfinancial commercial paper rate taken from
the economagic website, www.economagic.com. Both series are monthly and were annualized by averaging.
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two samples, when inflation is near zero, the average real rate of interest is quite high. In the
late sample, the real interest rate is low.15 This suggests the possibility that adoption of a
zero inflation target may lead to a higher average real rate and, hence, a lower likelihood that
the real rate turns negative. Thus, the observed historical frequency of negative real interest
rates may overstate the likelihood of a binding lower bound in case the monetary authority
were to adopt a zero-inflation monetary target. A factor working against this conclusion is
that inflation in recent years has been relatively low, and yet the real interest rate has been
quite low as well.
For the short sample, I considered nominal returns on 1-Year Treasury Bills. These

returns were converted to ex post real returns adjusting by a measure of inflation based on
the CPI (see Figure c), and by a measure of inflation based on the personal consumption
expenditure deflator (PCE). The frequencies with which these real returns are negative is
18 and 14 percent of the time, respectively. Under the theory in this paper, the real interest
rate corresponds better to the ex ante real interest rate rather than the ex post real return
considered up to now. To gain a sense of what happens when something closer to an ex ante
real interest rate is computed, I adjusted the 1-year Treasury bill return by the measure of
one-year ahead (CPI) inflation expectations obtained from the Michigan survey of families.
The frequency with which this is negative, 18 percent, corresponds roughly to what I obtained
with ex post real returns.
The preceding analysis does not adjust for taxes. Obviously, the frequency of negative

interest rates increases when taxes are taken into account. For example, when it is assumed
that the tax rate on interest income is 30 percent, then the frequency of negative real rates
jumps substantially. These fractions are provided in parentheses in Table 1.

Table 1: Percent of Times That Indicated (After Tax) Real Rate is Negative
Interest Rate Inflation Long Sample Long Sample, Post WWII

Excluding Wars
3-Month Commercial Paper CPI 19

(32)
14
(27)

20
(41)

1-Year Treasury Bill CPI 18
(40)

1-Year Treasury Bill PCE 14
(29)

1-Year Treasury Bill Michigan Expectation 18
(48)

6.2 Interest Rates and Inflation in the 1930s

Outside of the 1930s, it seems unlikely that the Federal Reserve ever implemented the sort
of zero-inflation targeting policy studied in this paper. Before the 1930s the U.S. was on the
gold standard, and this is better characterized as a policy of targetting the price level rather
than inflation targetting. As shown in Eggertsson and Woodford (2003a,b) and Wolman
(1998, 2003), under this type of monetary policy the zero bound on the interest rate is
unlikely to pose a significant impediment to achieving a negative real interest rate. The
period since the 1930s also seems unlikely to be characterized by a policy of zero inflation

15For another discussion of the fact that at low frequencies, the real interest rate appears to be negatively
correlated with the inflation rate, see Kandel, Ofer, and Sarig (1996).
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targetting. This is a time when monetary policy, as other government policies, were focused
not just on inflation but also on output stabilization.
Now consider the period of the 1930s, a time when the U.S. transitioned away from the

gold standard. At the beginning of the decade, there was a dramatic collapse in the price
level. Could this have reflected the sort of ‘worst case scenario’ that some are worried about?
The evidence in Figure 9a indicates that the answer is ‘no’. The figure shows inflation,
100× log(Pt+1/Pt), for each year, t = 1928, 1929, ..., 1940, where Pt is the consumer price
index. The figure also displays two interest rates, a short-term U.S. government securities
rate and a 3-6 month commercial paper rate. In each case, the interest rate is averaged
over the year and is expressed in annual percent terms. Notice the collapse in inflation that
begins in 1929. But, the collapse occurs at a time when both measures of the nominal rate
of interest are well above zero. Evidently, the fall in inflation during the contraction phase of
the Great Depression could not have been triggered by a shock that caused the lower bound
on the nominal interest rate to bind.
Now consider the expansion phase of the Great Depression, which began in 1933. A

recent review of speeches and other documents of Federal Reserve officials in this period by
Orphanides (2003) suggests that there was considerable fear of inflation at the Fed. This is
consistent with the notion that it was policy at the Fed to target zero or low inflation. At the
same time, the economic expansion was anemic in the sense that per capita hours worked
remained more than 20 percent below its level in 1929 (see Figure 10). Since the interest
rate on short-term government securities was nearly zero after 1933, this raises the possibility
that the low level of employment was a consequence of a binding lower bound on the interest
rate. Still, this episode does not bear all the trappings of the sort of liquidity trap analyzed
in this paper, since inflation was on average positive. Moreover, other explanations have
been advanced for the slow recovery of output and employment in the 1930s. For example,
Cole and Ohanian (2003) argue that the New Deal policies that improved the bargaining
power of workers can go a long way towards explaining the fact that total hours worked in
1939 was still around 20 percent below its 1929 level.

6.3 Summary

A quick examination of the data suggests that the real rate of interest is negative a substantial
fraction of the time, say 20 percent. However, there is considerable uncertainty about this
estimate. It is an underestimate, to the extent that taxes on interest rates matter. It
overestimates the likelihood of falling into a liquidity trap if it is the case that real rates
systematically rise when inflation is brought down. The data do suggest this, but there may
be other factors, apart from monetary policy that account for it.

7 Conclusion

[still under construction]
I incorporated the Eggertsson and Woodford (2003a,b) example into the more general

model with capital studied in Woodford (2003). Using the parameters in Woodford (2003),
I found that the likelihood that the zero bound on the interest rate binds is reduced. Still, it
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can happen. However, this parameterization incorporates a Frisch elasticity of labor supply
equal to nearly 100, which is considerably higher than the values used in the literature. When
I assign a value of unity to this elasticity, then the results in the Eggertsson and Woodford
model with no capital are qualitatively unaffected. However, the model with investment
is strikingly sensitive to this change. The lower bound does not bind, even for extremely
large values of the shock. I also find that conditional on the zero lower bound binding, the
consequences are less severe in the model with flexible investment. Morever, I found that
the multiplier effects on output of government spending are very large - in a neighborhood
of 20 - when the lower bound on the interest rate binds. This suggests that in the event
the zero bound binds severely, the output effects can be minimized by a modest increase in
government spending.
I studied the U.S. data .....
The Eggertsson and Woodford example suggests that the stakes are very high. Even if

we only assign a low probability to the output collapse scenario in their example, the welfare
losses are so great that it behooves us to pay attention. The analysis in this paper suggests
that the output-collapse scenario is less likely once we take into account investment. Still,
considerably more work - with other frictions and other shocks - needs to be done before
we can safely ignore the output collapse scenario.16 One shock that would be particularly
interesting to study is a negative disturbance to investment. This too would require a fall in
the real interest rate to encourage households to cut back on saving. If the zero bound makes
a big enough drop infeasible, the result could be output collapse and price deflation. Pursuing
this further requires constructing stochastic, dynamic general equilibrium models based on
solid empirical foundations. In addition, it requires developing model solution methods which
can accommodate occasionally binding constraints. Devising appropriate solution methods
is a particularly big challenge. Some progress has been made (see, e.g., Christiano and Fisher
(2000)). However, these methods are very burdensome computationally.

A Appendix 1: Computational Algorithm

Here, I describe the shooting algorithm used to solve the model. The first part of this ap-
pendix explains the equations used to characterize the equilibrium. Following Eggertsson and
Woodford, I log-linearize the equations which must always hold with equality in equilibrium.
This discussion follows Woodford (2003, Chapter 5), and is included here for completeness.
The second part of this appendix describes the actual shooting algorithm. The algorithm is
constructed to ensure that the lower bound constraint on the interest rate is always satisfied.

A.1 Log-Linearized Equations Characterizing Equilibrium

I begin with a statement of the first-order necessary conditions for household and firm opti-
mality. I then compute the features of the steady state that are required. After this, I derive
three log-linear equations that I use to characterize equilibrium.

First-order Conditions
16Initial work on this may be found in Adam and Billi (2003).
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The first order necessary conditions for household optimization include a transversality
condition and:

v0(Ht(j))

u0t
= wt(j)

u0t =
1

1 + rnt
u0t+1

1 + it
πt+1

um,t

u0t
=

it
1 + it

Here, u0t denotes the marginal utility of consumption. The first equation is the intratemporal
Euler equation for labor. The second equation is the intertemporal Euler equation associated
with the household saving decision. By concavity of the utility function, current consumption
falls - hence saving rises as in Figure 1 - when the real interest rate rises, for given values of
rnt and u0t+1. The third is the Euler equation associated with real balances. From here on,
we assume u0t is not a function of Mt/Pt, and we ignore the last first order condition.
The first order necessary condition associated with the optimal choice of capital by the

ith firm is:

I 0
µ
kt+1(i)

kt(i)

¶
=

1

(1 + it) /πt+1

½
ρt+1(i)− I

µ
kt+2(i)

kt+1(i)

¶
+ I 0

µ
kt+2(i)

kt+1(i)

¶
kt+2(i)

kt+1(i)

¾
. (15)

Here, we have made use of the household’s intertemporal Euler equation and the fact, Λt =
uc,t/Pt. With some algebra it can be shown that ρt+1(i) in (15) can be written:

ρt+1(i) = wt+1(i)
f(h̄t+1(i))− h̄t+1(i)f

0(h̄t+1(i))

f 0(h̄t+1(i))
. (16)

One interpretation of ρt+1(i) is that it is the real rental rate of capital that would rationalize
the amount of capital used by the intermediate good firm in t+1, if there were a competitive
capital rental market.17

Note that a rise in the real rate of interest, holding the objects in braces on the right of
(15) fixed, leads to a fall in I 0. Given the assumption, I 00(1) > 0, it follows that kt+1(i) falls,
i.e., investment falls, as in Figure 1.
If the ith firm has the opportunity to reoptimize its price, then it does so, taking into

account that it must satisfy its demand curve and that it will not be able to reoptimize
again, with probability α. The firm’s first order condition is, after some algebra,

∞X
j=0

αjβt+jλt+jP
θ
t+jYt+j

½
(1 + τ)pt+j(i)−

θ

(θ − 1)st+j(i)
¾
= 0.

Multiplying by (1 + τ)−1,

∞X
j=0

αjβt+jλt+jP
θ
t+jYt+j

½
pt+j(i)−

θ

(θ − 1) (1 + τ)
st+j(i)

¾
= 0, (17)

17See Woodford (2003, p. 355) for an alternative interpretation.
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where

pt+j(i) =
Pt(i)

Pt+j
,

where Pt(i) is the price set in period t. Also, st+j(i) is the marginal cost of producing an
extra unit of output:

st(i) =
wt(i)

f 0
³

ht(i)
Kt(i)

´ . (18)

According to (17), the firm sets its price to an after-tax markup over marginal cost on
average.

Steady State

To compute the log-linear expansion about steady state, we require the capital-to-output
ratio, k, and consumption-to-output ratio, c. We compute these first. In steady state, (15)
reduces to:

1

β
= ρ− δ + 1,

where ρ is the steady state value of the first object in braces in (15). Then, ρ = (1/β)+δ−1,
which, when combined with (16) evaluated in steady state, yields:

1

β
+ δ − 1 = w

f − h̄f 0

f 0
.

In steady state, all prices are equal, so that pt(i) = 1. This, and the fact that the object in
braces in (17) is zero in steady state imply

s =
(θ − 1) (1 + τ)

θ
.

Combining this with (18), we obtain:

w = f 0
(θ − 1) (1 + τ)

θ
,

which says that the real wage is an after tax markup over the marginal product of labor.
Combining these results and rearranging, we obtain:

k =
(θ − 1) (1 + τ)

θ

µ
φ− 1
φ

¶Ã
1

1
β
+ δ − 1

!
.

where k ≡ K/Y. Finally, note that in steady state:

Y = C + δK +G,

so that

c ≡ C

Y
= 1− δk − g,

where

g =
G

Y
.
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Log-Linear Expansion

Consider the national income identity:

Yt = Ct + It +Gt,

where Gt denotes the exogenous level of government spending. Then,

Ŷt = Ĉt + Ît + Ĝt.

Unless otherwise noted, a hat over a variable indicates deviation from steady state, as a
fraction from steady state. That is, ẑt ≡ dzt/z, where z is the steady state value of zt and
dzt is a small deviation, zt − z. However, in the case of the aggregate quantities appearing
in the national income identity, a hat indicates deviation from steady state, expressed as a
fraction of steady state aggregate output:

Ît =
dIt
Y

, Ŷt =
dYt
Y

, Ĉt =
dCt

Y
, Ĝt =

dGt

Y
.

Log-linearizing the household’s intertemporal Euler equation:

ûc,t = ûc,t+1 − r̂nt + ı̂t − π̂t+1, (19)

where

ı̂t ≡
it − i

1 + i
, r̂nt ≡

drnt
1 + rn

.

The non-negativity constraint on it implies, since 1 + i = 1/β in steady state,

ı̂t ≥ ı̂l = β − 1.

It is useful to develop an expression for ûc,t. We have

ûc,t ≡
duc,t
uc

=
uccY

uc
Ĉt

=
uccC

uc

Y

C
Ĉt

= −σ−1Ĉt,

where

σ = σ−1u c > 0

σu = −uccC
uc

Then,
ûct = −σ−1

h
Ŷt − Ît − Ĝt

i
. (20)

21



We now turn to the firms. Integrating (4) over j ∈ (0, 1) and imposing the final goods
firm technology, the following relationship between the aggregate and intermediate good
prices must hold:

Pt =

∙Z
Pt(j)

1−θdj

¸ 1
1−θ

. (21)

Loglinearizing (15) about steady state and integrating the result over i ∈ (0, 1), we obtain:18

ûc,t + �ψ
h
K̂t+1 − K̂t

i
= (1− δ)βûc,t+1 − r̂nt

+ [1− (1− δ)β]
h
ρyŶt+1 − ρkK̂t+1

i
(22)

+β�ψ
h
K̂t+2 − K̂t+1

i
,

where

ρy = σvφ+
ωpφ

φ− 1 , ωp = σfφ

ρk = ρy − σv.

That (22) only involves aggregate output and the aggregate capital stock reflects that we
have integrated the linearized first order conditions of the firms in a neighborhood of a
symmetric steady state equilibrium. Note that (22) implies K̂t+1 − K̂t = (1/β)

t
h
K̂1 − K̂0

i
when �ψ =∞. So, the only K̂1− K̂0 which implies a non-explosive path for the capital stock
is one in which K̂1 − K̂0 = 0, in which case the capital stock is constant. This is what one
expects when adjustment costs are infinite.
Loglinearizing the investment equation, (6):

Ît = k
h
K̂t+1 − (1− δ)K̂t

i
, (23)

where

k =
K

Y
.

Now consider the pricing decision of the firm. Log-linearizing (17) we obtain (after
considerable algebra, see Woodford 2003, page 360):

π̂t = ξ0ŝt − ξ1ŝt+1 + ψ1π̂t+1 − ψ2π̂t+2, (24)

where st is the real marginal cost of production for the firm. Here, st denotes real marginal
cost and, after log-linearizing:

ŝt = ω
³
Ŷt − K̂t

´
+ σvK̂t − ûc,t, (25)

where
ω = σvφ+ ωp.

18Expression (22) corresponds to Woodford (2003, equation 3.7, page 356).
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In (24),

ξ0 =
1− α

α

1

a− b
, ξ1 = µ−12 ξ0,

and

ψ1 =
a
¡
β + µ−12

¢
− b(αβ + α−1µ−12 )

a− b
, ψ2 = βµ−12 .

Also,

a =
1 + ωθ

1− αβ
+ (ω − σv)

α

1− αβ

Ξ

(1− αβµ1) (1− αβµ2)

b = (ω − σv)
α

1− µ−12

Ξ

(1− αβµ1) (1− αβµ2)

Ξ = (1− β(1− δ)) ρyθ�
−1
ψ

Finally, µ2 is the root greater than β−1 in the equation

βµ2 −
£
1 + β + (1− β(1− δ)) ρk�

−1
ψ

¤
µ+ 1 = 0,

and µ1 is the other root, which is less than unity.
I reduce the system of private economy equations to three equations, (19), (22), (24) in

the four unknowns, K̂t+1, Ŷt, π̂t, ı̂t. This is accomplished by substituting out for ûc,t using
(20), Ît using (23), and ŝt using (25). The inflation equation becomes:

π̂t − ξ0

n¡
ω + σ−1

¢
Ŷt −

£
(ω − σv)− σ−1k(1− δ)

¤
K̂t − σ−1kK̂t+1 − σ−1Ĝt

o
+ξ1

n¡
ω + σ−1

¢
Ŷt+1 −

£
(ω − σv)− σ−1k(1− δ)

¤
K̂t+1 − σ−1kK̂t+2 − σ−1Ĝt+1

o
−ψ1π̂t+1 + ψ2π̂t+2 = 0

Writing this in vector notation,
Fπzt = 0, (26)

where zt is the 12× 1 vector:

zt = (π̂t, π̂t+1, π̂t+2, Ŷt, Ŷt+1, K̂t, K̂t+1, K̂t+2, Ĝt, Ĝt+1, r̂
n
t , ı̂t)

0

and Fπ is the 1× 12 vector:

Fπ1 = 1, Fπ2 = −ψ1, Fπ3 = ψ2
Fπ4 = −

¡
ω + σ−1

¢
ξ0, Fπ5 =

¡
ω + σ−1

¢
ξ1

Fπ6 = ξ0
£
(ω − σv)− σ−1k(1− δ)

¤
,

Fπ7 = ξ0σ
−1k − ξ1

£
(ω − σv)− σ−1k(1− δ)

¤
Fπ8 = −ξ1σ−1k, Fπ9 = ξ0(1 + σv), Fπ10 = −ξ1(1 + σv)

Fπ11 = ξ0σ
−1, Fπ12 = −ξ1σ−1, Fπ13 = Fπ14 = 0.
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The intertemporal Euler equation associated with investment becomes:

�−1ψ Ŷt − �−1ψ k
h
K̂t+1 − (1− δ)K̂t

i
− �−1ψ Ĝt − σ

h
K̂t+1 − K̂t

i
−�−1ψ (1− δ)β

³
Ŷt+1 − k

h
K̂t+2 − (1− δ)K̂t+1

i
− Ĝt+1

´
− �−1ψ σr̂nt

+�−1ψ σ [1− (1− δ)β]
h
ρyŶt+1 − ρkK̂t+1 − (1 + σv) Ât+1

i
+σβ

h
K̂t+2 − K̂t+1

i
= 0,

or,
Fkzt = 0, (27)

where the 1× 12 vector Fk is:

Fk1 = Fk2 = Fk3 = 0, Fk4 = �−1ψ ,

Fk5 = −�−1ψ (1− δ)β + �−1ψ σ [1− (1− δ)β] ρy

Fk6 = �−1ψ k(1− δ) + σ,

Fk7 = −�−1ψ k − σ − �−1ψ (1− δ)β(1− δ)k − �−1ψ σ [1− (1− δ)β] ρk − σβ

Fk8 = �−1ψ (1− δ)βk + σβ, Fk9 = 0, Fk10 = −�−1ψ σ [1− (1− δ)β] (1 + σv)

Fk11 = −�−1ψ , Fk12 = �−1ψ (1− δ)β, Fk13 = −�−1ψ σ, Fk14 = 0.

The household’s intertemporal Euler equation is:

Ŷt − k
h
K̂t+1 − (1− δ)K̂t

i
− Ĝt (28)

= Ŷt+1 − k
h
K̂t+2 − (1− δ)K̂t+1

i
− Ĝt+1 − σ (̂ıt − π̂t+1 − r̂nt )

or,
Fizt = 0, (29)

where the 1× 12 vector Fi is:

Fi,1 = 0, Fi2 = −σ, Fi3 = 0, Fi4 = 1, Fi5 = −1, Fi6 = k(1− δ)

Fi7 = −k − k(1− δ), Fi8 = k, Fi9 = Fi10 = 0, Fi11 = −1, Fi12 = 1

Fi13 = −σ, Fi14 = σ.

Let

F =

⎡⎣ Fπ

Fk

Fi

⎤⎦ ,
so that the equations are written:

Fzt = 0, for all t.

It is convenient to write this as:

Fzt = F1z1t + F2z2t,
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where F1 includes all but the 5th and 8th columns of F and F2 is composed just of these two.
In addition, z1t includes all but the 5th and 8th elements of zt, while z2t includes the 5th and
8th only. So, F1 is 3 × 10 and F2 is 3 × 2. It is useful to consider two 2 × 2 pieces of F2:
let F 1

2 denote the first two rows, and let F
2
2 denote the second two rows. Define F

1
1 and F 2

2

analogously.
Write:

z1t = (πt, πt+1, πt+2, Ŷt, K̂t, K̂t+1, Ĝt, Ĝt+1, r̂
n
t , ı̂t)

0

z2t =
³
Ŷt+1, K̂t+2

´0
.

A.2 A Shooting Algorithm

Suppose that the economy has been in a deterministic, zero-inflation steady state until period
0, so that K̂1 = 0. Then, in t = 1, rnt , drops unexpectedly to r̂

n
l < β − 1. The discount rate,

rnt , remains low T −1 periods, and returns to its steady state value in the T th period, where
it remains forever after. I study the equilibrium allocations in response to the savings shock,
rnt . Government spending, Gt, is allowed to change values in the same periods.
Monetary policy has the property that πt = 0, unless this implies the interest rate violates

its lower bound, ı̂t ≥ β − 1, in which case ı̂t = β − 1. I conjecture (and then verify) that the
zero bound becomes binding in one particular period, t∗1 ≥ 1, and then continues to bind in
each period until period t∗2, when it ceases to bind. Thus,

ı̂t = β − 1 t∗1 ≤ t < t∗2
ı̂t > β − 1, πt = 0 t ≥ t∗2, t < t∗1.

.

The algorithm described below finds t∗1, t
∗
2, as well as the other equilibrium variables of the

model.
The basic idea of the algorithm is as follows. There is one initial condition for the

economy, K̂1 = 0. I then simulate the equations that characterize equilibrium forward in
time. Because of the dimension of the equations, to initiate the simulations I need to assign
values to four endogenous variables, aside from the given value of K̂1. I adjust the values of
these four variables to ensure that the system eventually converge to steady state, and that
another side condition is satisfied.
Suppose that t∗1 = 1, so that the zero bound is assumed to bind in period 1. Initially, I

assign an arbitrary set of values to the four variables, Ŷ1, π̂1, π̂2, K̂2. I temporarily normalize
π̂3 = 0, and set ı̂1 = β − 1. We can now construct z1t for t = 1. Use (27)-(29) for t = 1 to
compute Ŷ2, K̂3 :

z2,1 = −
£
F 2
2

¤−1
F 2
1 z1,1. (30)

Note that π̂3 does not appear in (27)-(29) for t = 1, so that setting π̂3 = 0 has no impact
on the calculations in (30). I now use (26) to compute π̂3 and I insert this into the third
element of z1,1.
Now consider t = 2.We have enough information to determine the values of z1t for t = 2,

as long as we normalize π̂4 = 0. Use (27)-(29) to compute Ŷ3 and K̂4 using:

z2,t = −
£
F 2
2

¤−1
F 2
1 z1,t,
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for t = 2. Use (26) to compute π̂4, and insert the result into the third element of z1,2. Proceed
in this way until t = t∗2 − 1.
Consider t ≥ t∗2. I set π̂t = 0 for t ≥ t∗2. As before, we have enough information to

construct z1t. Now we use (26)-(27) to compute Ŷt+1, K̂t+2 :

z2,t = −
£
F 1
2

¤−1
F 1
1 z1,t. (31)

Then, (29) is used to solve for ı̂t. Simulate this forward for many periods, say until t = T ∗ >
T.
Adjust the values of Ŷ1, π̂1, π̂2, K̂2 until

ŶT∗ = 0, K̂T∗+1 = 0, (32)

and the second and third elements of z1,t∗2−1 are zero.
Now consider the case, t∗1 ≥ 2. For t = 1, ..., t∗1 − 1, I use (31) to simulate the system. To

initiate these simulations, I assign arbitrary values to Ŷ1, K̂2. In addition, I require values
for π̂t∗1 and π̂t∗1+1. It is necessary to include these in z1,t∗1−2 and z1,t∗1−1 when evaluating (31)
for t = t∗1 − 2, t∗1 − 1. Initially, I assign arbitrary values to π̂t∗1 and π̂t∗1+1. I then adjust the
values of Ŷ1, K̂2, π̂t∗1 and π̂t∗1+1 until the same criterion used for the case, t

∗
1 = 1 is satisfied.

The MATLAB routine, FSOLVE.M, was able to solve this problem without incident in less
than 2 seconds.
To determine values of t∗1 and t

∗
2, I proceeded as follows. First, I solved the model without

imposing the lower bound constraint on ı̂t. I then determined the first date when the lower
bound constraint was violated, and made that my initial guess of t∗1. I then determined the
first date thereafter when the lower bound constraint ceased to bind and made that my guess
of t∗2. For the model without investment, i.e., �ψ =∞, this procedure led to an initial guess,
t∗1 = 1, and I did not deviate from that. The initial guess for t∗2 was 15. I kept that value
because the lower bound constraint was violated when I dropped t∗2 to a lower value.
For the model with investment, �ψ = 3, my procedure led to an initial guess, t∗1 = 7 and

t∗2 = 15.When I solved the model with these values, I found that the lower bound constraint
was violated. I then found that it was also violated for values of t∗1 that exceeded 7 and for
every admissible value of t∗1 below 7 except t

∗
1 = 1. So, I fixed t∗1 = 1. I then tried t∗2 = 14,

and found that the lower bound constraint was violated. So, I remained with t∗1 = 1 and
t∗2 = 15 for the �ψ = 3 model.

B Appendix 2: Government Spending Multiplier

To solve for Ŷt, it is convenient to express (9) and (10) in lag-operator form:

Ŷt = Ĝt +
σ

1− L−1
¡
L−1π̂t + r̂nt − ı̂t

¢
(33)

π̂t =
1

1− βL−1
A

σ

n
(σω + 1) Ŷt − Ĝt

o
, (34)

where L−jwt ≡ wt+j for integer values of j. Substituting out for π̂t from (34) into (33) and
rearranging, one obtains:

Ŷt = h1(L)Ĝt + h2(L) (r̂
n
t − ı̂t) ,
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where

h1(L) =
(1− βL−1) (1− L−1)−AL−1

(1− βL−1) (1− L−1)−A (ω + σ−1)σL−1
=
(1− ζ1L

−1)(1− ζ2L
−1)

(1− λ1L−1)(1− λ2L−1)

h2(L) =
σ (1− βL−1)

(1− βL−1) (1− L−1)−A (ω + σ−1)σL−1
=

σ (1− βL−1)

(1− λ1L−1)(1− λ2L−1)
.

Here, λ1 < β, λ2 > 1 are the roots of the polynomial in the denominator of h1(L) and h2(L).
In addition, ζ1, ζ2 are the roots of the polynomial in the numerator of h1(L) and it is easily
verified that

λ1 < ζ1 < β, λ2 > ζ2 > 1, (35)

ζ2 + ζ1 = 1 + β +A, ζ2ζ1 = β.

Using standard methods to expand these polynomials (see, e.g., Sargent (1979)), I obtain:

h1(L) =
A1
σ

µ
1 + (λ1 − ζ2 − ζ1)L

−1 +
(λ1 − ζ2) (λ1 − ζ1)

1− λ1L−1
L−2

¶
(36)

+
A2
σ

µ
1 + (λ2 − ζ2 − ζ1)L

−1 +
(λ2 − ζ2) (λ2 − ζ1)

1− λ2L−1
L−2

¶
,

where
A1 =

σ

1− λ2/λ1
, A2 =

σ

1− λ1/λ2
.

Similarly,

h2(L) = A1

∙
1 +

(λ1 − β)L−1

1− λ1L−1

¸
+A2

∙
1 +

(λ2 − β)L−1

1− λ2L−1

¸
. (37)

Our objective is to derive hGj in the:

h1(L) =
∞X
j=1

hGj L
−(j−1).

It is immediate from (36) that hG1 = 1. Also,

hG2 =
A1
σ
(λ1 − ζ2 − ζ1) +

A2
σ
(λ2 − ζ2 − ζ1)

=
λ1

λ1 − λ2
(λ1 − [ζ2 + ζ1]) +

λ2
λ2 − λ1

(λ2 − [ζ2 + ζ1])

=
1

λ2 − λ1

£
λ22 − λ21 − (λ2 − λ1) (ζ2 + ζ1)

¤
=

1

λ2 − λ1
[(λ2 − λ1) (λ2 + λ1)− (λ2 − λ1) (ζ2 + ζ1)]

= (λ2 + λ1)− (ζ2 + ζ1)

= Aσω,
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using (14) and (35). For j ≥ 3,

hGj =
A1
σ
(λ1 − ζ2) (λ1 − ζ1)λ

j−3
1 +

A1
σ
(λ2 − ζ2) (λ2 − ζ1)λ

j−3
2

=
1

1− λ2/λ1
(λ1 − ζ2) (λ1 − ζ1)λ

j−3
1 +

1

1− λ1/λ2
(λ2 − ζ2) (λ2 − ζ1)λ

j−3
2

=
λ21

λ1 − λ2

£
λ1 + βλ−11 − (ζ1 + ζ2)

¤
λj−31 − λ22

λ1 − λ2

£
λ2 + βλ−12 − (ζ1 + ζ2)

¤
λj−32

=
[λ1 + λ2 − (ζ1 + ζ2)]

λ2 − λ1

¡
λj−12 − λj−11

¢
=

Aσω

λ2 − λ1

¡
λj−12 − λj−11

¢
Summarizing, we obtain:

h1(L) = 1 +AσωL−1 +
Aσω

λ2 − λ1

∞X
j=3

¡
λj−12 − λj−11

¢
L−(j−1)

If Ĝt = Ĝh for t = 1, ..., T − 1, then

h1(L)Ĝ1 =

"
1 +AσωL−1 +

Aσω

λ2 − λ1

T−1X
j=3

¡
λj−12 − λj−11

¢
L−(j−1)

#
Ĝ1

=

∙
1 +Aσω +

Aσω

λ2 − λ1

µ
λ22
1− λT−32

1− λ2
− λ21

1− λT−31

1− λ1

¶¸
Ĝh,

as claimed in the text.
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Real Interest Rate, For Two Investment Elasticities
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Figure 2: Response to Discount Rate Shock in Model With and Without Inflation Indexation
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Figure 3: Discount Rate Shock in Model without Investment, Three Discount Rate Shocks
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Figure 4: Discount Rate Shock in Model with Investment, Three Discount Rate Shocks
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Figure 5: Discount Rate Shock in Model without Investment, Low Labor Supply Elasticity, Three Discount Rate Shocks

0 10 20

0

5

10

15

20
Real Rate of Interest

A
nn

ua
l P

er
ce

nt
ag

e 
R

et
ur

n



0 10 20
-25

-20

-15

-10

-5

0

5
Inflation

A
nn

ua
l P

er
ce

nt
ag

e 
R

et
ur

n

Quarters

0 10 20
-30

-25

-20

-15

-10

-5

0

5

10
Output

P
er

ce
nt

 D
ev

ia
tio

n 
fro

m
 S

te
ad

y 
S

ta
te

 O
ut

pu
t

Quarters

0 10 20
-10

-5

0

5

10

15

20

Investment

Quarters

P
er

ce
nt

 D
ev

ia
tio

n 
fro

m
 S

te
ad

y 
S

ta
te

 O
ut

pu
t

0 10 20
-30

-25

-20

-15

-10

-5

0

5

Consumption

Quarters

P
er

ce
nt

 D
ev

ia
tio

n 
fro

m
 S

te
ad

y 
S

ta
te

 O
ut

pu
t

0 10 20
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Nominal interest rate

A
nn

ua
l P

er
ce

nt
ag

e 
R

et
ur

n

0 10 20

-6

-4

-2

0

2

4

Rate of Discount
A

nn
ua

l P
er

ce
nt

ag
e 

R
et

ur
n

small shock
medium shock
large shock
larger shock

Figure 6: Discount Rate Shock in Model with Investment, Low Labor Supply Elasticity, Three Discount Rate Shocks
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Figure 7: Dynamic Response to Small Shock, With (*) and Without (-) Increase in Gov't Spending
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Figure 8: Dynamic Response to Larger Shock, With (*) and Without (-) Increase in Gov't Spending
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Figure a: 3-Month Commercial Paper Rate (*) and CPI Inflation
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Figure c: Ex post CPI-Based Real Return on 1-year Tbill
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Figure d: Ex ante Real Return on 1-year Tbill, Based on Michigan Survey Expectations

Figure 9: Real Interest Rate in 20th Century
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Figure b: Ex post, CPI-based Real Return on Commercial Paper
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Figure 10: Inflation, Nominal and Real Interest Rates, 1930's
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