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Incremental parsing in a continuous dynamical system: 
Sentence processing in Gradient Symbolic 
Computation 

Abstract: Any incremental parser must solve two computational problems: (൫) maintaining all interpretations con-

sistent with the words that have been processed so far and (൬) excluding all globally-incoherent interpretations. While 
these problems are well understood, it is not clear how the dynamic, continuous mechanisms that underlie human 
language processing solve them. We introduce a Gradient Symbolic Computation (GSC) parser, a continuous-state, 
continuous-time stochastic dynamical-system model of symbolic processing, which builds up a discrete symbolic 
structure gradually by dynamically strengthening a discreteness constraint. Online, interactive tutorials with open-
source software are presented in a companion website. Our results reveal that the GSC parser can solve the two com-

putational problems by moving to a non-discrete blend state that evolves exclusively to discrete states representing 
contextually-appropriate globally-coherent interpretations. In a simulation study using a simple formal grammar, we 
show that successful parsing requires appropriate control of the discreteness constraint strength (a quantization policy). 
With inappropriate quantization policies, the GSC parser makes mistakes that mirror those made in natural language 
comprehension (garden-path or local-coherence errors). These findings suggest that the GSC model offers a neurally 
plausible solution to these two core problems. 
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1 Introduction 

Language is a discrete combinatorial system (Hockett 1960). Symbols (e.g., phonemes, morphemes, phrases) combine 
with one another to create new, different structures with different meanings. While this combinatorial structure is 
beneficial for expressing a near-infinite variety of meanings, it presents challenges for perception of speech and text. 
As each symbol is linked to multiple combinations of symbols and, therefore, distinct meanings, this combinatorial 
structure leads to local ambiguity. Human language comprehension is incremental (Altmann and Kamide 1999; Bever 
1970), with interpretations built over partial input before a whole symbol string is presented. Then, the question natu-

rally follows: How does the human language processing system handle local ambiguity in incremental processing? 
Any incremental processing system must accomplish two computational goals: (൫) keeping all interpretations con-

sistent with context, the symbols that have been processed, without choosing one over the others (temporary ambigui-
ty), and (൬) excluding all interpretations inconsistent with context (context dependency). For example, consider a sen-
tence “Dogs yawn.” After hearing “dogs”, we need to consider every possible interpretation (e.g., “Dogs yawn”, 
“Dogs sleep”, “Dogs bark”, “Dogs hate cats”). An early commitment to one (e.g., “Dogs bark”) over the others can 

create difficulty when processing the second word. At the same time, when processing the second word “yawn,” we 
need to reject interpretations inconsistent with context so that we do not choose “Cats yawn” instead of “Dogs yawn”. 

Sometimes, the human language processing system fails to achieve these two computational goals. We may 
choose one interpretation over the other when both are consistent with the linguistic input (the garden-path effect; 
Bever ൫൳൱൪; Frazier ൫൳൲൱). For example, there are two interpretations consistent with a sentence beginning “The horse 
raced past the barn…” In the first, raced is the main verb; in the second, raced is a passive participle in a reduced 

relative clause (e.g., “The horse (that) raced past the barn fell.”). Although both are possible, listeners almost always 
assume the first interpretation, and have great difficulty revising this expectation. We refer to this issue as the problem 
of temporary ambiguity. 

At other times, we may fail to use context, accepting globally incoherent interpretations. For example, when read-
ing “The coach smiled at the player tossed a frisbee …” the underlined string forms a locally coherent subject-
predicate sequence, even though such a structure is impossible given the preceding context (in a grammatical sentence, 

tossed a frisbee must be a reduced relative clause modifying player). In spite of its impossibility, readers show sensi-
―― 
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tivity to the presence of this locally coherent structure (Gibson ൬൪൪൰; Konieczny ൬൪൪൯; Tabor, Galantucci and Richard-

son ൬൪൪൮). We refer to this as the challenge of context dependence. 
Rational models of language comprehension (e.g., Hale ൬൪൪൫; Jurafsky ൫൳൳൰; Levy ൬൪൪൲) solve the two problems 

by updating a conditional probability distribution across different interpretations as input is incrementally processed. 
Suboptimal behaviors are explained by assuming limited resources available for incremental processing (e.g., Jurafsky 
൫൳൳൰; Levy, Reali and Griffiths ൬൪൪൲) or uncertainty about the previously processed input symbols (e.g., Levy, Bick-
nell, Slattery and Rayner ൬൪൪൳). 

Although they explain why and what computational goals must be achieved (Marr ൫൳൲൬), these rational models 
typically do not explain how to achieve them at a mechanistic level (but see Hale ൬൪൫൫). For a more comprehensive 
understanding of human language processing, we need a mechanistic model working on specific representational and 
processing assumptions. We pursue a novel incremental processing model that has a clear symbolic interpretation, is 
reasonably analyzable, and provides neurally plausible solutions to these computational problems (Smolensky and 
Legendre ൬൪൪൰). None of the previously proposed models (e.g., Elman ൫൳൳൪; Hale ൬൪൫൫; Lewis, Vasishth and Van 

Dyke ൬൪൪൰; Tabor and Hutchins ൬൪൪൮; Tabor, Juliano and Tanenhaus ൫൳൳൱; Vosse and Kempen ൬൪൪൪) satisfy all of 
these desiderata (but see Carmantini, beim Graben, Desroches and Rodrigues ൬൪൫൱ for one such proposal, focusing on 
the problem of temporary ambiguity). 

The core of our account is the stable blend state hypothesis: 
– Conjunctive blends: After every symbol input, the human language processing system builds a conjunctive blend 

of multiple possible interpretations which can evolve to globally consistent interpretations and does not evolve to 

globally incoherent interpretations. 
–  Stability of blend states: For the system to hold multiple interpretations until a biasing input comes in later, the 

blend state must be stable. 

In the next section, we propose our incremental processing model which has the ability to form a stable blend of 
different discrete structures. Then, we report a simulation study, showing that the model can solve the core computa-

tional problems in incremental processing. We discuss when and why the model may fail to parse a sentence. In the 
General Discussion, we evaluate our model and discuss future directions. Throughout, we point out the parallel presen-
tation of the ideas, and their computer implementation, available in a companion website.1 

2 A Gradient Symbolic Computation parser 

Smolensky, Goldrick and Mathis (2014) proposed the Gradient Symbolic Computation (GSC) framework, which is a 

continuous-time, continuous-state stochastic dynamical system that gradually builds a discrete symbolic structure in a 
continuous representation space. We apply the GSC model to incremental processing, focusing on the crucial transient 
dynamics. In this section, we briefly introduce the GSC model in the incremental processing context using a simple 
formal language. Specific simulation results will be reported in the next section. 

2.1 Grammar 

To make the core computational problems clear, we consider a formal language that poses – in the purest, simplest 
possible form – the two core incremental processing computational problems (temporary ambiguity and context de-

pendency) found in languages of any complexity. This language L consists of 4 sentences: 
– S1=‘A B’ 
– S2=‘A C’ 
– S3=‘D B’ 

– S4=‘D C’ 

After processing a first word ‘A’, an optimal incremental processing system must be able to keep both S൫ and S൬ 
as candidate interpretations and exclude S൭ and S൮ as inconsistent with context, in this case, the first word. 
We characterize L by a phrase structure grammar G consisting of the following rules: 

―― 
1 Software and online Supplementary Materials are available in a companion website: https://cloud.sagemath.com/projects/൬൳c൲൲൮൳൴-
a൰c൮-൯൴de-൴൯൱a-൲൰൴൮b൰൮d൮fb൭/ 
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– S → S[1] | S[2] | S[3] | S[4] 

– S[1] → A B 
– S[2] → A C 
– S[3] → D B 

– S[4] → D C 

The target parse trees of the four sentences are 

– T1=[S [S[1] [A B]]] 
– T2=[S [S[2] [A C]]] 
– T3=[S [S[3] [D B]]] 

– T4=[S [S[4] [D C]]] 

See Figure ൬(b) for an illustration of the parse tree for T൫ (and see Supplementary Materials ൫ for the use of bracketed 

symbols such as S[൭]). 

2.2 Representation 

To introduce our representational framework, consider T1 = [S [S[1] A B]] (Figure 1b). Assign a unique label to each of 
four positions (called roles) in the tree. Specifically, assign (0,1), (1,2), (0,1,2), and (0,2) to the four positions. These 
are span roles; role (i, j) holds the category label of the constituent (if any) that spans from position i to position j 
(where position j lies just after the j-th symbol in the string being parsed). A span role (i, j, k) spans between positions i 
and k and has two daughters, one spanning from i to j and the other spanning from j to k (see Figure 1c). In T1, each 

role is occupied by a filler. For example, a filler A occupies a role (0,1) to form a filler/role binding A/(0,1). Then, the 
tree can be viewed as an unordered set of filler/role bindings T1 = [S[1] A B] ≡ {B/(1,2), S/(0,2), A/(0,1), S[1]/(0,1,2)} 
(for more details, see Hale and Smolensky 2006). 

 

Figure ൬: (a) Representation of T൬. Only a subset of filler and role units is shown. (b) Grammatical constraints implemented as 
weight and bias values. (c) Span roles. (d) Superposition (vector sum) of filler/role bindings. 
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A binding of filler f and role r is represented in a continuous representation space (over connectionist processing 

units) as the tensor (outer) product of f (an activation vector2 representing f) and r (an activation vector representing r). 
The representation of an entire symbolic structure – a set of f/r bindings – is simply the superposition (sum) of the 
representations of the constituent bindings (see Figure ൫a and ൫d). 

The companion website provides software for constructing and visualizing tensor product representations, along 
with additional examples (see Supplementary Materials ൬). 

2.3 Constraints 

Parsing in the network is accomplished via satisfaction of three kinds of constraints (see Supplementary Materials 1−3 

for detailed explanation and additional interactive examples): 
Grammatical constraints. A Harmonic Grammar (Hale and Smolensky, ൬൪൪൰) implements the phrase structure 

grammar. The central idea is to connect bindings that produce grammatical mother-daughter relationships by excitato-
ry connections. For example, in T൫ (Figure ൫b), such connections mean that whenever a binding A/(൪,൫) is activated, it 
will activate its mother S[൫]/(൪,൫,൬) which in turn activates its grammatical daughter B/(൫,൬) and its grammatical mother 
S/(൪,൬). Each of these grammatical constraints is local; in T൫, a constraint between A/(൪,൫) and S[൫]/(൪,൫,൬) is consid-

ered independently of another constraint between B/(൫,൬) and S[൫]/(൪,൫,൬). The degree to which each constraint is inde-
pendently satisfied can be quantified by the product of the activations of the mother and daughter bindings; summing 
over all local constraints gives a global constraint-satisfaction measure HG (the harmony of the representational state 
relative to the grammatical constraints). 

Baseline constraint. Every binding must be at a baseline activation state: in the present example, ൪.൯ for every 
binding. A measure HB quantifies the level of satisfaction of the constraint. 

Discreteness (or quantization) constraint. Every role must be occupied by a single filler (so that the system 
commits to a particular structural analysis). A measure HQ quantifies the degree of satisfaction of the discreteness 
constraint. 
The total harmony H is defined as follows: 

;ࢇ)ܪ ,ࢋ (ݍ = ;ࢇ)ீܪ (ࢋ + (ࢇ)ܪ +  (ࢇ)ொܪݍ

where a is the activation state vector, e is an external input vector (see below), and q (≥ ൪) is the strength of the dis-
creteness constraint (called quantization strength or discreteness pressure) relative to the grammar and baseline con-
straints. 

2.4 Processing 

The GSC parser seeks to maximize total harmony by stochastic gradient ascent. Formally, the state change is as fol-
lows: 

ࢇ݀ = ;ࢇ)ܪࢇߘ ,ࢋ ݐ݀((ݐ)ݍ + √2ܹܶ݀ 

where T is a computational temperature (determining the amount of noise) and W is the standard Wiener process. In 
the present study, T will be fixed to a small value.3 See beim Graben and Gerth (൬൪൫൬) for a related approach to using 
tensor-product representations and harmony maximization to parse Minimalist grammars.  

It is assumed that the GSC parser increases q gradually because its goal is to build a discrete symbolic structure. 
We refer to a particular update schedule of q(t) as a quantization policy. 

―― 
2 These local, “one-hot,” encodings, can be easily converted to distributed representation by a simple linear transformation (Smolensky 
൫൳൳൪). 
3 Smolensky et al. (൬൪൫൮) used simulated annealing (S. Geman and Geman ൫൳൲൮), with time-varying T to reach globally optimal states. Here, 

the problem is not avoiding local optima, but finding the correct one of two global optima: the one consistent with previous context. It suffic-
es to hold T at a fixed, small value so that information from previous parse states (critical to incremental processing) is not destroyed by large 
random noise; the small noise suffices to avoid getting stuck at critical points that are not maxima. 
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2.5 The GSC solution to incremental processing problems 

Returning to our simple language example, we hypothesize that after processing a first word ‘A’, the human language 

processing system builds a blend state representing something like [S (A+B+C+D) (A+B+C+D)] where boldface indi-
cates higher activation. With a second word input and gradually growing discreteness pressure, the blend state will 
evolve to the state representing either [S A B] or [S A C], but neither [S D B] nor [S D C]. 

To understand processing dynamics, we need to investigate the topological structure of the harmony surface {(a, 
H(a))}. Figure ൬ shows the proposed dynamic solution to the two computational problems by visualizing the harmony 
surface at two different points q in processing. An interactive tutorial can be found in Supplementary Materials ൭. 

 

Figure ൭: Schematic diagrams of the harmony surface (animated version available in Supplemental Materials). The xy-plane 
represents every possible mental state. Only a small subset of the states (points S൬−S൯) represents grammatical symbolic struc-
tures. The z-axis represents total harmony, the goodness of the mental state. On average, the system climbs a local hill to reach 
a local optimum. The model’s goal is to reach a target state S൬ (circled) for incremental input of S൬=‘A B’. (left) ‘A’ is presented 
when q is low: S൬ and S൭ have highest harmony (among discrete states) because each has ‘A’ as its first word. The baseline 
constraint contributes more than the discreteness constraint (q is low) to the total harmony so there is a single, global optimum 
which is biased toward S൬ and S൭. (right) ‘B’ is presented when q is high; now S൬ and S൮ have highest harmony as both have ‘B’ 
as their second word. Because of the high value of q, the surface has multiple humps each containing a discrete symbolic state. 
The S൬ and S൭ humps are broader and higher than the S൭ and S൯ humps due to the bottom-up input ‘B’. The location of the 
global optimum in the left panel is covered by the S൬ hump in the right panel. Thus, with only a small level of noise, the system is 
likely to move to S൬ (rather than S൮), although both are consistent with ‘B’. 

As q increases over the course of parsing, multiple harmony humps emerge because the blend states are penalized 

to increasing degrees. Because the model performs gradient ascent, a set of states covered by one local hump, a basin 
of attraction, is separated from the states covered by the others. The model commits to one set of states – correspond-
ing to a meaningful parsing decision. 

The GSC model parses sentences by (i) moving to a blend state which can evolve to any globally consistent inter-
pretation (addressing the issue of temporary ambiguity) and (ii) separating that blend state from other blend states 
which evolve to structures inconsistent with the prior context (addressing context dependence). Both goals are 

achieved simultaneously by committing to particular sets of states – i.e., increasing the quantization strength q – at an 
appropriate pace (Cho and Smolensky ൬൪൫൰). If q increases too quickly, the model may make a commitment to one 
state over other possible continuations too early – a garden path error. If q increases too slowly, the model will fail to 
separate the target blend state from others that yield discrete structures inconsistent with context – a local coherence 
error. 

In the next section, we examine this account via a simulation study. 
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3 Simulation 

3.1 Method 

Ten instances of the GSC model implementing grammar G were equipped with randomly generated distributed repre-

sentations of f/r bindings. These parsed each of four sentences in L 10 times with one of three quantization policies 
(Figure 3). 

 

Figure ൮: Three quantization policies. 

The initial state of the model was determined by adding a small amount of Gaussian noise (SD = ൪.൪൬) to the 
globally optimal state when q = ൪. Then, the model was given a sentence word by word. External input is provided for 
a fixed amount of time to the f/r binding corresponding to the current word (e.g., when ‘A’ is presented as a first word, 
the binding A/(൪,൫) is activated by external input). When the next word is presented, this binding no longer receives 

external input (e.g., when ‘B’ is the second word, the binding B/(൫,൬) is activated and the external input to A/(൪,൫) is 
removed). During processing, q was updated following one of three quantization policies (Figure ൭). 

Complete details of the simulations, including software enabling readers to construct their own simulations, can be 
found in Supplementary Materials ൮. 

3.2 Results 

Figure 4 presents the discrete symbolic state that is closest to the model’s final activation state in each of three condi-
tions. Parsing accuracy was near ceiling with Policy 2. Deviating from this policy resulted in errors. When a second 

word was presented when q was too low (Policy 1), the model behaved as if it forgot the past and chose any structure 
consistent with the present input (e.g., either T1 or T3 for input S1). When the wrong option was selected, this pro-
duced a local coherence error. When q increased too quickly before a second word was given (Policy 3), the model 
committed to either of the two choices that were consistent with context, the first word (e.g., either T1 or T2 for input 
S1). When the wrong option was selected, this produced a garden-path error. 
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Fig. ൯: Distributions of symbolic outputs for each quantization policy (N = ൯൫൫; ൬൫ model instances x ൯ sentences x ൬൫ trials 
each). 

The source of each error type can be seen in the change in parser states over time (Figure ൯). As shown in the left 
panel, local coherence errors result when the model processed the first word ‘A’ with insufficiently strong commitment 
to particular parses. The model therefore failed to distinguish between the structures consistent with the input (S[൫] and 

S[൬]) and those inconsistent with input (S[൭] and S[൮]). When the second word ‘B’ was presented, therefore, the model 
randomly chose S[൫] (the target) or S[൭] (a local coherence error), as both were consistent with the second word. 

 

Figure ൰: Ten (of ൬൫൫) sample activation histories for input sentence S൬. Only the full-string bindings (e.g., S[൬]/(൫,൬,൭)) for each 
output structure (e.g., [A B]) are shown. 

As shown in the right panel, garden path errors result when the model processed the first word while over-
committing to a particular parse. The model therefore chose one of the two contextually-appropriate structures (the 
target, S[൫], or the garden path error, S[൬]) over the other, blocking the influence of the second word. 

Correct parsing (center panel) occurred when the first word input activated, in the form of a stable blend, both of 
the structures consistent with the input (S[൫] and S[൬]), separating these from inconsistent structures (S[൭] and S[൮]). 
This meant that when the second word was presented S[൫] was chosen over S[൭] (as the latter had already been separat-

ed from the blend). Thus, the model could reach the target state T൫. 
Figure ൰ provides a global view of model performance, presenting the whole activation state of the parser at three 

time points with Policy ൬. The left panel shows the expected activation state before the model is given a sentence. Note 
that not all fillers are equally activated in each role. For example, in role (൪,൫), fillers A and D are more active than 
fillers B and C. This is because these first-position bindings are in grammatical mother-daughter relationships with 
complete grammatical sentences (whereas B and C are not found in any sentence in first position). The middle panel 

presents the activation state after processing the first word ‘A’. Due to the external input, filler A is strongly active in 
the (൪,൫) role. In role (൪,൫,൬), S[൫] and S[൬] are more strongly active than the other fillers (as they are consistent with 
this input). Likewise, in role (൫,൬), the activations of two fillers B and C are equal and higher than the activations of 
other fillers; in this way, the model predicts possible continuations. The right panel shows that with the second word 
input, the model built the target structure T൫. 
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Figure ൱: Expected activation states (with no noise) of fillers within each role (white = ൫, black = ൬) at three time points (left: 
before processing S൬=‘A B’ and q = ൫; middle: after processing ‘A’ and q = ൭൰; right: after processing ‘B’ and q = ൭൫൫) with Policy 
൭. Note: the final filler symbol ‘_’ denotes null, the absence of any filler in that particular role. 

4 General discussion 

Any incremental parser must address two core computational problems: maintain all interpretations consistent with 
context (temporary ambiguity) while simultaneously excluding all interpretations inconsistent with context (context 
dependency). The GSC parser solves this by exploring a “garden of forking paths” (Borges 1962; see Figure 7). 

 

Figure ൲: The GSC model explores a “garden of forking paths” (Borges ൬൴൱൭), the representation space augmented with the 
pressure to commit to a particular discrete parse. There are multiple versions of the garden, one for each external input (e.g., 
blue and green) and one for no word input (gray). Only one version can exist at a time. When the external input is updated, the 
garden transforms into another version; the parser’s state moves to a nearby point on a newly emerged path (indicated by blue 
and green arrows). Each branching is a bifurcation (in the technical sense from dynamical systems theory: Cho and Smolensky 
൭൫൬൱); the point at which a blend state loses its stability due to the increased tension among competing filler/role bindings. As 
the discreteness pressure increases, the model is forced to choose one branch over the others, which leads to different parses 
(terminals of the paths). 

If the degree to which the GSC parser commits to particular parses is properly regulated, it can blend the future 
and encode the past into its present state. When the degree of commitment is not well regulated, the GSC model be-
comes irrational. When the commitment level is too low, the model fails to encode information in the present word 

input; this means it will ignore the past information when it processes a next word (leading to local coherence errors). 
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If the commitment level is too high, the model will choose one out of many parses consistent with the current context. 

The model therefore fails to recognize temporary ambiguity (leading to garden path errors)4.  
We emphasize that each blend state is not a representation of a probability distribution over parses discussed in 

structural probabilistic models (e.g., Jurafsky ൫൳൳൰). The (blend) state changes continuously but the set of possible 
parses (i.e., reachable terminals in Figure ൱) and the probability distribution over the parses change discretely at bifur-
cation points. Each blend state represents a unique, inseparable mixture of (partially activated) filler/role bindings that 
needs to be unblended gradually by dynamics; computation is completely parallel. For a related but different approach, 

see beim Graben, Gerth and Vasishth (൬൪൪൲) where multiple interpretations are represented as the superposition of 
discrete partial structures (i.e., sets of fully activated filler/role bindings) each of which is computed independently.  

The GSC approach is still in its infancy. Before concluding, we briefly discuss two potentially challenging prob-
lems for scaling up the model. (a) A large amount of local ambiguity (present in more complex grammars) can make it 
much more difficult for the GSC model to successfully parse sentences. In each role, locally ambiguous symbols have 
an advantage over locally unambiguous symbols. Ambiguous symbols have more connections to other symbols in 

other roles (reflecting their association to multiple structural options); ambiguous symbols therefore tend to win the 
competition regardless of context. (b) To parse variable length sentences with a fixed number of roles, the GSC model 
binds irrelevant roles with the null filler. This is challenging, especially in the face of favored locally ambiguous sym-
bols; it is difficult for the model to activate the null symbol in the irrelevant roles before locally ambiguous fillers are 
chosen as winners. One promising approach to these issues is to adopt role-specific quantization policies, such that the 
discreteness pressure is stronger for elements spanning the positions already encountered in the string. For example, 

when processing the second word, elements spanning the first and second word will have strong discreteness pressure, 
but elements spanning positions beyond the second word will have weak discreteness pressure.  

Although there are clearly many avenues for elaborating this approach, we believe that the GSC model represents 
a promising approach for satisfying the key desiderata of algorithmic accounts of sentence processing. It provides a 
neurally plausible, yet symbolically interpretable, means of solving the core problems in incremental processing. 
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