
Estimation, Solution and Analysis of Equilibrium Monetary Models
Assignment 3: Solution and Analysis of a Simple Dynamic General Equilib-

rium Model: a Tutorial

The primary purpose of this tutorial is to provide the reader with hands-on
experience in solving a dynamic, general equilibrium model by log-linearization.
To make the discussion as accessible as possible, the analysis is done in a very sim-
ple dynamic general equilibrium model. Despite this, the tools that are presented
are easily generalized so that they work with the most elaborate general equilib-
rium models currently in use: models with employment and unemployment, with
a banking sector, financial frictions, multiple goods-producing sectors, etc.1 It
is hoped that the student who works through this tutorial will be in a position
to quickly jump to these more complicated applications if he/she so chooses. Of
course, solving more complicated models involves additional technicalities not ad-
dressed here. However, the available software is advancing so rapidly that soon
the technical expertise required to analyze even very complicated models will not
be much greater than what is covered in this tutorial.2

Although the model economy used below is quite simple, it is nevertheless
rich enough to convey some key forces that lie at the heart of modern general
equilibrium models. You will see how the operation of rate of return effects and
wealth effects shape the response of the economy to a technology shock.
The tutorial below focuses on two versions of a simple growth model. Ques-

tions 1 - 10 analyze a version in which the shock is stationary. However, in the
analysis of time series data, it is often useful to incorporate non-stationary shocks.
Accordingly, the analysis is redone in Question 11 in a version of the model where
the shock has a unit root. This presents an interesting technical problem. The
methods discussed throughout this tutorial are based on linearizing the model
economy about a steady state. When a shock has a unit root, then the economy
does not, strictly speaking, have a steady state. In Question 11, we see that if
variables are scaled appropriately, then there may yet be a sense in which the
model economy has a steady state after all, even in the presence of a unit root.
The 11 questions in the tutorial involve deriving formulas and entering them

1A direct generalization of the solution method discussed here is presented in Christiano
(2000). The method is similar to others. See, for example the articles in the October 2000 issue
of Computational Economics. For an application of the method to a model with production,
banking, investment, financial frictions and money, see Christiano, Motto and Rostagno (2004).

2An example of advances in software is the suite of programs in DYNARE. To find out more
about this, go to the following web page: http://www.cepremap.cnrs.fr/˜michel/dynare/



into MATLAB programs. To minimize time spent on MATLAB technicalities,
most of the MATLAB programs have been written and you are asked to just
program in the formulas in specific places.

1. Description of the Model

Consider an economy in which households seek to maximize utility of consumption,
Ct :

E0
∞X
t=0

βtu(Ct),
C1−σ

1− σ
. (1.1)

There is a resource constraint, which says that consumption plus investment, It,
must not exceed total output of goods, Yt :

Ct + It ≤ Yt. (1.2)

Goods are produced using physical capital, kt. In addition, there is a technology
shock, εt :

Yt = εt (utkt)
α . (1.3)

Here, ut denotes the rate at which capital is utilized. Investment is composed of
two parts:

It = Ikt + Iut (1.4)

The component, Ikt , is used to increase the quantity of physical capital:

kt+1 = (1− δ)kt + Ikt , (1.5)

where δ ∈ (0, 1) is the rate of depreciation on physical capital. The component of
investment, Iut , reflects maintenance expenditures that arise as capital is utilized
more intensely:

Iut = a (ut) kt. (1.6)

Here, the function, a, is increasing, a0 > 0, and convex, a00 > 0. It is convenient to
restrict the functional form of a so that in a steady state, ut = 1. The following
functional form is useful:

a(u) = 0.5bσau
2 + b(1− σa)u+ b((σa/2)− 1), (1.7)

where σa is a parameter that controls the curvature of a at steady state, ut = 1
(curvature is defined as a00(u)u/a0(u)). Also, b, is a function of the other parame-
ters of the model, and it must be chosen so that u = 1 in a steady state.
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To complete the description of the model, we have to say something about the
stochastic process governing εt. Let ε denote the unconditional mean of εt, so that
ε = Eεt. Define ε̂t = (εt − ε)/ε. Then, we suppose:

ε̂t = ρε̂t−1 + et,

where et is a white noise process. Note that Eε̂t = 0, which is consistent with our
assumption, ε = Eεt.
A baseline set of parameter values for the model is, σ = 1, δ = 0.02, α = 0.36,

ρ = 0.95, ε = 1, σa = 0.1, β = 1.03−0.25. These parameters correspond to a
quarterly time period for the model.

2. Questions and Analysis

1. Show that a(1) = 0, a0(1) = b, a00(1)/a0(1) = σa.

2. First order conditions. Derive the first order necessary conditions for op-
timization. Do this by first using the constraints to express Ct as a function of
kt, kt+1, ut, εt. Then, use this to substitute out for Ct in the utility function.
Then, differentiate with respect to ut and kt+1 to obtain the following first order
conditions:

vu(kt, ut, εt) = 0 (2.1)

vk(kt, kt+1, kt+2, ut, ut+1, εt, εt+1) = 0.

Display expressions for vu and vk.

3. Analysis of capital utilization. Multiply the vu equation by k
−α. Note that

vu(kt, ut, εt)k
−α
t has a term with a positive sign (this is the ‘marginal benefit of

utilization’) and a term with a negative sign (the ‘marginal cost’). Show that as
ut → 0 the marginal benefit of capital utilization goes to infinity, as ut →∞ the
marginal benefit goes to zero, and marginal benefits are strictly decreasing for all
u > 0. Note that the marginal cost is strictly increasing, finite for u = 0 and
positive for u sufficiently large. From this, you can conclude that for each kt, εt
there is a unique ut where marginal benefit and marginal cost intersect. Show
that as εt increases the optimal choice of ut increases. As kt increases, the optimal
choice of ut decreases. Can you provide intuition for this result?
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4. Rate of Return on Capital. The rate of return on capital, Rk
t , is the

marginal product of capital, plus what is left over next period after depreciation
and maintenance expenses:

Rk
t ≡MPk,t + 1− δ − a(ut).

Here,MPk,t is the marginal product of capital. Given our specification of technol-
ogy, this is αεtu

α
t k

α−1
t . If you look carefully at the function, vk, that you derived

above, you will see that it has the following form:

u0(Ct) = Etβu
0(Ct+1)R

k
t+1.

On the left of the above equality, you have the cost of acquiring one extra unit
of capital, in utility units. The term on the right describes the net benefits -
also in utility units - enjoyed in the next period by acquiring a unit of capital in
the current period. There is an expectation operator there, because next period’s
technology, εt+1, is uncertain. It is easy to see that the rate of return on capital
is an important variable determining how much capital investment there will be.
If the rate of return were anticipated to be higher, then consumption would be
rearranged so that current consumption is lower (thus, raising the term on the
left of the equality) and future consumption is higher (reducing u0(Ct+1) on the
right). This intertemporal reallocation of consumption corresponds to a current
increase in investment. So, a higher rate of return on capital leads to an increase
in investment by increasing the incentive to invest.
Show that a higher value of ut leads to a fall in the rate of return on investment,

MPk,t+1−δ−a(ut). (Hint: note that ut enters this in two places, throughMPk,t

and a(ut). Show that a
0(ut) = MPk.t/ut. Show that the derivative of MPk,t with

respect to ut is smaller than MPk,t, in steady state.) Conclude that if something
caused utilization to rise, the rise in utilization per se would reduce the incentive
to invest.

5. Steady State. Obtain formulas for the steady state values of Ct, kt by solving

vu(k, u, ε) = 0

vk(k, k, k, u, u, ε, ε) = 0,

where a variable without a time subscript is its value in steady state: a situation
in which variables take on a constant value, shocks are replaced by their mean,
and the equilibrium conditions are satisfied. How must b be related to the model
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parameters to ensure that, in steady state, ut = 1? Type your formulas in on lines
19 and 20 of hmk1.m.

We now take a brief break to discuss log-linearization of equations.
Here is a very simple example, by way of motivation. Suppose yt is an endoge-
nous variable, and xt is exogenous. Economic reasoning leads to the restriction,
f(yt, xt) = 0. Suppose we want to understand how yt varies with changes in xt.
But, suppose f is quite complicated, so that solving yt for each new xt is difficult.
A simple procedure is available, if we know what value yt takes on for some par-
ticular xt, say x. That is, we know f(y, x) = 0. We can use this information to
approximate how yt varies with xt. In particular, replace f with F , the first order
Taylor series expansion of f about yt = y, xt = x :

F (yt, xt) = f(y, x) + f1(y, x)(yt − y) + f2(y, x)(xt − x)

= f1(y, x)(yt − y) + f2(y, x)(xt − x),

taking into account that f(x, y) = 0. In practice, the variables in F are expressed
as a ratio to the values about which the Taylor series expansion is taken:

F (yt, xt) = f1(y, x)y(
yt − y

y
) + f2(y, x)x(

xt − x

x
) (2.2)

= f1(y, x)yŷt + f2(y, x)xx̂t,

where

ŷt =
yt − y

y
, x̂t =

xt − x

x
.

Because the expansion in (2.2) is in terms of hatted variables, rather than devi-
ations, it is referred to as a log-linear expansion. Now, we have a simple way to
determine how the endogenous variable varies with the exogenous variable. Set
simply solve F (yt, xt) = 0 :

ŷt = −
f2(y, x)x

f1(y, x)y
x̂t.

6. Log-linearizing the model. The equations of the model are given by (2.1).
As in the previous example, we have a solution for these equations at steady
state (recall question 5). To analyze what happens to the endogenous variables,
ut and kt, as the shock varies, we replace the equations in (2.1) with their log-
linear expansion about the steady state. The log-linearized expansion of the first
equation in (2.1) is:

vu,k(k, u, ε)kk̂t + vu,u(k, u, ε)uût + vu,ε(k, u, ε)εε̂t = 0,
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or,
V u
1 k̂t + V u

2 ût + V u
3 ε̂t = 0, (2.3)

where V u
1 = vu,k(k, u, ε)k, V

u
2 = vu,u(k, u, ε)u, V

u
3 = vu,ε(k, u, ε)ε, and vu,k(k, u, ε)

is the partial derivative of vu(kt, ut, εt) with respect to kt, evaluated at kt = k,
ut = 1, εt = ε. The objects, vu,u(k, u, ε) and vu,ε(k, u, ε) are defined similarly.

(a) Derive expressions, in terms of the model parameters, for V u
1 , V

u
2 and

V u
3 . Enter your formulas into MATLAB in the neighborhood of line 24 in
hmk1.m.

(b) An alternative way to obtain V u
1 , V

u
2 and V u

3 is to use numerical differenti-
ation. The MATLAB program, derivative.m, computes a derivative, f 0(x),
using the following formula, f 0(x) = (f(x + xε) − f(x))/xε, where xε is
small. Use this program to numerically differentiate vu and compare the
results with those based on your formulas. The program, derivative.m, re-
quires that you supply it with the equation you want to differentiate. The
first line of the program defining the equation must be as follows: function
[eul] = Vu(x, σa, α, b). Here, x is a vector containing the variables being
differentiated and the other three objects must contain the numerical values
of the parameters, σa, α, b. The MATLAB call to derivative.m must have the
form, [QQ]=derivative(x,‘Vu’, σa, α, b), where x is a vector containing the
values of kt, ut, εt at the point were the derivative is to be evaluated. Thus,
x = (k, 1, ε) for this example. The elements of the vector QQ contain the
derivatives of the function defined by Vu, with respect to the elements in x.
You will be provided with derivative.m and a basic shell of a Vu.m for use
in answering this question.

Compare the values of V u
1 , V

u
2 and V u

3 that you obtained by numerical
differentiation with the values you obtained using your formulas in (a).

(c) Now, log-linearly expand the dynamic Euler equation. As before, you have
to supply the Euler equation to be differentiated (the shell of a MATLAB
code, Vk.m, will be supplied to you for this purpose). Call the result:

Et

h
V k
1 k̂t + V k

2 k̂t+1 + V k
3 k̂t+2 + V k

4 ût + V k
5 ût+1 + V k

6 ε̂t + V k
7 ε̂t+1

i
= 0. (2.4)

(Hint: it is best to evaluate the intertemporal Euler equation in two steps
- first compute Ct, Ct+1 and Rk

t+1 and then construct the equation using
these three variables. In particular, use the period t resource constraint to
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define Ct as a function of kt, kt+1, εt and ut; the t + 1 resource constraint
to define Ct+1 as a function of kt+1, kt+2, εt+1 and ut+1. Also, compute the
period t+1 rate of return on capital, Rk

t+1 as a function of ut+1, kt+1, , εt+1.
Then, the intertemporal Euler equation is −u0(Ct) + βu0(Ct+1)R

k
t+1, where

u0(Ct) = C−σt .) Display the values of V k
i , i = 1, ..., 7.

7. Solving the Log-Linearized Model. We have replaced equations, (2.1)
with (2.3) and (2.4). The idea now is to find a ‘solution’ for them, in a sense to
be defined precisely below. In the mean time, we make life simpler by using (2.3)
to substitute out for ût in (2.4). Solve (2.3) for ût :

ût = −
V u
1

V u
2

k̂t −
V u
3

V u
2

ε̂t. (2.5)

Substitute this into (2.4),

Et[V
k
1 k̂t + V k

2 k̂t+1 + V k
3 k̂t+2 + V k

4

Ã
−V

u
1

V u
2

k̂t −
V u
3

V u
2

ε̂t

!

+V k
5

Ã
−V

u
1

V u
2

k̂t+1 −
V u
3

V u
2

ε̂t+1

!
+ V k

6 ε̂t + V k
7 ε̂t+1] = 0,

or,
Et

h
α0k̂t+2 + α1k̂t+1 + α2k̂t + β0ε̂t+1 + β1ε̂t

i
= 0, (2.6)

where

α2 = V k
1 − V k

4

V u
1

V u
2

α1 = V k
2 − V k

5

V u
1

V u
2

α0 = V k
3

β1 = V k
6 − V k

4

V u
3

V u
2

β0 = V k
7 − V k

5

V u
3

V u
2

.

We can now apply the undetermined coefficients method to find a solution. We
posit that capital evolves as follows:

k̂t+1 = Ak̂t +Bε̂t, (2.7)
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where A and B are pinned down by the requirement that (2.6) is satisfied for all
possible values of k̂t and ε̂t. Note:

k̂t+2 = Ak̂t+1 +Bε̂t+1 (2.8)

= A2k̂t + (AB +Bρ) ε̂t +Bet+1

Substituting (2.8) and (2.7) into (2.6), we obtain:

Et

h
α2k̂t + α1

³
Ak̂t +Bε̂t

´
+ α0

³
A2k̂t + (AB +Bρ) ε̂t +Bet+1

´
+ β1ε̂t + β0ρε̂t + β0et+1

i
= 0

Noting that Etet+1 = 0 and collecting terms, the previous expression reduces to:

α(A)k̂t + F ε̂t = 0,

where

α(A) = α0A
2 + α1A+ α2 (2.9)

F = α1B + α0 (AB +Bρ) + β1 + β0ρ.

So, A and B are pinned down by the requirements α(A) = 0 and F = 0. To solve
for A and B, first solve for A and then for B. Note that in general there are two
solutions to α(A) = 0. In practice it only makes sense to select a solution if it is
less than unity in absolute value. For a value of A larger than unity in absolute
value, the solution, (2.7) predicts that kt will diverge away from its steady state
(i.e., k̂t will get very large), when the linear approximations are certain to not be
valid. In some circumstances (for example, when σa =∞, so there is no variable
capital utilization), there exist theorems which indicate that there will be only
one eigenvalue less than unity in absolute value, and that that one is the correct
one to choose in approximating the true solution (see Stokey and Lucas, Chapter
6).
The value of A that we seek, satisfies

A =
1

α0

µ
−1
2
α1 ±

1

2

q
−4α0α2 + α21

¶
,

and the property that it is less than unity in absolute value. (In this model, it
can be proved that the two values of A, say A1 and A2, are both real and positive
and satisfy A1 ≤ 1 and A2 ≥ 1/

√
β.) Then, solve for B from F = 0 :

B = − β1 + β0ρ

α1 + α0 (A+ ρ)
.
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Enter into the indicated place in hmk1.m the formulas for α0, α1, α2, β0, β1, A,
B, and display the values of these variables.

8. Interpretation of A (‘speed of adjustment’). Suppose there is no uncer-
tainty, so that ε̂t = 0 for all t. We will consider how much time it takes for the
economy to return to steady state, in case it starts in period 0 away from steady
state. Note that for a given k̂0, k̂1 = Ak̂0. Similarly, k̂t = Atk̂0 for t = 1, 2, 3, ... .
Literally, we must wait for t =∞ before k̂t = 0 and the system is back to steady
state. However, for large enough t, k̂t is quite close. This motivates asking ‘how
long does it take to close 90% of the gap between the initial stock of capital and
the steady state stock of capital’. That is, what value does t have to take on so
that

k̂t

k̂0
≡

kt−k
k

k0−k
k

=
kt − k

k0 − k
= 0.10.

To determine the value of t, call it t∗, for which this holds, simply substitute in
At∗ k̂0 for k̂t∗ and solve for t

∗ :

At∗ = 0.10

→ t∗ =
log 0.10

logA
.

The speed of adjustment in the model, which is a function of A only, is the
outcome of the interplay between two forces. Consider the case when the initial
capital stock is low, so that k̂0 < 0. The speed of adjustment in this case corre-
sponds to the amount of time it takes for the capital stock to grow back up to its
steady state value. The incentive to save and grow fast is provided by the rate
of return on capital. Note that, holding ut constant, a lower capital stock raises
the marginal product of capital. The greater is the curvature in the production
function, (i.e., the smaller is α or the larger is δ), the greater is the incentive
to grow quickly back to steady state when k̂0 < 0. Now, the economy could in
principle grow back to steady state very quickly, simply by setting consumption
to zero long enough. This is obviously not desirable, because it would make the
marginal utility of consumption too high in the early periods. The greater is the
curvature in the utility function (i.e., the larger is σ), the stronger is this force
slowing the return to steady state.

(a) Compute the speed of adjustment (in annual units, so report t∗/4) for the
benchmark parameter values. Also, consider 3 single-parameter deviations
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from the benchmark values. In the first case, set δ = 0, and leave the other
parameters at their benchmark values. In the second case, set α = 0.10
and leave the other parameters at their benchmark values and in the third
case set σ = 4. Are the results for speed of adjustment consistent with the
intuition outlined above? (The validity of the intuition can be established
formally by suitably applying the analysis in Stokey and Lucas, Chapter 6.)

(b) Set σa = 10, 000, and leave the other parameter values at their benchmark
settings. What happens to the speed of adjustment? For fun, also try the
lowest value of σa you can get away with, without the program crashing (I
managed to go to σa = 0.00001, when t∗ = 746, 611 years!) Do the results
conform with intuition? (Hint: recall your answer to question 4).

9. Other variables. Given A and B, we can compute the response of the stock
of capital to shocks in ε̂t, as well as to off-steady state initial conditions in the
capital stock. Given the capital stock and ε̂t, we can also compute what happens
to capital utilization using (2.5).

(a) Consumption. This can be obtained using the resource constraint, (1.2),
evaluated as a strict equality and using the decision rule for utilization. The
resource constraint is nonlinear in terms of the variables that are available,
i.e., k̂t, ût and ε̂t. To see this, note that kt =

³
k̂t + 1

´
k and ut = ût+1, while

the production function, (1.3), is a non-linear function of kt and ut. Although
Ct could be evaluated using the nonlinear function, for some purposes it is
useful to have an expression that relates Ĉt linearly to k̂t and ε̂t. This linear
expression is obtained by taking a log-linear approximation of the resource
constraint about the steady state and using (2.7). Write expression for
consumption as follows:

Ĉt = Cεε̂t + Ckk̂t. (2.10)

(b) Investment. Compute the log-linear expression relating Îkt to k̂t and ε̂t :

Îkt = Ikk̂t + Iεε̂t (2.11)

Note that if A is large enough (say because σa is very close to zero) then Îkt
is positive when the capital stock is above its steady state. This may at first
seem inconsistent with stability property of our system: when the capital
stock is above steady state it comes down, and when it is below steady state
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it goes up. Apparently, investment can be positive when the capital stock
is above steady state! How is this consistent with stability?

(c) Gross output. A measure of GNP in this economy is the total output of
goods, Yt (see (1.3)), net of maintenance costs of capital, I

u
t (see (1.6)). Call

GNP Y gnp
t , so that

Y gnp
t = Yt − Iut .

Compute the log-linear expression relating Ŷ gnp
t to k̂t and ε̂t :

Ŷ gnp
t = Ykk̂t + Yεε̂t (2.12)

(d) Compute Cε, Ck, Ik, Iε at the benchmark parameter values. There is an
obvious consistency condition that must hold across these numbers, due to
the resource constraint, Ct + Ikt = Y gnp

t .

Yk = (C/Y )Ck + (δk/Y )Ik, Yε = (C/Y )Cε + (δk/Y )Iε.

It is worthwhile verifying that these consistency conditions are satisfied.

10. Model Simulation. We can now study the dynamic response of the economy
to a shock that occurs in period t = 1, when k̂1 takes on some given value. Suppose
e1 = .01, so that there is a one percent innovation in ε̂1. Then, ε̂t = ρε̂t−1,
t = 2, 3, ... . Also, k̂t+1 = Ak̂t + Bε̂t, t = 1, 2, .... . Finally, the other variables of
interest can be computed from (2.5) and (2.10)-(2.12). These variables can then
be graphed as is. In this case, the graphs are of the percent (if multiplied by 100)
deviation of the variables from their steady state values. Alternatively, the actual
values of the variables can be graphed. That is, if x̂t is a variable of interest, then
its level can be obtained from:

xt = (x̂t + 1)x. (2.13)

An alternative transformation is also sometimes used, to convert to levels. Note
from the previous expression, that log xt = log (x̂t + 1) + log x. It is also the case
that when x̂t is close to zero (and the approximations we use are strictly only
valid in this case anyway), then log (x̂t + 1) ≈ x̂t. Using this approximation, we
see

x̂t = log
xt
x
,
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or,
xt = x exp (x̂t) . (2.14)

It is not clear which of the two, (2.13) or (2.14), is the better approximation.
Model simulation is quite straightforward, and so you are not asked to write

the code to do simulations for this homework. Instead, you can use the MATLAB
routine that has been provided, hmk1answer.m, to do the simulation. The start
of this program looks just like hmk1.m, and this is where the parameter values are
input, as well as T, the number of observations you’d like to simulate (the code
that you are asked to enter into hmk1.m in the questions above has been entered
into solvemodel.m, which is called by hmk1answer.m.) The program, hmk1.m
calls solvemodel.m, which solves the model and returns Ĉt, Î

k
t , ût, k̂t+1, Ŷ

gnp
t , ε̂t,

t = 1, 2, ..., T. In the calculations, e1 = 0.01, and et = 0 for t ≥ 2. The program,
solvemodel.m, is executed twice, once with σa = 0.1 and once with σa = 10, 000.
The output of both series was graphed by plotout.m, so that you can see the
impact of σa on the transmission of a technology shock.
When σa = 10, 000 capacity utilization is essentially fixed, because it is pro-

hibitively expensive to vary ut. In the case, σa = 0.1, ut is relatively inexpensive to
vary. What is graphed in the following figure is, in each case, the hatted variable,
times 100. Note in the figure that the high value of ε̂t in the early periods leads
to an initial high level of utilization. Eventually, as the capital stock grows, it
dominates in the utilization decision, and utilization starts to go negative. The
higher rate of return associated with low capital utilization then encourages more
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You may find it interesting to experiment with hmk1answer.m, to see how different
settings of the parameters affect the transmission of technology shocks.

11. Unit Roots. Often, it is of interest to specify that the technology shock have
a unit root. We can accommodate this by supposing that the state of technology,
now labelled zt, evolves as follows:

zt = zt−1 exp(εt), (2.15)
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where
εt = (1− ρ)ε+ ρεt−1 + et.

We replace the production function, (1.3), with:

Yt = (utkt)
α z1−αt .

In this new specification, zt is the state of technology. Note that technology now
has a unit root. That is,

log zt − log zt−1 = εt,

where εt is a first order autoregressive process. With this specification, a shock
to et has a much more powerful impact on technology than it did before. Now,
et drives zt (and, log zt) up permanently. A unit innovation in et drives up log zt
by the same amount, log zt+1 by (1 + ρ) et, and so forth. The eventual impact of
a unit jump in et is to raise log zt by 1/(1− ρ) permanently. To see how big this
can be, suppose ρ = 0.90. In this case a unit shock to log zt eventually leads to a
ten-fold rise in log zt.
In the new specification of the model, we use the same utility function and re-

source constraint as before, (1.1) and (1.2), respectively. We also use the equations
pertaining to investment and capital utilization, (1.4)-(1.7).
With the new setup, the intertemporal Euler equation is:

Et

n
C−σt − βC−σt+1

h
αuαt+1k

α−1
t+1 z

1−α
t+1 + (1− δ − a (ut+1))

io
= 0,

and the utilization first order condition is:

αuα−1t kαt z
1−α
t = a0 (ut) kt.

We want to apply the style of analysis used in the previous model economy.
However, that analysis required that the variables converge to a steady state.
The problem is that in this model economy, the variables do not converge to a
steady state. Instead, when et is kept fixed at its unconditional mean, εt converges
ε = Eεt and zt grows perpetually at ε × 100 percent per period. All the other
variables, Ct, Yt, kt+1, etc., then also grow at ε × 100 per period (this will be
established formally below). So, the methods developed previously will not work
for Ct, Yt, kt+1. However, it turns out that if we scale these variables, then the
method does apply to the scaled variables. In particular, consider the following
change of variables:

ct =
Ct

zt
, k̃t+1 =

kt+1
zt

, yt =
Yt
zt
.

14



Rewrite the intertemporal Euler equation, replacing Ct with ztct and kt+1 with
k̃t+1zt, multiply both sides of the result by z

σ
t , and take into account (2.15). Then,

Et

½
c−σt − β exp(−σεt+1)c−σt+1

∙
αuαt+1

³
exp(−εt+1)k̃t+1

´α−1
+ (1− δ − a (ut+1))

¸¾
= 0.

(2.16)
The Euler equation for ut, in terms of scaled variables, is:

αuα−1t exp(−αεt)k̃αt − a0 (ut) exp(−εt)k̃t = 0. (2.17)

Rewriting the resource constraint in a similar way, we obtain:

ct =
³
ut exp(−εt)k̃t

´α
−
³
k̃t+1 − (1− δ) exp(−εt)k̃t

´
− a (ut) exp(−εt)k̃t. (2.18)

The previous three equations characterize equilibrium for utilization, as well as
for scaled consumption and capital accumulation. The variables ut, k̃t and ct,
have well-defined steady states. This can be verified by noting that if εt = ε, for
all t, the three equations can be solved for u, k̃ and c (this proves an assertion
made previously). The objects, k̃ and c, correspond to steady state growth paths
for kt and ct : kt = ztk̃, Ct = czt. Along a steady state growth path, ut is constant
(actually, u = 1 if we restrict the function, (1.7), appropriately).
To analyze the system when it is stochastically perturbed from its steady

state growth path, we replace the nonlinear euler equations in (2.16)-(2.18) by
their expansion about the values of the variables in steady state. One small
difference arises from the specification of the technology shock, which causes the
exponential of εt to appear in the scaled equations. This leads us to work with
a linear expansion of these variables in terms of ε̃t = εt − ε. For example, denote
the function, (2.17) by vu(k̃t, εt, ut). Then, the expansion we work with is:

vu(k̃t, εt, ut) ' vu(k̃, ε, u) + vu,k̃(k̃, ε, u)k̃
b̃
kt + vu,ε(k̃, ε, u)ε̃t ++vu,u(k̃, ε, u)uût,

where vu,x means the partial derivative of the function, vu, with respect to x. Note
that in terms of εt, this is the usual Taylor series expansion. In terms of capital
and utilization, we continue to work with the log-linear expansion.
After linearizing (2.16)-(2.18), we can substitute out for consumption and uti-

lization, to obtain a single dynamic equation in terms of capital and the εt shock
only. The undetermined coefficient method can then be applied again to obtain a
solution of the following form:

b̃
kt+1 = A

b̃
kt +Bε̃t,

15



where A and B are pinned down by the analogs to (2.9). As before, we solve for
consumption and investment as follows:

ĉt = ck
b̃
kt + cεε̃t

ı̂kt = ik
b̃
kt + iεε̃t,

where ikt = Ikt /zt. Simulations proceed as before, though with a twist. The twist
arises because the variables being simulated are not the actual variables of interest,

but (apart from utilization) they are scaled variables. So, after simulating
b̃
kt+1,

t = 1, 2, ..., T, this variable must be converted to unscaled form by multiplication,

zt
b̃
kt+1. Similarly, for investment and consumption. Utilization, of course, need not
be ‘unscaled’ since it is not scaled in the first place.
Sometimes, it is not the unscaled variable that is required. In the case of an

impulse response function, it is assumed that the shock hits the economy when
it is on a steady state growth path. In practice, the impulse response function
is defined as the path a variable takes in response to a shock, relative to what
its path would have been if there had been no shock. In our analysis of the
stationary economy, this definition of an impulse response function led us to graph
variables like Ĉt. Now, we wish to display unscaled consumption along the shocked
equilibrium path, Ct = (ĉt + 1) czt, relative to what it would have been if no shock
had occurred. Let z̃t denote the path that zt would have taken in the absence of a
shock to et. Suppose that the shock occurs in period t = 1 and suppose the value
of zt in period t = 0 is z0. Then,

z̃t = exp(tε)z0

zt = exp(εt)zt−1

= exp(εt + εt−1)zt−2

= ...

= exp(εt + εt−1 + ...+ ε1)z0

Note that z0.is the same for the shocked and the unshocked paths. If the shock
had not occurred, then unscaled consumption would have been, say, C̃t, where
C̃t = cz̃t. Note,

Ct

C̃t

=
exp(εt + εt−1 + ...+ ε1)

exp(tε)
(ĉt + 1)

= exp(ε̃t + ε̃t−1 + ...+ ε̃1) (ĉt + 1) .
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Then, the log deviation of shocked consumption from its unshocked path is:

log
Ct

C̃t

= ε̃t + ε̃t−1 + ...+ ε̃1 + ĉt,

where we have used log (ĉt + 1) ' ĉt. We conclude that if x̂t is the solution of
the log-linearized system for some variable that has been scaled, then the im-
pulse response of that variable in period t is obtained simply by adding to it the
cumulative sum of the ε̃t’s.
These calculations for solving and simulating the model with the unit root

shock have been programmed in MATLAB file solveneoclassicalunit.m. This pro-
gram requires as input the model parameters, (β, α, ε, δ, σa, σ, ρ). On output, the
program produces A, B and the steady state (scaled) capital stock. (The program
can also be used to repeat some of the calculations for the earlier part of this tuto-
rial; with unit=1 the model with the unit root shock is analyzed, and with unit=0,
the model with stationary shock is analyzed.) To call solveneoclassicalunit.m, run
program neoclassical.m.
The following parameter values were selected: β = 1.03−0.25, α = 0.36, δ =

0.02, ρ = 0.5, ε = 0.015/4, σ = 1. As before, the calculations were done for
σa = 0.1 (see the solid line in the figure) and σa = 10, 000 (see the starred line
in the figure). The figure reports the response to a 1% shock to zt (i.e., e1 = .01
and et = 0 for t > 1). Note how the state of technology jumps one percent in
the period of the shock, and eventually rises to 2 percent. In response to this,
utilization jumps in the variable utilization case, and remains fixed at unity in the
fixed case. Note how investment actually drops with variable utilization, while
it rises with fixed utilization. The reason for this is simple. The innovation in
technology is a signal that in the future there will be ample resources. This
wealth effect exerts upward pressure on consumption, and downward pressure on
investment. An effect working in the other direction stems from the fact that the
jump in the state of technology raises the rate of return on capital. In the fixed
utilization case, this rate of return effect dominates and investment rises. In the
variable utilization case, utilization rises in response to the technology shock. This
has the effect of reducing the rise in the rate of return of investment. Because the
rate of return effect is weakened so much, the wealth effect dominates and this is
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why investment drops in the first few periods after the technology shock.
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Model Parameter values: ρ = 0.5, β = 0.99264, δ = 0.02, γ = 1, solid line: σ 
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 = 0.1, starred line: σ 

a
 = 10000

0 5 10
1

1.2

1.4

1.6

1.8

2

state of technology, z 
t

%
 d

ev
ia

tio
n 

fr
om

 s
s

quarters

We know that consumption and investment must eventually rise permanently
by 2 percent, and utilization must eventually return to unity. To see that it
actually does happen, is useful to simulate the model for longer periods. This is
done in the following figure, which displays results for T = 200. Note how much
more time the model with variable capital utilization takes to converge to steady
state. The fact that high capital utilization in the early periods slows the response
of investment, means that the capital stock takes much longer to rise up to its
new steady state growth path
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Question: run the program, neoclassical.m, with ρ = 0.99. Note that now
investment is below steady state for 135 periods in the variable capital utilization
case. It is also negative for 13 periods in the fixed utilization case. Is this consistent
with the intuition outlined above? Now run the program with σ = 10, and note
that it takes much longer for the system to converge to its new steady state growth
path after a shock. Is this consistent with intuition? You may want to play with
other parameter values, to build intuition.
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