
Estimation, Solution and Analysis of Equilibrium Monetary Models
Assignment 5: The Japanese Economic Growth Slowdown in the 1990s and

the Hours Worked Hypothesis.

The Japanese economic growth slowdown of the 1990s has attracted a great
deal of attention. No doubt, the Japanese slowdown reflects many causes, in-
cluding a weak banking sector1 and perhaps bad monetary policy. This tutorial
explores a factor that was suggested by Hayashi and Prescott2, and which can be
evaluated in a slightly modified version of the neoclassical growth model.3 The
‘hours worked hypothesis’ is based on three observations: (i) in the late 1980s
the Japanese passed legislation which had the effect of encouraging a reduction in
working hours, (ii) per capita working hours fell during the decade of the 1990s
by about 10 percent, and (iii) the output growth shortfall was about 1 percent a
year, putting Japan about 10 percent below trend by 1990s. These are intriguing
observations because if steady state hours worked fall by x percent in a neoclassi-
cal growth model, then we expect steady state output to fall by about x percent
too. Moreover, along the transition, we would expect investment and employment
to be below their new steady state levels. Qualitatively at least, this may sound
like the Japanese economy in the 1990s. The purpose of this tutorial is to use the
neoclassical growth model to see how far, quantitatively, this idea gets us towards
constructing a quantitative account of Japan in the 1990s.
The hours worked hypothesis seems unlikely to explain the boom in investment

and output that occured in Japan in the late 1980s. In this tutorial, we investigate
whether this can be interpreted as an overinvestment boom in the sense of the
analysis in assignment 4. However, the analysis there suggests that key features
of overinvestment booms are missing unless we investigate them using a model
with monetary policy. We find other problems with this hypothesis below. Still,
the nonmonetary analysis of this tutorial sets up a useful benchmark.
The conclusion of this analysis is as follows. The hours worked hypothesis ap-

1See, for example, Caballero, Hoshi and Kashyap,” Zombie Lending and Depressed Re-
structuring in Japan,” 2004, University of Chicago Graduate School of Business, and Levon
Barseghyan, ”Non Performing Loans, Prospective Bailouts, and Japan’s Slowdown” , 2003,
Cornell University Department of Economics.

2See Hayashi and Prescott, ‘The 1990s in Japan: A Lost Decade’,
http://minneapolisfed.org/research/wp/wp607.html

3The tutorial is based on ongoing research by Christiano and Fujiwara. Very substantial
programming assistance was provided by Etienne Gagnon.



pears to provide a nice account of the fact that hours worked, output, investment
and consumption fell to a lower growth path in the 1990s. However, the hypothe-
sis does not help explain the boom of the late 1980s and early 1990s. We explored
the potential for the overinvestment hypothesis to account for this, but ran into
some trouble. In particular, that hypothesis implies that employment should have
been high in the boom. However, employment appears not to have changed much
in this period. One possibility is that a zero-income-effect on leisure utility func-
tion might work better. With this type of utility function, labor supply is only a
function of the current real wage (that is, if utility is separable).4

Hopefully, this exercise has exhibited the potential for quantitative general
equilibrium analysis to be helpful in evaluating alternative hypotheses about the
data.

1. The Model

The first subsection describes the agents and technology. The next subsection
derives the equations that characterize equilibrium. The following three sections
then carry out the three steps to implement the linearization strategy for solving
the model: (i) compute the steady state, (ii) linearize the equilibrium equations,
(iii) solve the linearized system. Although the technology shock is explicitly in-
troduced in the description of the model setup, it is not incorporated into the
subsequent discussion, because this is already discussed in previous assignments.
The last section describes our way of capturing the Japanese laws which encour-
aged a reduction in work effort. It is possible to do the assignment by just looking
at the first subsection (‘Basic Setup’) and the last (‘Experiment....’).

1.1. Basic Setup

The preferences of the representative agent are as follows:

X
βt

h
(Ct − bCt−1) (Tt − ht)

ψ
i1+σ

1 + σ
,

where Tt is the time endowment. Notice that this has a time subscript. This is
because we will model the Japanese legislation designed to reduce work hours in

4This was suggested by Isabel Correia.
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a reduced form way as a reduction in Tt. We posit that T̂t, the percent deviation
of Tt from steady state, evolves as follows:

T̂t = ρT T̂t−1.

Here, Ct and ht denote consumption and hours worked, respectively. The resource
constraint is

a (ut) K̄t + It + Ct ≤ Kα
t (ztht)

1−α , (1.1)

whereKt denotes capital services. Also, the exogenous shock to technology evolves
as follows:

zt = zt−1µz exp(εt), (1.2)

where εt evolves as the technology shock in assignment 4:

εt = ρzεt−1 + ut−p + ξt,

where ut and ξt are uncorrelated white noise processes (sorry for the switch in
notation). With this setup, a shock to ut shifts up Etεt+p. As with any expectation,
the higher value of εt+p need not actually be realized. That depends on the
realization of ξt+p.
The technology for capital accumulation is:

K̄t+1 = (1− δ)K̄t + (1− S

Ã
It
It−1

!
)It,

where K̄t is the physical stock of capital. Also, S and S0 are zero on a steady
state growth path and χ > 0, where χ is S00, evaluated in steady state.
The stock of physical capital, K̄t, and the services of that stock, Kt, are related

as follows:
Kt = utK̄t,

where ut is unity in steady state. The cost of capital utilization, in units of the
consumption goods, is given by:

a (ut) K̄t,

where a is zero in steady state and a0, a00 > 0. We define the curvature of a in
steady state to be:

σa =
a00

a0
.
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1.2. Equilibrium Conditions

The equilibrium allocations are the solution to a particular planning problem. In
Lagrangian form, this problem is:X

βt{u(Ct, Ct−1, ht;Tt)

+λt
h³
utK̄t

´α
(ztht)

1−α − Ct −
³
a (ut) K̄t + It

´i
+µt

"
(1− δ)K̄t + (1− S

Ã
It
It−1

!
)It − K̄t+1

#
},

where

u(Ct, Ct−1, ht;Tt) =

h
(Ct − bCt−1) (Tt − ht)

ψ
i1+σ

1 + σ
.

The first order condition with respect to Ct is:

u1,t − λt + βu2,t+1 = 0,

or,

(Ct − bCt−1)
σ (Tt − ht)

ψ(1+σ) (1.3)

−βb(Ct+1 − bCt)
σ (Tt+1 − ht+1)

ψ(1+σ) = λt.

The first order condition with respect to ht is:

u3,t + (1− α)λt
³
utK̄t

´α
z1−αt h−αt = 0, (1.4)

or,

ψ(Ct − bCt−1)
1+σ (Tt − ht)

[ψ(1+σ)−1] = (1− α)λt
³
utK̄t

´α
z1−αt h−αt .

The first order condition with respect to It is:

−λt + µt(1− S

Ã
It
It−1

!
) (1.5)

−µtS0
Ã

It
It−1

!
It
It−1

+βµt+1S
0
µ
It+1
It

¶µ
It+1
It

¶2
= 0.
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To help interpret this equation, it is useful divide through by λt and the result in
assignment 4:

PK0,t =

dUt
dK̄t+1

dUt
dCt

=
µt
λt
,

to substitute in PK0,t. Then,

PK0,t =
1

1− S
³

It
It−1

´
− S0

³
It

It−1

´
It

It−1

−
PK0,t+1S

0
³
It+1
It

´ ³
It+1
It

´2
λt

βλt+1

.

See assignment 4 for an extended discussion of this expression.
The first order condition for K̄t+1 is:

−µt + βλt+1
h
αuat+1K̄

α−1
t+1 (zt+1ht+1)

1−α − a (ut+1)
i
+ β(1− δ)µt+1 = 0, (1.6)

which can be written:

1 = β
λt+1
λt

⎧⎨⎩
h
αuat+1K̄

α−1
t+1 (zt+1ht+1)

1−α − a (ut+1)
i
+ (1− δ)PK0,t+1

PK0,t

⎫⎬⎭ .

The object in braces is the rate of return on capital.
Finally, the first order condition for ut is, after dividing through by K̄t

αuα−1t K̄α−1
t (ztht)

1−α = a0 (ut) . (1.7)

In a decentralized competitive market, the rental rate on capital services, rkt , is:

rkt = αKα−1
t (ztht)

1−α .

So, the first order condition for ut is to equate the rental rate on capital services
to the marginal cost of providing those services.
We follow the discussion in assignment 3 and scale the variables that grow in

steady state. Let:

ct =
Ct

zt

it =
It
zt

k̄t+1 =
K̄t+1

zt

λ̃t =
λt
zσt

.
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We now display the scaled Euler equations. The resource constraint is:

(1)

Ã
utk̄t
µz

!α

h1−αt = ct + a (ut)
1

µz
k̄t + it,

The capital law of motion is:

(2)
(1− δ)

µz
k̄t + (1− S

Ã
µzit
it−1

!
)it = k̄t+1.

The consumption Euler equation is:

(3) (ct −
b

µz
ct−1)

σ (Tt − ht)
ψ(1+σ)

−βbµσz (ct+1 −
b

µz
ct)

σ (Tt+1 − ht+1)
ψ(1+σ) = λ̃t,

The labor Euler equation is

(4) ψ(ct −
b

µz
ct−1)

1+σ (Tt − ht)
[ψ(1+σ)−1] = (1− α) λ̃t

Ã
utk̄t
µz

!α

h−αt

The investment Euler equation is:

(5) − λ̃t + λ̃tP̃K0,t(1− S

Ã
µzit
it−1

!
)

−λ̃tP̃K0,tS
0
Ã
µzit
it−1

!
µzit
it−1

+βµσz λ̃t+1P̃K0,t+1S
0
µ
µzit+1
it

¶µ
µzit+1
it

¶2
= 0.

The Euler equation for capital is:

(6) − λ̃tP̃K0,t + βµσz λ̃t+1[αu
a
t+1k̄

α−1
t+1 (µzht+1)

1−α − a (ut+1)]

+β(1− δ)µσz λ̃t+1P̃K0,t+1 = 0.

The Euler equation for capital utilization is:

(7) αuα−1t

Ã
1

µz
k̄t

!α−1

µΥ (ht)
1−α − a0 (ut) = 0.
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1.3. Steady State

The steady state is easy to compute. The capital accumulation equation is:

i = k̄

"
1− (1− δ)

µz

#
. (1.8)

The consumption euler equation is:

cσ(1− b

µz
)σ (T − h)ψ(1+σ) [1− βbµσz ] = λ̃. (1.9)

The capital labor ratio, after some manipulation, is:

h

k̄
=

"
1− β(1− δ)µσz
µ1−αz βµσzα

# 1
1−α

Then, divide the consumption euler equation by the labor euler equation:

(T − h) [1− βb (µz)
σ]

ψc(1− b
µz
)

=

³
h
k̄

´α
(1− α)

³
1
µz

´α . (1.10)

Combining the resource constraint and the investment equationÃ
1

µz

!α Ã
h

k̄

!1−α
k̄ = c+ k̄

"
1− (1− δ)

µz

#
,

we obtain the following expression for consumption:

c =

⎡⎣Ã 1
µz

!α Ã
h

k̄

!1−α
−
Ã
1− (1− δ)

µz

!⎤⎦ k̄. (1.11)

Use this to substitute out for consumption in (1.10) :³
T
k̄
− h

k̄

´
[1− βbµσz ]∙³

1
µz

´α ³
h
k̄

´1−α
−
³
1− (1−δ)

µz

´¸
ψ(1− b

µz
)
=

³
h
k̄

´α
(1− α)

³
1
µz

´α .
Solve this for k̄ :

T

k̄
=

ψ(1− b
µz
)
³
h
k̄

´α ∙³
1
µz

´α ³
h
k̄

´1−α
−
³
1− (1−δ)

µz

´¸
(1− α)

³
1
µz

´α
[1− βbµσz ]

+
h

k̄
.
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With k̄ in hand, we can compute h from
³
h/k̄

´
k̄. Then, c is obtained from (1.11)

and i is obtained from (1.8). The multiplier, λ̃, can be obtained from (1.9). Then,
µ̃ is just λ̃.
The derivative of the utilization function, a0, is:

α

Ã
1

µz

!α−1 Ã
h

k̄

!1−α
= a0.

1.4. Linear Approximation

Linearly expanding the resource constraint:

(1) cĉt + a0
1

µz
k̄ût + îıt −

Ã
k̄

µz

!α

h1−α
h
α
³
ût +

b̄kt´+ (1− α) ĥt
i
= 0.

where

x̂t ≡
dxt
x
.

Note:
dxt = xx̂t.

Linearly expanding what capital accumulation equation:

(2) b̄kt+1 − (1− δ)

µz

b̄kt − i

k̄
ı̂t = 0

Linearly expanding the consumption Euler equation:

(3) σcσ(1− b

µz
)σ−1 (T − h)ψ(1+σ)

Ã
ĉt −

b

µz
ĉt−1

!

+ψ (1 + σ) cσ(1− b

µz
)σ (T − h)ψ(1+σ)−1

³
T T̂t − hĥt

´
−σβb (µz)σ cσ(1−

b

µz
)σ−1 (T − h)ψ(1+σ) (ĉt+1 −

b

µz
ĉt)

−ψ (1 + σ) βb (µz)
σ cσ(1− b

µz
)σ (T − h)ψ(1+σ)−1

³
T T̂t+1 − hĥt+1

´
− λ̃

b̃
λt = 0

The labor equation is:

(4) (1 + σ)ψ(1− b

µz
)σ (T − h)[ψ(1+σ)−1] c1+σ

Ã
ĉt −

b

µz
ĉt−1

!

8



+ψ [ψ (1 + σ)− 1] (1− b

µz
)1+σ (T − h)[ψ(1+σ)−2] c1+σ

³
T T̂t − hĥt

´
− (1− α) λ̃

Ã
k̄

µz

!α

h−α
∙b̃
λt + αb̄kt + αût − αĥt

¸
= 0

The investment equation is:

(5)− b̃
λt + P̃K0

∙b̃
λt +

b̃
PK0,t

¸
−P̃K0S00 (µz)

2 [̂ıt − ı̂t−1]

+βµσz P̃K0S00 (µz)
3 [̂ıt+1 − ı̂t] = 0.

The capital euler equation is:

(6) − λ̃P̃K0

∙b̃
λt +

b̃
PK0,t

¸
+βµσz λ̃a

0 b̃λt+1
+βµσz λ̃[a

0
³
αût+1 + (α− 1) b̄kt+1 + (1− α)ĥt+1

´
− a0ût+1]

+β(1− δ)µσz λ̃P̃K0

∙b̃
λt+1 +

b̃
PK0,t+1

¸
The utilization euler equation is:

(7) (α− 1)
h
ût +

b̄kt − ĥt
i
− a0σaût = 0.

1.5. Solving the Linearized System

1.5.1. Canonical Form

The matrix representation of the above 7 equations is:

α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st = 0, (1.12)

where

zt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̄kt+1
ĉt
ı̂tb̃
λtb̃

PK0,t

ût
ĥt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, st = T̂t.
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The variable, st, evolves as follows:

st = Pst−1, (1.13)

where P = ρT .

1.5.2. Solution to Canonical Form

We seek a solution of the following form:

zt = Azt−1 +Bst, (1.14)

where A and B are to be determined. Substituting (1.13) and (1.14) into (1.12)
we find:

α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st

=
h
α0A

2 + α1A+ α0
i
zt−1 + Fst = 0,

for all zt−1 and st. For this equation to be zero for all possible zt−1 and st, we
must have that the matrix coefficients on zt−1 and st are both exactly zero:

α0A
2 + α1A+ α0 = 0,

F = 0,

where
F = (β0 + α0B)P + (β1 + α1B + α0AB). (1.15)

In addition, for analysis to be interesting, it must be that A has eigenvalues
less than unity in absolute value, for otherwise, the system would be predicted to
evolve away from steady state if zt−1 or st 6= 0. But, the system has been linearized
around steady state, so that the equations are not necessarily meaningful far from
steady state (for example of this, see the two-sector model in Chapter 6 of Stokey
and Lucas.) Another reason to focus on A matrices with eigenvalues less than
unity in absolute value is that the theorems in Stokey and Lucas (chapter 6) tell
us that that corresponds to the linearization about the true solution, in the case
of the neoclassical growth model. Those theorems also say that there is only one
matrix A that satisfies this condition. Often, in economic models, A satisfying
the eigenvalue condition is unique.
The matrix A can be found using standard software (see findandcheckA.m, on

the web site). To find B, the vectorization operator is useful. Recall that the
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vectorization operator, vec(·), takes the columns of a matrix and stacks them into
a colum vector:

vec(X) =

⎡⎢⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎥⎦ , where X = [x1, x2, ..., xn] .

In MATLAB, this operation is achieved by reshape(X,n × m, 1), where m is
the number of rows of X. Two properties of the vectorization operator include
additivity, vec(a+ b) = vec(a) + vec(b), and

vec(A1A2A3) = (A
0
3 ⊗A1) vec(A2).

Write

F =

⎡⎢⎢⎢⎢⎣
F1
F2
...
F7

⎤⎥⎥⎥⎥⎦ ,
so that

vec(F 0) =

⎡⎢⎢⎢⎢⎣
F 0
1

F 0
2
...
F 0
7

⎤⎥⎥⎥⎥⎦ = vec [P 0β00 + P 0B0α00 + β01 +B0α01 +B0A0α00]

= vec (P 0β00 + β01) + vec (P 0B0α00 + IB0α01 + IB0A0α00)

= vec (P 0β00 + β01) + vec (P 0B0α00) + vec (IB0α01) + vec (IB0A0α00)

= vec (P 0β00 + β01) + {(α0 ⊗ P 0) + (α1 ⊗ I) + (α0A⊗ I)} vec(B0)

= d+ qδ,

say, where ⊗ denotes the Kronecker product. Also, I is the identity matrix with
dimension equal to that of st. In addition,

d = vec (P 0β00 + β01)

q = (α0 ⊗ P 0) + (α1 ⊗ I) + (α0A⊗ I)

δ = vec(B0).
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Simply compute δ = −q−1d and construct B from δ. To see how to construct B
from δ, write:

B =

⎡⎢⎢⎢⎢⎣
B1
B2
...
B7

⎤⎥⎥⎥⎥⎦ ,
so that

δ = vec(B0) =

⎡⎢⎢⎢⎢⎣
B0
1

B0
2
...
B0
7

⎤⎥⎥⎥⎥⎦ .
To obtain B from δ using MATLAB, execute B = reshape(δ,m, n1)

0, where n1 is
the number of equations (i.e., the left dimension of B) and m is the number of
shocks (i.e., the right dimension of B). After doing these equations, it is of course
wise to do a check and verify that with the computed B, the matrix F in (1.15)
is indeed zero. If it is, then by construction all the calculations have been done
correctly. (The MATLAB routine, findandcheckB.m, computes B.)

1.6. Experiment: Reduction in Incentive to Work

The idea is that the Japanese laws encouraging a reduction in work effort cor-
responded to a sudden drop in the steady state value of Tt. We model the laws
as coming in slowly. Thus, in the first period (the late 1980s) the economy was
on the old steady state growth path. Suddenly, the steady state time endowment
drops, with the actual time endowment converging slowly to that new steady state
according to the rate implied by the magnitude of P. The actual time endowment
in the old steady state is 1 and in the new steady state it is 0.93, corresponding
to a drop of a little over 7 percent. We model the time endowment as:

T̂t = ρT̂t−1,

with

T̂t =
Tt − T

T
.

In periods t < t∗, this is zero, and in t∗, T̂t∗ = (1 − 0.93)/0.93, reflecting that
the actual time endowment in t∗ is still the old steady state, while the new time
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endowment is lower. Thus, in the period when the laws are passed, T̂t is suddenly
very high: the actual time endowment is now above steady state.
To simulate this system, we first compute a sequence, T̂t, for t = t∗, t∗+1, .....

. Then, we solve
zt = Azt−1 +BT̂t, (1.16)

for t = t∗, t∗+1, ..... . Note that to solve this for t∗, we require zt∗−1.Writing this
out explicitly, we obtain:

zt∗−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̄kt∗
ĉt∗−1
ı̂t∗−1b̃
λt∗−1b̃

PK0,t∗−1
ût∗−1
ĥt∗−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Some of these variables may not enter the system. If so, the corresponding column

in A will be composed of zeroes. To construct zt∗−1, consider
b̄kt∗,

b̄kt∗ = k̄t∗ − k̄

k̄
.

We set k̄t∗ to the previous steady state, and we set k̄ to the new steady state. In

particular, b̄kt is zero for t < t∗ and then suddenly at t∗, b̄kt jumps, since the new
steady state is a lower capital stock. All the other variables in zt∗−1 should be
treated in exactly the same way. For example,

ĉt∗−1 =
ct∗−1 − c

c
,

where ct∗−1 is the old steady state and c is the new steady state.
With this setting for zt∗−1 and with T̂t, t = t∗, t∗+1, ..... in hand, it is possible

to simulate (1.16) for t = t∗, t∗ + 1, ... . What we are actually interested in, of
course, is the original unscaled variables. So, after this simulation of the scaled
variables, they should be converted to unscaled and then graphed.
One possible way to graph things is as follows. A given page might contain

many pictures: consumption, investment, output, the price of capital, the real
interest rate, u0(ct)/[βu

0(ct+1)], hours worked, etc. Each picture should have two
lines. One depicts the variables on the old steady state growth path. The sec-
ond shows the convergence to the new steady state growth path starting at t∗.
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Hopefully, the second picture should resemble the Japanese economy in several
respects: a weak stock market, low real rate, low output, etc.

2. Questions

Following are exercises to be implemented using the code, japan.m, which is con-
tained in the set of MATLAB programs associated with this assignment, and
which is available online. The benchmark parameter values are:

α = 0.36, b = 0.6, β = 1.03−.25, χ = 8, δ = 0.02, γ = 1, ψ = 2.3, µz = 1.005

ρz = 0.95, ρT = 0.85, σa = 0.01.

According to these parameters values, the steady state growth rate of output is
0.5 percent per quarter, or 2 percent per year (see µz, which is called xbar in
japan.m.) The period in which the time endowment shock occurs is 50 (time is
in units of quarters). The news that technology will jump in the future occurs
in period 40. The number of periods in the future that technology is expected to
jump is 8 (this is the value of p). The amount by which technology is expected to
jump is ẑ. Initially, we will set ẑ = 0. (Recall, 100×ẑ represents the percent by
which z is expected to be above steady state.) We will begin by focussing on the
drop in steady state hours.
The periods in the model are matched up with calender time as follows. Period

0 corresponds to 1980 and period 40 corresponds to 1990. Crudely, the idea
is that the arrival of information that future technology will be high triggers
the investment and output boom. A couple years later the laws are imposed
encouraging a reduction in work effort. The graphs generated by japan.m also
include actual Japanese data as a useful benchmark.

1. Produce graphs for the benchmark parameterization. Note that the long
run effects on output and employment match up reasonably well with what
happened (this is why this experiment was done in the first place!). However,
there are some notable misses. Consumption in the data is rather slow to
come off its early 1990s peak relative to the model. The price of capital is
very high, which is quite the reverse of what actually happened in Japan
(only the data for the model on PK0 are shown, the Japanese data are not).

2. Note how the rate of capital utilization in the model is quite low in the
1990s, and how this matches reasonably well with the Japanese data. Still,
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our analysis in assignment 3 suggests that variable capital utilization may
be behind the model’s counterfactual jump in investment. So, consider
changing σa to 10,000, thus shutting down variable capital utilization. Note
that now investment does fall, though the price of capital continues to rise
sharply.

3. A useful benchmark is to eliminate the ‘special’ frictions in the model, set-
ting χ = 0.01, b = 0, σa = 10, 000, and setting ρT = 0.05. Now the
‘standard’ dynamics of the neoclassical growth model emerge: investment
and employment immediately overshoot the new steady state growth path,
and converge from below and consumption and the capital stock converge
to the new path from below. The employment and output aspects of this
seem particularly counterfactual.

4. Attempt an improvement over the experiment in question 3 by setting b =
0.6 (to ensure that consumption falls less quickly) and ρT = 0.85 (to ensure
that employment falls more slowly). Redo the calculations. Note than now
employment and investment actualy jump! Why is this? (Hint: with Tt
expected to decline over time, now is relatively cheap - in utility terms -
time to work. Might as well work a little extra, and store the results by
increasing investment.)

5. The analysis of question 4 suggests that in addition to habit persistence and
a slow convergence of the time endowment, adjustment costs in investment
may be important. Set χ = 8 again, and redo the calculations. Note that
now we probably have about the best ‘fit’ of the model.

6. So far, nothing we have done explains the burst of investment and output -
and to some extent consumption - that occured in the late 1980s. Possibly
this phenomenon can be understood as an overinvestment boom like the one
studied in assignment 4. To explore this further, let ẑ = 0.20. This means
that in period 40 people suddenly expect that 8 periods in the future the
state of technology will jump 20 percent. Redo the calculations with this
change, and with the remaining parameters set as they are in question 5.
Note how this produces a jump in investment and output. However, em-
ployment rises counterfactually, and the price of capital falls. The analysis
of assignment 4 suggests that the fall in the price of capital would be re-
versed if we incorporated money and monetary policy. In addition, the rise
in investment would be increased (possibly by as much as a factor of four,
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according to preliminary analysis with Motto and Rostagno of the ECB),
as would the rise in output. These would all put the model into closer con-
formity with the data. However, a significant problem is that these changes
would amplify the response of employment, which is already too strong.
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